WO2019035173A1 - 電力供給システムおよびその運転方法 - Google Patents
電力供給システムおよびその運転方法 Download PDFInfo
- Publication number
- WO2019035173A1 WO2019035173A1 PCT/JP2017/029320 JP2017029320W WO2019035173A1 WO 2019035173 A1 WO2019035173 A1 WO 2019035173A1 JP 2017029320 W JP2017029320 W JP 2017029320W WO 2019035173 A1 WO2019035173 A1 WO 2019035173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- power
- fuel cell
- power supply
- supply system
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the present invention relates to a power supply system including a battery and a fuel cell as a power supply source and a method of operating the same.
- JP2007-228753 discloses an electric vehicle including a high voltage battery whose electric power is to be supplied to a traveling motor and a solar battery as an electric power source, and capable of charging the high voltage battery by the generated power of the solar battery.
- This system includes a monitoring unit that monitors the status of the high voltage battery, and the monitoring unit operates with a diode connected to the power supply terminal and receiving power from either of the solar panels or the low voltage battery.
- the monitoring unit receives supply of the generated power of the solar cell via the DC / DC converter for low voltage power, while the DC / DC for low voltage power is When the converter is stopped, the low voltage battery supplies the power supply voltage (paragraphs 0032 and 0033).
- a switch of a power supply system is configured by a pair of diodes. However, this switch only switches the power supply system to which the monitoring unit is supplied.
- a fuel cell is provided as a power source, it is necessary to consider securing of a power source for the fuel cell auxiliary equipment. This is because it is necessary to supply power from the outside (instead of the power generated by the fuel cell itself) to the fuel cell auxiliary equipment until the fuel cell is started and autonomous power feeding becomes possible.
- the present invention aims to provide a power supply system in consideration of the above problems.
- the present invention provides, in one form, a power supply system comprising a fuel cell and a battery unit connected to the fuel cell.
- the battery unit supplies electric power to the fuel cell auxiliary equipment with respect to the fuel cell, and the first battery connected to be able to charge the generated electric power of the fuel cell and the fuel cell auxiliary equipment
- a second battery connected to be able to supply power via a path different from the first battery, and a switching unit that switches the power supply source to the auxiliary device of the fuel cell with the first battery and the second battery .
- the invention in another form, provides a method of operating a power supply system.
- FIG. 1 is a schematic view showing a configuration of a vehicle drive system provided with a power supply system according to a first embodiment of the present invention.
- FIG. 2 is a schematic view showing the configuration of the power supply system according to the above embodiment.
- FIG. 3 is a flowchart showing a basic flow of power source switching control according to the embodiment of the present invention.
- FIG. 4 is a schematic view showing a configuration of a power supply system according to a second embodiment of the present invention.
- FIG. 5 is a schematic view showing a configuration of a power supply system according to a third embodiment of the present invention.
- FIG. 1 shows a schematic configuration of a drive system (hereinafter referred to as “vehicle drive system”) V of an electric vehicle (hereinafter simply referred to as “vehicle”) including a power supply system P according to a first embodiment of the present invention. ing.
- the vehicle drive system V roughly includes a power supply system P, a power control unit 3 and a traveling motor 4, and the output of the power supply system P drives the traveling motor 4 via the power control unit 3.
- the power control unit 3 incorporates an inverter, converts a direct current output from the battery unit 2 into a three-phase alternating current, and supplies it to the traveling motor 4.
- the traveling motor 4 is connected to the drive wheels of the vehicle via a differential device (not shown), and rotates the drive wheels to propel the vehicle.
- the traveling motor 4 is a motor generator that can operate as a prime mover or a generator, and can operate as a generator during braking travel of the vehicle to regenerate electric power.
- the power supply system P includes the fuel cell 1 and the battery unit 2 as power sources.
- the term "unit" in the battery unit 2 merely refers to conceptual convergence, and does not mean even physical integrity.
- the battery unit 2 does not have to be arranged close together, and one component (for example, one of the two batteries 21 and 22) is arranged inside the hood of the vehicle.
- different components e.g., the other battery may be located adjacent to the rear compartment of the vehicle.
- the fuel cell 1 is, for example, a solid oxide fuel cell (SOFC).
- SOFC solid oxide fuel cell
- the fuel cell 1 may be another type of fuel cell.
- the fuel cell 1 is configured by stacking a plurality of fuel cell unit cells, and operates using an oxygenated fuel (for example, ethanol) as a raw fuel. While hydrogen generated by a steam reforming reaction of ethanol is supplied as a fuel to the anode of the fuel cell 1, air in the atmosphere (specifically, oxygen) is supplied as an oxidant gas to the cathode.
- an oxygenated fuel for example, ethanol
- hydrogen generated by a steam reforming reaction of ethanol is supplied as a fuel to the anode of the fuel cell 1
- air in the atmosphere specifically, oxygen
- oxygen is supplied as an oxidant gas to the cathode.
- the battery unit 2 supplies its output to the traveling motor 4 via the power control unit 3, and receives the supply of the electric power generated by the fuel cell 1, and stores it in the battery.
- a unidirectional DC / DC converter 51 is interposed on a charging power path connecting the fuel cell 1 and the battery unit 2.
- the converter 51 is a boost converter, and the battery unit 2 receives the supply of power after being boosted from the fuel cell 1 by the converter 51 as charging power.
- the converter 51 is an insulating type.
- battery unit 2 is connected to fuel cell 1 via a power supply path, and power is supplied to various auxiliary devices necessary for the operation of fuel cell 1 via this path.
- the accessories of the fuel cell 1 are, for example, a sensor, an actuator, a heater, a pump and a blower, and as a sensor, a flow sensor for detecting the flow of the raw fuel or the oxidant gas, a temperature sensor for detecting the temperature of the fuel cell 1, The liquid level sensor etc. which detect the quantity of the raw fuel which remains in a fuel tank can be illustrated.
- the blower or air compressor is attached near the open end of the oxidant gas supply passage (cathode gas passage) and sucks air in the atmosphere into the cathode gas passage.
- the operations of the fuel cell 1, the battery unit 2, the power control unit 3 and the like are controlled by the controller 101.
- FIG. 2 shows a schematic configuration of the power supply system P. As shown in FIG.
- the power supply system P includes a fuel cell 1 and a battery unit 2.
- FIG. 2 conceptually shows the entire fuel cell 1 by a two-dot chain line, and the fuel cell 1 can be roughly divided into the power generation unit 11 which is a stack of fuel cell unit cells and the fuel cell 1 necessary for operation.
- Auxiliary equipment hereinafter, simply referred to as "auxiliary equipment” to distinguish it from the vehicle auxiliary equipment 23) 12;
- the battery unit 2 includes a plurality of batteries, and in the present embodiment, includes two batteries 21 and 22.
- One is a high voltage battery 21 having a relatively high voltage, and in the present embodiment, since it has a terminal voltage of 400 V, it is particularly referred to as a "high voltage battery”.
- Another one is a low voltage battery 22 having a voltage lower than that of the high voltage battery 21.
- the low voltage battery 22 has a terminal voltage of 14 V and is particularly referred to as a "low voltage battery” in comparison with the high voltage battery 21. .
- the high power battery 21 stores the power supplied to the traveling motor 4, and the low power battery 22 stores the power supplied to the vehicle accessory 23 other than the traveling motor 4.
- the vehicle accessory 23 is, for example, an in-vehicle electrical equipment such as an audio. As described later, the heavy battery 21 can be charged by being connected to a rapid charger, and can also charge the electric power regenerated by the traveling motor 4 when the vehicle is braking and traveling.
- the high power battery 21 is connected to the accessory 12 of the fuel cell 1 via the first power feeding path p1, and can supply power to the accessory 12 through the first power feeding path p1.
- a DC / DC converter 24 is interposed in the first power feeding path p1, and a voltage (14 V in this embodiment) after being stepped down from the high-power battery 21 by the converter 24 is applied to the accessory 12.
- high-power battery 21 is connected to fuel cell 1 so as to be capable of charging the generated power of fuel cell 1.
- power generation unit 11 of fuel cell 1 and first power feeding path p 1 Are connected via an interposed power path p2.
- the voltage (400 V in the present embodiment) boosted by the fuel cell 1 from the fuel cell 1 is applied to the first power feeding path p1, and is further applied to the high power battery 21 via the first power feeding path p1.
- the voltage applied to the first feed path p1 is stepped down by the converter 24 and applied to the accessory 12.
- autonomous power feeding of the fuel cell 1 to the accessory 12 becomes possible.
- the low-power battery 22 is connected to the vehicle accessory 23 via the power path p3, and connected to the accessory 12 of the fuel cell 1 via the second power feeding path p4.
- the second power feeding path p2 is connected to the first power feeding path p1 between the converter 24 and the accessory 12 of the fuel cell 1, whereby the low voltage battery 22 is connected to the accessory 12 Power can be supplied through a second feed path p4 different from the first feed path p1.
- the first power feeding path p1 and the second power feeding path p2 are connected via the power path p5, and the low voltage battery 22 is able to charge the discharged power of the high power battery 21 via this path p5. is there.
- the DC / DC converter 25 converts the voltage (for example, 400 V) of the high-power battery 21 into the charging voltage (for example, 14 V) of the low-power battery 22 in the power path p5 connecting the first power feeding path p1 and the second power feeding path p2. Is interspersed. Converter 25 electrically isolates low-power battery 22 and vehicle accessory 23 from other components of the system, ie, high-voltage system, when power supply system P is stopped (for example, when the vehicle is stopped). Function as
- the power supply system P includes switching units R1 and R2 that switch the power supply source of the fuel cell 1 to the accessory 12 between the high-power battery 21 and the low-power battery 22.
- the switching units R1 and R2 are configured by a first relay R1 interposed in the first feed path p1 and a second relay R2 interposed in the second feed path p4.
- the first and second relays R1 and R2 are configured as different units, but the present invention is not limited to this, and may be configured as an integral unit.
- the first relay R1 provided in the first power feeding path p1 is disposed between the high-power battery 21 and the converter 24, that is, on the upstream side of the converter 24 with respect to the direction of current using the high-power battery 21 as a power source. Furthermore, the first relay R1 is disposed on the upstream side of the connection point j1 of the first power feeding path p1 and the power path p2 with respect to the direction of the current from the high-power battery 21 as a power source, and the second relay R2 is a low-power battery It is disposed downstream of the connection point j2 between the second feed path p4 and the power path p5 with respect to the direction of the current having the power source 22 as the power source.
- the controller 101 is configured as an electronic control unit, and includes a microcomputer including a central processing unit (CPU), various storage devices such as a ROM and a RAM, an input / output interface, and the like.
- the controller 101 outputs control commands to the first and second relays R1 and R2 in addition to the DC / DC converters 24, 25 and 51, and controls their operations.
- the “first battery” is configured by the high power battery 21, the “second battery” is output by the low power battery 22, the “first pressure conversion unit” is output by the DC / DC converter 25, and the DC / DC converter 24 is output.
- Each "second pressure converter” is configured.
- the first and second relays R1 and R2 constitute a “switching unit”, and the controller 101 constitutes a “control unit”.
- the high-power battery 21, the low-power battery 22, the converters 24, 25, and the first and second relays R1, R2 constitute a "battery unit” according to the present embodiment.
- FIG. 3 is a flowchart showing the basic flow of the power source switching control according to the present embodiment.
- the controller 101 is programmed to repeatedly execute the control shown in the figure at predetermined time intervals while the power supply system P is in operation (for example, while the vehicle is operating). Not limited to this, the program of the present control may be executed as an interrupt process when there is a request to start the fuel cell 1.
- the controller 101 determines whether or not the supply of power from the high-power battery 21 to the accessory 12 of the fuel cell 1 is possible, and if the supply of power is possible, the controller 101 serves as a power supply source.
- the high power battery 21 is selected, and when the power can not be supplied, the low power battery 22 is selected as a power supply source.
- the controller 101 outputs an on signal to the first relay R1 and outputs an off signal to the second relay R2.
- the controller 101 outputs an off signal to the first relay R1 and outputs an on signal to the second relay R2.
- S101 it is determined whether or not the fuel cell 1 has been started.
- the determination as to whether or not the fuel cell 1 has been started is, for example, by detecting the charge amount of the high power battery 21 and determining whether the detected charge amount is less than a predetermined amount.
- the fuel cell 1 is started in order to charge the high power battery 21 with the power generated by the fuel cell 1.
- the fuel cell 1 is not in a state in which autonomous power feeding is possible at the time of startup. If it is time to start the fuel cell 1, the process proceeds to S102, and if not, the process proceeds to S106.
- S102 it is determined whether the rapid charging of the high-power battery 21 is in progress. This determination is made, for example, by determining whether or not the plug of the quick charger is inserted into a connector for quick charge of the high-power battery 21 (for example, provided at the rear or side of the vehicle). If the rapid charging of the high-power battery 21 is in progress, the process proceeds to S103, and if not, the process proceeds to S106.
- S103 it is determined whether a failure of the high-power battery 21 or the high-voltage system has occurred. This determination is embodied by determining whether any abnormality or failure has occurred in the supply of power from the high-power battery 21 as a power source, and in addition to the high-power battery 21 itself, for example, a break occurs in the first power feeding path p1. It is determined whether or not the converter 24 has an abnormality or a failure. If the failure of the high-power battery 21 is occurring, the process proceeds to S104, and if not, the process proceeds to S106.
- the first relay R1 is turned off.
- the second relay R2 is turned on.
- the first relay R1 is turned on.
- the second relay R2 is turned off.
- the controller 101 controls the operation of the first and second relays R1 and R2 when the fuel cell 1 is started, and the power source for the accessory 12 of the fuel cell 1 is a low power battery by the processes of S104 and S105. At the same time, the power source for the accessory 12 of the fuel cell 1 is set as the high-power battery 21 by the processing of S106 and 107.
- the power supply system P according to the present embodiment is configured as described above, and the operation and effect obtained by the present embodiment will be described below.
- the state of the high voltage battery 21 or the high voltage system is determined, and the power source is switched to the low voltage battery 22 when the power supply from the high voltage battery 21 to the auxiliary device 12 of the fuel cell 1 is not possible.
- the power source can be switched appropriately according to the state of the high-power battery 21. Then, when such a determination is made at startup of the fuel cell 1 and it is necessary to switch the power source, by setting the power source to the weak power battery 22, the autonomous power feeding of the fuel cell 1 becomes possible. It becomes possible to secure a power source. Therefore, the fuel cell 1 can be stopped at an arbitrary timing, and start-up and warm-up can be performed.
- a special low voltage battery for securing the power source for the auxiliary machine 12 is provided for the electric vehicle which already has the high voltage battery or high voltage battery 21 and the low voltage battery or low voltage battery 22. Regardless of this, the startability of the fuel cell 1 can be secured by the existing power storage equipment. Therefore, it is possible to suppress an increase in cost in the entire system and to suppress an increase in size.
- the vehicle accessory 23 can be stably operated.
- the converter 25 on the power path p5 connecting the first and second batteries 21 and 22 to each other the supply of power from the high-power battery 21 to the low-power battery 22 is realized and the low-power battery 22 is used. It is possible to isolate from the high voltage system, and, for example, to suppress the influence of excessive discharge of the low voltage battery 22 while the vehicle is at rest on the high voltage system.
- the power source switching control (FIG. 3) is performed when the fuel cell 1 is started.
- the power source for the auxiliary device 12 may be switched from the high-power battery 21 to the low-power battery 22 when it is determined that power supply from the high-power battery 21 to the auxiliary device 12 of the fuel cell 1 is not possible. .
- the operation of the fuel cell 1 can be stably continued.
- the controller 101 determines whether or not the supply of power from the high-power battery 21 to the auxiliary device 12 of the fuel cell 1 is possible.
- the source it has been decided to switch the source to the low-power battery 22, regardless of the special process of determination, for example, when the plug of the quick charger is inserted into the connector for quick charge of the high-power battery 21, It is also possible to configure the power source to switch automatically, as it is not possible to supply At the time of quick charge, the connection to first power supply path p1 is cut off by the relay (not shown) provided to itself.
- FIG. 4 is a schematic view showing a configuration of a power supply system P2 according to a second embodiment of the present invention.
- parts or parts having the same functions as in the first embodiment are denoted by the same reference numerals as shown in FIG. 2 and detailed description thereof is omitted to avoid duplication (the third embodiment). The same is true).
- the power supply system P2 includes, as the accessory 12 of the fuel cell 1, a plurality of accessories 12a and 12b operating at different voltages.
- the accessory 12a is an accessory operating at a relatively low voltage (for example, 14 V), and is, for example, a sensor and an actuator required for the operation of the fuel cell 1.
- the accessory 12b is an accessory operating at a higher voltage (for example, 48 V) than the accessory 12a and can exemplify a blower as an accessory other than the sensor and the actuator.
- the accessory 12b is connected to the second power feeding path p4 via the power path p6, and can receive power supply from either the high-power battery 21 or the low-power battery 22.
- Power supply system P2 further converts the output voltage of battery unit 2, specifically, the voltage after step-down by converter 24 or the voltage of low-power battery 22 into power supply voltage p6, to the operating voltage of accessory 12b.
- a DC converter 31 is provided.
- Converter 31 is configured as a boost converter, and accessory 12b is stepped down from high-power battery 21 by converter 24 according to the state of the switch (first relay R1 and second relay R2), and further boosted by converter 31. The voltage supplied from the low voltage battery 22 or the voltage boosted by the converter 31 is supplied.
- the "first accessory” is configured by the accessory 12a
- the “second accessory” is configured by the accessory 12b.
- the DC / DC converter 31 configures a “third voltage conversion unit”.
- the controller 101 may be configured in the same manner as in the first embodiment, and performs power source switching control according to the same procedure as shown in FIG. 3 to set the accessory 12a, between the high power battery 21 and the low power battery 22. Switch the power supply to 12b.
- converter 31 is interposed between battery unit 2 and accessory 12b, and the voltage after voltage reduction by converter 24 or the voltage of weak electric battery 22 can be boosted by converter 31 and applied to accessory 12b.
- the blower can be operated as the accessory 12b having a relatively high voltage, and the power source for the blower can be secured even when the power can not be supplied by the high-power battery 21. .
- FIG. 5 is a schematic view showing a configuration of a power supply system P3 according to a third embodiment of the present invention.
- the power supply system P3 includes a plurality of accessories 12a and 12b operating at different voltages, for example, an accessory 12a operating at a relatively low voltage (e.g. 14 V), and an accessory 12a And an accessory 12b (for example, a blower) operating at a higher voltage (for example, 48 V).
- the power connection of the battery unit 2 to the accessory 12a is the same as that in the first embodiment, and the accessory 12a is connected to the high-power battery 21 via the first feed path p1 and the second feed path p4. It is in a state of being connected to the low voltage battery 22 through the same.
- the accessory 12b is not connected to the second power feeding path p4, is connected to the first power feeding path p1 through the power path p7, and is connected to the high power battery 21 through the first power feeding path p1. It is done.
- the power supply system P2 further includes a DC / DC converter 32 in the power path p7 for converting the voltage of the high voltage battery 21 or the voltage boosted by the converter 51 (for example, 400 V) into the operating voltage of the accessory 12b.
- Converter 32 is configured as a step-down converter, and accessory 12b is selected when high-power battery 21 is selected as a power source for accessory 12 of fuel cell 1 (in other words, when first relay R1 is in the on state) ) Receives the supply of voltage after being stepped down from converter 32 from high-power battery 21.
- the "first accessory” is configured by the accessory 12a
- the “second accessory” is configured by the accessory 12b.
- the DC / DC converter 32 configures a “fourth voltage conversion unit”.
- the controller 101 may be configured in the same manner as in the first embodiment, and performs power source switching control according to the same procedure as shown in FIG. 3 to set the accessory 12a, between the high power battery 21 and the low power battery 22. Switch the power supply to 12b.
- high power battery 21 and auxiliary device 12 b are connected by power path p 7 with converter 32 interposed therebetween without converter 24, and converter 32 reduces the voltage of high power battery 21 with respect to auxiliary device 12 b.
- the voltage of high-power battery 21 can be converted directly into the operating voltage of accessory 12b by converter 32 without the step-down by converter 24. Therefore, it is possible to avoid the loss of energy required for step-down as compared with the case of step-down by converter 24, thereby miniaturizing converter 24 and reducing the cost for the entire system, as well as reducing the size. It can be made compact.
- the accessory 12b operating at a voltage higher than that of the first accessory is adopted as the "second accessory", but the "second accessory” is more than the first accessory. It may operate at a low voltage.
- the controller 101 is configured as a system controller that integrally controls the operations of the fuel cell 1, the battery unit 2, the power control unit 3 and the like, the present invention is not limited thereto.
- a fuel cell controller that disperses the functions of the controller 101 with respect to the operation of the fuel cell 1 and the battery unit 2 to a plurality of controllers to control the operation of the fuel cell 1, and a battery controller that controls the operation of the battery unit 2; It is also possible to configure as a combination of In this case, the fuel cell controller can be included in the accessory 12 of the fuel cell 1 or the accessory 12a having a low operating voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Fuel Cell (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
燃料電池1と、燃料電池1に接続されたバッテリユニット2と、を備える電力供給システムPである。バッテリユニット2は、燃料電池1に対し、燃料電池1の補機12に電力を供給するとともに、燃料電池1の発電電力を充電可能に接続された第1バッテリ21と、燃料電池1の補機12に対し、第1バッテリ21とは異なる経路p4を介して電力を供給可能に接続された第2バッテリ22と、第1バッテリ21および第2バッテリ22で、燃料電池1の補機12に対する電力の供給源を切り替える切替部R1、R2と、を備える。
Description
本発明は、電力の供給源としてバッテリと燃料電池とを備える電力供給システムおよびその運転方法に関する。
JP2007-228753には、走行モータを給電対象とする高圧バッテリと、太陽電池と、を電力源として備え、太陽電池の発電電力により高圧バッテリを充電可能に構成された電動車両が開示されている。このシステムは、高圧バッテリの状態を監視する監視ユニットを備え、監視ユニットは、電源端子にダイオードが接続され、太陽電池か低圧バッテリかの2つの電源系統のいずれかから電力の供給を受けて作動する。具体的には、監視ユニットは、太陽電池の発電電力により高圧バッテリを充電する場合に、低圧電源用DC/DCコンバータを介して太陽電池の発電電力の供給を受ける一方、低圧電源用DC/DCコンバータが停止している場合は、低圧バッテリから電源電圧の供給を受ける(段落0032、0033)。
JP2007-228753では、一対のダイオードにより電源系統の切替器が構成される。しかし、この切替器は、監視ユニットを給電対象とした電源系統を切り替えるものに過ぎない。電力源として燃料電池を備える場合は、燃料電池の補機に対する電源の確保を検討する必要がある。燃料電池を起動させ、自律給電が可能となるまでは、燃料電池の補機に対し、(燃料電池自体の発電電力ではなく)外部から電力を供給しなければならないからである。
本発明は、以上の問題を考慮した電力供給システムを提供することを目的とする。
本発明は、一形態において、燃料電池と、燃料電池に接続されたバッテリユニットと、を備える電力供給システムを提供する。本形態において、バッテリユニットは、燃料電池に対し、燃料電池の補機に電力を供給するとともに、燃料電池の発電電力を充電可能に接続された第1バッテリと、燃料電池の補機に対し、第1バッテリとは異なる経路を介して電力を供給可能に接続された第2バッテリと、第1バッテリおよび第2バッテリで、燃料電池の補機に対する電力の供給源を切り替える切替部と、を備える。
本発明は、他の形態において、電力供給システムの運転方法を提供する。
以下、図面を参照して、本発明の実施形態について説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る電力供給システムPを備える電動車両(以下、単に「車両」という)の駆動系(以下「車両駆動系」という)Vの概略的な構成を示している。
図1は、本発明の第1実施形態に係る電力供給システムPを備える電動車両(以下、単に「車両」という)の駆動系(以下「車両駆動系」という)Vの概略的な構成を示している。
車両駆動系Vは、大別すると、電力供給システムP、パワーコントロールユニット3および走行モータ4を備え、電力供給システムPの出力により、パワーコントロールユニット3を介して走行モータ4を駆動する。パワーコントロールユニット3は、インバータを内蔵し、バッテリユニット2から出力される直流電流を三相の交流電流に変換して、走行モータ4に供給する。走行モータ4は、図示しない差動装置を介して車両の駆動輪と接続されており、駆動輪を回転させて、車両を推進する。走行モータ4は、原動機としても発電機としても動作可能なモータジェネレータであり、車両の制動走行時に発電機として動作し、電力を回生することが可能である。
本実施形態において、電力供給システムPは、燃料電池1と、バッテリユニット2と、を電力源として備える。ここで、バッテリユニット2でいう「ユニット」との用語は、単に概念的な纏まりをいうに過ぎず、物理的な一体性までをも意味するものではない。換言すれば、バッテリユニット2は、構成要素同士が近くに纏まって配置されている必要はなく、1つの構成要素(例えば、2つのバッテリ21、22のうち一方)が車両のボンネット内部に配置される一方、異なる構成要素(例えば、他方のバッテリ)が車両後部のトランクルームに隣接して配置されてもよい。
燃料電池1は、例えば、固体酸化物型の燃料電池(SOFC)である。燃料電池1は、他の種類の燃料電池であってもよい。本実施形態において、燃料電池1は、複数の燃料電池単位セルを積層して構成され、含酸素燃料(例えば、エタノール)を原燃料として作動する。エタノールの水蒸気改質反応により生じる水素が燃料として燃料電池1のアノード極に供給される一方、大気中の空気(具体的には、酸素)が酸化剤ガスとしてカソード極に供給される。燃料電池1が固体酸化物型のものである場合に、アノード極およびカソード極での発電に係る反応は、夫々次式により表すことができる。
アノード極: 2H2+4O2- → 2H2O+4e- …(1.1)
カソード極: O2+4e- → 2O2- …(1.2)
バッテリユニット2は、先に述べたように、その出力を、パワーコントロールユニット3を介して走行モータ4に供給する一方、燃料電池1が発電した電力の供給を受け、これをバッテリに蓄電する。本実施形態では、燃料電池1とバッテリユニット2とを接続する充電用の電力経路上に、一方向性のDC/DCコンバータ51が介装されている。コンバータ51は、昇圧コンバータであり、バッテリユニット2は、充電電力として、燃料電池1からコンバータ51により昇圧された後の電力の供給を受ける。本実施形態において、コンバータ51は、絶縁型である。
カソード極: O2+4e- → 2O2- …(1.2)
バッテリユニット2は、先に述べたように、その出力を、パワーコントロールユニット3を介して走行モータ4に供給する一方、燃料電池1が発電した電力の供給を受け、これをバッテリに蓄電する。本実施形態では、燃料電池1とバッテリユニット2とを接続する充電用の電力経路上に、一方向性のDC/DCコンバータ51が介装されている。コンバータ51は、昇圧コンバータであり、バッテリユニット2は、充電電力として、燃料電池1からコンバータ51により昇圧された後の電力の供給を受ける。本実施形態において、コンバータ51は、絶縁型である。
さらに、バッテリユニット2は、後に述べるように、燃料電池1に対して給電用の電力経路を介して接続され、燃料電池1の運転に必要な各種補機に対し、この経路を介して電力を供給する。燃料電池1の補機は、例えば、センサ、アクチュエータ、ヒータ、ポンプおよびブロアであり、センサとして、原燃料または酸化剤ガスの流量を検出する流量センサ、燃料電池1の温度を検出する温度センサ、燃料タンクに残存する原燃料の量を検出する液位センサ等を例示することができる。ブロアないしエアコンプレッサは、酸化剤ガスの供給通路(カソードガス通路)の開放端近傍に取り付けられ、大気中の空気をカソードガス通路に吸入するものである。
燃料電池1、バッテリユニット2およびパワーコントロールユニット3等の動作は、コントローラ101により制御される。
図2は、電力供給システムPの概略的な構成を示している。
本実施形態において、電力供給システムPは、燃料電池1と、バッテリユニット2と、を備える。
図2は、燃料電池1全体を二点鎖線により概念的に示しており、燃料電池1は、大別すると、燃料電池単位セルの積層体である発電部11と、燃料電池1の運転に必要な補機(以下、単に「補機」と表記することで、車両補機23と区別する)12と、により構成される。
バッテリユニット2は、複数のバッテリを備え、本実施形態では、2つのバッテリ21、22を備える。1つは、比較的電圧の高い高圧バッテリ21であり、本実施形態では、400Vの端子電圧を有することから、これを特に「強電バッテリ」と呼ぶ。別の1つは、高圧バッテリ21よりも電圧の低い低圧バッテリ22であり、本実施形態では、14Vの端子電圧を有し、強電バッテリ21との対比から、これを特に「弱電バッテリ」と呼ぶ。
強電バッテリ21は、走行モータ4に供給される電力を蓄え、弱電バッテリ22は、走行モータ4以外の車両補機23に供給される電力を蓄えるためのものである。車両補機23は、例えば、オーディオ等の車内電装機器である。強電バッテリ21は、後に述べるように、急速充電器に接続されることで充電可能であるとともに、車両の制動走行時に、走行モータ4により回生された電力を充電することも可能である。
強電バッテリ21は、第1給電経路p1を介して燃料電池1の補機12に接続され、補機12に対し、第1給電経路p1を通じて電力を供給することが可能である。第1給電経路p1には、DC/DCコンバータ24が介装され、強電バッテリ21からコンバータ24により降圧された後の電圧(本実施形態では、14V)が補機12に印加される。
他方で、強電バッテリ21は、燃料電池1に対して燃料電池1の発電電力を充電可能に接続され、具体的には、燃料電池1の発電部11と第1給電経路p1とが、コンバータ51が介装された電力経路p2を介して接続されている。これにより、燃料電池1からコンバータ51による昇圧後の電圧(本実施形態では、400V)が第1給電経路p1に印加され、さらに、第1給電経路p1を介して強電バッテリ21に印加される。ここで、第1給電経路p1に印加された電圧は、コンバータ24により降圧され、補機12に印加される。これにより、補機12に対する燃料電池1の自律給電が可能となる。
弱電バッテリ22は、車両補機23に電力経路p3を介して接続される一方、第2給電経路p4を介して燃料電池1の補機12に接続されている。本実施形態において、第2給電経路p2は、第1給電経路p1に対し、コンバータ24と燃料電池1の補機12との間で接続され、これにより、弱電バッテリ22は、補機12に対し、第1給電経路p1とは異なる第2給電経路p4を通じて電力を供給することが可能である。さらに、第1給電経路p1と第2給電経路p2とが電力経路p5を介して接続されており、弱電バッテリ22は、強電バッテリ21の放電電力を、この経路p5を介して充電可能な状態にある。第1給電経路p1と第2給電経路p2とをつなぐ電力経路p5には、強電バッテリ21の電圧(例えば、400V)を弱電バッテリ22の充電電圧(例えば、14V)に変換するDC/DCコンバータ25が介装されている。コンバータ25は、電力供給システムPの停止時(例えば、車両の運転停止時)に、弱電バッテリ22および車両補機23を、システムの他の構成要素、つまり、高圧系から電気的に隔離するアイソレータとして機能するものである。
電力供給システムPは、以上に加え、燃料電池1の補機12に対する電力の供給源を、強電バッテリ21と弱電バッテリ22とで切り替える切替部R1、R2を備える。
本実施形態において、切替部R1、R2は、第1給電経路p1に介装された第1リレーR1と、第2給電経路p4に介装された第2リレーR2と、により構成される。本実施形態では、第1および第2リレーR1、R2を異なるユニットとして構成するが、これに限らず、一体のユニットとして構成することも可能である。
第1給電経路p1に備わる第1リレーR1は、強電バッテリ21とコンバータ24との間、換言すれば、強電バッテリ21を電力源とする電流の方向に関してコンバータ24の上流側に配置されている。さらに、第1リレーR1は、強電バッテリ21を電力源とする電流の方向に関して第1給電経路p1と電力経路p2との接続点j1よりも上流側に配置され、第2リレーR2は、弱電バッテリ22を電力源とする電流の方向に関して第2給電経路p4と電力経路p5との接続点j2よりも下流側に配置されている。
コントローラ101は、電子制御ユニットとして構成され、中央演算装置(CPU)、ROMおよびRAM等の各種記憶装置、入出力インターフェース等を備えるマイクロコンピュータからなる。コントローラ101は、DC/DCコンバータ24、25、51のほか、第1および第2リレーR1、R2に制御指令を出力し、それらの動作を制御する。
本実施形態では、強電バッテリ21により「第1バッテリ」が構成され、弱電バッテリ22により「第2バッテリ」が、DC/DCコンバータ25により「第1圧力変換部」が、DC/DCコンバータ24により「第2圧力変換部」が夫々構成される。第1および第2リレーR1、R2により「切替部」が構成され、コントローラ101により「制御部」が構成される。そして、強電バッテリ21、弱電バッテリ22、コンバータ24、25、第1および第2リレーR1、R2により、本実施形態に係る「バッテリユニット」が構成される。
図3は、本実施形態に係る電力源切替制御の基本的な流れをフローチャートにより示している。コントローラ101は、電力供給システムPの作動中(例えば、車両の運転中)に、同図に示す制御を所定時間毎に繰り返し実行するようにプログラムされている。これに限らず、本制御のプログラムは、燃料電池1の起動要求があった場合に、割込処理として実行されるものであってもよい。
本実施形態において、コントローラ101は、強電バッテリ21から燃料電池1の補機12に対する電力の供給が可能であるか否かを判定し、電力の供給が可能である場合は、電力の供給源として強電バッテリ21を選択し、電力の供給が可能でない場合は、電力の供給源として弱電バッテリ22を選択する。そして、強電バッテリ21を電力源とする場合に、コントローラ101は、第1リレーR1にオン信号を出力し、第2リレーR2にオフ信号を出力する。他方で、弱電バッテリ22を電力源とする場合に、コントローラ101は、第1リレーR1にオフ信号を出力し、第2リレーR2にオン信号を出力する。
フローチャートの説明に移り、S101では、燃料電池1の起動時であるか否かを判定する。燃料電池1の起動時であるか否かの判定は、例えば、強電バッテリ21の充電量を検出し、検出された充電量が所定量未満であるか否かを判定することによる。強電バッテリ21の充電量が所定量未満であり、不足している場合は、燃料電池1の発電電力により強電バッテリ21を充電するため、燃料電池1を起動するのである。燃料電池1は、その起動時において、自律給電が可能な状態にない。燃料電池1の起動時である場合は、S102へ進み、そうでない場合は、S106へ進む。
S102では、強電バッテリ21の急速充電中であるか否かを判定する。この判定は、例えば、強電バッテリ21の急速充電用のコネクタ(例えば、車両の後部または側面に備わる)に急速充電器のプラグが差し込まれているか否かを判定することによる。強電バッテリ21の急速充電中である場合は、S103へ進み、そうでない場合は、S106へ進む。
S103では、強電バッテリ21ないし高圧系のフェール発生時であるか否かを判定する。この判定は、強電バッテリ21を電力源とする電力の供給に何らかの異常ないし支障が生じたか否かを判定することにより具現され、強電バッテリ21自体のほか、例えば、第1給電経路p1に断線が生じたり、コンバータ24に異常ないし故障が生じたりしたか否かを判定することによる。強電バッテリ21のフェール発生時である場合は、S104へ進み、そうでない場合は、S106へ進む。
S104では、第1リレーR1をオフ状態とする。
S105では、第2リレーR2をオン状態とする。
S106では、第1リレーR1をオン状態とする。
S107では、第2リレーR2をオフ状態とする。
このように、コントローラ101は、燃料電池1の起動時に、第1および第2リレーR1、R2の動作を制御し、S104および105の処理により、燃料電池1の補機12に対する電力源を弱電バッテリ22とする一方、S106および107の処理により、燃料電池1の補機12に対する電力源を強電バッテリ21とする。
本実施形態に係る電力供給システムPは、以上のように構成され、本実施形態により得られる作用及び効果について、以下に述べる。
(作用および効果の説明)
第1に、燃料電池1の補機12に対する電力の供給源を、強電バッテリ21と弱電バッテリ22とで切替可能としたことで、強電バッテリ21から電力を供給することができない状況、例えば、強電バッテリ21の充電中または強電バッテリ21のフェール発生時にあっても弱電バッテリ22から電力を供給することが可能となる。よって、強電バッテリ21の状態によらず、燃料電池1の補機12に対する電力源を確保することができる。
第1に、燃料電池1の補機12に対する電力の供給源を、強電バッテリ21と弱電バッテリ22とで切替可能としたことで、強電バッテリ21から電力を供給することができない状況、例えば、強電バッテリ21の充電中または強電バッテリ21のフェール発生時にあっても弱電バッテリ22から電力を供給することが可能となる。よって、強電バッテリ21の状態によらず、燃料電池1の補機12に対する電力源を確保することができる。
ここで、本実施形態では、強電バッテリ21ないし高圧系の状態を判定し、強電バッテリ21から燃料電池1の補機12に対する電力の供給が可能でない場合に、電力源を弱電バッテリ22に切り替えることで、強電バッテリ21の状態に応じて的確に電力源を切り替えることができる。そして、このような判定を燃料電池1の起動時に行い、電力源の切替えを行う必要がある場合に、電力源を弱電バッテリ22とすることで、燃料電池1の自律給電が可能となるまでの電力源を確保することが可能となる。よって、燃料電池1を任意のタイミングで停止し、起動および暖機を実行することができる。
さらに、本実施形態によれば、高圧バッテリないし強電バッテリ21と、低圧バッテリないし弱電バッテリ22と、を既に備える電動車両に対し、補機12に対する電力源の確保を目的とした特別な低圧バッテリによらず、既存の蓄電設備により燃料電池1の起動性を確保することができる。よって、システム全体でのコストの上昇を抑えるとともに、サイズの増大を抑制することができる。
第2に、強電バッテリ21に対し、弱電バッテリ22を強電バッテリ21により充電可能に接続したことで、車両補機23を安定して作動させることができる。ここで、第1および第2バッテリ21、22を互いに接続する電力経路p5上にコンバータ25を設置したことで、強電バッテリ21から弱電バッテリ22への電力の供給を実現するとともに、弱電バッテリ22を高圧系から隔離可能とし、例えば、車両の運転停止中における弱電バッテリ22の過度な放電が高圧系に及ぼす影響を抑制することができる。
本実施形態では、電力源切替制御(図3)を燃料電池1の起動時に実行することとしたが、これに限らず、電力供給システムPの作動中、強電バッテリ21ないし高圧系の状態を常に監視し、強電バッテリ21から燃料電池1の補機12に対する電力の供給が可能でないと判定した場合に、補機12に対する電力源を強電バッテリ21から弱電バッテリ22に切り替えるように構成してもよい。これにより、例えば、燃料電池1の発電電力が補機12の駆動に必要な電力を満たさない場合にあっても燃料電池1の運転を安定して継続させることが可能となる。
さらに、本実施形態では、コントローラ101により、強電バッテリ21から燃料電池1の補機12に対する電力の供給が可能であるか否かを判定し、可能でないと判定した場合に、補機12に対する電力源を弱電バッテリ22に切り替えることとしたが、判定という特別な工程によらず、例えば、強電バッテリ21の急速充電用のコネクタに急速充電器のプラグが差し込まれた場合に、強電バッテリ21による電力の供給が可能でないとして、自動的に電力源が切り替わるように構成することも可能である。強電バッテリ21は、急速充電時において、それ自体に備わるリレー(図示せず)により、第1給電経路p1に対する接続が遮断される。
以下、本発明の他の実施形態について説明する。
(第2実施形態)
図4は、本発明の第2実施形態に係る電力供給システムP2の構成を示す概略図である。ここで、第1実施形態におけると同様の機能を奏する部品または部分は、図2に示すのと同一の符号を付し、重複回避のため、その詳細な説明を省略する(第3実施形態についても同様である)。
図4は、本発明の第2実施形態に係る電力供給システムP2の構成を示す概略図である。ここで、第1実施形態におけると同様の機能を奏する部品または部分は、図2に示すのと同一の符号を付し、重複回避のため、その詳細な説明を省略する(第3実施形態についても同様である)。
電力供給システムP2は、燃料電池1の補機12として、異なる電圧で動作する複数の補機12aおよび12bを備える。補機12aは、比較的低い電圧(例えば、14V)で動作する補機であり、例えば、燃料電池1の運転に必要なセンサおよびアクチュエータ等である。他方で、補機12bは、補機12aよりも高い電圧(例えば、48V)で動作する補機であり、センサおよびアクチュエータ以外の補機として、ブロアを例示することができる。補機12bは、第2給電経路p4に対し、電力経路p6を介して接続され、強電バッテリ21および弱電バッテリ22のどちらからも電力の供給を受けることが可能である。
電力供給システムP2は、さらに、電力経路p6に、バッテリユニット2の出力電圧、具体的には、コンバータ24による降圧後の電圧または弱電バッテリ22の電圧を補機12bの動作電圧に変換するDC/DCコンバータ31を備える。コンバータ31は、昇圧コンバータとして構成され、補機12bは、切替器(第1リレーR1、第2リレーR2)の状態に応じ、強電バッテリ21からコンバータ24により降圧され、さらに、コンバータ31により昇圧された後の電圧か、弱電バッテリ22からコンバータ31により昇圧された後の電圧か、の供給を受ける。
本実施形態では、補機12aにより「第1補機」が構成され、補機12bにより「第2補機」が構成される。さらに、DC/DCコンバータ31により「第3電圧変換部」が構成される。
コントローラ101は、第1実施形態におけると同様に構成されてよく、図3に示すのと同様の手順に従って電力源切替制御を実行し、強電バッテリ21および弱電バッテリ22の間で、補機12a、12bに対する電力の供給源を切り替える。
このように、バッテリユニット2と補機12bとの間にコンバータ31を介装し、コンバータ24による降圧後の電圧または弱電バッテリ22の電圧を、コンバータ31により昇圧して補機12bに印加可能とすることで、比較的電圧の高い補機12bとして、例えば、ブロアの運転を可能とするとともに、強電バッテリ21による電力の供給が可能でない場合にあってもブロアに対する電力源を確保することができる。
(第3実施形態)
図5は、本発明の第3実施形態に係る電力供給システムP3の構成を示す概略図である。
図5は、本発明の第3実施形態に係る電力供給システムP3の構成を示す概略図である。
電力供給システムP3は、第2実施形態におけると同様に、異なる電圧で動作する複数の補機12aおよび12b、例えば、比較的低い電圧(例えば、14V)で動作する補機12aと、補機12aよりも高い電圧(例えば、48V)で動作する補機12b(例えば、ブロア)と、を備える。補機12aに対するバッテリユニット2の電力接続は、第1実施形態におけると同様であり、補機12aは、第1給電経路p1を介して強電バッテリ21に接続されるとともに、第2給電経路p4を介して弱電バッテリ22に接続された状態にある。これに対し、補機12bは、第2給電経路p4とは接続されておらず、電力経路p7を介して第1給電経路p1に接続され、第1給電経路p1を介して強電バッテリ21に接続されている。
電力供給システムP2は、さらに、電力経路p7に、強電バッテリ21の電圧またはコンバータ51による昇圧後の電圧(例えば、400V)を補機12bの動作電圧に変換するDC/DCコンバータ32を備える。コンバータ32は、降圧コンバータとして構成され、補機12bは、燃料電池1の補機12に対する電力源として強電バッテリ21が選択されている場合(換言すれば、第1リレーR1がオン状態にある場合)に、強電バッテリ21からコンバータ32より降圧された後の電圧の供給を受ける。
本実施形態では、補機12aにより「第1補機」が構成され、補機12bにより「第2補機」が構成される。さらに、DC/DCコンバータ32により「第4電圧変換部」が構成される。
コントローラ101は、第1実施形態におけると同様に構成されてよく、図3に示すのと同様の手順に従って電力源切替制御を実行し、強電バッテリ21および弱電バッテリ22の間で、補機12a、12bに対する電力の供給源を切り替える。
このように、強電バッテリ21と補機12bとを、コンバータ24を介さずに、コンバータ32を介装した電力経路p7により接続し、補機12bに対し、強電バッテリ21の電圧をコンバータ32により降圧させて印加可能とすることで、強電バッテリ21の電圧を、コンバータ24による降圧を介さずにコンバータ32により直接、補機12bの動作電圧に変換することができる。よって、コンバータ24による降圧を介する場合と比較して、降圧に要する分のエネルギの損失を回避することが可能となるので、コンバータ24を小型化し、システム全体にかかるコストを低減するとともに、サイズのコンパクト化を図ることができる。
以上の説明では、「第2補機」として第1補機(補機12a)よりも高い電圧で動作する補機12bを採用したが、「第2補機」は、第1補機よりも低い電圧で動作するものであってもよい。
さらに、以上の説明では、コントローラ101を、燃料電池1、バッテリユニット2およびパワーコントロールユニット3等の動作を統合的に制御するシステムコントローラとして構成したが、これに限らず、コントローラ101が有する機能、例えば、燃料電池1およびバッテリユニット2の動作に関してコントローラ101が有する機能を複数のコントローラに分散させ、燃料電池1の動作を制御する燃料電池コントローラと、バッテリユニット2の動作を制御するバッテリコントローラと、の組み合わせとして構成することも可能である。この場合に、燃料電池1の補機12または動作電圧の低い補機12aに、燃料電池コントローラを含めることができる。
以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を、上記実施形態の具体的構成に限定する趣旨ではない。上記実施形態に対し、特許請求の範囲に記載した事項の範囲内で様々な変更および修正が可能である。
Claims (13)
- 燃料電池と、
前記燃料電池に接続されたバッテリユニットと、
を備える電力供給システムであって、
前記バッテリユニットは、
前記燃料電池に対し、前記燃料電池の補機に電力を供給するとともに、前記燃料電池の発電電力を充電可能に接続された第1バッテリと、
前記燃料電池の補機に対し、前記第1バッテリとは異なる経路を介して電力を供給可能に接続された第2バッテリと、
前記第1バッテリと前記第2バッテリとで、前記燃料電池の補機に対する電力の供給源を切り替える切替部と、を備える、
電力供給システム。 - 請求項1に記載の電力供給システムであって、
車両に搭載され、
前記第1バッテリは、前記車両の走行モータに供給される電力を蓄え、
前記第2バッテリは、前記走行モータ以外の車両補機に供給される電力を蓄える、
電力供給システム。 - 請求項1または2に記載の電力供給システムであって、
前記第2バッテリは、前記第1バッテリに対し、前記第1バッテリの放電電力を充電可能に接続され、
前記バッテリユニットは、前記第1バッテリと前記第2バッテリとの電気的な接続を選択的に遮断可能な遮断部を備える、
電力供給システム。 - 請求項3に記載の電力供給システムであって、
前記第1バッテリは、前記第2バッテリよりも電圧が高く、
前記バッテリユニットは、前記遮断部として、前記第1バッテリと前記第2バッテリとを接続する電力経路上に、前記第1バッテリの電圧を前記第2バッテリの充電電圧に変換する第1電圧変換部を備える、
電力供給システム。 - 請求項4に記載の電力供給システムであって、
前記バッテリユニットは、前記第1バッテリと前記燃料電池の補機とを接続する電力経路上に、前記第1バッテリの電圧を前記燃料電池の補機の動作電圧に変換する第2電圧変換部を備える、
電力供給システム。 - 請求項5に記載の電力供給システムであって、
前記燃料電池の補機として、第1補機と、前記第1補機とは異なる電圧で動作する第2補機と、を備え、
前記バッテリユニットと前記第2補機との間に、前記バッテリユニットの出力電圧を前記第2補機の動作電圧に変換する第3電圧変換部を備える、
電力供給システム。 - 請求項5に記載の電力供給システムであって、
前記燃料電池の補機として、第1補機と、前記第1補機とは異なる電圧で動作する第2補機と、を備え、
前記バッテリユニットは、前記燃料電池に対し、その出力電圧を前記第1補機に対して印加可能に接続され、
前記第1バッテリは、前記第2補機に対し、前記第2電圧変換部を介さずに電力を供給可能に接続され、
前記第1バッテリと前記第2補機とを接続する電力経路上に、前記第1バッテリの電圧を前記第2補機の動作電圧に変換する第4電圧変換部を備える、
電力供給システム。 - 請求項6または7に記載の電力供給システムであって、
前記第2補機は、前記第1補機よりも高い電圧で動作する、
電力供給システム。 - 請求項1~8のいずれか一項に記載の電力供給システムであって、
前記切替部の動作を制御する制御部をさらに備え、
前記制御部は、
前記第1バッテリから前記燃料電池の補機に対する電力の供給が可能であるか否かを判定し、
前記電力の供給が可能である場合は、前記電力の供給源を前記第1バッテリとし、
前記電力の供給が可能でない場合は、前記電力の供給源を前記第2バッテリとする、
電力供給システム。 - 請求項9に記載の電力供給システムであって、
前記制御部は、前記燃料電池の起動時に、前記切替部の動作を制御して、前記燃料電池の補機に対する電力の供給源を切り替える、
電力供給システム。 - 請求項9または10に記載の電力供給システムであって、
前記制御部は、前記第1バッテリの充電中または前記第1バッテリのフェール発生時に、前記第1バッテリからの電力の供給が可能でないと判定し、前記電力の供給源を前記第2バッテリとする、
電力供給システム。 - 燃料電池と、
車両の走行モータに供給される電力を蓄える第1バッテリと、
前記走行モータ以外の車両補機に供給される電力を蓄える第2バッテリと、
前記第1バッテリの電圧を前記燃料電池の補機に印加可能に配設された第1給電経路と、
前記第2バッテリの電圧を前記燃料電池の補機に印加可能に配設された第2給電経路と、
前記第1および第2給電経路の間で、前記燃料電池の補機に対する給電経路を切り替える切替部と、を備える、
電力供給システム。 - バッテリおよび燃料電池を含んで構成され、
前記バッテリが、システム出力を形成する第1バッテリと、前記第1バッテリとは異なる第2バッテリと、を備える電力供給システムの運転方法であって、
前記第1バッテリの状態に応じて前記燃料電池を起動させ、前記燃料電池の発電電力により前記第1バッテリを充電し、
前記燃料電池の起動に際し、
前記第1バッテリによる電力の供給が可能であるか否かを判定し、
前記電力の供給が可能である場合は、前記燃料電池の補機に対し、前記第1バッテリを電力源として電力を供給し、
前記電力の供給が可能でない場合は、前記燃料電池の補機に対し、前記第2バッテリを電力源として電力を供給する、
電力供給システムの運転方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17921825.0A EP3670238B1 (en) | 2017-08-14 | 2017-08-14 | Power supply system and operation method thereof |
JP2019536374A JP7259751B2 (ja) | 2017-08-14 | 2017-08-14 | 電力供給システム |
US16/637,821 US11214170B2 (en) | 2017-08-14 | 2017-08-14 | Power supply system and operation method thereof |
CN201780093951.XA CN111032418A (zh) | 2017-08-14 | 2017-08-14 | 电力供给系统及其运转方法 |
PCT/JP2017/029320 WO2019035173A1 (ja) | 2017-08-14 | 2017-08-14 | 電力供給システムおよびその運転方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/029320 WO2019035173A1 (ja) | 2017-08-14 | 2017-08-14 | 電力供給システムおよびその運転方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019035173A1 true WO2019035173A1 (ja) | 2019-02-21 |
Family
ID=65361907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/029320 WO2019035173A1 (ja) | 2017-08-14 | 2017-08-14 | 電力供給システムおよびその運転方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11214170B2 (ja) |
EP (1) | EP3670238B1 (ja) |
JP (1) | JP7259751B2 (ja) |
CN (1) | CN111032418A (ja) |
WO (1) | WO2019035173A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021174246A1 (en) | 2020-02-26 | 2021-09-02 | Atieva, Inc. | Electric vehicle power supply system to minimize loss during vehicle rest |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6881224B2 (ja) * | 2017-10-20 | 2021-06-02 | トヨタ自動車株式会社 | 燃料電池車 |
JP6965830B2 (ja) * | 2018-05-24 | 2021-11-10 | トヨタ自動車株式会社 | 車両用電源装置 |
US20220340048A1 (en) * | 2021-04-14 | 2022-10-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Dual battery fuel cell system |
KR20240043897A (ko) * | 2022-09-27 | 2024-04-04 | 주식회사 엘지에너지솔루션 | 비상 시동이 가능한 차량 및 이의 동작 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007228753A (ja) | 2006-02-24 | 2007-09-06 | Toyota Motor Corp | 電動車両 |
JP2008004482A (ja) * | 2006-06-26 | 2008-01-10 | Nissan Motor Co Ltd | 燃料電池システム |
JP2008017576A (ja) * | 2006-07-04 | 2008-01-24 | Suzuki Motor Corp | 車両用制御装置 |
JP2009037828A (ja) * | 2007-08-01 | 2009-02-19 | Honda Motor Co Ltd | 燃料電池システムおよび燃料電池システムの制御方法 |
JP2013198294A (ja) * | 2012-03-19 | 2013-09-30 | Honda Motor Co Ltd | 移動体 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06124720A (ja) * | 1992-10-10 | 1994-05-06 | Aqueous Res:Kk | ハイブリッド電源装置 |
US6492056B1 (en) * | 2000-03-13 | 2002-12-10 | Energy Conversion Devices, Inc. | Catalytic hydrogen storage composite material and fuel cell employing same |
JP5140894B2 (ja) * | 2000-05-15 | 2013-02-13 | トヨタ自動車株式会社 | 燃料電池と充放電可能な蓄電部とを利用した電力の供給 |
US6559621B2 (en) * | 2001-05-21 | 2003-05-06 | Cellex Power Products, Inc. | Hybrid energy storage device charge equalization system and method |
JP2004194438A (ja) * | 2002-12-12 | 2004-07-08 | Toyota Motor Corp | 電源付き作動装置および電源付き作動装置制御方法 |
JP2007306778A (ja) * | 2006-05-15 | 2007-11-22 | Toyota Industries Corp | Dc/dcコンバータ及びdc/dcコンバータの電源切替え方法 |
KR20120020686A (ko) * | 2010-08-31 | 2012-03-08 | 현대자동차주식회사 | 연료전지 차량의 비상 시동 장치 및 방법 |
JP5622693B2 (ja) | 2011-09-09 | 2014-11-12 | 本田技研工業株式会社 | 燃料電池車両 |
JP6089552B2 (ja) * | 2012-10-09 | 2017-03-08 | 三菱自動車工業株式会社 | 電力制御装置 |
KR101459900B1 (ko) * | 2013-05-07 | 2014-11-10 | 현대자동차주식회사 | 연료전지차량의 스타트 스탑 제어방법 |
DE102014201440A1 (de) * | 2014-01-27 | 2015-07-30 | Volkswagen Aktiengesellschaft | Kraftfahrzeugbordnetz mit optimierter Durchschaltfunktion |
CN107591546A (zh) * | 2017-08-25 | 2018-01-16 | 北京工业大学 | 一种燃料电池‑锂电池混合动力热管理系统及运行方式 |
-
2017
- 2017-08-14 US US16/637,821 patent/US11214170B2/en active Active
- 2017-08-14 JP JP2019536374A patent/JP7259751B2/ja active Active
- 2017-08-14 EP EP17921825.0A patent/EP3670238B1/en active Active
- 2017-08-14 CN CN201780093951.XA patent/CN111032418A/zh active Pending
- 2017-08-14 WO PCT/JP2017/029320 patent/WO2019035173A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007228753A (ja) | 2006-02-24 | 2007-09-06 | Toyota Motor Corp | 電動車両 |
JP2008004482A (ja) * | 2006-06-26 | 2008-01-10 | Nissan Motor Co Ltd | 燃料電池システム |
JP2008017576A (ja) * | 2006-07-04 | 2008-01-24 | Suzuki Motor Corp | 車両用制御装置 |
JP2009037828A (ja) * | 2007-08-01 | 2009-02-19 | Honda Motor Co Ltd | 燃料電池システムおよび燃料電池システムの制御方法 |
JP2013198294A (ja) * | 2012-03-19 | 2013-09-30 | Honda Motor Co Ltd | 移動体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3670238A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021174246A1 (en) | 2020-02-26 | 2021-09-02 | Atieva, Inc. | Electric vehicle power supply system to minimize loss during vehicle rest |
EP4110646A4 (en) * | 2020-02-26 | 2024-04-03 | Atieva, Inc. | ELECTRIC VEHICLE POWER SUPPLY SYSTEM TO MINIMIZE LOSS WHEN THE VEHICLE IS STILL |
Also Published As
Publication number | Publication date |
---|---|
CN111032418A (zh) | 2020-04-17 |
US20200164766A1 (en) | 2020-05-28 |
EP3670238B1 (en) | 2022-01-19 |
EP3670238A1 (en) | 2020-06-24 |
JPWO2019035173A1 (ja) | 2020-11-19 |
EP3670238A4 (en) | 2020-09-30 |
JP7259751B2 (ja) | 2023-04-18 |
US11214170B2 (en) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102478086B1 (ko) | 연료전지 차량시스템 및 이를 제어하는 방법 | |
JP7259751B2 (ja) | 電力供給システム | |
CN109562698B (zh) | 车辆系统 | |
KR101230900B1 (ko) | 연료전지 하이브리드 시스템의 운전 제어 방법 | |
KR101592377B1 (ko) | 연료 전지 차량의 시동 장치 및 방법 | |
KR101033900B1 (ko) | 연료전지 수퍼캡 직결형 하이브리드 차량의 동력분배장치 및 방법 | |
EP2800183A1 (en) | Fuel cell system | |
JP5227620B2 (ja) | 燃料電池システムの始動方法 | |
WO2007113990A1 (ja) | 車両支援システム | |
JP5265851B2 (ja) | 燃料電池システム及びそのシステムにおけるディスチャージ電力制御方法 | |
KR20080054281A (ko) | 연료전지 하이브리드 전기 차량의 파워다운 제어방법 | |
JPWO2019035172A1 (ja) | 車両用電源システム | |
KR20080086941A (ko) | 연료전지 하이브리드 전기차량의 비상시동제어방법 | |
JP4379922B2 (ja) | 移動体 | |
JP7051775B2 (ja) | 燃料電池システム、燃料電池システムの制御方法、およびプログラム | |
WO2008114758A1 (ja) | 燃料電池システム | |
CN107492919A (zh) | 电力系统及其控制方法 | |
JP7127294B2 (ja) | 燃料電池システム | |
KR100872647B1 (ko) | 연료전지 하이브리드 전기 차량의 파워다운 제어방법 | |
JP7155622B2 (ja) | 電力供給システム | |
JP2010288326A (ja) | 燃料電池システム | |
JP2013198288A (ja) | 給電システム | |
JP2004166376A (ja) | 燃料電池搭載車両の電源システム | |
JP6766655B2 (ja) | 二電源駆動システム | |
JP7484741B2 (ja) | 燃料電池システム及びリレーによる遮断確認方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019536374 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017921825 Country of ref document: EP Effective date: 20200316 |