WO2019035276A1 - スクロール流体機械 - Google Patents

スクロール流体機械 Download PDF

Info

Publication number
WO2019035276A1
WO2019035276A1 PCT/JP2018/023648 JP2018023648W WO2019035276A1 WO 2019035276 A1 WO2019035276 A1 WO 2019035276A1 JP 2018023648 W JP2018023648 W JP 2018023648W WO 2019035276 A1 WO2019035276 A1 WO 2019035276A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
end plate
tip
tip seal
inclined portion
Prior art date
Application number
PCT/JP2018/023648
Other languages
English (en)
French (fr)
Inventor
創 佐藤
陽平 堀田
央幸 木全
拓馬 山下
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP18846505.8A priority Critical patent/EP3604812B1/en
Priority to CN201880028441.9A priority patent/CN110573739B/zh
Priority to US16/608,109 priority patent/US11204034B2/en
Publication of WO2019035276A1 publication Critical patent/WO2019035276A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/08Axially-movable sealings for working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0284Details of the wrap tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid

Definitions

  • the present invention relates to scroll fluid machines.
  • a scroll fluid machine in which a fixed scroll member provided with a spiral wall on an end plate and a orbiting scroll member are engaged with each other to cause a revolving movement to compress or expand a fluid.
  • a so-called stepped scroll compressor as shown in Patent Document 1 As such a scroll fluid machine, a so-called stepped scroll compressor as shown in Patent Document 1 is known.
  • stepped scroll compressor stepped portions are provided at positions along the spiral direction of the tip and bottom surfaces of the fixed scroll and the scroll wall of the orbiting scroll, and the outer periphery of the wall is bordered on each step The height of the side is higher than the height of the inner circumference.
  • the stepped scroll compressor is compressed (three-dimensional compression) not only in the circumferential direction of the wall but also in the height direction, so it is compared to a general scroll compressor (two-dimensional compression) having no stepped portion.
  • the displacement can be increased, and the compressor capacity can be increased.
  • the stepped scroll compressor has a problem that the fluid leakage in the step portion is large. In addition, there is a problem that stress concentrates at the root portion of the step and the strength decreases.
  • the inventors are considering providing a continuous slope instead of the step provided on the wall and the end plate.
  • the bottom of the wall which is the tip of the wall, is in contact with the bottom of the tooth, which is the deepest at the center in the width direction.
  • a tooth base made as an inclined part with a cutting tool such as an end mill having a diameter equal to the width of the tooth bottom contour lines of semicircular arcs with contacts on both sides in the width direction of the tooth bottom are formed
  • the tip seal protrudes from the tip seal groove by the amount that the central portion of the bottom is deeper than when the root is flat.
  • the back gap between the bottom of the tip seal groove and the back surface of the tip seal becomes large.
  • the refrigerant flows from the high pressure side to the low pressure side compression chamber through the back gap, resulting in performance loss.
  • the present invention has been made in view of the above circumstances, and the back surface between the bottom of the tip seal groove and the back surface of the tip seal is provided even when the wall is provided with a continuous sloped portion. It is an object of the present invention to provide a scroll fluid machine capable of suppressing performance deterioration due to a gap.
  • the scroll fluid machine of the present invention adopts the following means.
  • a scroll fluid machine comprises a first scroll member provided with a spiral first wall on a first end plate, and a second end disposed to face the first end plate.
  • a scroll fluid machine comprising: a second scroll member provided with a spiral second wall on a plate, said second wall meshing with said first wall to make a relative orbiting motion; The inclination between the opposing surfaces of the first end plate and the second end plate, which face each other, decreases continuously from the outer peripheral side to the inner peripheral side of the first wall and the second wall. And the height of the wall is continuously reduced from the outer peripheral side to the inner peripheral side so that at least one of the first wall and the second wall forms the inclined portion.
  • first end plate and the second end plate has The bottom surface of the wall inclined portion facing the tooth tip has an end plate inclined portion inclined according to the inclination of the wall inclined portion, and the outermost periphery of the first wall and the second wall and And / or a wall flat portion whose height does not change is provided on the innermost circumferential portion, and an end plate flat portion corresponding to the wall flat portion is provided on the first end plate and the second end plate And a tip seal groove formed at a tooth tip of the wall is provided with a tip seal that contacts the opposite end plate to seal the fluid, and the end plate sloped portion is in the spiral direction of the wall.
  • tip seal protrudes from the tip of the wall sloped portion at the wall sloped portion and contacts the opposing end plate during operation.
  • the amount of protrusion of the tip seal at the flat wall portion is the same as that of the flat wall portion. Protrude from the previous larger than the projection amount when in contact with said end plate opposite.
  • the tip of the tip seal protrudes from the tip seal groove by an amount that is deeper than the side, and the end
  • the back clearance between the bottom of the tip seal groove and the back surface of the tip seal is larger than when the plate slope is flat.
  • the back clearance becomes large, the refrigerant flows from the high pressure side to the low pressure side compression chamber through the back clearance, resulting in fluid loss. Therefore, the amount of protrusion of the tip seal in the inclined wall portion during operation is made larger than the amount of protrusion of the tip seal in the flat portion of the wall. Thereby, the back gap of the inclined portion can be reduced to suppress the fluid loss as much as possible.
  • the amount of protrusion of the tip seal can be adjusted using the depth of the tip seal groove, the thickness of the tip seal, or both.
  • the amount of protrusion is only during operation, and if no gas pressure is applied to the back surface of the tip seal at the time of operation stop, the tip seal sinks into the tip seal groove and the amount of protrusion becomes 0 or less. is there.
  • the thickness in the wall height direction of the tip seal is constant in the spiral direction of the wall, and the depth of the tip seal groove is the wall
  • the wall sloped portion is shallower than the body flat portion.
  • the depth of the tip seal groove is smaller in the sloped portion of the wall than in the flat portion of the wall. did. Thereby, the back gap of the tip seal can be reduced at the inclined portion.
  • a scroll fluid machine comprises a first scroll member provided with a spiral first wall on a first end plate, and a second end disposed to face the first end plate.
  • a scroll fluid machine comprising: a second scroll member provided with a spiral second wall on a plate, said second wall meshing with said first wall to make a relative orbiting motion; The inclination between the opposing surfaces of the first end plate and the second end plate, which face each other, decreases continuously from the outer peripheral side to the inner peripheral side of the first wall and the second wall. And the height of the wall is continuously reduced from the outer peripheral side to the inner peripheral side so that at least one of the first wall and the second wall forms the inclined portion.
  • first end plate and the second end plate has The bottom surface of the wall inclined portion facing the tooth tip has an end plate inclined portion inclined according to the inclination of the wall inclined portion, and the first wall and the second wall corresponding to the inclined portion
  • a tip seal groove formed at a tooth tip of the body is provided with a tip seal for sealing the fluid in contact with the opposite end plate inclined portion, and the end plate inclined portion is orthogonal to the spiral direction of the wall.
  • the central portion is deeper than the side portions in the width direction, and the amount of protrusion when the tip seal protrudes from the tip of the inclined wall portion and contacts the opposing end plate during operation is When the wall sloped portion is closest to the adjacent wall sloped portion, the amount of protrusion is the smallest.
  • the tip end of the tip seal protrudes from the tip seal groove by an amount that is deeper than the side portion during operation.
  • the back gap between the bottom of the tip seal groove and the back surface of the tip seal becomes larger than when the end plate inclined portion is flat.
  • the refrigerant flows from the high pressure side to the low pressure side compression chamber through the back clearance, resulting in fluid loss. Therefore, when the wall sloped portion comes closest to the adjacent wall sloped portion, the smallest tip seal protrusion amount is obtained. Thereby, fluid loss can be suppressed as much as possible.
  • the amount of protrusion of the tip seal can be adjusted using the depth of the tip seal groove, the thickness of the tip seal, or both.
  • the tip end of the tip seal when the wall inclined portion comes closest to the adjacent wall inclined portion, the tip end of the tip seal is closer to the side portion of the end plate inclined portion.
  • the amount of protrusion of the tip seal is determined based on the depth of contact with the deeper position.
  • the amount of protrusion of the tip seal is set based on the depth at which the tip of the tip seal abuts on the position where the tip end of the tip seal is deeper than the side portion of the end plate slope when the wall slopes are closest to each other. Back clearance can be made as small as possible.
  • Performance reduction can be suppressed by making the inclined back clearance smaller than the flat portion back clearance and suppressing an increase in the back clearance at the inclined portion. Performance reduction can be suppressed by providing the smallest back clearance when the wall sloped portion is closest to the adjacent wall sloped portion.
  • FIG. 7 is a side view showing the tip seal gap of the portion shown in FIG. 6 and showing a state in which the tip seal gap is relatively small.
  • FIG. 7 is a side view showing the tip seal gap of the portion shown in FIG. 6 and showing a state in which the tip seal gap is relatively large. It is a cross-sectional view around a tooth tip in a wall slope part. It is a top view of the tooth bottom which showed the tooth bottom shape of an end plate. It is the model which showed the depth of the center part of the tooth bottom of FIG. 9A. It is the top view which showed the processing method of the tooth base of an end plate and planarly viewed the tooth bottom. It is the side view which respond
  • FIG. 1 a fixed scroll (first scroll member) 3 and a orbiting scroll (second scroll member) 5 of the scroll compressor (scroll fluid machine) 1 are shown.
  • the scroll compressor 1 is used, for example, as a compressor that compresses a gas refrigerant (fluid) that performs a refrigeration cycle, such as an air conditioner.
  • the fixed scroll 3 and the orbiting scroll 5 are made of a metal compression mechanism made of aluminum alloy, iron or the like, and are accommodated in a housing (not shown).
  • the fixed scroll 3 and the orbiting scroll 5 suck the fluid introduced into the housing from the outer peripheral side, and discharge the fluid after compression from the central discharge port 3 c of the fixed scroll 3 to the outside.
  • the fixed scroll 3 is fixed to the housing and, as shown in FIG. 1A, stands on a substantially disc-shaped end plate (first end plate) 3a and one side of the end plate 3a. And a spiral wall body (first wall body) 3b.
  • the orbiting scroll 5 includes a substantially disc-shaped end plate (second end plate) 5a and a spiral wall (second wall) 5b erected on one side surface of the end plate 5a. .
  • the spiral shape of each wall 3b, 5b is defined using, for example, an involute curve or an Archimedean curve.
  • the fixed scroll 3 and the orbiting scroll 5 are engaged with their centers separated by the turning radius ⁇ and 180 ° out of phase with the walls 3b and 5b, and the room temperature between the tips and bottoms of the walls 3b and 5b of both scrolls And have a slight height clearance (tip clearance).
  • a plurality of pairs of compression chambers formed between the scrolls 3 and 5 and surrounded by the end plates 3a and 5a and the walls 3b and 5b are formed symmetrically with respect to the center of the scroll.
  • the orbiting scroll 5 revolves around the fixed scroll 3 by a rotation preventing mechanism such as an Oldham ring (not shown).
  • an inclined portion in which the distance L between the opposing surfaces of the both end plates 3a and 5a facing each other decreases continuously from the outer peripheral side to the inner peripheral side of the spiral wall bodies 3b and 5b. It is done.
  • the wall 5b of the orbiting scroll 5 is provided with a wall inclined portion 5b1 whose height continuously decreases from the outer peripheral side toward the inner peripheral side.
  • An end plate inclined portion 3a1 (see FIG. 1A) which is inclined according to the inclination of the wall inclined portion 5b1 is provided on the bottom surface of the fixed scroll 3 to which the tip of the wall inclined portion 5b1 faces.
  • the wall sloped portion 5b1 and the end plate sloped portion 3a1 constitute a continuous sloped portion.
  • the wall 3b of the fixed scroll 3 is also provided with a wall inclined portion 3b1 whose height is continuously inclined from the outer peripheral side to the inner peripheral side, and is opposed to the tips of the wall inclined portion 3b1
  • An end plate inclined portion 5 a 1 is provided on the end plate 5 a of the orbiting scroll 5.
  • the meaning of continuous in the inclined portion in the present embodiment is not limited to the smoothly connected inclination, and small steps which inevitably occur during processing are connected in a step-like manner. If the inclined portion is viewed as a whole, it includes those which are continuously inclined. However, large steps such as so-called stepped scrolls are not included.
  • a coating is applied to the wall sloped portions 3b1 and 5b1 and / or the end plate sloped portions 3a1 and 5a1.
  • Examples of the coating include manganese phosphate treatment and nickel phosphorus plating.
  • wall flat portions 5b2 and 5b3 having a constant height are provided on the innermost and outermost peripheral sides of the wall 5b of the orbiting scroll 5, respectively. .
  • These flat wall portions 5b2 and 5b3 are provided over an area of 180 ° around the center O2 (see FIG. 1A) of the orbiting scroll 5.
  • wall sloped connection portions 5b4 and 5b5 serving as bent portions are provided, respectively.
  • end plate flat portions 5a2 and 5a3 having a constant height are provided.
  • end plate flat portions 5a2 and 5a3 are also provided over an area of 180 ° around the center of the orbiting scroll 5. At the positions where the end plate flat portions 5a2 and 5a3 and the end plate inclined portions 5a1 are connected, end plate inclined connection portions 5a4 and 5a5 serving as bent portions are provided.
  • the fixed scroll 3 also has the end plate flat portions 3a2 and 3a3, the wall flat portions 3b2 and 3b3, and the end plate inclined connection portions 3a4 and 3a5 like the orbiting scroll 5. And wall slope connection parts 3b4 and 3b5 are provided.
  • FIG. 5 shows the wall bodies 3b and 5b which are displayed by being stretched in the spiral direction.
  • the innermost wall flat portion 3b2, 5b2 is provided over the distance D2
  • the outermost flat wall 3b3, 5b3 is provided over the distance D3.
  • the distance D2 and the distance D3 have lengths respectively corresponding to the regions 180 ° around the centers O1 and O2 of the scrolls 3 and 5, respectively.
  • wall sloped portions 3b1, 5b1 are provided over a distance D1.
  • the inclination ⁇ at the inclined portion is constant in the circumferential direction in which the spiral wall bodies 3b and 5b extend.
  • FIG. 6 shows an enlarged view of a region indicated by reference numeral Z in FIG. 1B.
  • a tip seal 7 is provided at the tip of the wall 3 b of the fixed scroll 3.
  • the tip seal 7 is made of resin and contacts the bottom of the end plate 5a of the orbiting scroll 5 to seal the fluid.
  • the tip seal 7 is accommodated in a tip seal groove 3d formed circumferentially in the tip of the wall 3b. The compressed fluid enters into the tip seal groove 3d, and the tip seal 7 is pressed from the back side and pushed out to the bottom side to contact the opposing tooth bottom.
  • a tip seal is similarly provided also on the tip of the wall 5b of the orbiting scroll 5.
  • FIG. 8 shows a cross-sectional view around the tip as viewed in a cross section orthogonal to the spiral direction of the wall inclined portion 3b1.
  • FIG. 8 shows a tooth tip cut in the direction perpendicular to the paper surface in the wall inclined portion 3b1 between the inner wall inclined connection 3b4 and the outer wall inclined connection 3b5 shown in FIG. It is a cross-sectional view of circumference.
  • the tooth tips of the orbiting scroll 5 and the tip seal 7 have the same configuration.
  • the state shown in FIG. 8 shows a state in which the wall 5b of the orbiting scroll 5 and the wall 3b of the fixed scroll 3 are closest to each other during operation.
  • the tip seal 7 is accommodated in a tip seal groove 3d formed at the tip of the tip of the wall 3b.
  • the cross section of the tip seal 7 has a substantially rectangular shape, and a flat end surface (lower surface) 7a protrudes from the tooth tip of the wall 3b by a protrusion amount ⁇ . Note that the protrusion amount ⁇ is only during operation, and when the gas pressure is not applied to the back surface of the tip seal at the time of operation stop, the tip seal sinks into the tip seal groove and the protrusion amount becomes 0 or less There is also.
  • the bottom of the end plate 5a facing the wall 3b has an arc shape in which the central portion in the width direction is formed deeper than the side portions 5d3.
  • the arc shape is a radius R, which will be described later.
  • the cross section of the bottom of the end plate 5a is made to have a round shape.
  • the cross-section of the bottom of the end plate 5a having such a round shape is formed over the entire end plate inclined portion 5a1.
  • the shape of the bottom of such an end plate 5a is produced by the formation of contour lines Ct as shown in FIG.
  • the contour line Ct has a diameter Tg of the bottom of the end plate 5a, and has a semicircular arc convex in the height increasing direction (left side in the figure) of the end plate inclined portion 5a1. That is, the radius of the contour line Ct is Tg / 2.
  • the shape of the tooth bottom as shown in FIG. 9A is obtained by processing using an end mill 10 as shown in FIG.
  • the diameter De of the end mill 10 is equal to the width Tg of the tooth bottom.
  • the end mill 10 processes the bottom of the tooth in one pass up the slope in one pass.
  • the rotation axis of the end mill 10 is processed so as to be parallel to the axis passing through the center O2 (see FIG. 1A) of the orbiting scroll 5. Thereby, contour lines Ct having a semicircular arc as shown in FIG. 9A are formed.
  • the bottom of the end plate 5 a has an arc shape with a radius R. That is, the tooth bottom has an arc shape with a radius R passing through the central portion 5d2 protruding from the both side portions 5d3 by the recess amount ⁇ h and the both side portions 5d3.
  • the bottom of the end plate 5a is flat.
  • the end plate flat portions 5a2 and 5a3 are not inclined as in the end plate inclined portion 5a1, so that a flat surface is formed by processing with the end mill 10. Therefore, the entire tip end surface 7a of the tip seal 7 as a flat surface comes into contact with the tooth bottom, and the amount of protrusion of the tip seal 7 from the tip of the teeth is approximately 0 to slightly. , Protrusion amount ⁇ (see FIG. 8).
  • the state shown in FIG. 12 shows a state in which the wall 5b of the orbiting scroll 5 and the wall 3b of the fixed scroll 3 are closest to each other.
  • the height Hc of the tip seal 7 at the flat portion is equal to the height Hc of the tip seal at the inclined portion.
  • the protrusion amount ⁇ is expressed as a function of the inclination ⁇ , the end mill diameter De, the tooth thickness of the wall 3 b, and the tip seal groove width W.
  • the tooth thickness of the wall 3b means the width of one side of the tip of the wall 3b excluding the tip seal groove 3d, and if the thickness of the wall 3b is Tr, then Tr / 2-W / 2 Can be represented.
  • the depth of the tip seal groove 3d can be reduced by an amount corresponding to the protrusion amount ⁇ expressed by the above equation. Specifically, as shown in FIG. 12, the tip seal groove of the tooth tip opposite to the end plate inclined portion 5a1 as shown in FIG. 8 with respect to the tip seal groove 3d of the tooth tip opposite to the end plate flat portion 5a2, 5a3. 3d can make the groove depth shallow by the protrusion amount ⁇ .
  • the scroll compressor 1 described above operates as follows.
  • the orbiting scroll 5 revolves around the fixed scroll 3 by a drive source such as an electric motor (not shown).
  • a drive source such as an electric motor (not shown).
  • the fluid is sucked from the outer peripheral side of the scrolls 3 and 5 and the fluid is taken into the compression chamber surrounded by the wall bodies 3b and 5b and the end plates 3a and 5a.
  • the fluid in the compression chamber is sequentially compressed as it moves from the outer peripheral side to the inner peripheral side, and the compressed fluid is finally discharged from the discharge port 3 c formed in the fixed scroll 3.
  • the following effects are achieved.
  • the tip end of the tip seal 7 protrudes from the tip seal groove 3d by an amount deeper than the side portions.
  • the back gap between the bottom of the tip seal groove 3d and the back surface of the tip seal 7 becomes larger than when the end plates 3a and 5a are flat (see FIG. 12).
  • the back clearance becomes large, the refrigerant flows from the high pressure side to the low pressure side compression chamber through the back clearance, resulting in fluid loss.
  • the protrusion amount ⁇ of the tip seal 7 in the wall sloped portions 3b1 and 5b1 is larger than the protrusion amount of the tip seal 7 in the wall flat portions 3b2, 3b3, 5b2 and 5b3, thereby suppressing the increase of the back gap in the sloped portion. It was made to do. Thereby, fluid loss can be suppressed as much as possible.
  • the protrusion amount ⁇ of the tip seal 7 is set as in the above equation (3), the back gap of the inclined portion can be made as small as possible.
  • the back gap is adjusted by the depth of the tip seal groove 3d, it may be adjusted by the height Hc of the tip seal 7 (see FIG. 8). Both the depth and the height Hc of the tip seal 7 may be used.
  • the end plate inclined portions 3a1 and 5a1 and the wall body inclined portions 3b1 and 5b1 are provided on both the scrolls 3 and 5, but may be provided on either one.
  • the wall sloped portion 5b1 is provided on one wall body (for example, the orbiting scroll 5) and the end plate sloped portion 3a1 is provided on the other end plate 3a
  • the other is The wall and one end plate 5a may be flat.
  • the end plate inclined portion 3 a 1 is provided on the end plate 3 a of the fixed scroll 3
  • a stepped portion is provided on the end plate 5 a of the orbiting scroll 5. You may combine with the provided shape.
  • the wall flat portions 3b2, 3b3, 5b2, 5b3 and the end plate flat portions 3a2, 3a3, 5a2, 5a3 are provided, but the flat portions on the inner peripheral side and / or the outer peripheral side are omitted.
  • the inclined portion may be extended to the entire wall 3b, 5b.
  • the present invention can be applied to a scroll expander used as an expander.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

壁体(3b)の歯先に形成されたチップシール溝(3d)には、対向する端板(5a)に接触して流体をシールするチップシール(7)が設けられている。端板(5a)の歯底は、壁体(5b)の渦巻き方向に直交する幅方向における側部(5d3)よりも中央部が深くなる形状とされている。運転時に、傾斜部においてチップシール(7)が壁体(3b)の歯先から突出して対向する前記端板に接触したときの突出量(δ)が、平坦部においてチップシール(7)が壁体(3b)の歯先から突出して対向する端板に接触したときの突出量(δ)よりも大きい。

Description

スクロール流体機械
 本発明は、スクロール流体機械に関するものである。
 一般に、端板上に渦巻状の壁体が設けられた固定スクロール部材と旋回スクロール部材とを噛み合わせ、公転旋回運動を行わせて流体を圧縮または膨張するスクロール流体機械が知られている。
 このようなスクロール流体機械として、特許文献1に示すようないわゆる段付きスクロール圧縮機が知られている。この段付きスクロール圧縮機は、固定スクロールおよび旋回スクロールの渦巻状の壁体の歯先面および歯底面の渦巻き方向に沿う位置に各々段部が設けられ、各段部を境に壁体の外周側の高さが内周側の高さよりも高くされている。段付きスクロール圧縮機は、壁体の周方向だけでなく、高さ方向にも圧縮(三次元圧縮)されるため、段部を備えていない一般的なスクロール圧縮機(二次元圧縮)に比べ、押しのけ量を大きくし、圧縮機容量を増加することができる。
特開2015-55173号公報
 しかし、段付きスクロール圧縮機は、段部における流体漏れが大きいという問題がある。また、段部の根元部分に応力が集中して強度が低下するという問題がある。
 これに対して、発明者等は、壁体及び端板に設けられた段部に代えて連続的な傾斜部を設けることを検討している。
 壁体の先端である歯先が当接する歯底には、幅方向における中央で最も深くなる形状とされる。これは、歯底の幅と同等の直径を有するエンドミル等の切削工具で傾斜部とされた歯底を加工する際に、歯底の幅方向における両側部を接点とする半円弧の等高線が形成されるからである。このように歯底に最も深い中央部が形成されると、歯底が平坦である場合に比べて、歯底の中央部が深くなっている分だけチップシールはチップシール溝から突出するようになり、チップシール溝の底部とチップシールの裏面との間の裏隙間が大きくなる。裏隙間が大きくなると、裏隙間を通り冷媒が高圧側から低圧側の圧縮室へと流れ損失が生じ、性能低下が生じる。
 本発明は、このような事情に鑑みてなされたものであって、壁体に連続的な傾斜部を設けた場合であっても、チップシール溝の底部とチップシールの裏面との間の裏隙間による性能低下を抑制することができるスクロール流体機械を提供することを目的とする。
 上記課題を解決するために、本発明のスクロール流体機械は以下の手段を採用する。
 本発明の一態様に係るスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、を備えたスクロール流体機械であって、向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部を備え、前記第1壁体および前記第2壁体の少なくともいずれか一方は、前記傾斜部を形成するように外周側から内周側に向かって該壁体の高さが連続的に減少する壁体傾斜部を有し、前記第1端板および前記第2端板の少なくともいずれか一方は、前記壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する端板傾斜部を有し、前記第1壁体および前記第2壁体の最外周部および/または最内周部には、高さが変化しない壁体平坦部が設けられ、前記第1端板および前記第2端板には、前記壁体平坦部に対応した端板平坦部が設けられ、前記壁体の歯先に形成されたチップシール溝には、対向する前記端板に接触して流体をシールするチップシールが設けられ、前記端板傾斜部は、前記壁体の渦巻き方向に直交する幅方向における側部よりも中央部が深くなる形状とされ、運転時に、前記壁体傾斜部において前記チップシールが該壁体傾斜部の歯先から突出して対向する前記端板に接触したときの突出量が、前記壁体平坦部において前記チップシールが該壁体平坦部の歯先から突出して対向する前記端板に接触したときの突出量よりも大きい。
 端板傾斜部が幅方向における側部よりも中央部が深くなる形状とされていると、チップシールの先端は、側部よりも深くなった分だけチップシール溝から突出するようになり、端板傾斜部が平坦な場合に比べて、チップシール溝の底部とチップシールの裏面との間の裏隙間が大きくなる。裏隙間が大きくなると、裏隙間を通り冷媒が高圧側から低圧側の圧縮室へと流れ、流体損失が生じる。そこで、運転時における壁体傾斜部におけるチップシールの突出量を、壁体平坦部におけるチップシールの突出量よりも大きくすることとした。これにより、傾斜部の裏隙間を低減して流体損失を可及的に抑制することができる。
 チップシールの突出量は、チップシール溝の深さやチップシールの厚さ、またはその両方を用いて調整することができる。
 なお、突出量は、あくまでも運転時のものであり、運転停止時でチップシールの裏面にガス圧が加わらない場合は、チップシールがチップシール溝内に沈み込み突出量が0以下になる場合もある。
 さらに、本発明の一態様に係るスクロール流体機械では、前記チップシールの前記壁体高さ方向の厚さは、該壁体の渦巻き方向に一定とされ、前記チップシール溝の深さは、前記壁体平坦部よりも前記壁体傾斜部の方が浅い。
 チップシールの壁体高さ方向の厚さを、壁体の渦巻き方向に一定とした場合には、チップシール溝の深さを、壁体平坦部よりも壁体傾斜部の方が小さくなるようにした。これにより、チップシールの裏隙間を傾斜部において小さくすることができる。
 本発明の一態様に係るスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、を備えたスクロール流体機械であって、向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部を備え、前記第1壁体および前記第2壁体の少なくともいずれか一方は、前記傾斜部を形成するように外周側から内周側に向かって該壁体の高さが連続的に減少する壁体傾斜部を有し、前記第1端板および前記第2端板の少なくともいずれか一方は、前記壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する端板傾斜部を有し、前記傾斜部に対応する前記第1壁体及び前記第2壁体の歯先に形成されたチップシール溝には、対向する前記端板傾斜部に接触して流体をシールするチップシールが設けられ、前記端板傾斜部は、前記壁体の渦巻き方向に直交する幅方向における側部よりも中央部が深くなる形状とされ、運転時に、前記チップシールが前記壁体傾斜部の歯先から突出して対向する前記端板に接触したときの突出量が、前記壁体傾斜部が隣り合う前記壁体傾斜部に最も近づいた場合に最も小さい突出量とされている。
 端板傾斜部が幅方向における側部よりも中央部が深くなる形状とされていると、チップシールの先端は、運転時において、側部よりも深くなった分だけチップシール溝から突出するようになり、端板傾斜部が平坦な場合に比べて、チップシール溝の底部とチップシールの裏面との間の裏隙間が大きくなる。裏隙間が大きくなると、裏隙間を通り冷媒が高圧側から低圧側の圧縮室へと流れ、流体損失が生じる。そこで、壁体傾斜部が隣り合う壁体傾斜部に最も近づいた場合に最も小さいチップシールの突出量となるようにした。これにより、流体損失を可及的に抑制することができる。
 チップシールの突出量は、チップシール溝の深さやチップシールの厚さ、またはその両方を用いて調整することができる。
 さらに、本発明の一態様に係るスクロール流体機械では、前記壁体傾斜部が隣り合う前記壁体傾斜部に最も近づいた場合に、前記チップシールの先端が前記端板傾斜部の前記側部よりも深くなった位置に当接する深さに基づいて前記チップシールの突出量が決定されている。
 壁体傾斜部同士が最接近した場合に、チップシールの先端が端板傾斜部の側部よりも深くなった位置に当接する深さに基づいてチップシールの突出量を設定すれば、傾斜部の裏隙間を可及的に小さくすることできる。
 傾斜裏隙間を平坦部裏隙間よりも小さくして、傾斜部における裏隙間の増大を抑制することによって、性能低下を抑制することができる。
 壁体傾斜部が隣り合う壁体傾斜部に最も近づいた場合に最も小さい裏隙間となるようにすることによって、性能低下を抑制することができる。
本発明の一実施形態にかかるスクロール圧縮機の固定スクロール及び旋回スクロールを示した縦断面図である。 固定スクロールを壁体側から見た平面図である。 図1の旋回スクロールを示した斜視図である。 固定スクロールに設けた端板平坦部を示した平面図である。 固定スクロールに設けた壁体平坦部を示した平面図である。 渦巻き方向に伸ばして表示した壁体を示す模式図である。 図1Bの符号Zの領域を拡大して示した部分拡大図である。 図6で示した部分のチップシール隙間を示し、チップシール隙間が相対的に小さい状態を示した側面図である。 図6で示した部分のチップシール隙間を示し、チップシール隙間が相対的に大きい状態を示した側面図である。 壁体傾斜部における歯先周りの横断面図である。 端板の歯底形状を示した歯底の平面図である。 図9Aの歯底の中央部の深さを示した模式図である。 端板の歯底の加工方法を示し、歯底を平面視した平面図である。 図10Aに対応し、歯底を示した側面図である。 端板の歯底の横断面図である。 壁体平坦部における歯先周りの横断面図である。 段部を有していないスクロールとの組合せを示した縦断面図である。 段付きスクロールとの組合せを示した縦断面図である。
 以下に、本発明にかかる一実施形態について、図面を参照して説明する。
 図1には、スクロール圧縮機(スクロール流体機械)1の固定スクロール(第1スクロール部材)3と旋回スクロール(第2スクロール部材)5が示されている。スクロール圧縮機1は、例えば空調機等の冷凍サイクルを行うガス冷媒(流体)を圧縮する圧縮機として用いられる。
 固定スクロール3及び旋回スクロール5は、アルミ合金製や鉄製等の金属製の圧縮機構とされ、図示しないハウジング内に収容されている。固定スクロール3及び旋回スクロール5は、ハウジング内に導かれた流体を外周側から吸い込み、固定スクロール3の中央の吐出ポート3cから外部へと圧縮後の流体を吐出する。
 固定スクロール3は、ハウジングに固定されており、図1Aに示されているように、略円板形状の端板(第1端板)3aと、端板3aの一側面上に立設された渦巻状の壁体(第1壁体)3bとを備えている。旋回スクロール5は、略円板形状の端板(第2端板)5aと、端板5aの一側面上に立設された渦巻状の壁体(第2壁体)5bとを備えている。各壁体3b,5bの渦巻形状は、例えば、インボリュート曲線やアルキメデス曲線を用いて定義されている。
 固定スクロール3と旋回スクロール5は、その中心を旋回半径ρだけ離し、壁体3b,5bの位相を180°ずらして噛み合わされ、両スクロールの壁体3b、5bの歯先と歯底間に常温で僅かな高さ方向のクリアランス(チップクリアランス)を有するように組み付けられている。これにより、両スクロール3,5間に、その端板3a,5aと壁体3b、5bとにより囲まれて形成される複数対の圧縮室がスクロール中心に対して対称に形成される。旋回スクロール5は、図示しないオルダムリング等の自転防止機構によって固定スクロール3の周りを公転旋回運動する。
 図1Aに示すように、向かい合う両端板3a,5a間の対向面間距離Lが、渦巻状の壁体3b,5bの外周側から内周側に向かって、連続的に減少する傾斜部が設けられている。
 図2に示すように、旋回スクロール5の壁体5bには、外周側から内周側に向かって高さが連続的に減少する壁体傾斜部5b1が設けられている。この壁体傾斜部5b1の歯先が対向する固定スクロール3の歯底面には、壁体傾斜部5b1の傾斜に応じて傾斜する端板傾斜部3a1(図1A参照)が設けられている。これら壁体傾斜部5b1及び端板傾斜部3a1によって、連続的な傾斜部が構成されている。同様に、固定スクロール3の壁体3bにも高さが外周側から内周側に向かって連続的に傾斜する壁体傾斜部3b1が設けられ、この壁体傾斜部3b1の歯先に対向する端板傾斜部5a1が旋回スクロール5の端板5aに設けられている。
 なお、本実施形態でいう傾斜部における連続的という意味は、滑らかに接続された傾斜に限定されるものではなく、加工時に不可避的に生じるような小さな段部が階段状に接続されており、傾斜部を全体としてみれば連続的に傾斜しているものも含まれる。ただし、いわゆる段付きスクロールのような大きな段部は含まれない。
 壁体傾斜部3b1,5b1及び/又は端板傾斜部3a1,5a1には、コーティングが施されている。コーティングとしては、例えば、リン酸マンガン処理やニッケルリンめっき等が挙げられる。
 図2に示されているように、旋回スクロール5の壁体5bの最内周側と最外周側には、それぞれ、高さが一定とされた壁体平坦部5b2,5b3が設けられている。これら壁体平坦部5b2,5b3は、旋回スクロール5の中心O2(図1A参照)まわりに180°の領域にわたって設けられている。壁体平坦部5b2,5b3と壁体傾斜部5b1とが接続される位置には、それぞれ、屈曲部となる壁体傾斜接続部5b4,5b5が設けられている。
 旋回スクロール5の端板5aの歯底についても同様に、高さが一定とされた端板平坦部5a2,5a3が設けられている。これら端板平坦部5a2,5a3についても、旋回スクロール5の中心まわりに180°の領域にわたって設けられている。端板平坦部5a2,5a3と端板傾斜部5a1とが接続される位置には、それぞれ、屈曲部となる端板傾斜接続部5a4,5a5が設けられている。
 図3及び図4にハッチングにて示すように、固定スクロール3についても、旋回スクロール5と同様に、端板平坦部3a2,3a3、壁体平坦部3b2,3b3、端板傾斜接続部3a4,3a5及び壁体傾斜接続部3b4,3b5が設けられている。
 図5には、渦巻き方向に伸ばして表示した壁体3b,5bが示されている。同図に示されているように、最内周側の壁体平坦部3b2,5b2が距離D2にわたって設けられ、最外周側の壁体平坦部3b3,5b3が距離D3にわたって設けられている。距離D2及び距離D3は、それぞれ、各スクロール3,5の中心O1,O2まわりに180°とされた領域に相当する長さとなっている。最内周側の壁体平坦部3b2,5b2と最外周側の壁体平坦部3b3,5b3との間に、壁体傾斜部3b1,5b1が距離D1にわたって設けられている。最内周側の壁体平坦部3b2,5b2と最外周側の壁体平坦部3b3,5b3との高低差をhとすると、壁体傾斜部3b1,5b1の傾きφは下式とされる。
  φ=tan(h/D1)-1  ・・・(1)
 このように、傾斜部における傾きφは、渦巻状の壁体3b,5bが延在する周方向に対して一定とされている。
 図6には、図1Bの符号Zで示した領域の拡大図が示されている。図6に示されているように、固定スクロール3の壁体3bの歯先には、チップシール7が設けられている。チップシール7は樹脂製とされており、対向する旋回スクロール5の端板5aの歯底に接触して流体をシールする。チップシール7は、壁体3bの歯先に周方向にわたって形成されたチップシール溝3d内に収容されている。このチップシール溝3d内に圧縮流体が入り込み、チップシール7を背面から押圧して歯底側に押し出すことで対向する歯底に接触させるようになっている。なお、旋回スクロール5の壁体5bの歯先に対しても、同様にチップシールが設けられている。
 図7に示すように、壁体3bの高さ方向におけるチップシール7の高さHcは、周方向に一定とされている。
 両スクロール3,5が相対的に公転旋回運動を行うと、旋回直径(旋回半径ρ×2)分だけ歯先と歯底の位置が相対的にずれる。この歯先と歯底の位置ずれに起因して、傾斜部では、歯先と歯底との間のチップクリアランスが変化する。例えば、図7AではチップクリアランスTが小さく、図7BではチップクリアランスTが大きいことを示している。チップシール7は、このチップクリアランスTが旋回運動によって変化しても、背面から圧縮流体によって端板5aの歯底側に押圧されるので、追従してシールできるようになっている。
 図8には、壁体傾斜部3b1の渦巻き方向に直交する切断面で見た歯先周りの横断面図が示されている。換言すると、図8は、図5に示した内周側の壁体傾斜接続部3b4から外周側の壁体傾斜接続部3b5までの間の壁体傾斜部3b1において紙面垂直方向に切断した歯先周りの横断面図である。なお、旋回スクロール5の歯先およびチップシール7についても同様の構成とされている。
 図8に示した状態は、運転時において、隣り合う旋回スクロール5の壁体5bと固定スクロール3の壁体3bとが最も接近した状態を示している。
 壁体3bの先端の歯先に形成されたチップシール溝3d内にチップシール7が収容されている。チップシール7の横断面は、略矩形状となっており、平坦面とされた先端面(下面)7aが壁体3bの歯先から突出量δだけ突出している。なお、突出量δは、あくまでも運転時のものであり、運転停止時でチップシールの裏面にガス圧が加わらない場合は、チップシールがチップシール溝内に沈み込み突出量が0以下になる場合もある。
 壁体3bに対向する端板5aの歯底は、幅方向における中央部が両側部5d3よりも深く形成された円弧形状とされている。円弧形状は、後述するが、半径Rとされている。これにより、端板5aの歯底の断面は、カマボコ形状とされている。このようなカマボコ形状とされた端板5aの歯底の横断面は、端板傾斜部5a1全体にわたって形成されている。
 このような端板5aの歯底の形状は、図9に示すような等高線Ctが形成されることによって生じる。等高線Ctは、端板5aの歯底の幅Tgを直径とし、端板傾斜部5a1の高さ増大方向(同図において左側)に凸とされた半円弧となっている。つまり、等高線Ctの半径はTg/2となる。
 図9Bから分かるように、端板傾斜部5a1の傾きはφとされているので(図5参照)、歯底の中央部5d2の両側部5d3からの凹み量△hは、下式によって表される。
  △h=(Tg/2)×tanφ ・・・(2)
 図9Aに示したような歯底の形状は、図10に示すようにエンドミル10を用いて加工することによって得られる。エンドミル10の直径Deは歯底の幅Tgと同等とされる。エンドミル10によって、傾斜を上る一方向に1パスで歯底の加工を行う。エンドミル10の回転軸線を旋回スクロール5の中心O2(図1A参照)を通る軸線と平行になるようにして加工する。これにより、図9Aに示したような半円弧となる等高線Ctが形成される。
 図11に示すように、端板5aの歯底は、半径Rとされた円弧形状とされる。すなわち、歯底は、両側部5d3から凹み量△hだけ突出した中央部5d2と、両側部5d3とを通る半径Rの円弧形状とされる。
 図12に示すように、端板平坦部5a2,5a3では、端板5aの歯底は平坦とされている。これは、端板平坦部5a2,5a3では端板傾斜部5a1のように傾斜していないので、エンドミル10による加工によって平坦面が形成されるからである。したがって、チップシール7の平坦面とされた先端面7aの全体が歯底に接触するようになり、チップシール7が歯先から突出する突出量は略0ないし僅かに突出する程度とされており、突出量δ(図8参照)よりも小さい。なお、図12に示した状態は、隣り合う旋回スクロール5の壁体5bと固定スクロール3の壁体3bとが最も接近した状態を示している。平坦部におけるチップシール7の高さHcは、傾斜部におけるチップシールの高さHcと同等とされている。
[突出量δの設定]
 次に、図8に示したように、チップシール7が歯先から突出する突出量δの設定について説明する。
 突出量δは、傾きφ、エンドミル直径De、壁体3bの歯厚、チップシール溝幅Wの関数として表される。壁体3bの歯厚とは、壁体3bの歯先のうちチップシール溝3dを除いた片側の幅を意味し、壁体3bの厚さをTrとすると、Tr/2-W/2で表すことができる。突出量δは下式の通りである。
  δ=[R―{De/2-(Tr/2-W/2)}1/2-(R-△h)                        ・・・(3)
 上式で表された突出量δに相当する量だけチップシール溝3dの深さを浅くすることができる。具体的には、図12のように端板平坦部5a2,5a3に対向する歯先のチップシール溝3dに対して、図8のように端板傾斜部5a1に対向する歯先のチップシール溝3dは、突出量δだけ溝深さを浅くすることができる。
 上述したスクロール圧縮機1は、以下のように動作する。
 図示しない電動モータ等の駆動源によって、旋回スクロール5が固定スクロール3回りに公転旋回運動を行う。これにより、各スクロール3,5の外周側から流体を吸い込み、各壁体3b,5b及び各端板3a,5aによって囲まれた圧縮室に流体を取り込む。圧縮室内の流体は外周側から内周側に移動するに従い順次圧縮され、最終的に固定スクロール3に形成された吐出ポート3cから圧縮流体が吐出される。流体が圧縮される際に、端板傾斜部3a1,5a1及び壁体傾斜部3b1,5b1によって形成された傾斜部では壁体3b,5bの高さ方向にも圧縮されて、三次元圧縮が行われる。
 本実施形態によれば、以下の作用効果を奏する。
 端板傾斜部3a1,5a1が幅方向における側部よりも中央部が深くなる形状とされていると、チップシール7の先端は、側部よりも深くなった分だけチップシール溝3dから突出するようになり(図8参照)、端板3a,5aが平坦な場合(図12参照)に比べて、チップシール溝3dの底部とチップシール7の裏面との間の裏隙間が大きくなる。裏隙間が大きくなると、裏隙間を通り冷媒が高圧側から低圧側の圧縮室へと流れ、流体損失が生じる。そこで、壁体傾斜部3b1,5b1におけるチップシール7の突出量δを、壁体平坦部3b2,3b3,5b2,5b3におけるチップシール7の突出量よりも大きく、傾斜部における裏隙間の増大を抑制するようにした。これにより、流体損失を可及的に抑制することができる。
 壁体傾斜部3b1,5b1が隣り合う壁体傾斜部に最も近づいた場合(図8の状態)に最も小さいチップシール7の突出量δとなるようにした。これにより、流体損失を可及的に抑制することができる。
 壁体傾斜部3b1,5b1同士が最接近した場合に、チップシール7の先端が端板傾斜部3a1,5a1の側部よりも深くなった位置に当接する深さ(図8参照)に基づいてチップシール7の突出量δを上式(3)のように設定すれば、傾斜部の裏隙間を可及的に小さくすることできる。
 なお、本実施形態では、裏隙間をチップシール溝3dの深さで調整することとしたが、チップシール7の高さHc(図8参照)によって調整しても良いし、チップシール溝3dの深さとチップシール7の高さHcの両方を用いても良い。
 また、本実施形態では、端板傾斜部3a1,5a1及び壁体傾斜部3b1,5b1を両スクロール3,5に設けることとしたが、いずれか一方に設けても良い。
 具体的には、図13に示すように、一方の壁体(例えば旋回スクロール5)に壁体傾斜部5b1を設け、他方の端板3aに端板傾斜部3a1を設けた場合には、他方の壁体と一方の端板5aは平坦としても良い。
 また、図14に示すように、従来の段付き形状と組み合わせた形状、すなわち、固定スクロール3の端板3aに端板傾斜部3a1を設ける一方で、旋回スクロール5の端板5aに段部が設けられた形状と組み合わせても良い。
 本実施形態では、壁体平坦部3b2,3b3,5b2,5b3および端板平坦部3a2,3a3,5a2,5a3を設けることとしたが、内周側及び/又は外周側の平坦部を省略して傾斜部を壁体3b,5bの全体に延長して設けるようにしてもよい。
 本実施形態では、スクロール圧縮機として説明したが、膨張機として用いるスクロール膨張機に対しても本発明を適用することができる。
1 スクロール圧縮機(スクロール流体機械)
3 固定スクロール(第1スクロール部材)
3a 端板(第1端板)
3a1 端板傾斜部
3a2 端板平坦部
3a3 端板平坦部
3a4 端板傾斜接続部
3a5 端板傾斜接続部
3b 壁体(第1壁体)
3b1 壁体傾斜部
3b2 壁体平坦部
3b3 壁体平坦部
3b4 壁体傾斜接続部
3b5 壁体傾斜接続部
3c 吐出ポート
3d チップシール溝
5 旋回スクロール(第2スクロール部材)
5a 端板(第2端板)
5a1 端板傾斜部
5a2 端板平坦部
5a3 端板平坦部
5a4 端板傾斜接続部
5a5 端板傾斜接続部
5b 壁体(第2壁体)
5b1 壁体傾斜部
5b2 壁体平坦部
5b3 壁体平坦部
5b4 壁体傾斜接続部
5b5 壁体傾斜接続部
7 チップシール
7a 先端面
10 エンドミル
Ct 等高線
D1 (チップシールの)分割位置
De エンドミル直径
Hc チップシールの高さ
L 対向面間距離
T チップクリアランス
Tg 歯底の幅
Tr 壁体の厚さ
W チップシール溝幅
δ (チップシールの)突出量
φ 傾き
△h 凹み量

Claims (4)

  1.  第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
     前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、
    を備えたスクロール流体機械であって、
     向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部を備え、
     前記第1壁体および前記第2壁体の少なくともいずれか一方は、前記傾斜部を形成するように外周側から内周側に向かって該壁体の高さが連続的に減少する壁体傾斜部を有し、
     前記第1端板および前記第2端板の少なくともいずれか一方は、前記壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する端板傾斜部を有し、
     前記第1壁体および前記第2壁体の最外周部および/または最内周部には、高さが変化しない壁体平坦部が設けられ、
     前記第1端板および前記第2端板には、前記壁体平坦部に対応した端板平坦部が設けられ、
     前記壁体の歯先に形成されたチップシール溝には、対向する前記端板に接触して流体をシールするチップシールが設けられ、
     前記端板傾斜部は、前記壁体の渦巻き方向に直交する幅方向における側部よりも中央部が深くなる形状とされ、
     運転時に、前記壁体傾斜部において前記チップシールが該壁体傾斜部の歯先から突出して対向する前記端板に接触したときの突出量が、前記壁体平坦部において前記チップシールが該壁体平坦部の歯先から突出して対向する前記端板に接触したときの突出量よりも大きいスクロール流体機械。
  2.  前記チップシールの前記壁体高さ方向の厚さは、該壁体の渦巻き方向に一定とされ、
     前記チップシール溝の深さは、前記壁体平坦部よりも前記壁体傾斜部の方が浅い請求項1に記載のスクロール流体機械。
  3.  第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
     前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、
    を備えたスクロール流体機械であって、
     向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部を備え、
     前記第1壁体および前記第2壁体の少なくともいずれか一方は、前記傾斜部を形成するように外周側から内周側に向かって該壁体の高さが連続的に減少する壁体傾斜部を有し、
     前記第1端板および前記第2端板の少なくともいずれか一方は、前記壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する端板傾斜部を有し、
     前記傾斜部に対応する前記第1壁体及び前記第2壁体の歯先に形成されたチップシール溝には、対向する前記端板傾斜部に接触して流体をシールするチップシールが設けられ、
     前記端板傾斜部は、前記壁体の渦巻き方向に直交する幅方向における側部よりも中央部が深くなる形状とされ、
     運転時に、前記チップシールが前記壁体傾斜部の歯先から突出して対向する前記端板に接触したときの突出量が、前記壁体傾斜部が隣り合う前記壁体傾斜部に最も近づいた場合に最も小さい突出量とされているスクロール流体機械。
  4.  前記壁体傾斜部が隣り合う前記壁体傾斜部に最も近づいた場合に、前記チップシールの先端が前記端板傾斜部の前記側部よりも深くなった位置に当接する深さに基づいて前記チップシールの突出量が決定されている請求項1から3のいずれかに記載のスクロール流体機械。
PCT/JP2018/023648 2017-08-18 2018-06-21 スクロール流体機械 WO2019035276A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18846505.8A EP3604812B1 (en) 2017-08-18 2018-06-21 Scroll fluid machine
CN201880028441.9A CN110573739B (zh) 2017-08-18 2018-06-21 涡旋流体机械
US16/608,109 US11204034B2 (en) 2017-08-18 2018-06-21 Scroll fluid machine with decreasing inter-facing surface and arc shape end plate central portion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-158114 2017-08-18
JP2017158114A JP6386144B1 (ja) 2017-08-18 2017-08-18 スクロール流体機械

Publications (1)

Publication Number Publication Date
WO2019035276A1 true WO2019035276A1 (ja) 2019-02-21

Family

ID=63444265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023648 WO2019035276A1 (ja) 2017-08-18 2018-06-21 スクロール流体機械

Country Status (5)

Country Link
US (1) US11204034B2 (ja)
EP (1) EP3604812B1 (ja)
JP (1) JP6386144B1 (ja)
CN (1) CN110573739B (ja)
WO (1) WO2019035276A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329148B2 (ja) * 2020-07-09 2023-08-17 株式会社日立産機システム スクロール式気体機械

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119892U (ja) * 1988-02-05 1989-08-14
JPH06235386A (ja) * 1993-02-10 1994-08-23 Mitsubishi Electric Corp スクロール圧縮機
JP2002303281A (ja) * 2001-02-02 2002-10-18 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2008240739A (ja) * 1994-07-13 2008-10-09 Hitachi Ltd スクロール加工方法およびその装置
JP2009228476A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機
JP2010196663A (ja) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd 圧縮機
JP2014080940A (ja) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
JP2015055173A (ja) 2013-09-11 2015-03-23 三菱重工業株式会社 スクロール圧縮機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176185U (ja) * 1984-10-26 1986-05-22
JPH05235386A (ja) 1992-02-21 1993-09-10 Canon Inc 太陽電池及びその製造方法
JP3046486B2 (ja) 1993-12-28 2000-05-29 株式会社日立製作所 スクロール式流体機械
JPH0828481A (ja) 1994-07-21 1996-01-30 Zexel Corp 可変容量型ベーン型圧縮機
JP3810102B2 (ja) * 1994-12-22 2006-08-16 株式会社デンソー スクロール型圧縮機
JPH09250467A (ja) 1996-03-18 1997-09-22 Tokico Ltd スクロール式流体機械
JP4301713B2 (ja) 2000-08-28 2009-07-22 三菱重工業株式会社 スクロール圧縮機
KR100439651B1 (ko) * 2000-11-06 2004-07-12 미츠비시 쥬고교 가부시키가이샤 스크롤 압축기
JP2002266778A (ja) 2001-03-07 2002-09-18 Ntn Corp チップシールおよびその製造方法
JP4709439B2 (ja) 2001-07-24 2011-06-22 三菱重工業株式会社 スクロール型圧縮機
JP2005330850A (ja) 2004-05-18 2005-12-02 Ntn Corp チップシール
JP6325041B2 (ja) 2016-08-31 2018-05-16 三菱重工サーマルシステムズ株式会社 スクロール流体機械およびチップシール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119892U (ja) * 1988-02-05 1989-08-14
JPH06235386A (ja) * 1993-02-10 1994-08-23 Mitsubishi Electric Corp スクロール圧縮機
JP2008240739A (ja) * 1994-07-13 2008-10-09 Hitachi Ltd スクロール加工方法およびその装置
JP2002303281A (ja) * 2001-02-02 2002-10-18 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2009228476A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機
JP2010196663A (ja) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd 圧縮機
JP2014080940A (ja) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
JP2015055173A (ja) 2013-09-11 2015-03-23 三菱重工業株式会社 スクロール圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604812A4

Also Published As

Publication number Publication date
CN110573739B (zh) 2021-10-15
EP3604812A1 (en) 2020-02-05
CN110573739A (zh) 2019-12-13
EP3604812B1 (en) 2021-02-17
US20200095993A1 (en) 2020-03-26
EP3604812A4 (en) 2020-02-05
JP2019035387A (ja) 2019-03-07
JP6386144B1 (ja) 2018-09-05
US11204034B2 (en) 2021-12-21

Similar Documents

Publication Publication Date Title
KR102166195B1 (ko) 스크롤 유체 기계 및 팁 시일
KR102178462B1 (ko) 스크롤 유체 기계 및 스크롤 부재의 가공 방법
JP6352509B1 (ja) チップシールおよびこれを用いたスクロール流体機械
WO2019035276A1 (ja) スクロール流体機械
JP6505906B2 (ja) スクロール流体機械
WO2018034256A1 (ja) スクロール流体機械およびその製造方法
KR102326912B1 (ko) 스크롤 유체 기계 및 이것에 사용되는 스크롤 부재
JP6336531B2 (ja) スクロール流体機械
JP2018028301A (ja) スクロール流体機械
JP6679633B2 (ja) スクロール流体機械
JP6336530B2 (ja) スクロール流体機械およびこれに用いられるスクロール部材
WO2018038182A1 (ja) スクロール流体機械
JP6679634B2 (ja) スクロール部材の加工方法
JP6612376B2 (ja) スクロール流体機械
JP6336535B2 (ja) スクロール流体機械およびスクロール部材の加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018846505

Country of ref document: EP

Effective date: 20191029

NENP Non-entry into the national phase

Ref country code: DE