WO2018034256A1 - スクロール流体機械およびその製造方法 - Google Patents

スクロール流体機械およびその製造方法 Download PDF

Info

Publication number
WO2018034256A1
WO2018034256A1 PCT/JP2017/029243 JP2017029243W WO2018034256A1 WO 2018034256 A1 WO2018034256 A1 WO 2018034256A1 JP 2017029243 W JP2017029243 W JP 2017029243W WO 2018034256 A1 WO2018034256 A1 WO 2018034256A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall body
scroll
end plate
height
tip seal
Prior art date
Application number
PCT/JP2017/029243
Other languages
English (en)
French (fr)
Inventor
創 佐藤
央幸 木全
陽平 堀田
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to KR1020187031103A priority Critical patent/KR102136083B1/ko
Priority to US16/090,725 priority patent/US10975866B2/en
Priority to CN201780026488.7A priority patent/CN109072911B/zh
Priority to EP17841478.5A priority patent/EP3438458B1/en
Publication of WO2018034256A1 publication Critical patent/WO2018034256A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0284Details of the wrap tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present invention relates to a scroll fluid machine and a manufacturing method thereof.
  • a scroll fluid machine that compresses or expands a fluid by meshing a fixed scroll member provided with a spiral wall on an end plate and a orbiting scroll member and performing a revolving orbiting motion.
  • a so-called stepped scroll compressor as shown in Patent Document 1 is known.
  • This stepped scroll compressor is provided with stepped portions at positions along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wall body of the fixed scroll and the orbiting scroll, and the outer periphery of the wall body with each step portion as a boundary.
  • the height on the side is higher than the height on the inner peripheral side.
  • the stepped scroll compressor is compressed not only in the circumferential direction of the wall but also in the height direction (three-dimensional compression), so compared to a general scroll compressor (two-dimensional compression) that does not have a stepped portion.
  • the displacement can be increased and the compressor capacity can be increased.
  • the stepped scroll compressor has a problem of large fluid leakage at the stepped portion.
  • the stress is concentrated due to the stress concentrated at the base of the stepped portion.
  • the inventors are considering providing a continuous inclined part instead of the step part provided in the wall body and the end plate.
  • a tip seal is provided on the tooth tip of the wall body in order to seal a gap between the tooth bottoms facing each other.
  • the inclined portion is formed on the wall body, it has not been studied yet how the tip seal can be provided to achieve the desired performance.
  • the present invention has been made in view of such circumstances, and a scroll fluid machine capable of effectively exhibiting the performance of a tip seal installed on a tooth tip of a wall body having an inclined portion, and its manufacture It aims to provide a method.
  • a scroll fluid machine includes a first scroll member having a spiral first wall provided on a first end plate, and a first scroll member disposed to face the first end plate.
  • a scroll fluid machine comprising a second scroll member provided with a spiral second wall on a two-end plate, and the second wall meshing with the first wall and relatively revolving orbiting. The distance between the opposing surfaces of the first end plate and the second end plate facing each other continuously decreases from the outer peripheral side to the inner peripheral side of the first wall body and the second wall body.
  • An inclined portion is provided, and a chip seal is provided in the groove formed in the tooth tip of the first wall body and the second wall body corresponding to the inclined portion so as to contact the opposite tooth bottom and seal the fluid.
  • the scroll member does not compress fluid by the scroll members when stopped.
  • Slope height Ppushiru is smaller than the inclination height of the wall.
  • the fluid sucked from the outer peripheral side is As it goes to the inner peripheral side, it is compressed not only by the reduction of the compression chamber according to the spiral shape of the wall body, but also by the reduction of the distance between the opposing surfaces between the end plates.
  • the inclination height of the tip seal at the time of stopping when the fluid is not compressed by both scroll members is set to be smaller than the inclination height of the wall body.
  • a tip seal will be installed so that the inner peripheral side of a tip seal may protrude from a tooth tip side to which the inner peripheral side of a tip seal opposes. Since the inner peripheral side of the tip seal protrudes from the tooth tip toward the root side rather than the outer peripheral side of the tip seal, the fluid is more likely to enter the inner peripheral side of the tip seal than the outer peripheral side.
  • the operation is started from the stopped state and the fluid is compressed by both scrolls, the compressed fluid enters the groove portion on the inner peripheral side of the tip seal, and the tip seal is moved from the back surface of the tip seal toward the tooth bottom. Energize.
  • “Inclined height” means the difference between the height at the outermost peripheral end of the inclined portion and the height at the innermost peripheral end.
  • the height of the tip seal in the height direction of the wall body is greater than the difference between the slope height of the wall body and the slope height of the tip seal.
  • the tip seal is made of an elastically deformable material.
  • the tip seal elastically deformable (for example, resin)
  • it is installed in the groove using the elastic deformation so that the slope height of the tip seal when stopped is smaller than the slope height of the wall. can do.
  • a scroll fluid machine manufacturing method in which a first scroll member having a spiral first wall provided on a first end plate is disposed so as to face the first end plate.
  • a spiral second wall body is provided on the second end plate, and the second wall body meshes with the first wall body and has a second scroll member that relatively revolves and swings, and faces each other.
  • An inclined portion is provided in which the distance between the opposing surfaces of the first end plate and the second end plate continuously decreases from the outer peripheral side to the inner peripheral side of the first wall body and the second wall body.
  • a groove formed in the tooth tips of the first wall and the second wall corresponding to the inclined portion is provided with a tip seal that seals the fluid in contact with the opposing tooth bottom
  • the tip seal has an inclined height equal to the inclined height of the wall body.
  • the first scroll member and the second scroll member are engaged with each other and installed after the tip seal installation step for installing the tip seal in the groove and the tip seal installation step.
  • the tip seal has an inclined height lower than the inclined height of the wall body when the fluid is not compressed by both scroll members. Therefore, the sealing performance can be increased and the performance of the scroll fluid machine can be improved.
  • FIG. 1 The fixed scroll and the turning scroll of the scroll compressor concerning one Embodiment of this invention are shown, (a) is a longitudinal cross-sectional view, (b) is the top view seen from the wall body side of the fixed scroll. It is the perspective view which showed the turning scroll of FIG. It is the top view which showed the end plate flat part provided in the fixed scroll. It is the top view which showed the wall body flat part provided in the fixed scroll. It is a schematic diagram which shows the wall body extended and displayed in the spiral direction. It is the elements on larger scale which expanded and showed the field of the code Z of Drawing 1 (b). 6 shows the tip seal gap in the portion shown in FIG.
  • (a) is a side view showing a state where the tip seal gap is relatively small, and (b) shows a state where the tip seal gap is relatively large. It is a side view. It is the longitudinal cross-sectional view which showed the installation position of the tip seal
  • FIG. 1 shows a fixed scroll (first scroll member) 3 and a turning scroll (second scroll member) 5 of a scroll compressor (scroll fluid machine) 1.
  • the scroll compressor 1 is used as a compressor that compresses a gas refrigerant (fluid) that performs a refrigeration cycle such as an air conditioner.
  • the fixed scroll 3 and the orbiting scroll 5 are made of a metal compression mechanism made of aluminum alloy or iron and are housed in a housing (not shown).
  • the fixed scroll 3 and the orbiting scroll 5 suck the fluid guided into the housing from the outer peripheral side, and discharge the compressed fluid from the central discharge port 3c of the fixed scroll 3 to the outside.
  • the fixed scroll 3 is fixed to the housing and, as shown in FIG. 1A, stands on a substantially disc-shaped end plate (first end plate) 3a and one side surface of the end plate 3a. And a spiral wall body (first wall body) 3b.
  • the orbiting scroll 5 includes a substantially disc-shaped end plate (second end plate) 5a and a spiral wall body (second wall body) 5b erected on one side surface of the end plate 5a. .
  • the spiral shape of each wall 3b, 5b is defined using, for example, an involute curve or an Archimedean curve.
  • the fixed scroll 3 and the orbiting scroll 5 are meshed with their centers separated by an orbiting radius ⁇ , with the phases of the wall bodies 3b and 5b shifted by 180 °, and between the tooth tips and the tooth bottoms of the wall bodies 3b and 5b of both scrolls. It is assembled so as to have a slight clearance in the height direction (chip clearance).
  • a plurality of pairs of compression chambers formed between the scrolls 3 and 5 and surrounded by the end plates 3a and 5a and the walls 3b and 5b are formed symmetrically with respect to the scroll center.
  • the orbiting scroll 5 revolves around the fixed scroll 3 by a rotation prevention mechanism such as an Oldham ring (not shown).
  • the distance L between the facing surfaces 3a and 5a facing each other is continuously decreased from the outer peripheral side to the inner peripheral side of the spiral wall bodies 3b and 5b. Is provided.
  • the wall 5b of the orbiting scroll 5 is provided with a wall inclined portion 5b1 whose height continuously decreases from the outer peripheral side toward the inner peripheral side.
  • An end plate inclined portion 3a1 (see FIG. 1 (a)) that is inclined according to the inclination of the wall body inclined portion 5b1 is provided on the tooth bottom surface of the fixed scroll 3 where the tooth tips of the wall body inclined portion 5b1 face each other. Yes.
  • These wall body inclination part 5b1 and end plate inclination part 3a1 comprise the continuous inclination part.
  • the wall body 3b of the fixed scroll 3 is also provided with a wall body inclined portion 3b1 whose height is continuously inclined from the outer peripheral side toward the inner peripheral side, and faces the tooth tip of the wall body inclined portion 3b1.
  • An end plate inclined portion 5 a 1 is provided on the end plate 5 a of the orbiting scroll 5.
  • the meaning of “continuous in the inclined portion” in the present embodiment is not limited to the smoothly connected inclination, and small steps that are inevitably generated at the time of processing are connected in a staircase shape. If the part as a whole is included, it is continuously inclined. However, large steps such as so-called stepped scrolls are not included.
  • the wall body inclined portions 3b1 and 5b1 and / or the end plate inclined portions 3a1 and 5a1 are coated.
  • the coating include manganese phosphate treatment and nickel phosphorus plating.
  • wall body flat portions 5b2 and 5b3 having a constant height are provided on the innermost circumferential side and the outermost circumferential side of the wall body 5b of the orbiting scroll 5, respectively. .
  • These wall flat portions 5b2 and 5b3 are provided over a region of 180 ° around the center O2 (see FIG. 1A) of the orbiting scroll 5.
  • Wall body inclined connection portions 5b4 and 5b5 serving as bent portions are respectively provided at positions where the wall body flat portions 5b2 and 5b3 and the wall body inclined portion 5b1 are connected.
  • the bottom of the end plate 5a of the orbiting scroll 5 is provided with flat end plates 5a2 and 5a3 having a constant height.
  • end plate flat portions 5 a 2 and 5 a 3 are also provided over a 180 ° region around the center of the orbiting scroll 5.
  • end plate inclined connecting portions 5a4 and 5a5 serving as bent portions are provided, respectively.
  • the fixed scroll 3 also has the end plate flat portions 3a2 and 3a3, the wall body flat portions 3b2 and 3b3, and the end plate inclined connection portions 3a4 and 3a5 in the same manner as the orbiting scroll 5.
  • wall body inclination connection part 3b4, 3b5 is provided.
  • FIG. 5 shows wall bodies 3b and 5b displayed in a spiral direction.
  • the innermost wall flat portions 3b2 and 5b2 are provided over a distance D2
  • the outermost wall flat portions 3b3 and 5b3 are provided over a distance D3.
  • the distance D2 and the distance D3 are lengths corresponding to the regions 180 degrees around the centers O1 and O2 of the scrolls 3 and 5, respectively.
  • Wall body inclined portions 3b1 and 5b1 are provided over the distance D2 between the innermost wall flat portions 3b2 and 5b2 and the outermost wall flat portions 3b3 and 5b3.
  • the inclination ⁇ in the inclined portion is constant with respect to the circumferential direction in which the spiral wall bodies 3b and 5b extend.
  • FIG. 6 shows an enlarged view of the region indicated by the symbol Z in FIG.
  • a tip seal 7 is provided on the tooth tip of the wall 3 b of the fixed scroll 3.
  • the tip seal 7 is made of an elastically deformable resin, and comes into contact with the tooth bottom of the end plate 5a of the orbiting scroll 5 facing to seal the fluid.
  • the tip seal 7 is accommodated in a tip seal groove (groove portion) 3d formed in the tooth tip of the wall 3b over the circumferential direction.
  • the height Hc of the tip seal 7 in the height direction of the wall 3b is constant in the spiral direction.
  • the depth of the tip seal groove 3d is also constant in the spiral direction.
  • FIG. 7A shows that the tip clearance T is small
  • FIG. 7B shows that the tip clearance T is large.
  • a tip seal is similarly provided on the tooth tip of the wall 5b of the orbiting scroll 5.
  • FIG. 8 shows a state in which the chip seal 7 is installed on the fixed scroll 3.
  • the state shown in the figure is a no-load state in which no pressure is applied to the compression chamber by the compressed fluid, that is, the scroll compressor 1 is stopped.
  • the scroll compressor 1 is manufactured, this corresponds to a state before the fixed scroll 3 is engaged with the orbiting scroll 5 and assembled to the main body of the scroll compressor 1.
  • the inclined height Ls ′ of the tip seal 7 is set to be smaller than the inclined height Ls of the wall body 3b.
  • the inclined height Ls ′ of the tip seal 7 refers to the height of the tip seal 7 at a position corresponding to the wall body inclined connecting portion 3b5 (see FIG. 5) on the outer peripheral side of the wall 3b, and the inner peripheral wall. This is a difference from the height of the tip seal 7 at a position corresponding to the body inclination connecting portion 3b4 (see FIG. 5).
  • the inclined height Ls of the wall body 3b is a difference between the height of the outer wall-side inclined wall connecting portion 3b5 and the inner wall-side inclined wall connecting portion 3b4.
  • a flat tip seal 7 having an inclined height Ls' of zero in a state where no external force is applied is prepared. Then, using the elastic deformation of the chip seal 7, it is installed in the chip seal groove 3d (chip seal installation process).
  • chip seal installation process When the outer peripheral surface and / or inner peripheral surface of the chip seal 7 comes into contact with the wall portion of the chip seal groove 3d to generate a frictional force, the relative position of the chip seal 7 with respect to the chip seal groove 3d is fixed. Therefore, even when the fixed scroll 3 is assembled and installed (during the scroll installation process), even if the fixed scroll 3 is tilted or inverted, the relative position of the chip seal 7 with respect to the chip seal groove 3d does not deviate greatly.
  • the frictional force between the outer peripheral surface and / or inner peripheral surface of the tip seal 7 and the wall portion of the tip seal groove 3d is such that fluid enters the tip seal groove 3d during the operation of the scroll compressor 1 and the tip seal 7
  • the frictional force is such as to allow movement to the opposite tooth bottom direction (direction in which the tip seal 7 exits from the tip seal groove 3d) due to fluid pressure when it wraps around the back surface.
  • the height Hc of the tip seal is made larger than the difference between the inclined height Ls of the wall 3b and the inclined height Ls ′ of the tip seal 7. That is, the height Hc of the tip seal 7 is determined so as to satisfy the following formula. Ls ⁇ Ls ′ ⁇ Hc (2)
  • the inclined height Ls ′ of the tip seal 7 is set for the tooth tip of the wall 5b of the orbiting scroll 5 as in FIG.
  • the scroll compressor 1 described above operates as follows.
  • the orbiting scroll 5 performs a revolving orbiting motion around the fixed scroll 3 by a driving source such as an electric motor (not shown).
  • a driving source such as an electric motor (not shown).
  • the fluid is sucked from the outer peripheral side of the scrolls 3 and 5, and the fluid is taken into the compression chambers surrounded by the walls 3b and 5b and the end plates 3a and 5a.
  • the fluid in the compression chamber is sequentially compressed as it moves from the outer peripheral side to the inner peripheral side, and finally the compressed fluid is discharged from the discharge port 3 c formed in the fixed scroll 3.
  • the inclined portions formed by the end plate inclined portions 3a1 and 5a1 and the wall body inclined portions 3b1 and 5b1 are also compressed in the height direction of the wall bodies 3b and 5b, and three-dimensional compression is performed. Is called.
  • the inclination height Ls ′ of the tip seal 7 at the time of stopping when the fluid is not compressed by the scrolls 3 and 5 is set to be smaller than the inclination height of the wall bodies 3b and 5b.
  • the compressed fluid enters the tip seal groove 3 d on the inner peripheral side of the tip seal 7, and from the back surface of the tip seal 7.
  • the tip seal 7 is urged toward the tooth bottom. Therefore, since the tip seal 7 is pressed against the tooth bottom as the inner peripheral side where the fluid pressure increases during operation, the sealing performance can be increased and the performance of the scroll compressor 1 can be improved.
  • the chip seal 7 Since the height Hc of the chip seal is larger than the difference between the inclined height Ls of the walls 3b and 5b and the inclined height Ls ′ of the chip seal 7 (see formula (2)), the chip seal 7 is inserted into the chip seal. It can prevent falling off from the groove 3d.
  • the chip seal 7 can be installed using elastic deformation. That is, the tip seal 7 is elastically deformed and installed in the tip seal groove 3d so that the slope height Ls ′ of the tip seal 7 when stopped is smaller than the slope height Ls of the walls 3b and 5b. Can do. Thereby, since it is not necessary to shape the chip seal 7 into a shape inclined in the height direction, if the flat chip seal 7 without inclination is manufactured in a state where no external force is applied, the manufacture of the chip seal 7 or Inspection becomes easy.
  • the end plate inclined portions 3a1 and 5a1 and the wall body inclined portions 3b1 and 5b1 are provided on both the scrolls 3 and 5, but may be provided on either one of them.
  • one wall body for example, the orbiting scroll 5
  • the other end plate 3a is provided with an end plate inclined portion 3a1.
  • the other wall body and the one end plate 5a may be flat.
  • the shape combined with the conventional stepped shape that is, the end plate inclined portion 3a1 is provided on the end plate 3a of the fixed scroll 3, while the end plate 5a of the orbiting scroll 5 is provided on the end plate 5a. You may combine with the shape in which the step part was provided.
  • the wall body flat portions 3b2, 3b3, 5b2, 5b3 and the end plate flat portions 3a2, 3a3, 5a2, 5a3 are provided, but the flat portions on the inner peripheral side and / or the outer peripheral side are omitted.
  • the inclined portion may be provided so as to extend over the entire walls 3b and 5b.
  • the scroll compressor has been described.
  • the present invention can be applied to a scroll expander used as an expander.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

傾斜部を有する壁体の歯先に設置されるチップシールの性能を効果的に発揮させることができるスクロール流体機械を提供する。 向かい合う両端板間の対向面間距離が、外周側から内周側に向かって、連続的に減少する傾斜部が設けられている。傾斜部に対応する壁体(3b)の歯先に形成されたチップシール溝(3d)には、対向する歯底に接触して流体をシールするチップシール(7)が設けられている。スクロール(3)によって流体の圧縮を行わない停止時におけるチップシール(7)の傾斜高さ(Ls')が、壁体(3b)の傾斜高さ(Ls)よりも小さい。

Description

スクロール流体機械およびその製造方法
 本発明は、スクロール流体機械およびその製造方法に関するものである。
 一般に、端板上に渦巻状の壁体が設けられた固定スクロール部材と旋回スクロール部材とを噛み合わせ、公転旋回運動を行わせて流体を圧縮または膨張するスクロール流体機械が知られている。
 このようなスクロール流体機械として、特許文献1に示すようないわゆる段付きスクロール圧縮機が知られている。この段付きスクロール圧縮機は、固定スクロールおよび旋回スクロールの渦巻状の壁体の歯先面および歯底面の渦巻き方向に沿う位置に各々段部が設けられ、各段部を境に壁体の外周側の高さが内周側の高さよりも高くされている。段付きスクロール圧縮機は、壁体の周方向だけでなく、高さ方向にも圧縮(三次元圧縮)されるため、段部を備えていない一般的なスクロール圧縮機(二次元圧縮)に比べ、押しのけ量を大きくし、圧縮機容量を増加することができる。
特開2015-55173号公報
 しかし、段付きスクロール圧縮機は、段部における流体漏れが大きいという問題がある。また、段部の根元部分に応力が集中して強度が低下するという問題がある。
 これに対して、発明者等は、壁体及び端板に設けられた段部に代えて連続的な傾斜部を設けることを検討している。また、壁体の歯先には、対向する歯底との隙間をシールするために、チップシールが設けられている。
 しかし、壁体には傾斜部が形成されているため、チップシールをどのように設置すれば所望の性能を発揮できるのかについては未だ検討がなされていない。
 本発明は、このような事情に鑑みてなされたものであって、傾斜部を有する壁体の歯先に設置されるチップシールの性能を効果的に発揮させることができるスクロール流体機械およびその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明のスクロール流体機械およびその製造方法は以下の手段を採用する。
 すなわち、本発明の一態様にかかるスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材とを備えたスクロール流体機械であって、向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、前記傾斜部に対応する前記第1壁体及び前記第2壁体の歯先に形成された溝部には、対向する歯底に接触して流体をシールするチップシールが設けられ、両前記スクロール部材によって流体の圧縮を行わない停止時における前記チップシールの傾斜高さが、前記壁体の傾斜高さよりも小さい。
 第1端板と第2端板との対向面間距離が壁体の外周側から内周側に向かって連続的に減少する傾斜部が設けられているので、外周側から吸い込まれた流体は内周側に向かうにしたがい、壁体の渦巻形状に応じた圧縮室の減少によって圧縮されるだけでなく、端板間の対向面間距離の減少によって更に圧縮されることになる。
 両スクロール部材によって流体の圧縮を行わない停止時におけるチップシールの傾斜高さが、壁体の傾斜高さよりも小さく設定されている。これにより、チップシールは、停止時には、チップシールの外周側よりもチップシールの内周側の方が対向する歯底側に歯先から突出するように設置されることになる。チップシールの外周側よりも内周側が歯先から歯底側に突出しているので、チップシールが挿入された溝部内には、外周側よりも内周側の方に流体が入り込みやすくなる。そして、停止状態から動作が開始されて両スクロールによって流体の圧縮が行われると、圧縮された流体がチップシールの内周側の溝部に入り込み、チップシールの背面からチップシールを歯底へ向かって付勢する。したがって、動作時には流体圧力が高くなる内周側ほどチップシールが歯底に押し付けられるようになるので、シール性能を高くすることができ、スクロール流体機械の性能を向上させることができる。
 なお、「傾斜高さ」とは、傾斜部の最外周端における高さと最内周端における高さとの差を意味する。
 さらに、本発明の一態様にかかるスクロール流体機械では、前記壁体の高さ方向における前記チップシールの高さは、前記壁体の傾斜高さと前記チップシールの傾斜高さとの差よりも大きい。
 壁体の高さ方向におけるチップシールの高さを、壁体の傾斜高さとチップシールの傾斜高さとの差よりも大きくしたので、チップシールが溝部から脱落して外れることがない。
 さらに、本発明の一態様にかかるスクロール流体機械では、前記チップシールは、弾性変形可能な材料とされている。
 チップシールを弾性変形可能な材料(例えば樹脂)とすることにより、弾性変形を利用して、停止時におけるチップシールの傾斜高さが、壁体の傾斜高さよりも小さくなるように溝部内に設置することができる。これにより、チップシールを高さ方向に傾斜した形状に成形する必要がないので、傾斜のない平坦なチップシールを製造することとすればチップシールの製造や検査が容易となる。
 また、本発明の一態様にかかるスクロール流体機械の製造方法は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材とを備え、向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、前記傾斜部に対応する前記第1壁体及び前記第2壁体の歯先に形成された溝部には、対向する歯底に接触して流体をシールするチップシールが設けられたスクロール流体機械の製造方法であって、前記チップシールの傾斜高さが、前記壁体の傾斜高さよりも小さくなるように、前記溝部に対して前記チップシールを設置するチップシール設置工程と、前記チップシール設置工程の後に、前記第1スクロール部材と前記第2スクロール部材とを噛み合わせて設置するスクロール設置工程とを有する。
 チップシールの傾斜高さが壁体の傾斜高さよりも小さくなるようにチップシールを設置した後に、両スクロール部材を噛み合わせて設置することとしたので、流体圧縮を行う前の停止状態において、チップシールの外周側よりも内周側が歯底側に突出した状態を容易に得ることができる。
 両スクロール部材によって流体の圧縮を行わない停止時におけるチップシールの傾斜高さを、前記壁体の傾斜高さよりも小さくすることで、動作時には流体圧力が高くなる内周側ほどチップシールが歯底に押し付けられるようになるので、シール性能を高くすることができ、スクロール流体機械の性能を向上させることができる。
本発明の一実施形態にかかるスクロール圧縮機の固定スクロール及び旋回スクロールを示し、(a)は縦断面図、(b)は固定スクロールの壁体側から見た平面図である。 図1の旋回スクロールを示した斜視図である。 固定スクロールに設けた端板平坦部を示した平面図である。 固定スクロールに設けた壁体平坦部を示した平面図である。 渦巻き方向に伸ばして表示した壁体を示す模式図である。 図1(b)の符号Zの領域を拡大して示した部分拡大図である。 図6で示した部分のチップシール隙間を示し、(a)はチップシール隙間が相対的に小さい状態を示した側面図であり、(b)はチップシール隙間が相対的に大きい状態を示した側面図である。 無負荷状態における壁体の歯先に設けられたチップシールの設置位置を示した縦断面図である。 変形例を示し、(a)は段部を有していないスクロールとの組合せを示す縦断面図であり、(b)は段付きスクロールとの組合せを示した縦断面図である。
 以下に、本発明にかかる一実施形態について、図面を参照して説明する。
 図1には、スクロール圧縮機(スクロール流体機械)1の固定スクロール(第1スクロール部材)3と旋回スクロール(第2スクロール部材)5が示されている。スクロール圧縮機1は、例えば空調機等の冷凍サイクルを行うガス冷媒(流体)を圧縮する圧縮機として用いられる。
 固定スクロール3及び旋回スクロール5は、アルミ合金製や鉄製等の金属製の圧縮機構とされ、図示しないハウジング内に収容されている。固定スクロール3及び旋回スクロール5は、ハウジング内に導かれた流体を外周側から吸い込み、固定スクロール3の中央の吐出ポート3cから外部へと圧縮後の流体を吐出する。
 固定スクロール3は、ハウジングに固定されており、図1(a)に示されているように、略円板形状の端板(第1端板)3aと、端板3aの一側面上に立設された渦巻状の壁体(第1壁体)3bとを備えている。旋回スクロール5は、略円板形状の端板(第2端板)5aと、端板5aの一側面上に立設された渦巻状の壁体(第2壁体)5bとを備えている。各壁体3b,5bの渦巻形状は、例えば、インボリュート曲線やアルキメデス曲線を用いて定義されている。
 固定スクロール3と旋回スクロール5は、その中心を旋回半径ρだけ離し、壁体3b,5bの位相を180°ずらして噛み合わされ、両スクロールの壁体3b、5bの歯先と歯底間に常温で僅かな高さ方向のクリアランス(チップクリアランス)を有するように組み付けられている。これにより、両スクロール3,5間に、その端板3a,5aと壁体3b、5bとにより囲まれて形成される複数対の圧縮室がスクロール中心に対して対称に形成される。旋回スクロール5は、図示しないオルダムリング等の自転防止機構によって固定スクロール3の周りを公転旋回運動する。
 図1(a)に示すように、向かい合う両端板3a,5a間の対向面間距離Lが、渦巻状の壁体3b,5bの外周側から内周側に向かって、連続的に減少する傾斜部が設けられている。
 図2に示すように、旋回スクロール5の壁体5bには、外周側から内周側に向かって高さが連続的に減少する壁体傾斜部5b1が設けられている。この壁体傾斜部5b1の歯先が対向する固定スクロール3の歯底面には、壁体傾斜部5b1の傾斜に応じて傾斜する端板傾斜部3a1(図1(a)参照)が設けられている。これら壁体傾斜部5b1及び端板傾斜部3a1によって、連続的な傾斜部が構成されている。同様に、固定スクロール3の壁体3bにも高さが外周側から内周側に向かって連続的に傾斜する壁体傾斜部3b1が設けられ、この壁体傾斜部3b1の歯先に対向する端板傾斜部5a1が旋回スクロール5の端板5aに設けられている。
 なお、本実施形態でいう傾斜部における連続的という意味は、滑らかに接続された傾斜に限定されるものではなく、加工時に不可避的に生じるような小さな段差が階段状に接続されており、傾斜部を全体としてみれば連続的に傾斜しているものも含まれる。ただし、いわゆる段付きスクロールのような大きな段差は含まれない。
 壁体傾斜部3b1,5b1及び/又は端板傾斜部3a1,5a1には、コーティングが施されている。コーティングとしては、例えば、リン酸マンガン処理やニッケルリンめっき等が挙げられる。
 図2に示されているように、旋回スクロール5の壁体5bの最内周側と最外周側には、それぞれ、高さが一定とされた壁体平坦部5b2,5b3が設けられている。これら壁体平坦部5b2,5b3は、旋回スクロール5の中心O2(図1(a)参照)まわりに180°の領域にわたって設けられている。壁体平坦部5b2,5b3と壁体傾斜部5b1とが接続される位置には、それぞれ、屈曲部となる壁体傾斜接続部5b4,5b5が設けられている。
 旋回スクロール5の端板5aの歯底についても同様に、高さが一定とされた端板平坦部5a2,5a3が設けられている。これら端板平坦部5a2,5a3についても、旋回スクロール5の中心まわりに180°の領域にわたって設けられている。端板平坦部5a2,5a3と端板傾斜部5a1とが接続される位置には、それぞれ、屈曲部となる端板傾斜接続部5a4,5a5が設けられている。
 図3及び図4にハッチングにて示すように、固定スクロール3についても、旋回スクロール5と同様に、端板平坦部3a2,3a3、壁体平坦部3b2,3b3、端板傾斜接続部3a4,3a5及び壁体傾斜接続部3b4,3b5が設けられている。
 図5には、渦巻き方向に伸ばして表示した壁体3b,5bが示されている。同図に示されているように、最内周側の壁体平坦部3b2,5b2が距離D2にわたって設けられ、最外周側の壁体平坦部3b3,5b3が距離D3にわたって設けられている。距離D2及び距離D3は、それぞれ、各スクロール3,5の中心O1,O2まわりに180°とされた領域に相当する長さとなっている。最内周側の壁体平坦部3b2,5b2と最外周側の壁体平坦部3b3,5b3との間に、壁体傾斜部3b1,5b1が距離D2にわたって設けられている。最内周側の壁体平坦部3b2,5b2と最外周側の壁体平坦部3b3,5b3との高低差をhとすると、壁体傾斜部3b1,5b1の傾きφは下式とされる。
 φ=tan-1(h/D1)  ・・・(1)
 このように、傾斜部における傾きφは、渦巻状の壁体3b,5bが延在する周方向に対して一定とされている。
 図6には、図1(b)の符号Zで示した領域の拡大図が示されている。図6に示されているように、固定スクロール3の壁体3bの歯先には、チップシール7が設けられている。チップシール7は弾性変形可能な樹脂製とされており、対向する旋回スクロール5の端板5aの歯底に接触して流体をシールする。チップシール7は、壁体3bの歯先に周方向にわたって形成されたチップシール溝(溝部)3d内に収容されている。
 図7に示すように、壁体3bの高さ方向におけるチップシール7の高さHcは、渦巻き方向に一定とされている。また、チップシール溝3dの深さも、渦巻き方向に一定とされている。
 両スクロール3,5が相対的に公転旋回運動を行うと、旋回直径(旋回半径ρ×2)分だけ歯先と歯底の位置が相対的にずれる。この歯先と歯底の位置ずれに起因して、傾斜部では、歯先と歯底との間のチップクリアランスが変化する。例えば、図7(a)ではチップクリアランスTが小さく、図7(b)ではチップクリアランスTが大きいことを示している。チップクリアランスTが旋回運動によって変化しても、チップシール溝3dに入り込んだ圧縮流体がチップシール7の背面から端板5aの歯底側にチップシール7を押圧することで、追従してシールできるようになっている。
 なお、旋回スクロール5の壁体5bの歯先に対しても、同様にチップシールが設けられている。
 図8には、固定スクロール3に対してチップシール7を設置した状態が示されている。同図に示した状態は、圧縮室に圧縮流体による圧力がかかっていない無負荷状態、すなわちスクロール圧縮機1の停止状態である。またスクロール圧縮機1の製造時にあっては、固定スクロール3を旋回スクロール5に対して噛み合わせてスクロール圧縮機1の本体に組み付ける前の状態に相当する。
 チップシール7の傾斜高さLs’は、壁体3bの傾斜高さLsよりも小さく設定されている。ここで、チップシール7の傾斜高さLs’とは、壁体3bの外周側の壁体傾斜接続部3b5(図5参照)に対応する位置のチップシール7の高さと、内周側の壁体傾斜接続部3b4(図5参照)に対応する位置のチップシール7の高さとの差である。壁体3bの傾斜高さLsとは、外周側の壁体傾斜接続部3b5における高さと、内周側の壁体傾斜接続部3b4における高さとの差である。
 図8のようにチップシール7を設置するには、外力が加わらない状態において傾斜高さLs’がゼロとされた平坦なチップシール7を用意する。そして、チップシール7の弾性変形を利用して、チップシール溝3d内に設置する(チップシール設置工程)。チップシール7の外周面及び/又は内周面がチップシール溝3dの壁部に接触して摩擦力が発生することで、チップシール溝3dに対するチップシール7の相対位置が固定される。したがって、固定スクロール3を組付けて設置する時(スクロール設置工程時)に固定スクロール3を傾けたり逆さにしたりしても、チップシール溝3dに対するチップシール7の相対位置が大きくずれることはない。ただし、チップシール7の外周面及び/又は内周面とチップシール溝3dの壁部との間の摩擦力は、スクロール圧縮機1の運転時に流体がチップシール溝3dに入り込み、チップシール7の背面に回り込んだ場合に、流体圧力によって対向する歯底方向(チップシール溝3dからチップシール7が出る方向)に移動することを許容する程度の摩擦力とされている。
 チップシールの高さHcは、壁体3bの傾斜高さLsとチップシール7の傾斜高さLs’との差よりも大きくされている。すなわち、下式を満たすようにチップシール7の高さHcが決定されている。
 Ls-Ls’≦Hc   ・・・(2)
 また、旋回スクロール5の壁体5bの歯先に対しても、図8と同様にチップシール7の傾斜高さLs’が設定されている。
 上述したスクロール圧縮機1は、以下のように動作する。
 図示しない電動モータ等の駆動源によって、旋回スクロール5が固定スクロール3回りに公転旋回運動を行う。これにより、各スクロール3,5の外周側から流体を吸い込み、各壁体3b,5b及び各端板3a,5aによって囲まれた圧縮室に流体を取り込む。圧縮室内の流体は外周側から内周側に移動するに従い順次圧縮され、最終的に固定スクロール3に形成された吐出ポート3cから圧縮流体が吐出される。流体が圧縮される際に、端板傾斜部3a1,5a1及び壁体傾斜部3b1,5b1によって形成された傾斜部では壁体3b,5bの高さ方向にも圧縮されて、三次元圧縮が行われる。
 本実施形態によれば、以下の作用効果を奏する。
 両スクロール3,5によって流体の圧縮を行わない停止時におけるチップシール7の傾斜高さLs’が、壁体3b、5bの傾斜高さよりも小さく設定されている。これにより、停止時には、チップシール7の外周側よりもチップシール7の内周側の方が歯先から歯底側に突出するように設置されることになる(図8参照)。チップシール7の外周側よりも内周側が歯底側に突出しているので、チップシール7が挿入されたチップシール溝3d内には、外周側よりも内周側の方に流体が入り込みやすくなる。そして、停止状態から動作が開始されて両スクロール3,5によって流体の圧縮が行われると、圧縮された流体がチップシール7の内周側のチップシール溝3dに入り込み、チップシール7の背面からチップシール7を歯底へ向かって付勢する。したがって、動作時には流体圧力が高くなる内周側ほどチップシール7が歯底に押し付けられるようになるので、シール性能を高くすることができ、スクロール圧縮機1の性能を向上させることができる。
 チップシールの高さHcを、壁体3b,5bの傾斜高さLsとチップシール7の傾斜高さLs’との差よりも大きくした(式(2)参照)ので、チップシール7がチップシール溝3dから脱落して外れることを防止できる。
 チップシール7を弾性変形可能な樹脂等の材料とすることにより、弾性変形を利用してチップシール7を設置することができる。すなわち、停止時におけるチップシール7の傾斜高さLs’が、壁体3b,5bの傾斜高さLsよりも小さくなるように、チップシール7を弾性変形させてチップシール溝3d内に設置することができる。これにより、チップシール7を高さ方向に傾斜した形状に成形する必要がないので、外力が加わらない状態において傾斜のない平坦なチップシール7を製造することとすれば、チップシール7の製造や検査が容易となる。
 なお、上記の実施形態では、端板傾斜部3a1,5a1及び壁体傾斜部3b1,5b1を両スクロール3,5に設けることとしたが、いずれか一方に設けても良い。
 具体的には、図9(a)に示すように、一方の壁体(例えば旋回スクロール5)に壁体傾斜部5b1を設け、他方の端板3aに端板傾斜部3a1を設けた場合には、他方の壁体と一方の端板5aは平坦としても良い。
 また、図9(b)に示すように、従来の段付き形状と組み合わせた形状、すなわち、固定スクロール3の端板3aに端板傾斜部3a1を設ける一方で、旋回スクロール5の端板5aに段部が設けられた形状と組み合わせても良い。
 上記の各実施形態では、壁体平坦部3b2,3b3,5b2,5b3および端板平坦部3a2,3a3,5a2,5a3を設けることとしたが、内周側及び/又は外周側の平坦部を省略して傾斜部を壁体3b,5bの全体に延長して設けるようにしてもよい。
 上記の各実施形態では、スクロール圧縮機として説明したが、膨張機として用いるスクロール膨張機に対しても本発明を適用することができる。
1 スクロール圧縮機(スクロール流体機械)
3 固定スクロール(第1スクロール部材)
3a 端板(第1端板)
3a1 端板傾斜部
3a2 端板平坦部(内周側)
3a3 端板平坦部(外周側)
3a4 端板傾斜接続部(内周側)
3a5 端板傾斜接続部(外周側)
3b 壁体(第1壁体)
3b1 壁体傾斜部
3b2 壁体平坦部(内周側)
3b3 壁体平坦部(外周側)
3b4 壁体傾斜接続部(内周側)
3b5 壁体傾斜接続部(外周側)
3c 吐出ポート
3d チップシール溝(溝部)
5 旋回スクロール(第2スクロール部材)
5a 端板(第2端板)
5a1 端板傾斜部
5a2 端板平坦部(内周側)
5a3 端板平坦部(外周側)
5b 壁体(第2壁体)
5b1 壁体傾斜部
5b2 壁体平坦部(内周側)
5b3 壁体平坦部(外周側)
5b4 壁体傾斜接続部(内周側)
5b5 壁体傾斜接続部(外周側)
7 チップシール
Hc チップシールの高さ
L 対向面間距離
Ls 壁体の傾斜高さ
Ls’ チップシールの傾斜高さ
T チップクリアランス
φ 傾き

Claims (4)

  1.  第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
     前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、
    を備えたスクロール流体機械であって、
     向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、
     前記傾斜部に対応する前記第1壁体及び前記第2壁体の歯先に形成された溝部には、対向する歯底に接触して流体をシールするチップシールが設けられ、
     両前記スクロール部材によって流体の圧縮を行わない停止時における前記チップシールの傾斜高さが、前記壁体の傾斜高さよりも小さいスクロール流体機械。
  2.  前記壁体の高さ方向における前記チップシールの高さは、前記壁体の傾斜高さと前記チップシールの傾斜高さとの差よりも大きい請求項1に記載のスクロール流体機械。
  3.  前記チップシールは、弾性変形可能な材料とされている請求項1又は2に記載のスクロール流体機械。
  4.  第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
     前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、
    を備え、
     向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、
     前記傾斜部に対応する前記第1壁体及び前記第2壁体の歯先に形成された溝部には、対向する歯底に接触して流体をシールするチップシールが設けられたスクロール流体機械の製造方法であって、
     前記チップシールの傾斜高さが、前記壁体の傾斜高さよりも小さくなるように、前記溝部に対して前記チップシールを設置するチップシール設置工程と、
     前記チップシール設置工程の後に、前記第1スクロール部材と前記第2スクロール部材とを噛み合わせて設置するスクロール設置工程と、
    を有するスクロール流体機械の製造方法。
PCT/JP2017/029243 2016-08-19 2017-08-14 スクロール流体機械およびその製造方法 WO2018034256A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187031103A KR102136083B1 (ko) 2016-08-19 2017-08-14 스크롤 유체 기계 및 그의 제조 방법
US16/090,725 US10975866B2 (en) 2016-08-19 2017-08-14 Scroll fluid machine and method for producing same
CN201780026488.7A CN109072911B (zh) 2016-08-19 2017-08-14 涡旋式流体机械及其制造方法
EP17841478.5A EP3438458B1 (en) 2016-08-19 2017-08-14 Scroll fluid machine and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016161210A JP6328706B2 (ja) 2016-08-19 2016-08-19 スクロール流体機械およびその製造方法
JP2016-161210 2016-08-19

Publications (1)

Publication Number Publication Date
WO2018034256A1 true WO2018034256A1 (ja) 2018-02-22

Family

ID=61197273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029243 WO2018034256A1 (ja) 2016-08-19 2017-08-14 スクロール流体機械およびその製造方法

Country Status (6)

Country Link
US (1) US10975866B2 (ja)
EP (1) EP3438458B1 (ja)
JP (1) JP6328706B2 (ja)
KR (1) KR102136083B1 (ja)
CN (1) CN109072911B (ja)
WO (1) WO2018034256A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325041B2 (ja) * 2016-08-31 2018-05-16 三菱重工サーマルシステムズ株式会社 スクロール流体機械およびチップシール
JP6612376B2 (ja) * 2018-02-21 2019-11-27 三菱重工サーマルシステムズ株式会社 スクロール流体機械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735061A (ja) * 1993-07-14 1995-02-03 Toyota Autom Loom Works Ltd スクロール型圧縮機のシール機構
JP2001012365A (ja) * 1999-06-28 2001-01-16 Hitachi Ltd 外周駆動形スクロール圧縮機
JP2009228476A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機
JP2010196663A (ja) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd 圧縮機
JP2014080940A (ja) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
JP2016102486A (ja) * 2014-11-28 2016-06-02 株式会社豊田自動織機 スクロール型圧縮機

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477238A (en) * 1983-02-23 1984-10-16 Sanden Corporation Scroll type compressor with wrap portions of different axial heights
JPH05106569A (ja) * 1991-10-18 1993-04-27 Tokico Ltd スクロール式流体機械
JP3046486B2 (ja) * 1993-12-28 2000-05-29 株式会社日立製作所 スクロール式流体機械
JPH11190287A (ja) 1997-12-25 1999-07-13 Hitachi Koki Co Ltd スクロール形流体機械
US6050792A (en) 1999-01-11 2000-04-18 Air-Squared, Inc. Multi-stage scroll compressor
JP4301713B2 (ja) * 2000-08-28 2009-07-22 三菱重工業株式会社 スクロール圧縮機
US6746224B2 (en) * 2000-06-22 2004-06-08 Mitsubishi Heavy Industries, Ltd. Scroll compressor
KR100439651B1 (ko) * 2000-11-06 2004-07-12 미츠비시 쥬고교 가부시키가이샤 스크롤 압축기
JP4709439B2 (ja) * 2001-07-24 2011-06-22 三菱重工業株式会社 スクロール型圧縮機
WO2005001292A1 (ja) * 2003-06-17 2005-01-06 Matsushita Electric Industrial Co., Ltd. スクロール圧縮機
JP2005155568A (ja) * 2003-11-28 2005-06-16 Daikin Ind Ltd スクロール流体機械
JP4365807B2 (ja) * 2005-06-10 2009-11-18 三菱重工業株式会社 スクロール圧縮機
JP5008374B2 (ja) * 2006-10-18 2012-08-22 サンデン株式会社 スクロール型圧縮機
JP5010254B2 (ja) 2006-11-28 2012-08-29 三菱重工業株式会社 圧縮機用の保護装置
JP5030581B2 (ja) * 2006-12-28 2012-09-19 三菱重工業株式会社 スクロール圧縮機
FR2927672B1 (fr) 2008-02-19 2012-04-13 Danfoss Commercial Compressors Compresseur frigorifique a spirales
CN102052302A (zh) 2009-11-09 2011-05-11 重庆工商大学 一种十一级涡旋压缩机
EP3301303B1 (en) 2010-01-22 2018-12-05 Daikin Industries, Ltd. Scroll compressor
JP4775494B2 (ja) 2010-02-15 2011-09-21 ダイキン工業株式会社 スクロール圧縮機
JP2012036825A (ja) 2010-08-06 2012-02-23 Daikin Industries Ltd スクロール圧縮機
JP5851851B2 (ja) 2012-01-13 2016-02-03 三菱重工業株式会社 スクロール圧縮機
JP6180860B2 (ja) 2013-09-11 2017-08-16 三菱重工業株式会社 スクロール圧縮機
JP6906887B2 (ja) 2015-01-28 2021-07-21 三菱重工サーマルシステムズ株式会社 スクロール流体機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735061A (ja) * 1993-07-14 1995-02-03 Toyota Autom Loom Works Ltd スクロール型圧縮機のシール機構
JP2001012365A (ja) * 1999-06-28 2001-01-16 Hitachi Ltd 外周駆動形スクロール圧縮機
JP2009228476A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機
JP2010196663A (ja) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd 圧縮機
JP2014080940A (ja) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
JP2016102486A (ja) * 2014-11-28 2016-06-02 株式会社豊田自動織機 スクロール型圧縮機

Also Published As

Publication number Publication date
JP6328706B2 (ja) 2018-05-23
JP2018028305A (ja) 2018-02-22
KR102136083B1 (ko) 2020-07-22
CN109072911B (zh) 2020-02-21
EP3438458A1 (en) 2019-02-06
EP3438458A4 (en) 2019-07-03
US10975866B2 (en) 2021-04-13
EP3438458B1 (en) 2020-01-29
CN109072911A (zh) 2018-12-21
KR20180124990A (ko) 2018-11-21
US20190120229A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2018043359A1 (ja) スクロール流体機械およびチップシール
WO2018034256A1 (ja) スクロール流体機械およびその製造方法
JP6352509B1 (ja) チップシールおよびこれを用いたスクロール流体機械
JP6679633B2 (ja) スクロール流体機械
JP6336530B2 (ja) スクロール流体機械およびこれに用いられるスクロール部材
CN111630278B (zh) 涡旋流体机械及用于该涡旋流体机械的涡旋部件
JP6328705B2 (ja) スクロール流体機械
JP6386144B1 (ja) スクロール流体機械
JP6336531B2 (ja) スクロール流体機械
WO2018034254A1 (ja) スクロール流体機械
JP6382268B2 (ja) スクロール流体機械
JP6505906B2 (ja) スクロール流体機械

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031103

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017841478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017841478

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE