WO2019034097A1 - 具有换热功能的电池包壳体和电池包 - Google Patents

具有换热功能的电池包壳体和电池包 Download PDF

Info

Publication number
WO2019034097A1
WO2019034097A1 PCT/CN2018/100745 CN2018100745W WO2019034097A1 WO 2019034097 A1 WO2019034097 A1 WO 2019034097A1 CN 2018100745 W CN2018100745 W CN 2018100745W WO 2019034097 A1 WO2019034097 A1 WO 2019034097A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
battery pack
exchange substrate
pack case
flow path
Prior art date
Application number
PCT/CN2018/100745
Other languages
English (en)
French (fr)
Inventor
葛增芳
方杰
龚骁
赵文鹏
王全明
姜亚平
Original Assignee
上海蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蔚来汽车有限公司 filed Critical 上海蔚来汽车有限公司
Publication of WO2019034097A1 publication Critical patent/WO2019034097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of batteries, and relates to a battery pack casing having a heat exchange function and a battery pack using the same.
  • battery packs also known as “battery power systems”
  • the battery pack is required to have a higher specific energy, and at the same time requires a higher safety factor and a longer service life;
  • the high energy density battery pack will generate a certain amount of heat during operation. If the heat cannot be taken away in time, it will cause greater damage to the battery pack life and safety performance. Therefore, it is necessary to thermally manage the battery pack. For example, it is necessary to design a battery pack that ensures that the battery is maintained at a suitable temperature and is light in quality, thereby meeting the high energy density of the entire battery pack and the lightweight requirements of the entire vehicle.
  • the cooling plate or cooling tube and the housing structure are separately designed, and then assembled to form a battery pack, material Low utilization rate and high processing cost;
  • the cooling tube is designed separately, and it is connected with the heat exchange substrate through the joint, increasing the risk of coolant leakage, increasing the manufacturing cost, and having certain requirements for the installation space;
  • the structure of the battery module or the battery pack in the battery pack changes (for example, if the battery pack is simply changed in size from the length and the width direction), the battery pack case needs to be redesigned and re-opened, and the processing cost is high. Poor portability.
  • the object of the invention is also one or more of the following advantages:
  • the present invention provides the following technical solutions.
  • a battery pack housing having a heat exchange function includes a heat exchange substrate (and a plurality of side plates fixed to the heat exchange substrate, wherein the heat exchange substrate and the plurality of The side panel substantially surrounds a cavity formed to receive and secure the one or more battery modules;
  • the heat exchange substrate is assembled by one or more heat exchange substrate units, each of the heat exchange substrate units being of a unitary structure and having a plurality of first flow channels disposed therein;
  • the side plate is a unitary structure and a second flow path is disposed in at least one of the side plates;
  • a battery pack case according to an embodiment of the present invention, wherein the heat exchange substrate unit and the first flow path thereof are integrally molded by extrusion, and the side plates are integrally molded by extrusion.
  • a battery pack case wherein the heat exchange substrate unit and the side plate of a corresponding size suitable for the size of the cavity are formed by cutting after extrusion molding.
  • a battery pack case according to an embodiment of the present invention, wherein the number and/or size of the heat exchange substrate units is determined according to the size of the cavity.
  • a battery pack case according to an embodiment of the present invention, wherein a size of the side plate is determined according to a size of the cavity.
  • a battery pack case according to an embodiment of the present invention, wherein the size of the cavity is determined according to the number and/or size of the battery modules that it accommodates.
  • an inner surface of the first flow path of the heat exchange substrate unit is provided with an reinforced heat exchange rib.
  • thermoelectric substrate unit includes a support structure rib disposed between adjacent ones of the first flow paths.
  • a battery pack case wherein a plurality of the first flow paths of the heat exchange substrate unit are arranged in parallel and penetrate the heat exchange substrate unit.
  • a battery pack case wherein a width of a plurality of the first flow paths of the heat exchange substrate unit are configured to be the same or different; and/or different heat exchange substrate units The widths of the first flow paths are configured to be the same or different.
  • a battery pack case wherein the heat exchange substrate unit is provided with a module mounting beam and a module mounting hole for fixing the battery module.
  • a battery pack case wherein the side panel includes two left and right side panels, a front side panel, and a rear side panel, and the at least one of the two left and right side panels is provided with the
  • the second flow path is provided in at least one of the front side panel and the rear side panel.
  • a battery pack case according to an embodiment of the present invention wherein the left and right side plates include an impact beam that protrudes toward an outer side of the battery pack case.
  • a battery pack case according to an embodiment of the present invention wherein a fixing hole for integrally fixing the battery pack case is provided on the impact beam.
  • a battery pack case wherein a heat exchange substrate connecting groove is provided on a surface of the second flow path of the left and right side plates facing the heat exchange substrate.
  • a battery pack case wherein a second flow path connection port is provided on a side of the second flow path of the front side plate and/or the rear side plate facing the left and right side plates.
  • a battery pack case wherein a liquid inlet slot is provided on an outer side wall of at least one of the side plates, and an inlet and outlet port structure is mounted on the liquid inlet slot.
  • a battery pack case wherein the inlet and outlet ports are provided with the liquid inlet, the liquid outlet, and a liquid separator, wherein the liquid separator extends into the side In the second flow path of the plate.
  • a battery pack case wherein a top end of the side plate is provided with a seal groove for accommodating a sealant.
  • a battery pack case according to an embodiment of the present invention, wherein the battery pack case further includes a cover plate that seals the cavity by the sealant.
  • a battery pack case wherein at least one of the side plates is provided with a plurality of hollow grooves and a reinforcing rib between the hollow grooves.
  • the heat exchange substrate unit and the first flow path thereof are integrally molded by extrusion of an aluminum material, and the side plates are integrally molded by extrusion of aluminum.
  • a battery pack case according to an embodiment of the present invention further comprising a heat shield disposed under the heat exchange substrate.
  • a battery pack case according to an embodiment of the present invention, wherein at least a portion of the second flow path is provided with a flow damping member.
  • a battery pack comprising:
  • One or more battery modules fixed in the cavity of the battery pack housing.
  • the first flow path and the second flow path for forming the heat exchange circulation channel are respectively integrated in the heat exchange substrate of the monolithic structure and the side plate of the monolithic structure, thereby avoiding the use of separate cooling.
  • the pipe and the joint improve the material utilization rate of the battery case and reduce the manufacturing and processing cost thereof, and the reliability is good, the risk of leakage of the coolant is small, the installation space of the battery case is reduced, and the maintenance cost is reduced;
  • the package housing has good expandability, and the battery case of different sizes is developed with low cost and short cycle.
  • FIG. 1 is a schematic structural view of a battery pack case in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a heat exchange substrate unit of a battery pack case according to an embodiment of the present invention.
  • FIG 3 is a schematic structural view of a left side panel or a right side panel of a battery pack case according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a front side panel of a battery pack case according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an inlet and outlet of a battery pack case according to an embodiment of the invention.
  • FIG. 6 is a schematic view of a heat exchange circulation passage of a battery pack case according to an embodiment of the present invention.
  • orientation terms of "upper”, “lower”, “front”, “back”, “left”, “right” and the like are defined with respect to the orientation in which the battery pack of FIG. 1 is exemplarily located, and It should be understood that these directional terms are relative concepts, which are used for relative description and clarification, and are not intended to limit the orientation of any embodiment to a particular orientation or orientation, and the corresponding orientations of the various terms may be based on the battery pack. The orientation of the housing placement changes accordingly.
  • 1 is a schematic view showing the structure of a battery pack case according to an embodiment of the present invention.
  • 1 is a development view of a battery pack (or a power battery system) according to an embodiment of the present invention and a battery pack case 100 used therein, wherein the battery pack 2 inside the battery pack is not shown.
  • Components such as electrical connection components and control detection units.
  • the battery pack can be used as a power battery system for an electric vehicle, and is fixed to an electric vehicle to provide energy for components such as motors.
  • the battery pack case 100 mainly includes a heat exchange substrate 5 and a plurality of side plates fixed to the heat exchange substrate 5, wherein the heat exchange substrate 5 and the plurality of side plates substantially surround the cavity 101 to form an energy storage component.
  • One or more battery modules 2 are fixed in the cavity 101. Therefore, the shape and size of the cavity 101 can be determined according to factors such as the number, size, and shape of the battery module 2, for example, according to the vehicle type or the like. The size, size, number, and the like of the battery module 2 are determined so that the size of the cavity 101 to be formed can be determined.
  • the heat exchange substrate 5 can be used as a bearing member of the battery module 2, and a cover plate 1 (for example, a cover on the casing) can be disposed on the opposite side thereof to close the cavity 101.
  • the cover plate 1 can be integrally stamped and formed by using a good heat conductive material (for example, aluminum material), and during the molding process, the reinforcing rib 11, the mounting side 12, the mounting hole 13, and the like as shown in FIG. 1 are simultaneously formed.
  • the cavity 101 is substantially block-shaped, and the side plates for surrounding the cavity 101 are mainly composed of a left side plate, a right side plate, a front side plate 8, and a rear side plate 3.
  • the left side plate and the right side plate have a structure that is completely symmetrical in the direction, and therefore, are all labeled as 4, that is, the left and right side plates 4.
  • the battery pack case 100 further includes a heat insulating plate 6, a blocking plate 7, and an inlet and outlet port structure 9 provided on the front side plate 8.
  • the heat shield 6 is placed below the heat exchange substrate 5, and the heat for isolating the battery pack case 100 is transferred to other components of the electric vehicle or the outside.
  • the board 7 basically constitutes the battery lower case of the battery pack case 100, and may be fixedly connected by welding methods such as friction stir welding or laser welding.
  • the cover plate 1 constitutes a battery upper case of the battery pack case 100, and its mounting manner will be exemplified hereinafter.
  • FIG. 2 shows one of the heat exchange substrate units 50 of the heat exchange substrate 5.
  • the heat exchange substrate 5 may be assembled by one or more heat exchange substrate units 50, the number and/or size of which is determined according to the size of the cavity 101 formed by the heat exchange substrate 5.
  • Each heat exchange substrate unit 50 has a monolithic structure and is provided with a plurality of first flow channels 54 .
  • each heat exchange substrate unit 50 has a heat exchange surface 51 for fixing the battery module 2 .
  • the heat exchange surface 51 is in contact with the bottom of the battery module 2 through the heat conductive material, exchanges heat with the battery module 2, thereby heating or cooling the same, and the reinforcing heat exchange rib 55 on the inner surface of the first flow path 54 can be strengthened.
  • the heat exchange between the heat exchange surface 51 and the battery module 2 improves the heating or cooling efficiency;
  • the battery module 2 is mounted on the module mounting beam 52 of the heat exchange substrate 5 at the bottom, specifically, for example, by bolts to
  • the module mounting hole 53 is used to lock the battery module 2, so that the heat exchange substrate 5 not only serves as a load-bearing structural member of the battery module 2, but also has a heat exchange function.
  • the heat exchange substrate unit 50 can be integrally formed by extrusion using, but not limited to, aluminum or the like, which not only has high strength, but also has good thermal conductivity, simple processing, high material utilization rate, and low cost.
  • the heat exchange surface 51, the module mounting beam 52, the first flow path 54, the reinforcing heat exchange rib 55, the support structure rib 56, and the like may be formed together.
  • the plurality of first flow channels 54 may be arranged, for example, in parallel and penetrate the heat exchange substrate unit 50, which occupies a main area of the heat exchange substrate unit 50, thereby not only high heat exchange efficiency, but also high material utilization rate, adjacent Supporting structural ribs 56 are provided between the first-class lanes 54.
  • the number, specific arrangement, and the like of the first flow path 54 are not limited. It is to be understood that when the plurality of heat exchange substrate units 50 are assembled to form the heat exchange substrate 5, the plurality of first flow paths 54 of the plurality of heat exchange substrate units 50 are Correspondingly, the flow paths inside the heat exchange substrate 5 can be formed.
  • the left and right side panels 4 of the battery pack case 100 are as shown in FIG. 3, which are left side panels or right side panels, and the left and right side panels 4 are of a unitary structure and a second flow is provided in at least one of them.
  • Road 43 In an embodiment, the left and right side panels 4 have a horizontal portion and a vertical portion as a side wall, which is generally an inverted T-shaped structure.
  • the second flow path 43 is disposed in the horizontal portion of the left and right side plates 4, and the heat exchange substrate connection groove 45 is disposed on the side of the second flow path 43 facing the heat exchange substrate 5, and the left and right side plates are provided. 4, one for each of the left and right symmetry, the heat exchange substrate 5 is connected through the heat exchange substrate connecting groove 45, so that the second flow path 43 in the left and right side plates 4 can communicate with the first flow path 54 in the heat exchange substrate 5, which can be commonly It is used to form the heat exchange circulation passage 10 as shown in FIG.
  • the horizontal portion of the left and right side panels 4 includes an anti-collision beam 47 protruding toward the outer side of the battery pack housing.
  • an anti-collision beam 47 protruding toward the outer side of the battery pack housing.
  • a plurality of fixing holes 41 may be provided, and the fixing holes 41 are used for
  • the battery pack case 100 is mounted and fixed to the entire vehicle. Therefore, the impact beam 47 can function to integrally support the battery pack and prevent collision.
  • the top end of the vertical portion of the left and right side plates 4 is provided with a sealing groove 42.
  • a sealant can be applied to the sealing groove 42 to realize the upper casing of the battery. Sealed with the lower case of the battery.
  • a plurality of hollow grooves 44 may be provided in the anti-collision beam 47 and the vertical portion of the horizontal portion of the left and right side plates 4, and reinforcing ribs 46 may be disposed between the hollow grooves 44 to ensure the structural strength of the left and right side plates 4. .
  • the left and right side panels 4 shown in FIG. 3 can be integrally formed by extrusion using, but not limited to, aluminum or the like, which not only has high strength, but also has simple processing, high material utilization rate, and low cost.
  • the anti-collision beam 47, the hollow groove 44, the second flow path 43, and the sealing groove 42 shown in FIG. 3 can be simultaneously formed, thereby forming a unitary structure, and if necessary, passing through the machine
  • the processing method or the like forms the mounting hole 41 and the like, and the entire preparation process is simple.
  • the size of the left and right side panels 4 can be determined according to the size of the cavity 101. In the process of its extrusion, after extrusion molding, it can be cut according to the size, even if the size of the cavity 101 of the battery pack case 100 changes, it is not necessary to separately mold to form a mold for extrusion molding. You can adjust the size when cutting. Similarly, for the heat exchange substrate unit 50, it can also be cut and formed according to the size after extrusion molding, even if the size of the cavity 101 of the battery pack case 100 changes, no additional mold opening is required for extrusion. The one-piece mold can be adjusted when cutting. Therefore, the battery pack case 100 is excellent in expandability, and the cost and cycle of developing the battery pack case 100 of different sizes can be greatly reduced.
  • the structure of the front side panel 8 of the battery pack case 100 is as shown in FIG. 4, the front side panel 8 is of a unitary structure and a second flow path 84 is provided in at least one of them.
  • the front side plate 8 further includes an inlet notch 81, a sealing groove 82, a second flow path connection opening 83, a hollow groove 85 and a reinforcing rib 86; wherein, in the second flow path 84, the left side plate and the right side plate
  • the second flow path connecting port 83 is disposed on one side, and the second flow path 84 of the front side plate 8 communicates with the second flow path 43 of the left side plate or the right side plate through the second flow path connecting port 83 and is sealed, so that Commonly used to form the heat exchange circulation passage 10 as shown in FIG.
  • the seal groove 82 may be disposed at the top end of the front side plate 8, and a sealant may be applied to the seal groove 82 before the cover plate 1 is installed to realize the battery.
  • the housing and the lower case of the battery are sealed; in order to realize the overall light structure, a plurality of hollow grooves 85 may be disposed in the front side plate 8, and reinforcing ribs 86 may be disposed between the hollow grooves 85 to ensure the structural strength of the front side plate 8, and therefore,
  • the front side panel 8 has a high strength and can simultaneously take into account the structure and the function of circulating coolant.
  • the inlet slot 81 can be disposed on the outer side wall of the front side panel 8 for mounting the inlet and outlet structure 9 as shown in Figure 5.
  • the front side panel 8 shown in FIG. 4 can be integrally molded by extrusion using, but not limited to, aluminum or the like, which not only has high strength, but also has simple processing, high material utilization rate, and low cost.
  • the sealing groove 82, the second flow path connecting port 83, the hollow groove 85, the reinforcing ribs 86, and the like shown in Fig. 4 can be simultaneously formed, thereby forming a unitary structure, and the entire preparation process is simple.
  • the rear side panel 3 may be substantially identical in structure to the front side panel 8, and is also integrally molded by extrusion.
  • the inlet notch 81 may not be provided on the outer side wall of the rear side plate 3.
  • the inlet slot 81 may be provided on the front side plate 8 and the rear side plate 3 according to the circulation mode of the heat exchange circulation passage 10, or the inlet slot may be provided on the rear side plate 3. 81.
  • the second flow path connection port 83 may not be disposed on the outer side wall of the rear side plate 3, and the second flow path 84 in the rear side plate 3 does not participate in the formation of the heat exchange circulation passage 10 as shown in FIG.
  • the dimensions of the rear side panel 3 and the front side panel 8 can be determined according to the size of the cavity 101. In the process of its extrusion, after extrusion molding, it can be cut according to the size, even if the size of the cavity 101 of the battery pack case 100 changes, it is not necessary to separately mold to form a mold for extrusion molding. You can adjust the size when cutting.
  • the inlet and outlet structure 9 is specifically as shown in FIG. 5, and includes a liquid inlet 91, a liquid outlet 92, a liquid partition 93 and a mounting slot 94; when the inlet and outlet structure 9 is installed, the installation slot
  • the port 94 is sealingly engaged with the liquid inlet slot 81, and the liquid partition 93 extends into the second flow path 84 to substantially isolate the left and right portions of the second flow path 84 so that the liquid passes through the liquid inlet 91 and the liquid outlet 92 in the battery pack.
  • the heat exchange circulation passage 10 in the casing 100 flows.
  • the cavity 101 accommodates eight battery modules 2 as shown in FIG. 1 as an example to illustrate a specific embodiment.
  • the heat exchange substrate 5 is assembled using, for example, eight heat exchange substrate units 50.
  • two left and right side panels 4, two opposite front side panels 8 and one rear side panel 3, and a corner joint at the front side panel 8 and the left and right side panels 4, or the rear side panel 3 are used.
  • a plurality of blocking plates 7 are used, which are connected and sealed by friction stir welding or laser welding, thereby forming a battery lower case and substantially surrounding the cavity 101.
  • the lower case of the battery is fixed on the heat insulation board 6 by bolt fixing or glue connection, and the heat insulation board 6 functions as a heat insulation of the battery pack, and reduces heat exchange between the battery pack and the outside.
  • each heat exchange substrate unit 50 of the heat exchange substrate 5 can be integrally formed by extrusion of aluminum material, and has the characteristics of high strength structure and light weight, and the internal flow is formed with the first flow path 54. Therefore, the heat exchange The substrate 5 as a whole functions to fix and support the battery module 2, and can also heat or cool the battery module 2 to achieve heat exchange.
  • the left side plate or the right side plate 4 is an aluminum extruded profile, has a high strength structure and light weight characteristics, and has a flow passage for cooling liquid circulation inside, which saves the cost of separately arranging the cooling pipe and The safety risk caused by the rupture of the cooling pipe is avoided, and the reliability is greatly improved; the anti-collision beam 47 simultaneously serves to fix the battery pack system and prevent collision.
  • the left side plate or the right side plate 4, the front side plate 8 and the rear side plate 3 are respectively squeezed out of the sealing grooves 42, 82 and 31, and the welded connection between the side plates can be A continuous sealing groove is formed to facilitate sealing between the cover 1 and the lower case of the battery.
  • the respective plates of the lower case of the battery are connected by friction stir welding or laser welding to achieve high-strength structural sealing and connection, and form a sealed heat exchange circulation passage 10.
  • a fluid such as water can be used as the coolant
  • the flow direction of the coolant is as indicated by an arrow in FIG. 6, specifically, the coolant enters the battery pack casing through the inlet port 91.
  • the second flow path 43 in the left and right side plates 4 on one side distributes the flow rate, and then flows to the first flow path 54 in the heat exchange substrate 5, and the coolant flowing in the first flow path 54 can be mainly connected to the battery.
  • the module 2 exchanges heat, for example, to heat or cool the battery module 2, and then merges through the second flow path 43 in the left and right side plates 4 on the other side, and further flows to the second flow path 84 of the front side plate 8.
  • the medium flows out through the liquid outlet 92.
  • the two left and right side plates 4, the front side plate 8, the rear side plate 3, the liquid partition 93, and the heat exchange substrate 5 together constitute a coolant flow boundary, and the coolant enters the front side from the liquid inlet 91.
  • the second flow path 84 of the plate 8 then enters the second flow path 43 of the left and right side plates 4 on one side, and the fluid is split in the second flow path 43 to enter the different first flow paths 54 of the different heat exchange substrate units 50, respectively.
  • the coolant is collected in the second flow path 43 of the left and right side plates 4 on the other side, and flows into the second flow of the front side plate 8
  • the passage 84 is discharged through the liquid outlet 92 to realize circulation of the coolant.
  • the non-stop circulation flow path of the coolant in the heat exchange circulation passage 10 can continuously heat or cool the battery module 2 in the battery pack.
  • the formation of the heat exchange circulation passage 10 does not depend on a separate cooling pipe, nor does it need to provide a joint inside the battery pack casing 100, thereby effectively avoiding the use of the cooling pipe and the joint, greatly reducing the risk of coolant leakage and also reducing
  • the cost of the battery pack case 100 is reduced; the installation space of the battery pack case 100 is reduced, the heat exchange circulation passage 10 is less risky, maintenance is not required or reduced, and the maintenance cost of the battery pack case 100 is reduced.
  • the second flow channel 43 and the second flow channel 84 mainly serve to communicate with different first flow channels 54 to jointly form the heat exchange circulation channel 10, but the second flow channel 43 and the second flow channel 84
  • the fluid in the middle flow channel also partially has a heat exchange function, and because of its small volume, it does not serve as the main body of heat exchange.
  • the heat exchange circulation passage 10 in the battery pack casing 100 is substantially in the shape of a "U” as shown in FIG. 6.
  • by arranging the first flow passage 43, the second flow passage 43, The second flow path 84 or the like can make the heat exchange circulation passage 10 in the battery pack casing 100 substantially "Z" or "S" type.
  • the corresponding flow damping structure or flow damping component is added to the second flow channel 43 in the left and right side plates 4 as needed, and different first flow paths 54 and/or different exchanges of the heat exchange substrate unit 50 can be adjusted.
  • the width of the different first flow channels 54 of the thermal substrate unit 50 achieves the overall flow distribution function in the battery pack housing 100, which can meet the heat transfer requirements of the battery module 2 when it is expanded.
  • the expandable heat exchange substrate 5 can be connected by a plurality of heat exchange substrate units 5 according to requirements, and the lengths of the left and right side plates 4, the front side plate 8, and the rear side plate 3 are also changed;
  • the number and cross-sectional dimensions of the second flow passages of the left and right side panels 4, the front side panels 8, and the rear side panels 3 can be specifically set to meet different needs.
  • the battery pack case 100 of the embodiment of the present invention has good expandability, and it is not necessary to separately develop a mold for extrusion molding, and the like, and reduce the cost and cycle of developing the battery pack case 100 of different sizes or models.
  • the battery pack case 100 of the embodiment of the present invention has a light overall weight, and therefore, the weight of the battery pack formed based thereon is also light, and when it is applied to an electric vehicle, it is advantageous to realize the lightweight requirement of the electric vehicle. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及一种具有换热功能的电池包壳体和电池包,属于电池技术领域。本申请公开的电池包壳体包括换热基板以及固定于换热基板上的多个侧板,其中,换热基板和多个侧板基本地包围形成用于容纳并固定一个或多个电池模组的空腔;换热基板通过一个或多个换热基板单元组装形成,每个换热基板单元为整体式结构并且其中设置有多个第一流道;侧板为整体式结构并且其至少一个中设置有第二流道;通过焊接连接侧板和换热基板的一个或多个换热基板单元以至于使第一流道与多个第二流道共同地形成换热循环通道,其中,换热循环通道的进液口和出液口布置在设置有第二流道的至少一个侧板上。本公开的电池包壳体的材料利用率高、成本低、可扩展性好、可靠性好。

Description

具有换热功能的电池包壳体和电池包 技术领域
本发明属于电池技术领域,涉及一种具有换热功能的电池包壳体以及使用该电池包壳体的电池包。
背景技术
目前电池包(也称为“电池动力系统”)的应用中,尤其在新能源电动汽车领域,要求电池包具有较高的比能量,同时要求具有较高的安全系数和较长的使用寿命;高能量密度的电池包在运行中,会产生一定的热量,若热量不能被及时带走,会对电池包寿命和安全性能产生较大危害。因此,需要对电池包进行热管理,例如,需要设计一种保证电池维持在适宜温度且轻质量的电池包,从而满足整套电池包高能量密度和整车轻量化要求。
随着日益加剧竞争,汽车设计的成本控制和轻量化成为重要指标。在传统带有电池液体冷却系统的电池包中,其结构及其不足主要表现在如下几个方面:(1)冷却板或冷却管与壳体结构分别单独设计,再组装一起形成电池包,材料利用率低、加工成本较高;(2)均单独设计冷却管,并且其与换热基板通过接头连接,增大冷却液泄露风险,提高制造成本,对安装空间有一定要求;(3)当电池包中的电池模组或电池包结构发生变化(例如如若电池包单纯从长度和宽度方向上的尺寸发生变化)时,电池包壳体需要重新设计和重新开模制造,加工成本较高,可移植性较差。
发明内容
本发明的目标是公开一种解决方案,该解决方案消除或至少减轻现有技术方案中出现的如上一方面或多方面的所述缺陷。本发明的目标也是实现下面的优点的一个或多个:
-提高电池包壳体的材料利用率、降低其制造加工成本;
-避免使用分离的冷却管和接头;
-提高电池包壳体的可靠性;
-提高电池包壳体的可扩展性;
-降低开发不同尺寸的电池包壳体的成本,缩短开发周期。
为实现以上目的或者其他目的,本发明提供以下技术方案。
按照本发明的一方面,提供一种具有换热功能的电池包壳体,包括换热基板(以及固定于所述换热基板上的多个侧板,其中,所述换热基板和多个侧板基本地包围形成用于容纳并固定一个或多个电池模组的空腔;
所述换热基板通过一个或多个换热基板单元组装形成,每个所述换热基板单元为整体式结构并且其中设置有多个第一流道;
所述侧板为整体式结构并且其至少一个中设置有第二流道;
通过焊接连接所述侧板和所述换热基板的一个或多个换热基板单元以至于使所述第一流道与多个所述第二流道共同地形成换热循环通道,其中,所述换热循环通道的进液口和出液口布置在设置有所述第二流道的至少一个侧板上。
根据本发明一实施例的电池包壳体,其中,所述换热基板单元及其第一流道通过挤压一体成型,所述侧板通过挤压一体成型。
根据本发明一实施例的电池包壳体,其中,在挤压一体成型后通过切割形成适于所述空腔的大小的相应尺寸的所述换热基板单元和所述侧板。
根据本发明一实施例的电池包壳体,其中,所述换热基板单元的数量和/或尺寸根据所述空腔的大小确定。
根据本发明一实施例的电池包壳体,其中,所述侧板的尺寸根据所述空腔的大小确定。
根据本发明一实施例的电池包壳体,其中,所述空腔的大小根据其容纳的所述电池模组的数量和/或尺寸确定。
根据本发明一实施例的电池包壳体,其中,所述换热基板单元的第一流道的内表面上设置有强化换热筋。
根据本发明一实施例的电池包壳体,其中,所述换热基板单元包括在相邻的所述第一流道之间设置的支撑结构筋。
根据本发明一实施例的电池包壳体,其中,所述换热基板单元的多个所述第一流道平行地布置并贯通所述换热基板单元。
根据本发明一实施例的电池包壳体,其中,所述换热基板单元的多个所述第一流道的宽度被配置为相同或不同;和/或不同的所述换热 基板单元的所述第一流道的宽度被配置为相同或不同。
根据本发明一实施例的电池包壳体,其中,所述换热基板单元上设置有用于固定安装所述电池模组的模组安装梁和模组安装孔。
根据本发明一实施例的电池包壳体,其中,所述侧板包括两个左右侧板、一个前侧板和一个后侧板,两个所述左右侧板的至少一个中设置有所述第二流道,所述前侧板和后侧板的至少一个中设置有所述第二流道。
根据本发明一实施例的电池包壳体,其中,所述左右侧板包括朝向所述电池包壳体的外侧凸出设置的防撞梁。
根据本发明一实施例的电池包壳体,其中,在所述防撞梁上设置有用于将所述电池包壳体整体固定的固定孔。
根据本发明一实施例的电池包壳体,其中,在所述左右侧板的第二流道的朝向所述换热基板的一面上设置有换热基板连接槽。
根据本发明一实施例的电池包壳体,其中,在所述前侧板和/或后侧板的第二流道的朝向所述左右侧板的一面上设置有第二流道连接口。
根据本发明一实施例的电池包壳体,其中,在所述侧板的至少一个的外侧壁上设置进液槽口,所述进液槽口上安装有进出水口结构。
根据本发明一实施例的电池包壳体,其中,所述进出水口结构上设置有所述进液口、所述出液口以及液体隔板,其中,所述液体隔板伸入所述侧板的第二流道中。
根据本发明一实施例的电池包壳体,其中,所述侧板的顶端设置有用于容纳密封胶的密封槽。
根据本发明一实施例的电池包壳体,其中,所述电池包壳体还包括盖板,所述盖板通过所述密封胶密封所述空腔。
根据本发明一实施例的电池包壳体,其中,所述侧板的至少一个中设置有多个中空槽以及所述中空槽之间的加强筋。
根据本发明一实施例的电池包壳体,其中,所述换热基板单元及其第一流道通过铝材挤压一体成型,所述侧板通过铝材挤压一体成型。
根据本发明一实施例的电池包壳体,其中,所述焊接为摩擦搅拌焊或激光焊。
根据本发明一实施例的电池包壳体,其中,还包括置于所述换热基板的下方的隔热板。
根据本发明一实施例的电池包壳体,其中,所述第二流道至少一部分的内部设置有流动阻尼部件。
按照本发明的又一方面,提供一种电池包,其包括:
以上任一所述的电池包壳体;以及
固定于所述电池包壳体的空腔中的一个或多个电池模组。
本公开的电池包壳体中,用于形成换热循环通道的第一流道和第二流道分别集成设置在整体式结构的换热基板和整体式结构的侧板中,避免使用分离的冷却管和接头,提高电池包壳体的材料利用率、降低其制造加工成本,同时可靠性好,冷却液泄露风险小,也减小电池包壳体的安装空间,降低其维护成本;并且,电池包壳体的可扩展性好,开发不同尺寸的电池包壳体的成本低、周期短。
附图说明
从结合附图的以下详细说明中,将会使本发明的上述和其他目的及优点更加完整清楚,其中,相同或相似的要素采用相同的标号表示。
图1是按照本发明一实施例的电池包壳体的结构示意图。
图2是按照本发明一实施例的电池包壳体的换热基板单元的结构示意图。
图3是按照本发明一实施例的电池包壳体的左侧板或右侧板的结构示意图。
图4是按照本发明一实施例的电池包壳体的前侧板的结构示意图。
图5是按照本发明一实施例的电池包壳体的进出水口的结构示意图。
图6是按照本发明一实施例的电池包壳体的换热循环通道的示意图。
具体实施方式
现在将参照附图更加完全地描述本发明,附图中示出了本发明的示例性实施例。但是,本发明可按照很多不同的形式实现,并且不应该被理解为限制于这里阐述的实施例。相反,提供这些实施例使得本公开变得彻底和完整,并将本发明的构思完全传递给本领域技术人员。附图中,相同的标号指代相同的元件或部件,因此,将省略对它们的描述。
本文中,“上”、“下”、“前”、“后”、“左”、“右”等方位术语是相对于附图1中电池包示例性所处的方位来定义的,并且,应当理解到,这些方向性术语是相对的概念,它们用于相对的描述和澄清,而不是要将任何实施例的定向限定到具体的方向或定向,并且各方位术语对应的方位可以根据电池包壳体放置的方位的变化而相应地发生变化。
图1所示为按照本发明一实施例的电池包壳体的结构示意图。图1中同时示出了本发明一实施例的电池包(或称为动力电池系统)及其使用的电池包壳体100的展开图,其中,未示出电池包内部的电池模组2之间的电器连接部件和控制检测单元等部件。该电池包可以作为电动汽车的动力电池系统,其固定在电动汽车上为电机等部件提供能量。
电池包壳体100主要地包括换热基板5以及固定于换热基板5上的多个侧板,其中,换热基板5和多个侧板基本地包围形成空腔101,作为储能部件的一个或多个电池模组2被固定在空腔101中,因此,空腔101的形状和尺寸可以根据电池模组2的数量、尺寸和形状等因素来确定,例如,可以根据车型等预先地确定电池模组2的规格、尺寸、数量等,从而可以确定需要形成的空腔101的大小。
如图1所示,换热基板5可以作为电池模组2的承载部件,在其相对侧可以设置盖板1(例如壳体上盖)来封闭空腔101。盖板1可以采用较好的导热材料(例如铝材)一体冲压成型,在成型加工过程中,同时形成如图1所示的加强筋11、安装边12和安装孔13等。
如图1所示,在一实施例中,空腔101大致为方块状,用于包围形成空腔101的侧板主要包括左侧板、右侧板、前侧板8和后侧板3,其中,左侧板和右侧板具有在有方向上完全对称的结构,因此,都被标注为4,也即左右侧板4。具体地,电池包壳体100还包括隔热板6、堵板7以及设置在前侧板8上的进出水口结构9。其中,隔热板6置于换热基板5的下方,用于隔离电池包壳体100的热量传递至电动汽车的其他部件或外界中。
如图1所示,1个后侧板3、2个左右侧板4、1个前侧板8、一个换热基板5、1个隔热板6、1个进出水口结构9以及多个堵板7基本组成了电池包壳体100的电池下壳体,它们之间可以采用搅拌摩擦焊 或激光焊接等焊接方法固定连接。盖板1组成了电池包壳体100的电池上壳体,其安装方式将在下文中示例说明。
以下结合图2至图6进一步说明本发明实施例的电池包壳体100的各个主要部件。
图2所示为换热基板5的其中一个换热基板单元50。换热基板5可以通过一个或多个换热基板单元50组装形成,换热基板单元50的数量和/或尺寸根据换热基板5所包围形成的空腔101的大小确定。每个换热基板单元50为整体式结构并且其中设置有多个第一流道54,具体如图2所示,每个换热基板单元50具有换热面51、用于固定安装电池模组2的模组安装梁52和模组安装孔53、以及第一流道54、强化换热筋55、支撑结构筋56。
其中,换热面51通过导热材料与电池模组2的底部接触,与电池模组2换热,从而对其进行加热或冷却,第一流道54的内表面上的强化换热筋55可以加强换热面51与电池模组2之间的换热,提高加热或冷却效率;电池模组2安装固定在底部的换热基板5的模组安装梁52上,具体地例如通过螺栓锁紧到模组安装孔53上,从而将电池模组2锁紧,这样,换热基板5不但作为电池模组2的承载固定结构件,而且具有换热功能。
在一实施例中,换热基板单元50可以采用但不限于铝材等通过挤压一体成型,其不但具有较高地强度,而且导热性好,加工也简单,材料利用率高、成本低。在挤压一体成型的过程中,可以同时一起形成有换热面51、模组安装梁52、第一流道54、强化换热筋55、支撑结构筋56等。其中,多个第一流道54可以例如平行地布置并贯通换热基板单元50,其占据换热基板单元50的主要面积,因此,不但换热效率高,而且材料利用率高,相邻的第一流道54之间设置支撑结构筋56。第一流道54的数量、具体布置方式等不是限制性的,需要理解是,多个换热基板单元50在组装形成换热基板5时,多个换热基板单元50的多个第一流道54之间相应地能够对接形成换热基板5内部的流道。
在一实施例中,电池包壳体100的左右侧板4如图3所示,其为左侧板或右侧板,左右侧板4为整体式结构并且其至少一个中设置有第二流道43。在一实施例中,左右侧板4具有水平部分和作为侧壁的垂直部分,其大致为倒T字形结构。
在一实施例中,左右侧板4的水平部分中设置有第二流道43,并且在第二流道43的朝向换热基板5的一面上设置有换热基板连接槽45,左右侧板4左右对称各设置一个,通过换热基板连接槽45把换热基板5连接,从而左右侧板4中的第二流道43与换热基板5中的第一流道54可以连通,可以共同地用来形成如图6所示的换热循环通道10。
在一实施例中,左右侧板4的水平部分包括朝向电池包壳体的外侧凸出设置的防撞梁47,在防撞梁47上,可以设置若干固定孔41,固定孔41用于将电池包壳体100与整车实现安装固定。因此,防撞梁47可以起到整体固定支撑电池包和防撞的作用。
继续如图3所示,在一实施例中,左右侧板4的垂直部分的顶端,设置密封槽42,在安装盖板1前可以在密封槽42中涂入密封胶,实现电池上壳体与电池下壳体的密封。为实现整体轻结构,左右侧板4的水平部分的防撞梁47中和垂直部分中均可以设置若干中空槽44,中空槽44之间可以设置加强筋46来保证左右侧板4的结构强度。
图3中所示的左右侧板4可以采用但不限于铝材等通过挤压一体成型,其不但具有较高地强度,而且加工简单,材料利用率高、成本低。在挤压一体成型的过程中,图3中所示的防撞梁47、中空槽44、第二流道43和密封槽42等可以同时形成,从而形成整体式结构,必要时,可以通过机加工方式等形成安装孔41等,整个制备过程简单。
需要理解的是,左右侧板4的尺寸可以根据空腔101的大小确定。在其加工过程中,在挤压一体成型后,可以根据尺寸来切割形成,即使电池包壳体100的空腔101的大小发生变化,不需要另外开模形成用于挤压一体成型的模具,切割时调整尺寸即可。同样地,对于换热基板单元50,其在挤压一体成型后也可以根据尺寸来切割形成,即使电池包壳体100的空腔101的大小发生变化,不需要另外开模形成用于挤压一体成型的模具,切割时调整尺寸即可。因此,电池包壳体100的可扩展性好,可以大大降低开发不同尺寸的电池包壳体100的成本和周期。
在一实施例中,电池包壳体100的前侧板8的结构如图4所示,前侧板8为整体式结构并且其至少一个中设置有第二流道84。前侧板8中还包含进液槽口81、密封槽82、第二流道连接口83、中空槽85和加强筋86;其中,在第二流道84的朝向左侧板和右侧板的一面上设 置第二流道连接口83,前侧板8的第二流道84通过第二流道连接口83与左侧板或右侧板的第二流道43连通并密封,从而可以共同地用来形成如图6所示的换热循环通道10;密封槽82可以设置在前侧板8的顶端,在安装盖板1前可以在密封槽82中涂入密封胶,实现电池上壳体与电池下壳体的密封;为实现整体轻结构,前侧板8中可以设置若干中空槽85,中空槽85之间可以设置加强筋86来保证前侧板8的结构强度,因此,前侧板8具有较高的强度,能同时兼顾结构和流通冷却液的功能。
继续如图4所示,进液槽口81可以设置在前侧板8的外侧壁上,其用于安装如图5所示的进出水口结构9。
图4中所示的前侧板8可以采用但不限于铝材等通过挤压一体成型,其不但具有较高地强度,而且加工简单,材料利用率高、成本低。在挤压一体成型的过程中,图4所示的密封槽82、第二流道连接口83、中空槽85和加强筋86等可以同时形成,从而形成整体式结构,整个制备过程简单。
需要说明的是,后侧板3可以与前侧板8结构基本相同,并且也通过挤压一体成型。在进液口和出液口均设置在前侧板8上时,后侧板3的外侧壁上可以不设置进液槽口81。在其他实施例中,也可以根据换热循环通道10的循环方式,在前侧板8和后侧板3上均设置进液槽口81,或者进在后侧板3上设置进液槽口81。后侧板3的外侧壁上可以不设置第二流道连接口83,后侧板3中的第二流道84不参与形成如图6所示的换热循环通道10。
需要理解的是,后侧板3和前侧板8的尺寸可以根据空腔101的大小确定。在其加工过程中,在挤压一体成型后,可以根据尺寸来切割形成,即使电池包壳体100的空腔101的大小发生变化,不需要另外开模形成用于挤压一体成型的模具,切割时调整尺寸即可。
在一实施例中,进出水口结构9具体为如图5所示,其包含进液口91、出液口92、液体隔板93和安装槽口94;在安装进出水口结构9时,安装槽口94与进液槽口81密封接合,液体隔板93伸入第二流道84中将第二流道84的左右部分基本隔离,使得液体通过进液口91、出液口92在电池包壳体100内的换热循环通道10内流动。
具体以空腔101容纳如图1所示的8个电池模组2为例来说明具 体实施方案,为形成相应尺寸的空腔101,换热基板5使用例如8块换热基板单元50组装形成,同时使用相对设置的两块左右侧板4、相对设置的1块前侧板8和1块后侧板3,在前侧板8与左右侧板4的转角连接处、或后侧板3与左右侧板4的转角连接处,使用多块堵板7,它们之间通过搅拌摩擦焊或激光焊等方式进行连接密封,从而形成电池下壳体,并基本包围形成空腔101。另外,电池下壳体通过螺栓固定或胶连接方式固定在隔热板6上,隔热板6起到电池包的隔热作用,减少电池包与外界的换热。
需要说明的是,换热基板5的每个换热基板单元50可以通过铝材挤压一体成型,具有高强度结构和轻质量的特点,内部挤压形成有第一流道54,因此,换热基板5整体起到固定支撑电池模组2的作用的同时,还能加热或冷却电池模组2,实现换热作用。
本实例中左侧板或右侧板4,前侧板8为铝挤压型材,具有高强度结构和轻质量特点,内部挤压有用于冷却液流通的流道,节约单独布置冷却管道费用和避免冷却管道破裂等带来的安全风险问题,可靠性得到大大提高;防撞梁47同时起到固定支撑电池包系统和防撞作用。
本一实施例中,左侧板或右侧板4、前侧板8及后侧板3通过挤压方式分别挤压出密封槽42、82和31,通过侧板之间的焊接连接,可以形成连通的密封槽,方便盖板1与电池下壳体之间的密封。
本一实施例中,电池下壳体的各个板通过搅拌摩擦焊或激光焊接进行连接,实现高强度的结构密封和连接,并形成密封的换热循环通道10。如图6所示,换热循环通道10中,其可以使用水等流体作为冷却液,冷却液的流向如图6中箭头所示,具体地,冷却液通过进液口91进入电池包壳体100中,在一侧的左右侧板4中的第二流道43进行流量分配,然后流到换热基板5中的第一流道54,第一流道54中流动的冷却液可以主要地与电池模组2换热,例如实现对电池模组2的加热或冷却,然后通过另一侧的左右侧板4中的第二流道43汇流,进一步流到前侧板8的第二流道84中,通过出液口92流出。
进一步结合图6所示,两个左右侧板4、前侧板8、后侧板3、液体隔板93和换热基板5共同构成冷却液流通边界,冷却液自进液口91进入前侧板8的第二流道84,而后进入一侧的左右侧板4的第二流道43,流体在第二流道43中被分流,分别进入不同换热基板单元50的 不同第一流道54中,并对安装于换热基板5上面的若干电池模组2进行加热或冷却,冷却液在另一侧的左右侧板4的第二流道43汇集,流入前侧板8的第二流道84,通过出液口92流出,实现冷却液循环。冷却液在换热循环通道10中的不停循环流道,可以持续地加热或冷却电池包中的电池模组2。
可以看到,换热循环通道10的形成并不依赖于单独的冷却管,也不需要在电池包壳体100内部设置接头,有效避免使用冷却管和接头,大大降低冷却液泄露风险,也降低电池包壳体100的成本;减小了电池包壳体100的安装空间,换热循环通道10风险小而不需要或减少维护,降低电池包壳体100的维护成本。
需要说明的是,第二流道43和第二流道84主要起连通不同的第一流道54作用,从而共同地形成换热循环通道10,但是,第二流道43和第二流道84中流道的流体也部分地具有换热功能,由于其体积小,并不作为换热的主体。
需要说明的是,电池包壳体100中的换热循环通道10大致呈如图6所示的“U”形,在其他实施例中,通过布置第一流道43、第二流道43、第二流道84等,可使得电池包壳体100中的换热循环通道10大致呈“Z”或“S”型。
在一实施例中,左右侧板4中的第二流道43内根据需求添加相应的流动阻尼结构或流动阻尼部件,同时可以调整换热基板单元50的不同第一流道54和/或不同换热基板单元50的不同第一流道54的宽度,来实现电池包壳体100中的整体流量分配功能,可以满足电池模组2扩展时的换热需求。
在一实施例中,可扩展的换热基板5可根据需求由多个换热基板单元5连接构成,相应左右侧板4、前侧板8、后侧板3等长度也发生变化;根据需要,左右侧板4、前侧板8、后侧板3的第二流道的数量、截面尺寸可以具体设置来满足不同需求。
需要说明的是,即使电池包壳体100的空腔101的大小发生变化,不需要另外开模形成用于挤压一体成型的模具,切割时调整换热基板单元50、侧板的尺寸即可。因此,本发明实施例的电池包壳体100的可扩展性好,不要另外开发用于挤压一体成型的模具等,降低开发不同尺寸或型号的电池包壳体100的成本和周期。
需要说明的是,本发明实施例的电池包壳体100的整体重量轻,因此,基于其形成的电池包的重量也轻,其在应用电动汽车中时,有利于实现电动汽车的轻量化要求。
以上例子主要说明了本发明的电池包壳体和电池包。尽管只对其中一些本发明的实施方式进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

Claims (26)

  1. 一种具有换热功能的电池包壳体(100),包括换热基板(5)以及固定于所述换热基板(5)上的多个侧板(3,4,8),其中,所述换热基板(5)和多个侧板(3,4,8)基本地包围形成用于容纳并固定一个或多个电池模组(2)的空腔(101);其特征在于,
    所述换热基板(5)通过一个或多个换热基板单元(50)组装形成,每个所述换热基板单元(50)为整体式结构并且其中设置有多个第一流道(54);
    所述侧板(3,4,8)为整体式结构并且其至少一个中设置有第二流道(43,84);
    通过焊接连接所述侧板(3,4,8)和所述换热基板(5)的一个或多个换热基板单元(50)以至于使所述第一流道(54)与多个所述第二流道(43,84)共同地形成换热循环通道(10),其中,所述换热循环通道(10)的进液口(91)和出液口(92)布置在设置有所述第二流道(43,84)的至少一个侧板(3,4,8)上。
  2. 如权利要求1所述的电池包壳体(100),其特征在于,所述换热基板单元(50)及其第一流道(54)通过挤压一体成型,所述侧板(3,4,8)通过挤压一体成型。
  3. 如权利要求2所述的电池包壳体(100),其特征在于,在挤压一体成型后通过切割形成适于所述空腔(101)的大小的相应尺寸的所述换热基板单元(50)和所述侧板(3,4,8)。
  4. 如权利要求1所述的电池包壳体(100),其特征在于,所述换热基板单元(50)的数量和/或尺寸根据所述空腔(101)的大小确定。
  5. 如权利要求1所述的电池包壳体(100),其特征在于,所述侧板(3,4,8)的尺寸根据所述空腔(101)的大小确定。
  6. 如权利要求3或4或5所述的电池包壳体(100),其特征在于,所述空腔(101)的大小根据其容纳的所述电池模组(2)的数量和/或尺寸确定。
  7. 如权利要求1所述的电池包壳体(100),其特征在于,所述换热基板单元(50)的第一流道(54)的内表面上设置有强化换热筋(55)。
  8. 如权利要求1所述的电池包壳体(100),其特征在于,所述换热基板单元(50)包括在相邻的所述第一流道(54)之间设置的支撑结构筋(56)。
  9. 如权利要求1所述的电池包壳体(100),其特征在于,所述换热基板单元(50)的多个所述第一流道(54)平行地布置并贯通所述换热基板单元(50)。
  10. 如权利要求1或9所述的电池包壳体(100),其特征在于,所述换热基板单元(50)的多个所述第一流道(54)的宽度被配置为相同或不同;和/或不同的所述换热基板单元(50)的所述第一流道(54)的宽度被配置为相同或不同。
  11. 如权利要求1所述的电池包壳体(100),其特征在于,所述换热基板单元(50)上设置有用于固定安装所述电池模组(2)的模组安装梁(52)和模组安装孔(53)。
  12. 如权利要求1所述的电池包壳体(100),其特征在于,所述侧板(3,4,8)包括两个左右侧板(4)、一个前侧板(8)和一个后侧板(3),两个所述左右侧板(4)的至少一个中设置有所述第二流道(43),所述前侧板(8)和后侧板(3)的至少一个中设置有所述第二流道(84)。
  13. 如权利要求12所述的电池包壳体(100),其特征在于,所述左右侧板(4)包括朝向所述电池包壳体(100)的外侧凸出设置的防撞梁(47)。
  14. 如权利要求13所述的电池包壳体(100),其特征在于,在所述防撞梁(47)上设置有用于将所述电池包壳体(100)整体固定的固定孔(41)。
  15. 如权利要求12所述的电池包壳体(100),其特征在于,在所述左右侧板(4)的第二流道(43)的朝向所述换热基板(5)的一面上设置有换热基板连接槽(45)。
  16. 如权利要求12所述的电池包壳体(100),其特征在于,在所述前侧板(8)和/或后侧板(3)的第二流道(84)的朝向所述左右侧板(4)的一面上设置有第二流道连接口(83)。
  17. 如权利要求1所述的电池包壳体(100),其特征在于,在所述侧板(3,4,8)的至少一个的外侧壁上设置进液槽口(81),所述 进液槽口(81)上安装有进出水口结构(9)。
  18. 如权利要求17所述的电池包壳体(100),其特征在于,所述进出水口结构(9)上设置有所述进液口(91)、所述出液口(92)以及液体隔板(93),其中,所述液体隔板(93)伸入所述侧板(3,4,8)的第二流道(43,84)中。
  19. 如权利要求1所述的电池包壳体(100),其特征在于,所述侧板(3,4,8)的顶端设置有用于容纳密封胶的密封槽(82)。
  20. 如权利要求19所述的电池包壳体(100),其特征在于,所述电池包壳体(100)还包括盖板(1),所述盖板(1)通过所述密封胶密封所述空腔(101)。
  21. 如权利要求1所述的电池包壳体(100),其特征在于,所述侧板(3,4,8)的至少一个中设置有多个中空槽(44,85)以及所述中空槽(44,85)之间的加强筋(46,86)。
  22. 如权利要求2所述的电池包壳体(100),其特征在于,所述换热基板单元(50)及其第一流道(54)通过铝材挤压一体成型,所述侧板(3,4,8)通过铝材挤压一体成型。
  23. 如权利要求1或22所述的电池包壳体(100),其特征在于,所述焊接为摩擦搅拌焊或激光焊。
  24. 如权利要求1所述的电池包壳体(100),其特征在于,还包括置于所述换热基板(5)的下方的隔热板(6)。
  25. 如权利要求1所述的电池包壳体(100),其特征在于,所述第二流道(43,84)至少一部分的内部设置有流动阻尼部件。
  26. 一种电池包,其特征在于,包括:
    如权利要求1至25中任一所述的电池包壳体(100);以及
    固定于所述电池包壳体(100)的空腔(101)中的一个或多个电池模组(2)。
PCT/CN2018/100745 2017-08-18 2018-08-16 具有换热功能的电池包壳体和电池包 WO2019034097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710711839.XA CN107331920A (zh) 2017-08-18 2017-08-18 具有换热功能的电池包壳体和电池包
CN201710711839.X 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019034097A1 true WO2019034097A1 (zh) 2019-02-21

Family

ID=60228002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100745 WO2019034097A1 (zh) 2017-08-18 2018-08-16 具有换热功能的电池包壳体和电池包

Country Status (3)

Country Link
CN (1) CN107331920A (zh)
TW (1) TWI758528B (zh)
WO (1) WO2019034097A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299579A (zh) * 2019-07-31 2019-10-01 上海马勒热系统有限公司 两层板式电池冷却板
CN110581302A (zh) * 2019-10-17 2019-12-17 北京普莱德新能源电池科技有限公司 一种电池模组及电动装置
CN111540979A (zh) * 2020-05-08 2020-08-14 上海加冷松芝汽车空调股份有限公司 一种基于新能源充电桩的水冷式集中电池热管理装置
CN113053706A (zh) * 2021-03-19 2021-06-29 安徽华东光电技术研究所有限公司 一种回旋管热丝及其制作方法
CN113611972A (zh) * 2021-08-05 2021-11-05 福建飞毛腿动力科技有限公司 一种电池用的高效低成本的灌胶壳体
CN113937383A (zh) * 2020-06-29 2022-01-14 比亚迪股份有限公司 电池模组、电池包及车辆
CN114069143A (zh) * 2021-11-19 2022-02-18 重庆仟和镁业科技有限公司 一种中大型车用镁合金电池箱及其制造方法
CN114614150A (zh) * 2022-03-20 2022-06-10 中国第一汽车股份有限公司 用于电池模组的热管理装置、动力电池总成以及车辆
CN114646185A (zh) * 2022-02-17 2022-06-21 贵州乌江水电开发有限责任公司 一种基于快速降温的水轮机保护装置
CN114843673A (zh) * 2022-04-08 2022-08-02 苏州市华盛源机电有限公司 一种轻量化电动汽车电池包上壳体加工方法
CN118248997A (zh) * 2024-05-23 2024-06-25 天津力神新能源科技有限公司 电池包、电池包换热系统及电池簇换热系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331920A (zh) * 2017-08-18 2017-11-07 上海蔚来汽车有限公司 具有换热功能的电池包壳体和电池包
CN107959088B (zh) * 2017-11-30 2024-01-26 北京长城华冠汽车科技股份有限公司 换热片连接结构及电池包
CN107819171B (zh) * 2017-11-30 2024-04-19 北京长城华冠汽车科技股份有限公司 换热片连接结构及电池包
CN107946695A (zh) * 2017-12-25 2018-04-20 北京国能电池科技有限公司 电池包冷水板结构
CN109004316A (zh) * 2018-08-09 2018-12-14 华霆(合肥)动力技术有限公司 温控结构及电池模组
CN111211262A (zh) * 2018-11-21 2020-05-29 郑州深澜动力科技有限公司 一种电池箱及其箱体
CN111584780B (zh) * 2020-04-30 2021-03-23 东风汽车集团有限公司 一种保护板及长模组切割方法
CN111933846A (zh) * 2020-07-28 2020-11-13 东风汽车集团有限公司 一种集成液冷系统的电池包箱体和电动车辆
TWI783323B (zh) * 2020-12-14 2022-11-11 國家中山科學研究院 液冷電池模組
CN114976372A (zh) * 2021-02-22 2022-08-30 华为数字能源技术有限公司 一种电池储能系统及电动汽车
CN219086064U (zh) * 2022-11-17 2023-05-26 宁德时代新能源科技股份有限公司 电池箱体、电池及用电装置
CN218939819U (zh) * 2022-11-24 2023-04-28 宁德时代新能源科技股份有限公司 热管理部件、电池和用电设备
CN115791244B (zh) * 2023-02-06 2023-04-28 中国核动力研究设计院 一种模块式微通道紧凑换热实验本体、方法、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070780A1 (de) * 2015-03-16 2016-09-21 Samsung SDI Co., Ltd. Batteriekühlkörper
CN106099242A (zh) * 2016-07-04 2016-11-09 蔚来汽车有限公司 电池冷却换热器
CN206040780U (zh) * 2016-10-12 2017-03-22 宁德时代新能源科技股份有限公司 电池箱体
CN106935756A (zh) * 2017-03-30 2017-07-07 天津市捷威动力工业有限公司 一种冷热一体化箱体结构
CN107331920A (zh) * 2017-08-18 2017-11-07 上海蔚来汽车有限公司 具有换热功能的电池包壳体和电池包

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181224A (ja) * 2010-02-26 2011-09-15 Sanyo Electric Co Ltd 電池冷却/加熱構造及び電池モジュール
KR101156958B1 (ko) * 2010-05-27 2012-06-21 주식회사 코캄 전기 자동차용 배터리 팩과, 조립체 및, 이를 이용한 온도제어 시스템
EP2608309A1 (de) * 2011-12-21 2013-06-26 Fortu Intellectual Property AG Batteriemodul mit Batteriemodulgehäuse und Batteriezellen
JP6149610B2 (ja) * 2013-08-28 2017-06-21 株式会社デンソー 電池冷却装置
CN204614833U (zh) * 2015-05-11 2015-09-02 宁德时代新能源科技有限公司 电池模组及动力电池系统
US10622687B2 (en) * 2015-08-10 2020-04-14 Ford Global Technologies, Llc Battery pack enclosure including integrated fluid channel
EP3154103B1 (en) * 2015-10-07 2019-02-27 Samsung SDI Co., Ltd. Battery module including a housing floor with integrated cooling
JP6497314B2 (ja) * 2015-12-18 2019-04-10 株式会社豊田自動織機 電池パック
CN205355205U (zh) * 2016-03-02 2016-06-29 宁德时代新能源科技股份有限公司 电池模组
CN106025103A (zh) * 2016-05-20 2016-10-12 宁德时代新能源科技股份有限公司 电池箱体组件及含该组件的电池箱
CN205882121U (zh) * 2016-07-28 2017-01-11 深圳市沃特玛电池有限公司 一种电池模组的加热液冷板
CN106450568B (zh) * 2016-10-09 2019-07-02 浙江吉利控股集团有限公司 一种动力电池包热管理系统
CN207852855U (zh) * 2017-08-18 2018-09-11 上海蔚来汽车有限公司 具有换热功能的电池包壳体和电池包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070780A1 (de) * 2015-03-16 2016-09-21 Samsung SDI Co., Ltd. Batteriekühlkörper
CN106099242A (zh) * 2016-07-04 2016-11-09 蔚来汽车有限公司 电池冷却换热器
CN206040780U (zh) * 2016-10-12 2017-03-22 宁德时代新能源科技股份有限公司 电池箱体
CN106935756A (zh) * 2017-03-30 2017-07-07 天津市捷威动力工业有限公司 一种冷热一体化箱体结构
CN107331920A (zh) * 2017-08-18 2017-11-07 上海蔚来汽车有限公司 具有换热功能的电池包壳体和电池包

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299579A (zh) * 2019-07-31 2019-10-01 上海马勒热系统有限公司 两层板式电池冷却板
CN110581302A (zh) * 2019-10-17 2019-12-17 北京普莱德新能源电池科技有限公司 一种电池模组及电动装置
CN111540979A (zh) * 2020-05-08 2020-08-14 上海加冷松芝汽车空调股份有限公司 一种基于新能源充电桩的水冷式集中电池热管理装置
CN113937383B (zh) * 2020-06-29 2023-10-13 比亚迪股份有限公司 电池模组、电池包及车辆
CN113937383A (zh) * 2020-06-29 2022-01-14 比亚迪股份有限公司 电池模组、电池包及车辆
CN113053706A (zh) * 2021-03-19 2021-06-29 安徽华东光电技术研究所有限公司 一种回旋管热丝及其制作方法
CN113611972A (zh) * 2021-08-05 2021-11-05 福建飞毛腿动力科技有限公司 一种电池用的高效低成本的灌胶壳体
CN114069143A (zh) * 2021-11-19 2022-02-18 重庆仟和镁业科技有限公司 一种中大型车用镁合金电池箱及其制造方法
CN114069143B (zh) * 2021-11-19 2024-02-09 重庆仟和镁业科技有限公司 一种中大型车用镁合金电池箱及其制造方法
CN114646185A (zh) * 2022-02-17 2022-06-21 贵州乌江水电开发有限责任公司 一种基于快速降温的水轮机保护装置
CN114646185B (zh) * 2022-02-17 2023-09-12 贵州乌江水电开发有限责任公司 一种基于快速降温的水轮机保护装置
CN114614150A (zh) * 2022-03-20 2022-06-10 中国第一汽车股份有限公司 用于电池模组的热管理装置、动力电池总成以及车辆
CN114843673A (zh) * 2022-04-08 2022-08-02 苏州市华盛源机电有限公司 一种轻量化电动汽车电池包上壳体加工方法
CN118248997A (zh) * 2024-05-23 2024-06-25 天津力神新能源科技有限公司 电池包、电池包换热系统及电池簇换热系统

Also Published As

Publication number Publication date
TW201914091A (zh) 2019-04-01
CN107331920A (zh) 2017-11-07
TWI758528B (zh) 2022-03-21

Similar Documents

Publication Publication Date Title
WO2019034097A1 (zh) 具有换热功能的电池包壳体和电池包
CN112151910B (zh) 一种液冷电池系统及液冷电池系统的控制方法
JP7197689B2 (ja) 電池パック、車両及びエネルギー蓄積装置
TWM574763U (zh) 具有換熱功能的電池包殼體和電池包
WO2022156400A1 (zh) 电池液冷板总成、电池总成及车辆
CN211017317U (zh) 一种电池箱
CN111048708A (zh) 电池箱下箱体
EP3799194B1 (en) Battery pack
CN217405594U (zh) 一种电池箱体及电池箱
WO2022217980A1 (zh) 电芯模组及电动汽车
CN116169415A (zh) 电池箱体及电池包
CN113782903B (zh) 电池包及具有该电池包的车辆
CN221466698U (zh) 电池包箱体组件、电池包和用电设备
CN221226405U (zh) 电池热调节板和电池包
CN219626790U (zh) 箱体、箱体组件、电池及用电设备
CN221747340U (zh) 液冷箱体、电池包和电子装置
CN215070281U (zh) 电池以及电动车辆
JP7556985B2 (ja) 電池パック及び電気自動車
CN216133911U (zh) 一种水冷电池模组、电池包及用电装置
CN219246789U (zh) 一种电池及用电装置
CN218039443U (zh) 电池壳体及电池模组
CN215869589U (zh) 组合电池和集成电池柜
CN220021254U (zh) 用于电池包的冷却组件、电池包及车辆
CN219801003U (zh) 电池包
CN221574116U (zh) 动力电池下壳体、动力电池及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847111

Country of ref document: EP

Kind code of ref document: A1