WO2022270839A1 - 위상 변환기 및 그를 포함하는 무선 통신 장치 - Google Patents

위상 변환기 및 그를 포함하는 무선 통신 장치 Download PDF

Info

Publication number
WO2022270839A1
WO2022270839A1 PCT/KR2022/008686 KR2022008686W WO2022270839A1 WO 2022270839 A1 WO2022270839 A1 WO 2022270839A1 KR 2022008686 W KR2022008686 W KR 2022008686W WO 2022270839 A1 WO2022270839 A1 WO 2022270839A1
Authority
WO
WIPO (PCT)
Prior art keywords
ports
wireless communication
antenna
along
transmission line
Prior art date
Application number
PCT/KR2022/008686
Other languages
English (en)
French (fr)
Inventor
김유선
배석
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to US18/572,280 priority Critical patent/US20240291147A1/en
Priority to CN202280043309.1A priority patent/CN117501542A/zh
Priority to EP22828686.0A priority patent/EP4362226A1/en
Priority to JP2023577959A priority patent/JP2024522799A/ja
Publication of WO2022270839A1 publication Critical patent/WO2022270839A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to a phase converter with low loss in a broadband and a wireless communication device including the same.
  • display devices are often wall-mounted, and for convenient wireless connection with external devices that provide source content, such as mobile devices, Wi-Fi or Bluetooth (BT) is a trend to embed a wireless communication module into a display device.
  • external devices such as mobile devices, Wi-Fi or Bluetooth (BT)
  • BT Bluetooth
  • a method of modifying a traveling direction (ie, a radiation pattern) of a radio signal by mounting a phase shifter on a transmission path between a wireless communication module and an antenna is being considered.
  • a phase difference of 180 degrees is made between one antenna and the other antenna in a dipole antenna other than the purpose of changing the traveling direction, the antenna gain of maximum efficiency may be implemented.
  • the present invention has been conceived to solve the above-described problems of the prior art, and is to provide a phase converter having better phase conversion performance in a broadband and a wireless communication device including the same.
  • a wireless communication device includes a wireless communication module; a first antenna; a first transmission line transmitting a signal between the wireless communication module and the first antenna; and a phase shift element disposed on the first transmission line, wherein the phase shift element is disposed on one side of a first direction and includes a plurality of first ports spaced apart from each other and stacked in a vertical direction. ; a second port unit disposed on the other side of the first direction and including a plurality of second ports spaced apart from each other and stacked in the vertical direction; and a plurality of conductive wires extending in the first direction and electrically connecting each of the plurality of first ports and the plurality of second ports that face each other along the first direction.
  • each of the plurality of first ports may overlap each other along the vertical direction
  • at least a portion of each of the plurality of second ports may overlap each other along the vertical direction
  • each of the plurality of first ports and the plurality of second ports may extend along a second direction crossing the first direction.
  • At least some of the plurality of conductive wires may overlap each other in the vertical direction.
  • the plurality of conductive layers may not overlap each other in the vertical direction.
  • At least some of the plurality of conducting wires may include multiple conducting wires disposed side by side and spaced apart from each other along a second direction crossing the first direction.
  • the plurality of first ports are electrically connected to each other through first through holes extending in the vertical direction
  • the plurality of second ports are electrically connected to each other through second through holes extending in the vertical direction. They can be electrically connected to each other.
  • each of the first through hole and the second through hole may include a half through hole having a semicircular planar shape.
  • a width of each of the plurality of first ports and the plurality of second ports in the second direction is greater than a width in the first direction, and a length of each of the plurality of conductive wires in the first direction. may be greater than the width in the second direction.
  • the phase conversion element may further include a barrier part including a plurality of third through holes spaced apart from each other along the first direction, and each of the plurality of third through holes may be connected to the plurality of conductive wires and the first through hole. They can be spaced along two directions.
  • the wireless communication device may include a second antenna; and a second transmission line for transmitting a signal between the wireless communication module and the second antenna, wherein the plurality of conductive lines face the second transmission line with the barrier part interposed therebetween along the second direction.
  • a phase shifter and a wireless communication device including the same according to the present invention have the following effects.
  • FIG. 1 shows an example of a configuration of a wireless communication device according to an embodiment.
  • FIG. 2 is a perspective view illustrating an example of a phase shifter structure according to an exemplary embodiment.
  • FIG. 3 is a perspective view illustrating an example of a phase shifter structure according to another embodiment.
  • FIG. 4 is a perspective view illustrating an example of a phase shifter structure according to another embodiment.
  • FIG. 5 is a perspective view illustrating an example of a phase shifter structure according to another embodiment.
  • FIG. 6 is an implementation example of a wireless communication device to which the phase shifter shown in FIG. 5 is applied.
  • FIG. 7 is a diagram for explaining coupling characteristics of a phase shifter according to embodiments.
  • FIG. 8 is a diagram for explaining characteristics of each frequency band of a phase shifter according to embodiments.
  • phase shifter 9 is a diagram for explaining phase control performance characteristics of a phase shifter according to embodiments.
  • first, second, A, B, (a), and (b) may be used in describing the components of the present invention. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term.
  • an element is described as being “connected,” “coupled to,” or “connected” to another element, that element is or may be directly connected to the other element, but there is another element between the elements. It will be understood that elements may be “connected”, “coupled” or “connected”.
  • FIG. 1 shows an example of a configuration of a wireless communication device according to an embodiment.
  • a wireless communication device is provided between a wireless communication module 200, a first antenna 310 and a second antenna 320, and a first antenna 310 and a wireless communication module 200.
  • a first transmission line 410 disposed on, a second transmission line 420 disposed between the second antenna 320 and the wireless communication module 200, and a phase converter connected in series to the first transmission line 410 ( 100) may be included.
  • the wireless communication module 200 may support one or more wireless communication protocols.
  • the wireless communication protocol may include at least one of 4G/5G, Bluetooth (BT), and Wi-Fi (Wi-Fi), but this is exemplary and is not necessarily limited thereto.
  • the first antenna 310 and the second antenna 320 may implement a dipole antenna, but are not necessarily limited thereto.
  • the first antenna 310 and the second antenna 320 may implement multiple input multiple output (MIMO) antennas.
  • MIMO multiple input multiple output
  • the first antenna 310 and the second antenna 320 may be connected to the first transmission line 410 and the second transmission line 420 via the antenna terminals 510 and 520, respectively, but depending on the implementation, (For example, a planar antenna having a pattern formed integrally with a transmission line, etc.)
  • the antenna terminals 510 and 520 may be omitted.
  • the phase converter 100 may also be referred to as a phase conversion element, and signals simultaneously output from the wireless communication module 200 to the first transmission line 410 and the second transmission line 420 are transmitted to the first antenna 310 and the second transmission line 420, respectively.
  • the phase difference between the two signals can be controlled to a target value.
  • the target value may be 180 degrees.
  • this target value is an example, and a value different from 180 degrees may be the target value when beam steering is the purpose.
  • the signal simultaneously received by the first antenna 310 and the second antenna 320 is transmitted to the wireless communication module 200 via the first transmission line 410 and the second transmission line 420.
  • the phase difference between signals input from each transmission line at the time of arrival may also become a target value by the phase converter 100.
  • phase shifter 100 According to the embodiments, the structure of the phase shifter 100 according to the embodiments will be described with reference to FIGS. 2 to 5 .
  • FIG. 2 is a perspective view illustrating an example of a phase shifter structure according to an exemplary embodiment.
  • the phase shifter 100A includes a first port part 110A, a second port part 120A, a conducting wire part 130A, and a plurality of through holes 141 and 142. can do.
  • the first port unit 110A may include a plurality of first ports 111, 112, 113, and 114 stacked and spaced apart from each other in a vertical direction (ie, a three-axis direction) disposed on one side of one axis direction. .
  • the second port portion 120A is disposed on the other side opposite to the first port portion 110A in one axial direction, and includes a plurality of second ports 121, 122, 123, and 124 spaced apart from each other and stacked in the vertical direction. can include
  • Each of the plurality of conducting wires 131 , 132 , 133 , and 134 constituting the conducting wire portion 130A extends along the first direction, and includes a plurality of first ports 111 , 112 , 113 , and 114 and a plurality of second ports.
  • each of the port pairs facing each other along the first direction may be electrically connected.
  • the first port 111 and the second port 121 disposed on the uppermost layer along the 3-axis direction may be electrically connected through the wire 131 disposed on the uppermost layer along the 3-axis direction.
  • the plurality of first ports 111, 112, 113, and 114, the plurality of second ports 121, 122, 123, and 124, and the plurality of conductive wires 131, 132, 133, and 134 each contain a conductive material such as copper.
  • the plurality of first ports 111, 112, 113, and 114 may be electrically connected by first through-holes 141 extending in three axial directions and having conductivity
  • the plurality of second ports 121 and 122 , 123 and 124 may be electrically connected by a second through hole 142 extending in three axial directions and having conductivity.
  • Each of the first through hole 141 and the second through hole 142 may have a shape of a half-through hole having a semicircular planar shape, but is not necessarily limited thereto.
  • each of the first port 114 and the second port 124 of the lowest layer may be electrically connected to the first transmission line 410 .
  • each of the plurality of first ports 111, 112, 113, and 114 overlaps each other along the three-axis direction, and each of the plurality of second ports 121, 122, 123, and 124 has at least one portion along the three-axis direction. Some may overlap each other.
  • each of the plurality of first ports 111, 112, 113, and 114 and the plurality of second ports 121, 122, 123, and 124 may have a plate-like shape extending in two axial directions, and have a length in two axial directions. (w1) may be greater than the uniaxial length (w2).
  • the line width w3 of each of the plurality of conductive wires 131 , 132 , 133 , and 134 may be smaller than the length w4 in one axial direction.
  • the line width w3 may be smaller than the biaxial length w1 of each of the plurality of first ports 111, 112, 113, and 114 and the plurality of second ports 121, 122, 123, and 124.
  • At least a portion of the plurality of conductive wires 131, 132, 133, and 134 may overlap each other along the three-axis direction.
  • at least some of the plurality of conductive wires 131, 132, 133, and 134 may not overlap each other in three axial directions.
  • each of the ports constituting the first port portion 110A and the second port portion 120A and each of the conducting wires constituting the conductive wire portion 130A are formed according to three axial directions.
  • Components having heights corresponding to each other form a resonance unit and form electromagnetic coupling with components having different heights in three axial directions.
  • This electromagnetic coupling has an effect of controlling the electrical length, and the controlling of the electrical length means that a phase constant ( ⁇ ) can be controlled on the transmission line. Therefore, this means that the phase converter 100A according to the embodiment changes the phase of the signal passing through the first transmission line 410 .
  • the line width w3, the line length w4, the number of layers, and the distance between the conductors eg, the separation distance between the conductors in the third direction, whether or not the conductors overlap in the third direction, etc.
  • various target phase difference values between antennas can be obtained.
  • the resonant unit element may be implemented in the form of a single conductive printed pattern formed on a substrate (not shown).
  • the phase shifter 100A may have a total of four resonance unit elements. In this case, the phase shifter 100A may be formed by stacking four substrates in a three-axis direction.
  • the uppermost resonance unit elements 111, 121, and 131 are formed on the upper surface of the first substrate (not shown) disposed on the uppermost layer, and the second resonance unit elements 112, 122, and 132 are disposed below the first substrate.
  • the third resonance unit element 113, 123, 133 is formed on the lower surface of the third substrate (not shown) disposed under the second substrate, and the lowest layer resonance unit element (114, 124, 134) may be formed on the lower surface of the fourth substrate (not shown) disposed under the third substrate.
  • the line width w3, the line length w4, the number of layers in the third direction, the distance between conductors, and the like shown in FIG. 2 are exemplary, and various modifications are possible to those skilled in the art.
  • FIG. 3 is a perspective view illustrating an example of a phase shifter structure according to another embodiment.
  • the phase shifter 100B according to another embodiment shown in FIG. 3 has the same configuration except for the phase shifter 100A shown in FIG. 2 and the structure of the wire 131'. Therefore, differences from the phase shifter 100A shown in FIG. 2 will be mainly described.
  • the phase shifter 100B includes a plurality of multi-conductor wires 131' in which each conductor constituting a resonance unit element is spaced apart from each other in a second direction.
  • FIG. 4 is a perspective view illustrating an example of a phase shifter structure according to another embodiment.
  • phase shifter 100C is similar to the phase shifter 100A shown in FIG. 2 except that a barrier unit 150C is added. Therefore, differences from the phase shifter 100A shown in FIG. 2 will be mainly described.
  • a phase shifter 100C includes a barrier part 150C including a plurality of third through holes 151 and 152 spaced apart from each other along one axis direction.
  • Each of the third through-holes 151 and 152 constituting the barrier part 150C extends along three axial directions and may be spaced apart from the conducting wire part 130C along two axial directions.
  • each of the third through holes 151 and 152 may have a half through hole shape having a semicircular planar shape, but is not necessarily limited thereto.
  • each of the third through holes 151 and 152 has a conductive printed pattern corresponding to a resonance unit element formed on each substrate (not shown). It may be manufactured by forming a conductive dummy pad DP on the surface and forming a through hole penetrating the dummy pad DP in the third direction.
  • the uppermost and lowermost dummy pads DP of each of the third through holes 151 and 152 may be integrally formed.
  • the barrier unit 150C may be electrically connected to a ground provided on a substrate (not shown) on which the phase shifter 100C is mounted.
  • FIG. 5 is a perspective view illustrating an example of a phase shifter structure according to another embodiment.
  • the barrier part 150D is disposed on both sides along the second direction with respect to the conductive line 131 compared to the phase shifter 100C shown in FIG. 4. There is a difference in that the number of through holes constituting the one-side barrier portion 150D is increased.
  • FIG. 6 is an implementation example of a wireless communication device to which the phase shifter shown in FIG. 5 is applied.
  • FIG. 6 shows an example of a form mounted on a board of a wireless communication device such that a phase shifter 100D according to another embodiment is serially connected to the first transmission line 100D. Also, in FIG. 6 , the first antenna 310 and the second antenna 320 are omitted, and antenna terminals 510 and 520 corresponding to each are shown.
  • the barrier portion 150D of the phase shifter 100D is disposed on the ground pad GP of the substrate.
  • a second transmission line 420 is disposed on one side in the two-axis direction from the phase shifter 100D. Therefore, the conductive line part 130D faces the second transmission line 420 with the barrier part 150D interposed therebetween along the biaxial direction, and since the barrier part 150D is connected to the ground, it plays a role of shielding.
  • EMC Electro-Magnetic Compatibility
  • EMS Electro Magnetic Susceptibility
  • the barrier part 150C is connected to the conductive line part 130C and the second Preferably, the phase shifter 100C is disposed between the transmission lines 420.
  • phase shifter is mounted so that the radiation impedance of the antenna and the transmission line impedance are matched based on the antenna terminals 510 and 520.
  • phase shifters 100A, 100B, 100C, and 100D effects of the phase shifters 100A, 100B, 100C, and 100D according to embodiments will be described with reference to FIGS. 7 to 9 .
  • FIG. 7 is a diagram for explaining coupling characteristics of a phase shifter according to embodiments.
  • the general phase shifter according to the comparative example is generally implemented as a combination of an inductor (L) and a capacitor (C), the equivalent of an inductor (L) connected in series and a capacitor (C) connected in parallel. circuit is established.
  • phase shifters 100A, 100B, 100C, and 100D according to the embodiments according to the embodiment form an L-C resonance block having both inductance and capacitance for each resonance unit element, thereby forming electromagnetic coupling in units of resonance blocks.
  • the resonant unit elements are connected in parallel by the first through hole 141 and the second through hole 142, it is advantageous to reduce the skin effect compared to a single conductor while reducing the resistance.
  • FIG. 8 is a diagram for explaining characteristics of each frequency band of a phase shifter according to embodiments.
  • a signal attenuates with a certain slope as the frequency increases, but when phase converters 100A, 100B, 100C, and 100D according to embodiments are applied to the transmission line, based on a specific frequency At a frequency lower than that, it shows excellent transmission efficiency compared to a general transmission line, and at a frequency higher than that, it shows the characteristics of passing through a low pass filter (LPF). Therefore, by setting a specific frequency higher than the main use band of the wireless communication module 200, it is possible to reduce high frequency noise while obtaining a phase control effect and high transmission efficiency in a wide band.
  • the specific frequency may be controlled through changes in the line width w3, the line length w4, the number of layers in the third direction, the distance between conductors, and the like.
  • phase shifter 9 is a diagram for explaining phase control performance characteristics of a phase shifter according to embodiments.
  • the general phase controller according to the comparative example has a fixed electrical length (i.e., ⁇ ) versus frequency, but the phase controller according to the embodiments has a line width w3, a line length w4, It can be variously varied according to the number of layers in three directions and the distance between conductors. Therefore, various target phase difference values can be implemented regardless of the topology of a wireless communication device to which the phase controller according to the embodiments will be mounted.
  • phase converter according to the embodiment and the wireless communication device including the same may be used in a display device or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

본 발명은 광대역에서 손실이 낮은 위상 변환기 및 그를 포함하는 무선 통신 장치에 관한 것이다. 일 실시예에 따른 무선 통신 장치는, 무선 통신 모듈; 제1 안테나; 상기 무선 통신 모듈과 상기 제1 안테나 사이에서 신호를 전송하는 제1 전송 선로; 및 상기 제1 전송 선로에 직렬로 배치된 위상 변환 소자를 포함하고, 상기 위상 변환 소자는 수직 방향으로 적층되며 전기적으로 병렬로 연결된 복수의 공진 단위 요소를 포함할 수 있다.

Description

위상 변환기 및 그를 포함하는 무선 통신 장치
본 발명은 광대역에서 손실이 낮은 위상 변환기 및 그를 포함하는 무선 통신 장치에 관한 것이다.
최근, 디스플레이 장치의 대형화 및 슬림화 추세에 따라, 디스플레이 장치를 벽걸이 형으로 거치하는 경우가 많으며, 모바일 기기와 같이 소스 컨텐츠를 제공하는 외부 기기와 편리한 무선 연결을 위해 와이파이(Wi-Fi)나 블루투스(BT)와 같은 무선 통신 모듈을 디스플레이 장치에 내장하는 추세이다.
그런데, 대형 디스플레이 장치를 벽걸이 형태로 거치할 경우 주로 디스플레이 패널의 후면에 장착되는 무선 통신 모듈의 위치로 인해, 벽과 디스플레이 패널 사이에서 전파가 디스플레이 전면 방향으로 진행하기 어렵다. 따라서, 디스플레이 장치의 무선 통신 모듈과 무선 연결 대상이 되는 외부 기기가 비교적 가까이 있더라도 우수한 통신 품질을 보이기 어렵다.
따라서, 무선 통신 모듈과 안테나 사이의 전송 경로에 위상 변환기를 장착하여 무선 신호의 진행 방향(즉, 방사 패턴)을 수정하는 방안이 고려되고 있다. 물론, 진행 방향을 바꾸는 목적 외에, 다이폴(Dipole) 안테나에서 일측 안테나와 타측 안테나간에 180도의 위상차가 나도록 한다면, 최대 효율의 안테나 이득이 구현될 수도 있다.
그런데, 이러한 최대 효율의 안테나 이득 구현은, 기기의 소형화를 위해 단부 길이가 최소 공진 파장의 1/2, 짧게는 1/4에 해당하는 단부 길이를 갖는 안테나가 현재 대부분의 기기에 적용되고 있는 실정 하에서 위상 제어가 더욱 어려운 단점이 있다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 광대역에서 보다 우수한 위상 변환 성능을 갖는 위상 변환기 및 그를 포함하는 무선 통신 장치를 제공하기 위한 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업자에게 명확하게 이해될 수 있을 것이다.
일 실시예에 따른 무선 통신 장치는 무선 통신 모듈; 제1 안테나; 상기 무선 통신 모듈과 상기 제1 안테나 사이에서 신호를 전송하는 제1 전송 선로; 및 상기 제1 전송 선로 상에 배치된 위상 변환 소자를 포함하고, 상기 위상 변환 소자는 제1 방향의 일측에 배치되며 수직 방향으로 서로 이격되어 적층된 복수의 제1 포트를 포함하는 제1 포트부; 상기 제1 방향의 타측에 배치되며 상기 수직 방향으로 서로 이격되어 적층된 복수의 제2 포트를 포함하는 제2 포트부; 및 상기 제1 방향으로 연장되어, 상기 복수의 제1 포트와 상기 복수의 제2 포트 중 상기 제1 방향을 따라 서로 대향하는 포트쌍 각각을 전기적으로 연결하는 복수의 도선을 포함할 수 있다.
예를 들어, 상기 복수의 제1 포트 각각은 상기 수직방향을 따라 적어도 일부가 서로 중첩되고, 상기 복수의 제2 포트 각각은 상기 수직 방향을 따라 적어도 일부가 서로 중첩될 수 있다.
예를 들어, 상기 복수의 제1 포트 및 상기 복수의 제2 포트 각각은 상기 제1 방향과 교차하는 제2 방향을 따라 연장될 수 있다.
예를 들어, 상기 복수의 도선 중 적어도 일부는 상기 수직 방향으로 서로 중첩될 수 있다.
예를 들어, 상기 복수의 도전은 상기 수직 방향으로 서로 중첩되지 않을 수 있다.
예를 들어, 상기 복수의 도선 중 적어도 일부는, 상기 제1 방향과 교차하는 제2 방향을 따라 서로 이격되어 나란히 배치된 다중 도선을 포함할 수 있다.
예를 들어, 상기 복수의 제1 포트는, 상기 수직 방향으로 연장되는 제1 관통홀을 통해 전기적으로 서로 연결되고, 상기 복수의 제2 포트는, 상기 수직 방향으로 연장되는 제2 관통홀을 통해 전기적으로 서로 연결될 수 있다.
예를 들어, 상기 제1 관통홀과 상기 제2 관통홀 각각은 반원형 평면 형상을 갖는 하프 스루홀을 포함할 수 있다.
예를 들어, 상기 복수의 제1 포트 및 상기 복수의 제2 포트 각각의 상기 제2 방향으로의 폭은 상기 제1 방향으로의 폭보다 크고, 상기 복수의 도선 각각의 상기 제1 방향으로의 길이는 상기 제2 방향으로의 폭보다 클 수 있다.
예를 들어, 상기 위상 변환 소자는, 상기 제1 방향을 따라 서로 이격된 복수의 제3 관통홀을 포함하는 배리어부를 더 포함하고, 상기 복수의 제3 관통홀 각각은 상기 복수의 도선과 상기 제2 방향을 따라 이격될 수 있다.
예를 들어, 상기 무선 통신 장치는 제2 안테나; 및 상기 무선 통신 모듈과 상기 제2 안테나 사이에서 신호를 전송하는 제2 전송 선로를 더 포함하고, 상기 복수의 도선은 상기 제2 방향을 따라 상기 배리어부를 사이에 두고 상기 제2 전송 선로와 대향할 수 있다.
본 발명에 따른 위상 변환기 및 그를 포함하는 무선 통신 장치는 다음과 같은 효과를 갖는다.
첫째, 패턴 적층 방식의 칩 타입 형상으로 소형화가 가능하다.
둘째, 적층수와 층당 경로의 다변화를 통해 위상 변화량과 임피던스 매칭의 조절이 가능하다.
셋째, 단일 소자로 저역 통과 필터의 기능까지 구현이 가능하다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1은 일 실시예에 따른 무선 통신 장치 구성의 일례를 나타낸다.
도 2는 일 실시예에 따른 위상 변환기 구조의 일례를 나타내는 투시 사시도이다.
도 3은 다른 실시예에 따른 위상 변환기 구조의 일례를 나타내는 투시 사시도이다.
도 4는 또 다른 실시예에 따른 위상 변환기 구조의 일례를 나타내는 투시 사시도이다.
도 5는 또 다른 실시예에 따른 위상 변환기 구조의 일례를 나타내는 투시 사시도이다.
도 6은 도 5에 도시된 위상 변환기가 적용된 무선 통신 장치의 일 구현례이다.
도 7은 실시예들에 따른 위상 변환기의 커플링 특성을 설명하기 위한 도면이다.
도 8은 실시예들에 따른 위상 변환기의 주파수 대역별 특성을 설명하기 위한 도면이다.
도 9는 실시예들에 따른 위상 변환기의 위상 제어 성능 특성을 설명하기 위한 도면이다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)", "전(앞) 또는 후(뒤)"에 형성되는 것으로 기재되는 경우에 있어, "상(위) 또는 하(아래)" 및"전(앞) 또는 후(뒤)"는 두 개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들에 따른 위상 변환기를 상세히 설명하기 앞서, 도 1을 참조하여 실시예들에 따른 위상 변환기가 적용될 수 있는 무선 통신 장치 구성을 먼저 설명한다.
도 1은 일 실시예에 따른 무선 통신 장치 구성의 일례를 나타낸다.
도 1을 참조하면, 일 실시예에 따른 무선 통신 장치는 무선 통신 모듈(200), 제1 안테나(310)와 제2 안테나(320), 제1 안테나(310)와 무선 통신 모듈(200) 사이에 배치된 제1 전송 선로(410), 제2 안테나(320)와 무선 통신 모듈(200) 사이에 배치된 제2 전송 선로(420) 및 제1 전송 선로(410)에 직렬로 연결된 위상 변환기(100)를 포함할 수 있다.
무선 통신 모듈(200)은 하나 이상의 무선 통신 프로토콜을 지원할 수 있다. 여기서 무선 통신 프로토콜은 4G/5G, 블루투스(BT), 와이파이(Wi-Fi) 중 적어도 하나를 포함할 수 있으나 이는 예시적인 것으로 반드시 이에 한정되는 것은 아니다.
제1 안테나(310)와 제2 안테나(320)는 다이폴(Dipole) 안테나를 구현할 수 있으나, 반드시 이에 한정되는 것은 아니다. 예컨데, 제1 안테나(310)와 제2 안테나(320)는 MIMO(Multiple Input Multiple Output) 안테나를 구현할 수도 있다.
한편, 제1 안테나(310)와 제2 안테나(320)는 안테나 단자(510, 520)를 거쳐 각각 제1 전송 선로(410)와 제2 전송 선로(420)에 연결될 수 있으나, 구현에 따라서는(예컨대, 전송 선로와 일체로 패턴이 형성되는 평면 안테나 등) 안테나 단자(510, 520)가 생략될 수도 있다.
위상 변환기(100)는 위상 변환 소자라 칭할 수도 있으며, 무선 통신 모듈(200)로부터 제1 전송 선로(410)와 제2 전송 선로(420)로 동시 출력되는 신호가 각각 제1 안테나(310)와 제2 안테나(320)에 도달할 때, 두 신호 간의 위상 차이를 목표 값으로 제어할 수 있다. 예컨대, 제1 안테나(310)와 제2 안테나(320)가 다이폴 안테나를 구현할 경우, 목표 값은 180도가 될 수 있다. 물론, 이러한 목표 값은 예시적인 것으로, 빔 조향이 목적일 경우 180도와 상이한 값이 목표 값이 될 수도 있다. 반대로, 신호를 수신하는 경우 제1 안테나(310)와 제2 안테나(320)로 동시에 수신된 신호가 제1 전송 선로(410)와 제2 전송 선로(420)를 거쳐 무선 통신 모듈(200)에 도달할 때의 각 전송 선로에서 입력되는 신호간의 위상 차이도 위상 변환기(100)에 의해 목표 값이 될 수 있다.
이하에서는 도 2 내지 도 5를 참조하여 실시예들에 따른 위상 변환기(100)의 구조를 설명한다.
도 2는 일 실시예에 따른 위상 변환기 구조의 일례를 나타내는 투시 사시도이다.
도 2를 참조하면, 일 실시예에 따른 위상 변환기(100A)는 제1 포트부(110A), 제2 포트부(120A), 도선부(130A) 및 복수의 관통홀(141, 142)을 포함할 수 있다.
제1 포트부(110A)는 1축 방향의 일측에 배치되며 수직 방향(즉, 3축 방향)으로 서로 이격되어 적층된 복수의 제1 포트(111, 112, 113, 114)를 포함할 수 있다.
제2 포트부(120A)는 1축 방향으로 제1 포트부(110A)와 대향하는 타측에 배치되며, 수직 방향으로 서로 이격되어 적층된 복수의 제2 포트(121, 122, 123, 124)를 포함할 수 있다.
도선부(130A)를 구성하는 복수의 도선(131, 132, 133, 134) 각각은 제1 방향을 따라 연장되어, 복수의 제1 포트(111, 112, 113, 114)와 복수의 제2 포트(121, 122, 123, 124) 중 제1 방향을 따라 서로 대향하는(즉, 3축 방향에 따른 높이가 서로 상응하는) 포트쌍 각각을 전기적으로 연결할 수 있다. 예를 들어, 3축 방향을 따라 최상층에 배치된 제1 포트(111)와 제2 포트(121)는 3축 방향을 따라 최상층에 배치된 도선(131)을 통해 전기적으로 연결될 수 있다.
복수의 제1 포트(111, 112, 113, 114), 복수의 제2 포트(121, 122, 123, 124) 및 복수의 도선(131, 132, 133, 134) 각각은 구리와 같은 도전성 물질을 포함할 수 있다. 또한, 복수의 제1 포트(111, 112, 113, 114)는 3축 방향으로 연장되며 도전성을 갖는 제1 관통홀(141)에 의해 전기적으로 연결될 수 있으며, 복수의 제2 포트(121, 122, 123, 124)는 3축 방향으로 연장되며 도전성을 갖는 제2 관통홀(142)에 의해 전기적으로 연결될 수 있다. 제1 관통홀(141)과 제2 관통홀(142) 각각은 반원형 평면 형상을 갖는 하프 스루홀(half-through hole)의 형상을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다.
한편, 최하층의 제1 포트(114)와 제2 포트(124) 각각은 제1 전송 선로(410)와 전기적으로 연결될 수 있다.
복수의 제1 포트(111, 112, 113, 114) 각각은 3축 방향을 따라 적어도 일부가 서로 중첩되고, 복수의 제2 포트(121, 122, 123, 124) 각각은 3축 방향을 따라 적어도 일부가 서로 중첩될 수 있다. 또한, 복수의 제1 포트(111, 112, 113, 114)와 복수의 제2 포트(121, 122, 123, 124) 각각은 2축 방향으로 연장되는 판상형 형상을 가질 수 있으며, 2축 방향 길이(w1)는 1축 방향 길이(w2)보다 클 수 있다. 또한, 복수의 도선(131, 132, 133, 134) 각각의 선폭(w3)은 1축 방향 길이(w4)보다 작을 수 있다. 아울러, 선폭(w3)은 복수의 제1 포트(111, 112, 113, 114)와 복수의 제2 포트(121, 122, 123, 124) 각각의 2축 방향 길이(w1)보다 작을 수 있다.
예를 들어, 복수의 도선(131, 132, 133, 134)은 3축 방향을 따라 적어도 일부가 서로 중첩될 수 있다. 그러나, 다른 구현에 의하면 복수의 도선(131, 132, 133, 134) 중 적어도 일부는 서로 3축 방향으로 중첩되지 않을 수도 있다.
상술한 형태의 위상 변환기(100A)에서 제1 포트부(110A)와 제2 포트부(120A)를 구성하는 각각의 포트와, 도선부(130A)를 구성하는 각각의 도선 중 3축 방향에 따른 높이가 서로 상응하는 구성 요소는 공진 단위를 형성하며, 3축 방향으로 다른 높이를 갖는 구성 요소들과 전자기 커플링(coupling)을 형성하게 된다. 이러한 전자기 커플링으로 인해 전기적 길이가 제어되는 효과가 있으며, 전기적 길이가 제어됨은 전송 선로 상에서 위상 상수(β: phase constant)가 제어될 수 있음을 의미한다. 따라서, 이는 실시예에 따른 위상 변환기(100A)가 제1 전송 선로(410)를 통과하는 신호의 위상을 변화시킴을 의미한다.
결국, 도선부(130A)의 선폭(w3), 선 길이(w4), 적층 수, 도선 간 거리(예컨대, 제3 방향으로의 도선간 이격 거리, 제3 방향으로의 도선간 중첩 여부 등)를 변화시킴으로써 안테나 간의 다양한 목표 위상차 값을 얻을 수 있게 된다.
구현에 있어서, 제1 포트부(110A)와 제2 포트부(120A)를 구성하는 각각의 포트와 도선부(130A)를 구성하는 각각의 도선 중 3축 방향에 따른 높이가 서로 상응하는 구성 요소, 즉, 공진 단위 요소는 기판(미도시) 상에 형성된 단일 도전성 인쇄 패턴의 형태로 구현될 수 있다. 예컨대, 도 2에 도시된 바와 같이 일 실시예에 따른 위상 변환기(100A)는 총 네 개의 공진 단위 요소를 갖는다고 할 수 있다. 이러한 경우, 위상 변환기(100A)는 4매의 기판을 3축 방향으로 적층시켜 형성될 수 있다. 즉, 최상층의 공진 단위 요소(111, 121, 131)는 최상층에 배치된 제1 기판(미도시)의 상면에 형성되고, 두 번째 공진 단위 요소(112, 122, 132)는 제1 기판 아래 배치되는 제2 기판(미도시)의 상면에 형성되고, 세 번째 공진 단위 요소(113, 123, 133)는 제2 기판 아래 배치되는 제3 기판(미도시)의 저면에 형성되며, 최하층 공진 단위 요소(114, 124, 134)는 제3 기판 아래 배치되는 제4 기판(미도시)의 저면에 형성될 수 있다.
물론, 도 2에 도시된 선폭(w3), 선 길이(w4), 제3 방향으로의 적층 수, 도선 간 거리 등은 예시적인 것으로, 다양한 변형이 가능함은 당업자에 자명하다.
도 3은 다른 실시예에 따른 위상 변환기 구조의 일례를 나타내는 투시 사시도이다.
도 3에 도시된 다른 실시예에 따른 위상 변환기(100B)는 도 2에 도시된 위상 변환기(100A)와 도선(131')의 구성을 제외하면 나머지 구성은 동일하다. 따라서, 도 2에 도시된 위상 변환기(100A)와의 차이점을 위주로 설명하기로 한다.
도 3을 참조하면, 다른 실시예에 따른 위상 변환기(100B)는 공진 단위 요소를 구성하는 각 도선이 제2 방향으로 서로 이격된 복수의 다중 도선(131')으로 구성된다.
도 4는 또 다른 실시예에 따른 위상 변환기 구조의 일례를 나타내는 투시 사시도이다.
도 4에 도시된 또 다른 실시예에 따른 위상 변환기(100C)는 도 2에 도시된 위상 변환기(100A) 대비 배리어부(150C)가 추가됨을 제외하면, 나머지 구성은 유사하다. 따라서, 도 2에 도시된 위상 변환기(100A)와의 차이점을 위주로 설명하기로 한다.
도 4를 참조하면, 또 다른 실시예에 따른 위상 변환기(100C)는 1축 방향을 따라 서로 이격된 복수의 제3 관통홀(151, 152)을 포함하는 배리어부(150C)를 구비한다. 배리어부(150C)를 구성하는 제3 관통홀(151, 152) 각각은 3축 방향을 따라 연장되며 도선부(130C)와 2축 방향을 따라 이격될 수 있다.
또한, 제3 관통홀(151, 152) 각각은 반원형 평면 형상을 갖는 하프 스루홀 형태를 가질 수 있으나, 반드시 이에 한정되는 것은 아니다.
구현에 있어서, 전술한 기판 적층 방식으로 위상 변환기(100C)가 형성될 경우 제3 관통홀(151, 152) 각각은, 각 기판(미도시)에서 공진 단위 요소에 해당하는 도전성 인쇄 패턴이 형성되는 면에 도전성 더미 패드(DP)를 형성하고, 더미 패드(DP)를 제3 방향으로 관통하는 스루홀을 형성하여 제작될 수 있다. 여기서, 제3 관통홀(151, 152) 각각의 최상층과 최하층의 더미 패드(DP)는 일체로 형성될 수도 있다.
한편, 배리어부(150C)는 위상 변환기(100C)가 실장되는 기판(미도시)에 구비된 그라운드와 전기적으로 연결될 수 있다.
도 5는 또 다른 실시예에 따른 위상 변환기 구조의 일례를 나타내는 투시 사시도이다.
도 5에 도시된 또 다른 실시예에 따른 위상 변환기(100D)는 도 4에 도시된 위상 변환기(100C) 대비 배리어부(150D)가 도선(131)을 기준으로 제2 방향을 따라 양측에 모두 배치되며, 일측 배리어부(150D)를 구성하는 관통홀의 개수가 증가한 차이가 있다.
도 6은 도 5에 도시된 위상 변환기가 적용된 무선 통신 장치의 일 구현례이다.
도 6에는 또 다른 실시예에 따른 위상 변환기(100D)가 제1 전송 선로(100D)와 직렬로 연결되도록 무선 통신 장치의 기판에 실장된 형태의 일례가 도시된다. 또한, 도 6에서 제1 안테나(310)와 제2 안테나(320)의 도시는 생략되고, 각각에 대응되는 안테나 단자(510, 520)가 도시되었다.
도 6을 참조하면, 전술한 바와 같이, 위상 변환기(100D)의 배리어부(150D)는 기판의 그라운드 패드(GP) 상에 배치됨을 알 수 있다. 위상 변환기(100D)로부터 2축 방향으로 일측에는 제2 전송 선로(420)가 배치된다. 따라서, 도선부(130D)는 2축 방향을 따라 배리어부(150D)를 사이에 두고 제2 전송 선로(420)와 대향하게 되며, 배리어부(150D)가 그라운드와 연결되므로 쉴딩(shielding) 역할을 수행하여 전송 선로간 EMC(Electro-Magnetic Compatibility) 성능 및 EMS(Electro Magnetic Susceptibility) 성능이 향상된다.
만일, 도 6의 위상 변환기(100D)가 도 4에 도시된 또 다른 실시예에 따른 위상 변환기(100C)로 대체될 경우, 배리어부(150C)가 2축 방향으로 도선부(130C)와 제2 전송 선로(420) 사이에 있도록 위상 변환기(100C)가 배치되는 것이 바람직하다.
한편, 이러한 무선 통신 장치의 기판 실장에 있어서 안테나 단자(510, 520)를 기준으로 안테나의 방사 임피던스와 전송 선로 임피던스가 정합되도록 위상 변환기가 실장되는 것이 바람직하다.
이하에서는 도 7 내지 도 9를 참조하여 실시예들에 따른 위상 변환기(100A, 100B, 100C, 100D)의 효과를 설명한다.
도 7은 실시예들에 따른 위상 변환기의 커플링 특성을 설명하기 위한 도면이다.
도 7을 참조하면, 비교례에 따른 일반적인 위상 변환기는 인덕터(L)와 캐패시터(C)의 조합으로 구현되는 것이 일반적이므로 인덕터(L)간에는 직렬로, 캐패시터(C)는 병렬로 연결된 형태의 등가회로가 성립한다.
그러나, 실시예에 따른 실시예들에 따른 위상 변환기(100A, 100B, 100C, 100D)는 공진 단위 요소별로 인덕턴스와 캐패시턴스를 함께 갖는 L-C 공진 블럭을 형성하여 공진 블럭 단위로 전자기 커플링을 이루게 된다. 또한, 공진 단위 요소들이 제1 관통홀(141) 및 제2 관통홀(142)에 의해 병렬로 연결되므로 저항은 감소하면서도 단일 도선 대비 표피 효과(skin effect)가 적어 유리하다.
도 8은 실시예들에 따른 위상 변환기의 주파수 대역별 특성을 설명하기 위한 도면이다.
도 8을 참조하면, 일반적인 전송 선로는 주파수가 커짐에 따라 신호가 일정 기울기로 감쇠하나, 실시예들에 따른 위상 변환기(100A, 100B, 100C, 100D)가 전송 선로에 적용될 경우 특정 주파수를 기준으로 그보다 낮은 주파수에서는 일반 전송 선로 대비 우수한 전송 효율을 보이고, 그보다 높은 주파수에서는 저역통과필터(LPF)를 통과한 특성을 보인다. 따라서, 특정 주파수를 무선 통신 모듈(200)의 주 사용 대역보다 높게 설정함으로써 위상 제어 효과는 물론 광대역에서 높은 전송 효율을 얻으면서도 고주파 잡음을 저감할 수 있게 된다. 여기서, 특정 주파수는 선폭(w3), 선 길이(w4), 제3 방향으로의 적층 수, 도선 간 거리 등의 변화를 통해 제어될 수 있다.
도 9는 실시예들에 따른 위상 변환기의 위상 제어 성능 특성을 설명하기 위한 도면이다.
도 9를 참조하면, 비교례에 따른 일반적인 위상 제어기는 주파수 대비 전기적 길이(즉, β)가 고정된 값을 가지나, 실시예들에 따른 위상 제어기는 선폭(w3), 선 길이(w4), 제3 방향으로의 적층 수, 도선 간 거리에 따라 다양하게 가변될 수 있다. 따라서, 실시예들에 따른 위상 제어기가 실장될 무선 통신 장치의 토폴로지와 무관하게 다양한 목표 위상차 값을 구현할 수 있다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
발명의 실시를 위한 형태는 전술한 "발명의 실시를 위한 최선의 형태"에서 충분히 설명되었다.
실시 예에 의한 위상 변환기 및 그를 포함하는 무선 통신 장치는 디스플레이 장치 등에 이용될 수 있다.

Claims (10)

  1. 무선 통신 모듈;
    제1 안테나;
    상기 무선 통신 모듈과 상기 제1 안테나 사이에서 신호를 전송하는 제1 전송 선로; 및
    상기 제1 전송 선로 상에 배치된 위상 변환 소자를 포함하고,
    상기 위상 변환 소자는,
    제1 방향의 일측에 배치되며 수직 방향으로 서로 이격되어 적층된 복수의 제1 포트를 포함하는 제1 포트부;
    상기 제1 방향의 타측에 배치되며 상기 수직 방향으로 서로 이격되어 적층된 복수의 제2 포트를 포함하는 제2 포트부; 및
    상기 제1 방향으로 연장되어, 상기 복수의 제1 포트와 상기 복수의 제2 포트 중 상기 제1 방향을 따라 서로 대향하는 포트쌍 각각을 전기적으로 연결하는 복수의 도선을 포함하는 무선 통신 장치.
  2. 제1 항에 있어서,
    상기 복수의 제1 포트 각각은 상기 수직방향을 따라 적어도 일부가 서로 중첩되고,
    상기 복수의 제2 포트 각각은 상기 수직 방향을 따라 적어도 일부가 서로 중첩되는 무선 통신 장치.
  3. 제1 항에 있어서,
    상기 복수의 제1 포트 및 상기 복수의 제2 포트 각각은 상기 제1 방향과 교차하는 제2 방향을 따라 연장되는 무선 통신 장치.
  4. 제1 항에 있어서,
    상기 복수의 도전은 상기 수직 방향으로 서로 중첩되지 않는 무선 통신 장치.
  5. 제4 항에 있어서,
    상기 복수의 도선 중 적어도 일부는, 상기 제1 방향과 교차하는 제2 방향을 따라 서로 이격되어 나란히 배치된 다중 도선을 포함하는 무선 통신 장치.
  6. 제1 항에 있어서,
    상기 복수의 제1 포트는, 상기 수직 방향으로 연장되는 제1 관통홀을 통해 전기적으로 서로 연결되고,
    상기 복수의 제2 포트는, 상기 수직 방향으로 연장되는 제2 관통홀을 통해 전기적으로 서로 연결되는 무선 통신 장치.
  7. 제6 항에 있어서,
    상기 제1 관통홀과 상기 제2 관통홀 각각은 반원형 평면 형상을 갖는 하프 스루홀을 포함하는 무선 통신 장치.
  8. 제1 항에 있어서,
    상기 복수의 제1 포트 및 상기 복수의 제2 포트 각각의 상기 제2 방향으로의 폭은 상기 제1 방향으로의 폭보다 크고,
    상기 복수의 도선 각각의 상기 제1 방향으로의 길이는 상기 제2 방향으로의 폭보다 큰 무선 통신 장치.
  9. 제1 항에 있어서,
    상기 위상 변환 소자는, 상기 제1 방향을 따라 서로 이격된 복수의 제3 관통홀을 포함하는 배리어부를 더 포함하고,
    상기 복수의 제3 관통홀 각각은 상기 복수의 도선과 상기 제2 방향을 따라 이격된 무선 통신 장치.
  10. 제9 항에 있어서,
    제2 안테나; 및
    상기 무선 통신 모듈과 상기 제2 안테나 사이에서 신호를 전송하는 제2 전송 선로를 더 포함하고,
    상기 복수의 도선은, 상기 제2 방향을 따라 상기 배리어부를 사이에 두고 상기 제2 전송 선로와 대향하는 무선 통신 장치.
PCT/KR2022/008686 2021-06-21 2022-06-20 위상 변환기 및 그를 포함하는 무선 통신 장치 WO2022270839A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/572,280 US20240291147A1 (en) 2021-06-21 2022-06-20 Phase shifter and wireless communication device comprising same
CN202280043309.1A CN117501542A (zh) 2021-06-21 2022-06-20 移相器和包括该移相器的无线通信装置
EP22828686.0A EP4362226A1 (en) 2021-06-21 2022-06-20 Phase shifter and wireless communication device comprising same
JP2023577959A JP2024522799A (ja) 2021-06-21 2022-06-20 位相変換器及びそれを含む無線通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0079968 2021-06-21
KR1020210079968A KR20220169643A (ko) 2021-06-21 2021-06-21 위상 변환기 및 그를 포함하는 무선 통신 장치

Publications (1)

Publication Number Publication Date
WO2022270839A1 true WO2022270839A1 (ko) 2022-12-29

Family

ID=84538261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008686 WO2022270839A1 (ko) 2021-06-21 2022-06-20 위상 변환기 및 그를 포함하는 무선 통신 장치

Country Status (6)

Country Link
US (1) US20240291147A1 (ko)
EP (1) EP4362226A1 (ko)
JP (1) JP2024522799A (ko)
KR (1) KR20220169643A (ko)
CN (1) CN117501542A (ko)
WO (1) WO2022270839A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290105A (ja) * 2001-03-22 2002-10-04 Nippon Telegr & Teleph Corp <Ntt> 可変型誘電体移相器
KR20120132802A (ko) * 2011-05-30 2012-12-10 한양대학교 산학협력단 배열 안테나에 사용되는 위상 천이기
CN106972224A (zh) * 2017-04-25 2017-07-21 南通大学 一种用于天线的平衡式微波移相器
US20190173175A1 (en) * 2016-11-29 2019-06-06 Murata Manufacturing Co., Ltd. Magnetic field coupling element, antenna device, and electronic equipment
KR20210015262A (ko) * 2019-08-01 2021-02-10 삼성전자주식회사 안테나 모듈 및 그것을 포함하는 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290105A (ja) * 2001-03-22 2002-10-04 Nippon Telegr & Teleph Corp <Ntt> 可変型誘電体移相器
KR20120132802A (ko) * 2011-05-30 2012-12-10 한양대학교 산학협력단 배열 안테나에 사용되는 위상 천이기
US20190173175A1 (en) * 2016-11-29 2019-06-06 Murata Manufacturing Co., Ltd. Magnetic field coupling element, antenna device, and electronic equipment
CN106972224A (zh) * 2017-04-25 2017-07-21 南通大学 一种用于天线的平衡式微波移相器
KR20210015262A (ko) * 2019-08-01 2021-02-10 삼성전자주식회사 안테나 모듈 및 그것을 포함하는 전자 장치

Also Published As

Publication number Publication date
JP2024522799A (ja) 2024-06-21
KR20220169643A (ko) 2022-12-28
US20240291147A1 (en) 2024-08-29
EP4362226A1 (en) 2024-05-01
CN117501542A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2010131895A2 (en) Multi-line phase shifter for vertical beam tilt-controlled antenna
WO2019143190A1 (ko) 필름 안테나 및 이를 포함하는 디스플레이 장치
WO2011137828A1 (zh) 背板及通讯设备、通讯系统
WO2012028064A1 (zh) 裸芯片与印制电路板的连接结构及印制电路板、通信设备
WO2017052046A1 (ko) 벤딩 내구성이 개선된 연성회로기판
US9041489B2 (en) Signal transmission cable and flexible printed board
WO2019088542A1 (ko) Dgs를 포함하는 위상 천이기 및 이를 포함하는 전파 통신 모듈
WO2015190675A1 (en) Omnidirectional mimo antenna using electro-polarization
WO2011037303A1 (ko) 칩 안테나를 위한 pcb 레이아웃 구조 및 이를 이용한 칩 안테나 장치
WO2010071304A2 (ko) 커플링을 이용한 전력 분배기
WO2018026079A1 (ko) 회로기판 및 이를 포함하는 진동 발생장치
CN1179445C (zh) 四端口混合电路
WO2010095820A2 (ko) 메타머티리얼을 이용하여 구성되는 격리부를 포함하는 mimo 안테나 시스템
WO2016072659A2 (ko) 듀플렉서
WO2016072647A1 (ko) 듀플렉서
WO2016089015A1 (ko) 필터 패키지
WO2022270839A1 (ko) 위상 변환기 및 그를 포함하는 무선 통신 장치
WO2024080600A1 (ko) 위상 변환 유닛 및 이를 포함하는 위상 천이기
WO2018135831A1 (ko) 위상 변위 모듈 및 이를 포함하는 통신 장치
WO2018151484A1 (ko) 빔 포밍 장치 및 이를 구비하는 안테나 시스템
WO2019078408A1 (ko) Rf 패키지 모듈 및 rf 패키지 모듈을 포함하는 전자 장치
WO2021158041A1 (ko) 케이블 모듈 및 이를 제조하기 위한 방법
WO2016148429A1 (ko) 연성회로기판
WO2022216499A1 (en) Hybrid cabling solution for higher bandwidth and millimeter wave applications
WO2016072643A2 (ko) 필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280043309.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18572280

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022828686

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828686

Country of ref document: EP

Effective date: 20240122