WO2019033798A1 - 触控显示面板及其驱动方法、电子装置 - Google Patents

触控显示面板及其驱动方法、电子装置 Download PDF

Info

Publication number
WO2019033798A1
WO2019033798A1 PCT/CN2018/085854 CN2018085854W WO2019033798A1 WO 2019033798 A1 WO2019033798 A1 WO 2019033798A1 CN 2018085854 W CN2018085854 W CN 2018085854W WO 2019033798 A1 WO2019033798 A1 WO 2019033798A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
transistor
light emitting
display panel
electrode
Prior art date
Application number
PCT/CN2018/085854
Other languages
English (en)
French (fr)
Inventor
黄炜赟
龙跃
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18810873.2A priority Critical patent/EP3671413A4/en
Priority to JP2018564909A priority patent/JP7299023B2/ja
Priority to US16/309,011 priority patent/US11249580B2/en
Publication of WO2019033798A1 publication Critical patent/WO2019033798A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • G09G3/325Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3283Details of drivers for data electrodes in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel

Definitions

  • Embodiments of the present disclosure relate to a touch display panel, a method of driving the same, and an electronic device.
  • the Organic Light Emitting Diode (OLED) display panel has self-luminous, high contrast, low power consumption, wide viewing angle, fast response, can be used for flexible panels, wide temperature range, simple manufacturing, etc.
  • OLED Organic Light Emitting Diode
  • OLED display panels with touch functions have also become a research hotspot in the display field.
  • OLED display panels with touch functions mostly use external touch technology (for example, glass substrate-glass substrate type GG (Glass-Glass) and glass-film-film type GFF (Glass-Film-Film), etc.)
  • the external touch technology requires a touch layer to be separately formed on the display panel, and the process is complicated and the cost is high.
  • the curved display panel needs to simultaneously consider the touch function and the flexible performance of the back panel, and the touch function has a high risk of failure.
  • At least one embodiment of the present disclosure provides a touch display panel including a plurality of touch detection lines, a plurality of touch electrodes, a plurality of pixel units, and an insulating layer.
  • the plurality of touch electrodes are respectively corresponding to the plurality of touch detection lines, each of the pixel units includes a light emitting device, and the plurality of touch electrodes are configured to implement a touch function during the touch phase;
  • the electrodes are also configured to be multiplexed into the cathode or anode of the light emitting device during the display phase to achieve a display function.
  • At least one embodiment of the present disclosure also provides an electronic device comprising the touch control display panel of any of the above.
  • At least one embodiment of the present disclosure further provides a driving method of a touch display panel according to any one of the preceding claims, comprising: generating a control signal; and displaying, by the control signal, the plurality of touch detection lines Transmitting an electrode voltage signal to the plurality of touch electrodes to implement a display function; and controlling, by the control signal, the plurality of touch detection lines to respectively transmit a touch drive to the plurality of touch electrodes
  • the signals are read, and the touch sensing signals of the plurality of touch electrodes are respectively read by the plurality of touch detection lines to implement a touch function.
  • At least one embodiment of the present disclosure provides a touch display panel, a driving method thereof, and an electronic device.
  • the anode or the cathode of the light emitting device is multiplexed into a touch electrode, thereby integrating the touch electrode for implementing the touch function on the touch display.
  • the touch and display integration can be realized by time division multiplexing without adding additional processes, the production cost is reduced, the volume and weight of the display panel are reduced, and the added value of the product is improved.
  • FIG. 1A is a schematic plan view of a touch display panel according to an embodiment of the present disclosure
  • FIG. 1B is a schematic plan view of another touch display panel according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional structural view of a touch display panel according to an embodiment of the present disclosure
  • 3A is a schematic circuit diagram of a first type of pixel unit according to an embodiment of the present disclosure
  • FIG. 3B is a schematic circuit diagram of a second type of pixel unit according to an embodiment of the present disclosure.
  • FIG. 4A is a schematic circuit diagram of a third pixel unit according to an embodiment of the present disclosure.
  • FIG. 4B is a schematic circuit diagram of a fourth pixel unit according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a selection sub-circuit in a control circuit according to an embodiment of the present disclosure
  • FIG. 6A is a schematic diagram of a touch display panel in an uncompensated state according to an embodiment of the present disclosure
  • FIG. 6B is a schematic diagram of a touch display panel in a compensated state according to an embodiment of the present disclosure
  • FIG. 7 is a schematic block diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a method for driving a touch display panel according to an embodiment of the present disclosure
  • FIG. 9 is a schematic timing diagram of a driving method of a touch display panel according to an embodiment of the present disclosure.
  • Touch technologies can include capacitive touch technology, electromagnetic touch technology, resistive touch technology, and optical touch technology.
  • Capacitive touch technology is developing rapidly due to its low cost, wear resistance and long life.
  • the organic light-emitting diode (OLED) display panel with touch function can adopt capacitive touch technology.
  • the OLED display panel based on the capacitive touch technology needs to adopt two independent manufacturing process steps, that is, the external touch substrate manufacturing process and the OLED display substrate manufacturing process. Therefore, the touch function OLED display panel process flow and The product structure has become complicated.
  • the OLED display panel includes a laminated structure of an anode, an organic light emitting layer, and a cathode, and may further include an auxiliary functional layer such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, as needed.
  • the OLED display panel can be classified into a passive matrix driving organic light emitting diode (PMOLED) display panel and an active matrix driving organic light emitting diode (AMOLED) display panel according to the driving method.
  • PMOLED passive matrix driving organic light emitting diode
  • AMOLED active matrix driving organic light emitting diode
  • the PMOLED display panel is composed of a cathode and an anode, and the intersection of the anode and the cathode can emit light, and the driving circuit can be externally mounted by a connection method such as a tape carrier package (TCP) or a chip on glass (Chip On Glass, COG).
  • a connection method such as a tape carrier package (TCP) or a chip on glass (Chip On Glass, COG).
  • TCP tape carrier package
  • COG Chip On Glass
  • Each pixel of the AMOLED display panel is provided with a thin film transistor (TFT) having a switching function and a charge storage capacitor, whereby each pixel can be independently controlled, and the peripheral driving circuit and the OLED can be integrated on the same glass substrate.
  • TFT thin film transistor
  • the OLED when the AMOLED display panel is operated, the OLED is mainly driven by applying a voltage to the OLED, for example, the OLEDs of different sub-pixels emit light of different colors, thereby performing full-color display.
  • the AMOLED display panel has the advantages of short response time, low power consumption, high contrast, and wide viewing angle. The embodiment of the present disclosure will be described in detail by taking an AMOLED display panel as an example.
  • At least one embodiment of the present disclosure provides a touch display panel including a plurality of touch detection lines, a plurality of touch electrodes, a plurality of pixel units, and an insulating layer.
  • the plurality of touch electrodes are respectively connected to the plurality of touch detection lines, and each of the touch electrodes is electrically connected to the corresponding touch detection line through at least one connection hole in the insulating layer, and each of the pixel units includes a light emitting device.
  • the touch electrodes are configured to implement a touch function during the touch phase; the plurality of touch electrodes are further configured to be multiplexed into a cathode or an anode of the light emitting device during the display phase to implement a display function.
  • the transistor can be divided into an N-type transistor and a P-type transistor.
  • the first transistor, the second transistor, and the third transistor are both P-type transistors (for example, The P-type MOS transistor, the fourth transistor is an N-type transistor (for example, an N-type MOS transistor), and the technical solution of the present disclosure is described in detail.
  • the embodiments of the present disclosure are not limited thereto, and those skilled in the art may also Need specific settings.
  • the transistor used in the embodiment of the present disclosure may be a thin film transistor or a field effect transistor or other switching device having the same characteristics, and the thin film transistor may include an oxide thin film transistor, an amorphous silicon thin film transistor, or a polysilicon thin film transistor.
  • the source and drain of the transistor can be symmetrical in structure, so the source and drain of the transistor can be physically indistinguishable.
  • the transistors except for the gate as the gate, one of the first poles and the other pole are directly described, so the first of all or part of the transistors in the embodiment of the present disclosure The pole and the second pole are interchangeable as needed.
  • the first pole of the transistor can be the source and the second pole can be the drain; or, for the P-type transistor, the first drain of the transistor, the second source of the pole.
  • the level of the control voltage of the gate is also different.
  • the N-type transistor is in an on state when the control signal is at a high level, and the N-type transistor is in an off state when the control signal is at a low level.
  • the P-type transistor is in an on state when the control voltage is at a low level, and the P-type transistor is in an off state when the control signal is at a high level.
  • FIG. 1A is a schematic plan view of a touch display panel according to an embodiment of the present disclosure
  • FIG. 1B is a schematic plan view of another touch display panel according to an embodiment of the present disclosure.
  • a touch display panel includes a substrate 10 , a plurality of touch detection lines 14 , a plurality of touch electrodes 11 , a plurality of pixel units 12 , and an insulating layer 300 .
  • a plurality of touch detection lines 14 , a plurality of touch electrodes 11 , and a plurality of pixel units 12 are respectively disposed on the substrate 10 , and the plurality of touch electrodes 11 are electrically connected to the plurality of touch detection lines 14 in one-to-one correspondence.
  • the pixel unit 12 includes a light emitting device 122.
  • the plurality of touch electrodes 11 are configured to implement a touch function during the touch phase; the plurality of touch electrodes 11 are configured to be multiplexed into a cathode or an anode of the light emitting device 122 during the display phase to implement a display function.
  • the plurality of touch electrodes 11 are configured to receive the electrode voltage signals during the display phase to implement the display function, and the plurality of touch electrodes 11 are further configured to receive the touch drive signals during the touch phase to implement the touch function.
  • each touch electrode 11 can be multiplexed into the anode of the light emitting device 122 of one or more pixel units 12.
  • each touch electrode 11 can be multiplexed into the cathode of the light emitting device 122 of one or more pixel units 12.
  • each touch electrode 11 corresponds to a pixel unit group, and the pixel unit group includes at least one pixel unit 12.
  • the plurality of touch electrodes 11 have the same shape, so that the electrical characteristics of the plurality of touch electrodes 11 are substantially the same, thereby ensuring the accuracy of the touch detection and the uniformity of the display screen.
  • the present invention is not limited thereto, and the plurality of touch electrodes 11 may have different shapes.
  • each touch electrode 11 may have a rectangular shape, for example, may be a square.
  • the shape of the touch electrode 11 may be circular, trapezoidal or the like according to actual design requirements.
  • the shape of the touch electrode 11 is not specifically limited in the embodiment of the present disclosure.
  • the light emitting device 122 can be an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • Light emitting device 122 is configured to receive a luminescent signal (eg, can be a current signal) while in operation and to emit light of a strength corresponding to the illuminating signal.
  • a luminescent signal eg, can be a current signal
  • the OLED 222 is taken as an example for description.
  • the light emitting device 122 may also be a quantum dot light emitting diode (QLED). The disclosure does not limit this.
  • the light emitting device 122 may include an upper light emitting type light emitting diode and a lower light emitting type light emitting diode.
  • the substrate 10 includes, for example, a first side provided with a light emitting device 122 and a second side remote from the light emitting device 122.
  • the light emitted from the lower light emitting type light emitting diode is transmitted through the substrate 10 from the second side thereof, and the light emitted from the upper light emitting type light emitting diode does not pass through the substrate 10 but is emitted from the first side thereof.
  • the light emitting device 122 may also be a double-sided light emitting type light emitting diode.
  • each of the touch electrodes 11 is multiplexed as a cathode of the upper light emitting type light emitting diode.
  • each touch electrode 11 is multiplexed as an anode of the lower light emitting type light emitting diode.
  • the touch electrode 11 can be located on the light exiting side of the touch display panel, thereby preventing the anode or cathode of the light emitting device 122 from shielding or interfering with the touch signal, thereby ensuring the touch effect.
  • the anode of the light emitting device 122 functions as a pixel electrode, and is electrically connected to the driving transistor (see the first transistor T1 of FIG. 2); when the light emitting device 122 is under In the case of the light-emitting type light-emitting diode, the cathode of the light-emitting device 122 functions as a pixel electrode, and is electrically connected to a driving transistor (see the first transistor T1 of FIG. 2).
  • all the touch electrodes 11 on the touch display panel are multiplexed into the cathode or the anode of the light emitting device 122, but are not limited thereto, and only part of the touch electrodes 11 may be multiplexed. It is the cathode or anode of the light emitting device 122.
  • the light emitting device 122 may include a first electrode 1221, an organic layer 1222, and a second electrode 1223 disposed between the first electrode 1221 and the second electrode 1223.
  • the first electrode 1221 can be an anode or a cathode
  • the second electrode 1223 is a cathode or an anode.
  • the touch electrode 11 can be multiplexed into the second electrode 1223 of the light emitting device 122. That is, the touch electrode 11 that implements the touch function can be the anode or the cathode in the light emitting device 122, and the touch electrode 11 is integrated in the display panel.
  • touch and display integration can be realized by time division multiplexing, which reduces production cost, reduces the volume and weight of the display panel, and increases the added value of the product. Meanwhile, when the touch display panel is a curved display panel, the touch display panel can improve the stability of the flexible display.
  • the organic layer 1222 may have a multilayer structure.
  • the organic layer 1222 may include functional layers such as a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer; and, for example, the organic layer 1222 may further include a hole blocking layer and an electron blocking layer, as needed.
  • the hole blocking layer may be disposed, for example, between the electron transport layer and the light emitting layer, and the electron blocking layer may be disposed, for example, between the hole transport layer and the light emitting layer.
  • the arrangement and material of each layer in the organic layer 1222 can be referred to a general design, and the embodiment of the present disclosure does not limit this.
  • the anode serves as a connection electrode for the forward voltage, has better conductivity and a higher work function value
  • the cathode serves as a connection electrode of a negative voltage, and has better conductivity and a lower work function value.
  • the first electrode 1221 is an anode and the second electrode 1223 is a cathode
  • the first electrode 1221 may be formed of a transparent conductive material having a high work function, and the electrode material may include indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the second electrode 1223 can be made of high conductivity Formed with a material having a low work function, the electrode material may include an alloy such as magnesium aluminum alloy (MgAl), lithium aluminum alloy (LiAl), or a single metal such as magnesium, aluminum, or lithium. It should be noted that the first electrode 1221 and the second electrode 1223 may also be formed of a transparent conductive material. The embodiments of the present disclosure do not limit this.
  • the light emitting device 122 is an upper light emitting type light emitting diode
  • the first electrode 1221 is an anode
  • the second electrode 1223 is a cathode
  • the second electrode 1223 is a translucent cathode
  • the first electrode 1221 is a reflective electrode.
  • the second electrode 1223 is formed of, for example, a transparent conductive material or a translucent metal material.
  • the first electrode 1221 may be formed of, for example, one or more of a highly reflective metal material (for example, silver (Ag), aluminum (Al), or the like).
  • the anode of the light emitting device 122 may be formed of a transparent conductive material (for example, ITO or the like), and the cathode of the light emitting device 122 may be formed of a metal material.
  • the light emitting devices 122 in the different pixel units 12 may emit light of different colors, for example, may emit red light, green light, blue light, white light, or the like, thereby achieving color display.
  • the luminescent layer in the organic layer 1222 can employ different luminescent materials to achieve emission of different colors of light.
  • the touch electrode 11 is multiplexed into the second electrode 1223, so that the touch electrode 11 can be prepared using the same material as the second electrode 1223.
  • the insulating layer 300 may include a flat layer 32 and a pixel defining layer 31.
  • Each of the touch electrodes 11 is electrically connected to the corresponding touch detecting line 14 through at least one connecting hole in the insulating layer 300.
  • the insulating layer 300 is covered on the plurality of touch detection lines 14 , and the plurality of touch electrodes 11 are disposed on the insulating layer 300 .
  • the flat layer 32 is overlaid on the touch detection line 14
  • the pixel defining layer 31 is disposed on the flat layer 32
  • the touch electrode 11 is disposed on the pixel defining layer 31.
  • a plurality of first connection holes 13 are disposed in the insulating layer 300.
  • the first connection holes 13 extend through the pixel defining layer 31 and the flat layer 32 to expose the touch detection lines 14.
  • the touch electrode 11 is electrically connected to the touch detection line 14 through the first connection hole 13 .
  • each of the touch electrodes 11 may correspond to one first connection hole 13 or a plurality of first connection holes 13 .
  • the plurality of first connection holes 13 can reduce the contact resistance between the touch electrode 11 and the touch detection line 14.
  • the pixel defining layer 31 is configured to define a sub-pixel region, and the light emitting layer in the organic layer 1222 is correspondingly disposed in an open region of the pixel defining layer 31.
  • the pixel defining layer 31 may be a one-layer or two-layer structure, or may be a multi-layer composite layer structure. The embodiments of the present disclosure do not limit this.
  • the pixel defining layer 31 may be made of an insulating material, for example, may be made of an organic insulating material.
  • examples of the material of the flat layer 32 include silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiN x O y ), or other suitable materials.
  • the substrate 10 may be a transparent insulating substrate, and the transparent insulating substrate may be, for example, a glass substrate, a quartz substrate, or other suitable substrate.
  • FIG. 3A is a schematic circuit diagram of a first type of pixel unit according to an embodiment of the present disclosure
  • FIG. 3B is a schematic circuit diagram of a second type of pixel unit according to an embodiment of the present disclosure
  • a schematic circuit diagram of a third type of pixel unit provided by an embodiment is disclosed.
  • FIG. 4B is a schematic circuit diagram of a fourth type of pixel unit according to an embodiment of the present disclosure.
  • the touch display panel provided by the embodiment of the present disclosure adopts an active driving manner
  • the pixel unit 12 further includes a driving circuit 121 configured to drive the light emitting device 122 to emit light during the display phase.
  • the drive circuit 121 includes a first transistor T1 and a second transistor T2.
  • the first transistor T1 may be referred to as a driving transistor
  • the second transistor T2 may be referred to as a selection transistor.
  • the touch detection line 14 may be in the same layer as the gate, source or drain of the first transistor T1, and/or the touch detection line 14 may also be connected to the gate, source or drain of the second transistor T2. Located on the same layer, the touch detection line 14 and the gate, source or drain can be formed in the same patterning process.
  • the first transistor T1 adopts a bottom gate type structure, and the first transistor T1 includes a gate electrode 24, a gate insulating layer 26, and an active layer which are sequentially disposed on the substrate 10.
  • a first pole 21 for example, may be a drain
  • a second pole 22 for example, may be a source
  • the flat layer 32 is provided with a via 25
  • the via 25 exposes the first pole 21, the first of the light emitting device 122
  • An electrode 1221 is electrically connected to the first pole 21 through the via hole 25.
  • the touch detection line 14 is located in the same layer as the first pole 21 and the second pole 22 of the first transistor T1.
  • the touch detection line 14 can be formed simultaneously with the first pattern 21 and the second layer 22 by the same patterning process, thereby reducing process steps and saving production costs.
  • the material of the gate electrode 24, the gate insulating layer 26, the active layer 23, the first electrode 21, and the second electrode 22 can be referred to a general design.
  • the first transistor T1 and the second transistor T2 may be of a bottom gate type structure or a top gate type structure, which is not limited by the embodiment of the present disclosure.
  • the direction in which the touch detection line 14 extends may be the same as the direction in which the data lines (not shown) extend.
  • the present invention is not limited thereto, and the extending direction of the touch detection line 14 may be the same as the extending direction of the gate line (not shown).
  • the touch detection line 14 can also be formed in the same layer as the data line and/or the gate line, thereby simplifying the manufacturing process of the touch display panel and facilitating wiring.
  • the touch display panel further includes a first power terminal V1 and a second power terminal V2.
  • the touch detection line 14 can be electrically connected to the second power terminal V2.
  • the second power terminal V2 is configured to output an electrode voltage signal, and the electrode voltage signals can be transmitted to the plurality of touch detection lines 14 respectively.
  • Touch electrode 11 is configured to output an electrode voltage signal, and the electrode voltage signals can be transmitted to the plurality of touch detection lines 14 respectively.
  • the first power terminal V1 is a high voltage terminal and the second power terminal V2 is a low voltage terminal
  • the touch electrode 11 can be multiplexed as a cathode of the light emitting device 122.
  • the electrode voltage signal is a low level signal (for example, 0 V), and the electrode voltage signal can be transmitted to the touch electrode 11 through the touch detection line 14, that is, the cathode of the light emitting device 122.
  • the first power terminal V1 is a low voltage terminal and the second power terminal V2 is a high voltage terminal
  • the touch electrode 11 can be multiplexed as an anode of the light emitting device 122.
  • the electrode voltage signal is a high level signal (for example, 5V), and the electrode voltage signal can be transmitted to the touch electrode 11 through the touch detection line 14, that is, the anode of the light emitting device 122.
  • the high voltage terminal can be electrically connected to the positive pole of the power source to output a positive voltage.
  • the low voltage side can be electrically connected to the negative pole of the power supply to output a negative voltage.
  • the low voltage side can also be electrically connected to the ground.
  • the touch display panel further includes a touch power terminal V3, and the touch power terminal V3 is electrically connected to the touch detection line 14.
  • the touch power terminal V3 is configured to output a touch drive signal, and the touch drive signal is transmitted to the touch electrode 11 through the touch detection line 14.
  • the touch drive signal can be a pulse voltage signal.
  • the touch display panel further includes a control circuit 100.
  • the control circuit 100 is configured to control the plurality of touch detection lines 14 to respectively transmit the electrode voltage signals to the plurality of touch electrodes 11.
  • the control circuit 100 is configured to control the plurality of touch detection lines 14 to respectively transmit the touch driving signals to the plurality of touch electrodes 11 .
  • the control circuit 100 can drive the touch electrode 11 in a time-sharing manner.
  • the touch electrode 11 functions as an anode or a cathode of the light-emitting device 122.
  • the touch electrode 11 can be used to sense the touch signal.
  • the touch display panel provided by the embodiment of the present disclosure can realize integration of touch and display.
  • control circuit 100 can include a signal generation sub-circuit and a selection sub-circuit.
  • the signal generation sub-circuit is configured to generate and output a control signal EM;
  • the selection sub-circuit is configured to control the plurality of touch detection lines 14 to transmit different signals (ie, electrode voltage signals and touch drive signals) to the touch according to the control signal EM On the control electrode 11.
  • the control signal EM is the first polarity
  • the plurality of touch detection lines 14 respectively transmit the electrode voltage signals to the plurality of touch electrodes 11
  • the control signal EM is the second polarity
  • the plurality of touches The detecting line 14 transmits the touch driving signals to the plurality of touch electrodes 11 respectively.
  • the first polarity is positive polarity
  • the second polarity is negative polarity
  • the first polarity is negative polarity and the second polarity is positive polarity
  • FIG. 5 is a schematic structural diagram of a selection sub-circuit of a control circuit according to an embodiment of the present disclosure.
  • the selection sub-circuit may be composed of a fifth transistor T5 and a sixth transistor T6.
  • the gates of the fifth transistor T5 and the sixth transistor T6 both receive the control signal EM, and the second poles of the fifth transistor T5 and the sixth transistor T6 are electrically connected to the touch detection line 14, and the first pole of the fifth transistor T5 is electrically Connected to the second power terminal V2, the first pole of the sixth transistor T6 is electrically connected to the touch power terminal V3, so that the fifth transistor T5 can transmit the electrode voltage signal outputted by the second power terminal V2 to the touch detection line 14, The sixth transistor T6 can transmit the touch driving signal outputted by the touch power terminal V3 to the touch detection line 14.
  • the fifth transistor T5 and the sixth transistor T6 are of opposite types such that under the control of the same control signal EM, one of the transistors is turned on and the other transistor is turned off.
  • the sixth transistor T6 is a P-type transistor; or, if the fifth transistor T5 is a P-type transistor, the sixth transistor T6 is an N-type transistor.
  • the pixel unit provided by the embodiment of the present disclosure will be described in detail below with reference to FIGS. 3A-4B.
  • the driving circuit 121 may further include a third transistor T3 and a storage capacitor C1, that is, using three TFTs (Thin-film transistors, A thin film transistor) and a storage capacitor are used to implement the basic function of driving the light emitting device 122 to emit light. That is to say, the driving circuit 121 adopts a 3T1C structure, and a third transistor T3 is added on the basis of the conventional 2T1C structure.
  • the touch detection line 14 may also be in the same layer as the gate, source or drain of the third transistor T3.
  • the first transistor T1 is configured to transmit a light-emitting signal corresponding to the display data signal Vdata to the light-emitting device 122, thereby driving the light-emitting device 122 to emit light.
  • the illuminating signal can be, for example, a current signal.
  • the second transistor T2 is configured to write the display data signal Vdata to the gate of the first transistor T1 to control the magnitude of the current signal flowing through the first transistor T1 when turned on.
  • the storage capacitor C1 is configured to store the display data signal Vdata and hold it at the gate of the first transistor T1.
  • the display data signal Vdata can control the degree of conduction of the first transistor T1, thereby controlling the magnitude of the current signal flowing through the first transistor T1.
  • the current signal flowing through the first transistor T1 can be transmitted to the light emitting device 122 to drive its illumination, which can determine the gray scale (i.e., illumination intensity) at which the illumination device 122 emits light.
  • the third transistor T3 may be referred to as a light emission control transistor.
  • the third transistor T3 is configured such that the first transistor T1 and the light emitting device 122 are turned on, thereby driving the light emitting device 122 to emit light; and in the touch phase, the third transistor T3 is configured to be the first transistor T1 side The floating, so that the first transistor T1 can not drive the light-emitting device 122 to emit light, so that the third transistor T3 can avoid mutual interference between the display function and the touch function of the touch display panel.
  • FIG. 3A shows a circuit diagram of a first type of pixel unit.
  • the first electrode of the third transistor T3 is electrically connected to the first transistor T1
  • the second electrode of the third transistor T3 is electrically connected to the light emitting device 122
  • the third transistor T3 is configured to control The light emitting device 122 and the first transistor T1 are turned on or off.
  • the third transistor T3 is configured to conduct the light emitting device 122 and the first transistor T1 to control the light emitting device 122 to emit light, so that the touch display panel realizes a display function.
  • the third transistor T3 is configured to disconnect the light emitting device 122 and the first transistor T1, so that the touch display panel implements a touch function.
  • the gate of the second transistor T2 may be electrically connected to the gate line to receive the scan signal Gate, and the first pole of the second transistor T2 is electrically connected to the data line to receive the display data signal Vdata,
  • the second pole of the second transistor T2 is electrically connected to the first node N1, that is, the gate of the first transistor T1.
  • the first pole of the first transistor T1 is electrically connected to the first power terminal V1
  • the second pole of the first transistor T1 is electrically connected to the first pole of the third transistor T3
  • the gate of the first transistor T1 is electrically connected to the first node N1.
  • the first end of the storage capacitor C1 is electrically connected to the first node N1 (ie, between the second pole of the second transistor T2 and the gate of the first transistor T1), and the second end of the storage capacitor C1 is electrically connected to the first transistor
  • the first pole of T1 is between the first power terminal V1.
  • the gate of the third transistor T3 receives the control signal EM, and the second electrode of the third transistor T3 is electrically coupled to the first end of the light emitting device 122 (eg, the positive terminal of the light emitting device 122); the second end of the light emitting device 122 (eg, The negative terminal of the light emitting device 122 is electrically connected to the third node N3, and the second power terminal V2 and the touch power terminal V3 are connected to the third node N3 via the control circuit 100.
  • the third transistor T3 and the fifth transistor T5 are of the same type. Thereby, the third transistor T3 and the fifth transistor T5 can be turned on or off simultaneously under the control of the control signal EM.
  • the third transistor T3 and the fifth transistor T5 are simultaneously turned on, that is, the third transistor T3 turns on the light emitting device 122 and the first transistor T1, and the fifth transistor T5 emits light.
  • the device 122 and the second power terminal V2 are turned on, so that the touch display panel realizes the display function.
  • FIG. 3B shows a circuit diagram of a second type of pixel unit.
  • the pixel unit shown in FIG. 3B is similar to the pixel unit shown in FIG. 3A, but the connection manner of the third transistor T3 in the drive circuit 121 is different from the example shown in FIG. 3A.
  • the pixel unit shown in FIG. 3A is different from the pixel unit shown in FIG. 3B in that, in the example shown in FIG. 3B, the first pole of the third transistor T3 is electrically connected to the first power supply terminal V1.
  • the second electrode of the third transistor T3 is electrically coupled to the first transistor T1, and the third transistor T3 is configured to control to turn the first transistor T1 and the first power supply terminal V1 on or off.
  • the third transistor T3 is configured to conduct the first transistor T1 and the first power terminal V1 to control the light emitting device 122 to emit light, so that the touch display panel can realize the display function.
  • the third transistor T3 is configured to disconnect the first transistor T1 and the first power terminal V1, so that the touch display panel can implement the touch function.
  • the driving circuit 121 shown in FIG. 3B operates in substantially the same manner as the driving circuit 121 shown in FIG. 3A.
  • the connection manner of the third transistor T3 will be described below, and the content similar to the example shown in FIG. 3A will not be described again.
  • the first pole of the first transistor T1 is electrically connected to the second node N2, and the second pole of the first transistor T1 is electrically connected to the first end of the light emitting device 122 (eg, the light emitting device 122) Positive terminal);
  • the first pole of the third transistor T3 may be electrically connected to the first power terminal V1, and the second pole of the third transistor T3 is electrically connected to the second node N2 (ie, the first pole of the first transistor T1);
  • the second end of the capacitor C1 is electrically coupled to the second node N2 (ie, the first pole of the first transistor T1 and the second pole of the third transistor T3).
  • FIG. 4A shows a circuit diagram of a third type of pixel unit.
  • the manner of connection between the respective elements of the driving circuit 121 and the connection manner between the light emitting device 122 and the driving circuit 121 are different from the example shown in FIG. 3A.
  • the differences between the example shown in FIG. 4A and the example shown in FIG. 3A will be described below, and the content similar to the example shown in FIG. 3A will not be described again.
  • the gate of the second transistor T2 may be electrically connected to the gate line to receive the scan signal Gate, and the first electrode of the second transistor T2 is electrically connected to the data line to receive the display data signal Vdata, the second transistor.
  • the second pole of T2 is electrically coupled to the first node N1, that is, the gate of the first transistor T1.
  • the first pole of the first transistor T1 is electrically connected to the second pole of the third transistor T3, the second pole of the first transistor T1 is electrically connected to the first power terminal V1, and the gate of the first transistor T1 is electrically connected to the first node N1.
  • the first end of the storage capacitor C1 is electrically connected to the first node N1 (ie, between the second pole of the second transistor T2 and the gate of the first transistor T1), and the second end of the storage capacitor C1 is electrically connected to the first transistor Between the second pole of T1 and the first power terminal V1.
  • the gate of the third transistor T3 receives the control signal EM, the first pole of the third transistor T3 is electrically coupled to the second end of the light emitting device 122 (eg, the negative terminal of the light emitting device 122); the first end of the light emitting device 122 (eg, The positive terminal of the light emitting device 122 is electrically connected to the fourth node N4, and the second power terminal V2 and the touch power terminal V3 are connected to the fourth node N4 via the control circuit 100.
  • the operation mode of the driving circuit 121 shown in FIG. 4A is basically the same as that of the driving circuit 121 shown in FIG. 3A, and the repeated description is omitted.
  • FIG. 4B shows a circuit diagram of a fourth type of pixel unit.
  • the connection manner between the respective elements of the driving circuit 121 and the connection manner between the light emitting device 122 and the driving circuit 121 are similar to the example shown in FIG. 4A, except that the third transistor T3 is different. Connection method.
  • the connection manner of the third transistor T3 will be described below, and the content similar to the example shown in FIG. 4A will not be described again.
  • the second pole of the first transistor T1 is electrically connected to the second node N2, and the first pole of the first transistor T1 is electrically connected to the second end of the light emitting device 122 (eg, a light emitting device)
  • the second terminal of the third transistor T3 can be electrically connected to the first power supply terminal V1, the first electrode of the third transistor T3 is electrically connected to the second node N2; the second end of the storage capacitor C1 is electrically connected to The second node N2 (ie, between the second pole of the first transistor T1 and the first pole of the third transistor T3).
  • the operation mode of the driving circuit 121 shown in FIG. 4B is basically the same as that of the driving circuit 121 shown in FIG. 3B, and the repeated description is omitted.
  • the embodiment of the present disclosure is described by taking only the 3T1C structure of the driving circuit 121 as an example, but the driving circuit 121 of the embodiment of the present disclosure is not limited to the 3T1C structure.
  • the driving circuit 121 may further include a transfer transistor, a detection transistor, a reset transistor, and the like as needed.
  • the driving circuit 121 may further include an electrical compensation function to compensate for threshold voltage drift of the transistor and improve display uniformity including the touch display panel.
  • the compensation function can be implemented by voltage compensation, current compensation or hybrid compensation, and can be an internal compensation mode or an external compensation mode.
  • the drive circuit 121 having a compensation function can be, for example, 4T1C, 4T2C, 6T1C, and other drives with electrical compensation functions. Circuit 121.
  • the touch display panel further includes a plurality of compensation sensing lines 15.
  • the plurality of compensation sensing lines 15 are respectively electrically connected to the plurality of touch electrodes 11 , for example, one-to-one electrical connection, but the plurality of touch electrodes 11 may be sensed by one compensation sensing line 15 .
  • the plurality of compensation sensing lines 15 are configured to read the illuminating current or the illuminating voltage of the plurality of touch electrodes 11 during the display phase.
  • the touch electrode 11 multiplexed into the anode or the cathode of the light emitting device 122 is divided into a plurality of electrode blocks, so that the electrode voltage signals can be input to the different light emitting devices 122 separately.
  • the difference in display voltage of the light-emitting device 122 due to the voltage drop (IR drop) is compensated for, the display image quality is improved, and the display effect is improved.
  • a plurality of second connection holes 16 may be disposed in the insulating layer 300 (for example, the flat layer 32 and the pixel defining layer 31 shown in FIG. 2 ), and each touch electrode 11 corresponds to at least one second connection hole 16 .
  • the plurality of compensation sensing lines 15 are electrically connected to the plurality of touch electrodes 11 through the plurality of second connection holes 16 .
  • each of the touch electrodes 11 may correspond to only one second connection hole 16 or a plurality of second connection holes 16 .
  • the plurality of second connection holes 16 can reduce the contact resistance between the touch electrode 11 and the compensation sensing line 15.
  • the compensation sensing line 15 is the same as the direction in which the touch detection line 14 extends.
  • the data driving circuit (not shown) and the control circuit 100 may be disposed together or integrated on one chip.
  • the compensation sensing line 15 can be formed in the same layer as the touch detection line 14, thereby further simplifying the manufacturing process of the touch display panel and facilitating wiring.
  • the touch display panel further includes a compensation circuit 17.
  • the compensation circuit 17 includes a difference sub-circuit and a regulation sub-circuit.
  • the compensation sense line 15 can be coupled to the difference sub-circuit to transmit the sensed illumination voltage or illumination current of the illumination device 122 to the difference sub-circuit.
  • the difference sub-circuit is configured to receive the illuminating current or the illuminating voltage, and calculate a difference between the illuminating current or the illuminating voltage and a preset current or a preset voltage of the illuminating device 122; the adjusting sub-circuit is configured to adjust according to the difference The electrode voltage signal outputted by the second power terminal V2.
  • both the difference sub-circuit and the adjustment sub-circuit can be implemented using hardware circuits.
  • the difference sub-circuit and the adjustment sub-circuit can be formed, for example, by components such as transistors, resistors, capacitors, and amplifiers.
  • the difference sub-circuit can also be implemented by a signal processor such as an FPGA, a DSP, or a CMU.
  • the difference sub-circuit may include, for example, a processor and a memory, and the processor executes a software program stored in the memory to implement a function of performing a difference processing between the illuminating current (or the illuminating voltage) and the preset current (or the preset voltage) of the illuminating device 122. .
  • control circuit 100 is further configured to control the compensation sensing line 15 to read the illuminating current on the touch electrode 11 or Illumination voltage.
  • the pixel unit also includes a compensation control circuit 18.
  • the compensation control circuit 18 is configured to control the compensation sensing line 15 to sense the illuminating current or the illuminating voltage of the illuminating device 122 under the control of the control circuit 100.
  • the compensation control circuit 18 can include a fourth transistor T4.
  • the gate of the fourth transistor T4 receives the control signal EM, the first pole of the fourth transistor T4 is used to connect with the difference sub-circuit, and the second pole of the fourth transistor T4 is electrically connected to the third node N3, that is, the fourth transistor
  • the second pole of T4 is electrically connected to the cathode of the light emitting device 122, that is, the touch electrode 11.
  • the types of the fourth transistor T4, the third transistor T3, and the fifth transistor T5 are all the same.
  • the third transistor T3, the fourth transistor T4, and the fifth transistor T5 can be turned on or off simultaneously under the control of the control signal EM.
  • the third transistor T3, the fourth transistor T4, and the fifth transistor T5 are simultaneously turned on.
  • the illuminating current of the illuminating device 122 sensed by the sensing line 15 is compensated.
  • the illuminating voltage can be transmitted to the difference sub-circuit in real time, and subsequent compensation operations are performed, so that the touch display panel can realize the compensation function.
  • the compensation sensing line 15 is not limited to the position connected to the third node N3, and may be connected to other positions where the illuminating current or the illuminating voltage of the illuminating device 122 can be sensed.
  • FIG. 6A is a schematic diagram of a touch display panel in an uncompensated state according to an embodiment of the present disclosure
  • FIG. 6B illustrates a touch display panel in a compensated state according to an embodiment of the present disclosure. Schematic diagram.
  • the preset voltage of the light emitting device 122 is Vref.
  • the touch display panel may include a first touch electrode 11a, a second touch electrode 11b, a first touch detection line 14a, and a second touch detection line 14b.
  • the line resistance of the first touch detection line 14a electrically connected to the first touch electrode 11a is Ra
  • the line resistance of the second touch detection line 14b electrically connected to the second touch electrode 11b is Rb.
  • the voltage drop on the first touch detection line 14a connected to the first touch electrode 11a is Va
  • the second touch detection line 14b connected to the second touch electrode 11b is in the uncompensated state.
  • the voltage drop is Vb.
  • the electrode voltage signals outputted by the second power terminal V2 are both Vref
  • the illuminating voltages finally transmitted to the first touch electrode 11a and the second touch electrode 11b are Vref-Va and Vref, respectively.
  • Vb when Va and Vb are different, different voltage drops will cause the picture displayed on the touch display panel to be uneven.
  • the compensation sensing line senses that the illuminating voltages on the first touch electrode 11a and the second touch electrode 11b are Vref-Va and Vref-Vb, respectively
  • compensation can be generated by the compensation circuit.
  • the data for example, the compensation data can be obtained by subtracting the sensed illuminating current (or illuminating voltage) from the preset current (or preset voltage) of the illuminating device 122. Then, the electrode voltage signal outputted by the second power terminal V2 is adjusted in real time according to the compensation data.
  • the electrode voltage signal outputted by the second power terminal V2 electrically connected to the first touch electrode 11a is adjusted to Vref+Va
  • the electrode voltage signal outputted by the second power supply terminal V2 electrically connected to the touch electrode 11b is adjusted to Vref+Vb.
  • the illuminating voltages transmitted to the first touch electrode 11a and the second touch electrode 11b are both Vref and Vref, thereby improving the uniformity of the display screen.
  • FIG. 7 is a schematic block diagram of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 1 includes the touch display panel 2 provided by any embodiment of the present disclosure.
  • the touch display panel 2 can be a rectangular touch panel, a circular touch panel, an elliptical touch panel, or a polygonal touch panel.
  • the touch display panel 2 can be not only a flat touch panel, but also a curved touch panel or even a spherical touch panel.
  • the touch electrodes for implementing the touch function are integrally disposed with the anode or the cathode of the light emitting device, so that the touch display panel 2 can improve the stability of the flexible display.
  • the electronic device 1 provided by the embodiment of the present disclosure may be any product or component having a touch display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a touch display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the electronic device 1 for example, a control device, an image data encoding/decoding device, a line scan driver, a column scan driver, a clock circuit, etc.
  • a control device for example, a control device, an image data encoding/decoding device, a line scan driver, a column scan driver, a clock circuit, etc.
  • FIG. 8 is a flowchart of a driving method according to an embodiment of the present disclosure.
  • one example of the driving method may include the following operations:
  • the plurality of touch detection lines are controlled by the control signal to respectively transmit the electrode voltage signals to the plurality of touch electrodes to implement the display function;
  • the touch control stage controls the plurality of touch detection lines to transmit the touch drive signals to the plurality of touch electrodes, and respectively reads the touch sensing signals of the plurality of touch electrodes through the plurality of touch detection lines. To achieve touch function.
  • the control signal can turn on the third transistor and the fifth transistor, while the control signal turns off the sixth transistor. Since the sixth transistor is in an off state, the touch driving signal cannot be transmitted to the touch electrode.
  • the fifth transistor is in an on state, so that the electrode voltage signal outputted by the second power terminal can be transmitted to the touch electrode (ie, the anode or the cathode of the light emitting device) through the touch detection line; meanwhile, since the third transistor is also in the guide In the on state, the illuminating signal can be transmitted to the illuminating device. Thereby, the light emitting device emits light, and the touch display panel realizes the display function.
  • the control signal turns off the third transistor and the fifth transistor, and at the same time, the control signal turns on the sixth transistor. Since both the third transistor and the fifth transistor are in an off state, neither the illuminating signal nor the electrode voltage signal can be transmitted to the light emitting diode, whereby the illuminating device does not emit light.
  • the sixth transistor is in a conducting state, so that the touch driving signal outputted by the touch power terminal can be transmitted to the touch electrode through the touch detection line, thereby implementing the touch function.
  • a touch phase can be set for every two or more display phases. This reduces power consumption.
  • the timing chart for driving the pixel circuit can be set according to actual needs, which is not specifically limited in the embodiment of the present disclosure.
  • FIG. 9 is a schematic timing diagram of a driving method of a touch display panel according to an embodiment of the present disclosure.
  • FIG. 9 is, for example, a timing chart of a driving method of the touch display panel including the pixel unit illustrated in FIG. 3A.
  • the length of the touch phase is less than the length of the display phase, but embodiments of the present disclosure are not limited thereto.
  • the length of the touch phase may be equal to the length of the display phase; the length of the touch phase may also be equal to one-half or one-tenth of the length of the display phase. The embodiments of the present disclosure do not limit this.
  • one frame time is divided into a display phase and a touch phase.
  • the control signal is a low level signal
  • the touch display panel is in the display phase.
  • the touch detection line transmits an electrode voltage signal (for example, a low level signal) to the touch electrode, and the touch display panel realizes the display function.
  • the control signal is a high level signal
  • the touch display panel is in the touch phase.
  • the touch detection line transmits a touch driving signal (for example, a pulse voltage signal) to the touch electrode, and the touch display panel realizes the touch.
  • the touch display panel can separately transmit different signals (ie, electrode voltage signals and touch driving signals) to the touch electrodes under the control of the control signals, so as to realize the display function and the touch function respectively, without increasing
  • touch and display integration can be realized by time division multiplexing, which reduces production cost, reduces the volume and weight of the display panel, and increases the added value of the product.
  • VSYNC is a field sync signal and HSYNC is a line sync signal.
  • VSYNC is active; when HSYNC is high, HSYNC is active.
  • all the image data information received by the touch display panel constitutes a frame display screen; during the valid period of HSYNC, all the image data information received by the touch display panel constitutes a line of display screen.
  • the display phase can include a sensing phase and a compensation phase.
  • the driving method also includes the following operations:
  • the plurality of compensation sensing lines are controlled by the control signal to read the illuminating voltage or the illuminating current of the plurality of touch electrodes;
  • S102 In the compensation phase, calculate a difference between the illuminating voltage or the illuminating current and a preset voltage or a preset current of the illuminating device, and adjust the electrode voltage signal according to the difference.
  • the control signal can turn on the fourth transistor, so that the plurality of compensation sensing lines can read the illuminating voltage or the illuminating current of the plurality of touch electrodes, and transmit the illuminating voltage or the illuminating current to the compensation.
  • the control signal can turn on the fourth transistor, so that the plurality of compensation sensing lines can read the illuminating voltage or the illuminating current of the plurality of touch electrodes, and transmit the illuminating voltage or the illuminating current to the compensation.
  • the difference sub-circuit may receive a plurality of compensation light-emitting diodes or a light-emitting current sensed by the sensing line, and calculate a light-emitting current or a light-emitting voltage and a preset current or a preset voltage of the light-emitting device.
  • the difference between the adjustment sub-circuits can adjust the electrode voltage signal outputted by the second power terminal according to the difference, thereby achieving signal compensation.
  • the display phase can also include a lighting phase.
  • the light emitting phase the light emitting device emits light corresponding to the display data signal according to the received display data signal.
  • the setting manners of the sensing phase, the compensation phase, and the lighting phase may be set according to actual application requirements, and the embodiment of the present disclosure does not specifically limit this.
  • the sensing phase and the compensation phase can be located during a time period prior to the lighting phase.
  • one sensing phase and one compensation phase can be set in multiple display stages, thereby reducing power consumption.
  • the display phase may further include a reset phase and a reset phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种触控显示面板及其驱动方法、电子装置。该触控显示面板包括多条触控检测线(14)、多个触控电极(11)、多个像素单元(12)和绝缘层(300)。多个触控电极(11)分别与多条触控检测线(14)一一对应,每个像素单元(12)包括发光器件(122),多个触控电极(11)被配置为在触控阶段实现触控功能;多个触控电极(11)还被配置为在显示阶段复用为发光器件(122)的阴极或阳极,以实现显示功能。

Description

触控显示面板及其驱动方法、电子装置
本申请要求于2017年08月14日递交的中国专利申请第201710693774.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种触控显示面板及其驱动方法、电子装置。
背景技术
在显示领域,有机发光二极管(Organic Light Emitting Diode,OLED)显示面板具有自发光、对比度高、能耗低、视角广、响应速度快、可用于挠曲性面板、使用温度范围广、制造简单等特点,具有广阔的发展前景。作为新一代的显示方式,OLED显示面板将被广泛应用在手机、电脑、全彩电视、数码摄像机、个人数字助理等电子产品上。
随着触控技术的发展,具有触控功能的电子设备逐渐进入人们的生活工作中,具有触控功能的OLED显示面板也成为显示领域的一个研究热点。目前,具有触控功能的OLED显示面板多采用外挂式触控技术(例如,玻璃基板-玻璃基板式GG(Glass-Glass)和玻璃-薄膜-薄膜式GFF(Glass-Film-Film)等),以实现触控功能。外挂式触控技术需要单独在显示面板上制作触控层,其工艺复杂,成本较高。另一方面,当外挂式触控技术应用于曲面显示面板时,曲面显示面板需要同时兼顾触控功能和背板的柔性性能,其触控功能失效风险较高。
发明内容
本公开至少一个实施例提供一种触控显示面板,其包括多条触控检测线、多个触控电极、多个像素单元和绝缘层。多个触控电极分别与多条触控检测线一一对应,每个像素单元包括发光器件,所述多个触控电极被配置为在触控阶段实现触控功能;所述多个触控电极还被配置为在显示阶段复用为所述发光器件的阴极或阳极,以实现显示功能。
本公开至少一个实施例还提供一种电子装置,其包括上述任一项所述的触 控显示面板。
本公开至少一个实施例还提供一种根据上述任一项所述的触控显示面板的驱动方法,其包括:生成控制信号;显示阶段,通过所述控制信号控制所述多条触控检测线分别向所述多个触控电极传输电极电压信号,以实现显示功能;触控阶段,通过所述控制信号控制所述多条触控检测线分别向所述多个触控电极传输触控驱动信号,并通过所述多条触控检测线分别读取所述多个触控电极的触控感应信号,以实现触控功能。
本公开至少一个实施例提供一种触控显示面板及其驱动方法、电子装置,将发光器件的阳极或阴极复用为触控电极,从而将实现触控功能的触控电极集成在触控显示面板中,在不增加额外工序的情况下,可通过分时复用实现触控和显示一体化,降低生产成本,降低显示面板的体积和重量,提升产品的附加值。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为本公开一实施例提供的一种触控显示面板的平面示意图;
图1B为本公开一实施例提供的另一种触控显示面板的平面示意图;
图2为本公开一实施例提供的一种触控显示面板的截面结构图;
图3A为本公开一实施例提供的第一种像素单元的示意性电路图;
图3B为本公开一实施例提供的第二种像素单元的示意性电路图;
图4A为本公开一实施例提供的第三种像素单元的示意性电路图;
图4B为本公开一实施例提供的第四种像素单元的示意性电路图;
图5为本公开一实施例提供的一种控制电路中的选择子电路的结构示意图;
图6A为本公开一实施例提供的一种触控显示面板的在未补偿状态下的示意图;
图6B为本公开一实施例提供的一种触控显示面板的在补偿状态下的示意图;
图7为本公开一实施例提供的一种电子装置的示意性框图;
图8为本公开一实施例提供的一种触控显示面板的驱动方法的流程图;以及
图9为本公开一实施例提供的一种触控显示面板的驱动方法的示意性时序图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
随着触控技术的不断发展,触控技术在手机、平板、笔记本电脑等电子产品中的应用日益广泛。触控技术可以包括电容式触控技术、电磁式触控技术、电阻式触控技术和光学式触控技术等类型。电容式触控技术因成本较低、耐磨损、寿命长等优点,发展异常迅猛。具备触控功能的有机发光二极管(OLED)显示面板可以采用电容式触控技术。基于电容式触控技术的OLED显示面板需要采用两个独立进行的制作工艺步骤,也即,外挂触控基板制作工艺和OLED显示基板制作工艺,因此,具备触控功能的OLED显示面板工艺流程和产品结构变得复杂。
OLED显示面板包括阳极、有机发光层和阴极的叠层结构,并且根据需要还可以包括空穴注入层、空穴传输层、电子注入层和电子传输层等辅助功能层。 OLED显示面板按照驱动方式可分为无源矩阵驱动有机发光二极管(PMOLED,Passive Matrix Driving OLED)显示面板和有源矩阵驱动有机发光二极管(AMOLED,Active Matrix Driving OLED)显示面板两种。PMOLED显示面板由阴极和阳极构成,阳极和阴极的交叉部分可以发光,驱动电路可由带载封装(Tape Carrier Package,TCP)或玻璃载芯片(Chip On Glass,COG)等连接方式进行外装。AMOLED显示面板的每个像素都设置具有开关功能的薄膜晶体管(TFT)和一个电荷存储电容,由此,每个像素都可以被独立控制,外围驱动电路和OLED可集成在同一玻璃基板上。例如,AMOLED显示面板工作时,主要通过给OLED两端施加电压,以驱动OLED发光,例如不同子像素的OLED发出不同颜色的光,从而进行全彩显示。AMOLED显示面板具有响应时间短、功耗低、对比度高、视角宽广等优点。本公开的实施例以AMOLED显示面板为例进行详细说明。
本公开至少一个实施例提供一种触控显示面板,其包括多条触控检测线、多个触控电极、多个像素单元和绝缘层。多个触控电极分别与多条触控检测线一一对应,每个触控电极通过绝缘层中的至少一个连接孔与对应的触控检测线电连接,每个像素单元包括发光器件,多个触控电极被配置为在触控阶段实现触控功能;多个触控电极还被配置为在显示阶段复用为发光器件的阴极或阳极,以实现显示功能。
例如,按照晶体管的特性,晶体管可以分为N型晶体管和P型晶体管,为了清楚起见,本公开的实施例中,以第一晶体管、第二晶体管和第三晶体管均为P型晶体管(例如,P型MOS晶体管),第四晶体管为N型晶体管(例如,N型MOS晶体管)为例详细阐述了本公开的技术方案,然而本公开的实施例不限于此,本领域技术人员还可以根据实际需要具体设置。
需要说明的是,本公开的实施例中采用的晶体管可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件,薄膜晶体管可以包括氧化物薄膜晶体管、非晶硅薄膜晶体管或多晶硅薄膜晶体管等。晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在物理结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管,除作为控制极的栅极,直接描述了其中一极为第一极,另一极为第二极,所以本公开实施例中全部或部分晶体管的第一极和第二极根据需要是可以互换的。例如,对于N型晶体管,晶体管的第一极可以为源极,第二极可以为漏极;或者,对于P型晶体管,晶体管的第一极为漏极, 第二极为源极。对于不同类型的晶体管,其栅极的控制电压的电平也不相同。例如,对于N型晶体管,在控制信号为高电平时,该N型晶体管处于开启状态;而在控制信号为低电平时,N型晶体管处于截止状态。对于P型晶体管时,在控制电压为低电平时,该P型晶体管处于开启状态;而在控制信号为高电平时,P型晶体管处于截止状态。
下面结合附图对本公开的几个实施例进行详细说明,但是本公开并不限于这些具体的实施例。
图1A示出了本公开一实施例提供的一种触控显示面板的平面示意图,图1B示出了本公开一实施例提供的另一种触控显示面板的平面示意图,图2示出了本公开一实施例提供的一种触控显示面板的截面结构图。
例如,如图1A和图2所示,本公开一实施例提供的触控显示面板包括基板10、多条触控检测线14、多个触控电极11、多个像素单元12和绝缘层300。多条触控检测线14、多个触控电极11和多个像素单元12均设置在基板10上,且多个触控电极11分别与多条触控检测线14一一对应电连接,每个像素单元12包括发光器件122。多个触控电极11被配置为在触控阶段实现触控功能;多个触控电极11被配置为在显示阶段复用为发光器件122的阴极或阳极,以实现显示功能。例如,多个触控电极11被配置为在显示阶段接收电极电压信号,以实现显示功能,多个触控电极11还被配置为在触控阶段接收触控驱动信号,以实现触控功能。
例如,每个触控电极11可以被复用为一个或多个像素单元12的发光器件122的阳极。或者,每个触控电极11可以被复用为一个或多个像素单元12的发光器件122的阴极。
例如,多个触控电极11阵列排布在基板10上,这些触控电极11构成自电容电极阵列,从而可以用于触控检测。例如,每个触控电极11与像素单元组相对应,像素单元组包括至少一个像素单元12。
例如,多个触控电极11具有相同的形状,从而保证多个触控电极11的电气特性基本一致,进而保证触控检测的精确性和显示画面的均匀性。但不限于此,多个触控电极11也可以具有不同的形状。
例如,如图1A所示,每个触控电极11的形状可以为矩形,例如可以为正方形。但不限于此,根据实际设计需求,触控电极11的形状还可以为圆形、梯形等。本公开实施例对触控电极11的形状不作具体限制。
例如,发光器件122可以为有机发光二极管(OLED)。发光器件122被配置为在工作时接收发光信号(例如,可以为电流信号),并发出与该发光信号相对应强度的光。
需要说明的是,在本公开的实施例中,以发光器件122为OLED为例进行说明。但不限于此,发光器件122还可以为量子点发光二极管(QLED)。本公开对此不作限制。
例如,发光器件122可以包括上发光型发光二极管和下发光型发光二极管。基板10例如包括设置有发光器件122的第一侧和远离发光器件122的第二侧。下发光型发光二极管发射的光透过基板10从其第二侧出射,而上发光型发光二极管发射的光不经过基板10,而是从其第一侧出射。需要说明的是,发光器件122还可以为双面发光型发光二极管。
例如,当发光器件122为上发光型发光二极管时,每个触控电极11被复用为上发光型发光二极管的阴极。而当发光器件122为下发光型发光二极管,每个触控电极11被复用为下发光型发光二极管的阳极。综上,触控电极11可以位于触控显示面板的出光侧,从而防止发光器件122的阳极或阴极屏蔽或干扰触控信号,保证触控效果。
需要说明的是,当发光器件122为上发光型发光二极管时,发光器件122的阳极用作像素电极,且与驱动晶体管(参见图2的第一晶体管T1)电连接;当发光器件122为下发光型发光二极管时,发光器件122的阴极用作像素电极,且与驱动晶体管(参见图2的第一晶体管T1)电连接。
值得注意的是,在本公开中,触控显示面板上的所有触控电极11均被复用为发光器件122的阴极或阳极,但不限于此,也可以仅部分触控电极11被复用为发光器件122的阴极或阳极。
例如,如图2所示,发光器件122可以包括第一电极1221、有机层1222和第二电极1223,有机层1222设置在第一电极1221和第二电极1223之间。例如,第一电极1221可以为阳极或阴极,相应地,第二电极1223为阴极或阳极。触控电极11可以被复用为发光器件122的第二电极1223,也就是说,实现触控功能的触控电极11可以为发光器件122中的阳极或阴极,触控电极11集成在显示面板中,在不增加额外工序的情况下,可通过分时复用实现触控和显示一体化,降低生产成本,降低显示面板的体积和重量,提升产品的附加值。同时,当触控显示面板为曲面显示面板时,该触控显示面板可以提高柔性显示 的稳定性。
例如,有机层1222可以为多层结构。有机层1222可以包括空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层等功能层;又例如,根据需要,有机层1222还可以包括空穴阻挡层和电子阻挡层,空穴阻挡层例如可以设置在电子传输层和发光层之间,电子阻挡层例如可以设置在空穴传输层和发光层之间。有机层1222中各层的设置及材质等可以参照通常设计,本公开的实施例对此不作限制。
例如,阳极作为正向电压的连接电极,具有较好的导电性能以及较高的功函数值,阴极作为负向电压的连接电极,具有较好的导电性能和较低的功函数值。若第一电极1221为阳极,第二电极1223为阴极,则第一电极1221可以由具有高功函数的透明导电材料形成,其电极材料可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管等;第二电极1223可以由高导电性和低功函数的材料形成,其电极材料可以包括镁铝合金(MgAl)、锂铝合金(LiAl)等合金或者镁、铝、锂等单金属。需要说明的是,第一电极1221和第二电极1223还可以均由透明导电材料形成。本公开的实施例对此不作限制。
例如,如图2所示,在一个示例中,发光器件122为上发光型发光二极管,第一电极1221为阳极,第二电极1223为阴极,则第二电极1223为半透明阴极,第一电极1221为反射型电极。第二电极1223例如由透明导电材料或半透明金属材料形成。第一电极1221例如可以由反射性较高的金属材料(例如,银(Ag)、铝(Al)等)中的一种或几种形成。
例如,当发光器件122为下发光型发光二极管时,则发光器件122的阳极可以由透明导电材料(例如,ITO等)形成,发光器件122的阴极可以由金属材料形成。
例如,不同像素单元12中的发光器件122可以发射不同颜色的光,例如可以发射红光、绿光、蓝光以及白光等,从而实现彩色显示。例如,有机层1222中的发光层可以采用不同的发光材料,以实现发射不同颜色的光。
例如,触控电极11被复用为第二电极1223,从而触控电极11可以采用与第二电极1223相同的材料制备。
例如,如图2所示,绝缘层300可以包括平坦层32和像素界定层31,每个触控电极11通过绝缘层300中的至少一个连接孔与对应的触控检测线14电 连接。绝缘层300覆盖在多条触控检测线14上,多个触控电极11设置在绝缘层300上。例如,平坦层32覆盖在触控检测线14上,像素界定层31设置在平坦层32上,触控电极11设置在像素界定层31上。绝缘层300中设置有多个第一连接孔13,第一连接孔13贯穿像素界定层31和平坦层32,从而暴露触控检测线14。触控电极11通过第一连接孔13与触控检测线14电连接。
例如,每个触控电极11可以对应一个第一连接孔13,也可以对应多个第一连接孔13。多个第一连接孔13可以减小触控电极11和触控检测线14之间的接触电阻。
例如,像素界定层31被配置为限定子像素区域,有机层1222中的发光层对应设置在像素界定层31的开口区域。像素界定层31可以为一层或两层结构,还可以是多层的复合层结构。本公开的实施例对此不作限制。
例如,像素界定层31可以采用绝缘材料制备,例如可以采用有机绝缘材料制备。
例如,平坦层32的材料的示例包括氮化硅(SiN x)、氧化硅(SiO x)、氮氧化硅(SiN xO y)或其他合适的材料。
例如,基板10可以为透明绝缘基板,透明绝缘基板例如可以是玻璃基板、石英基板或其他合适的基板。
需要说明的是,以上各层的材质为示意性列举,本公开的实施例对各层的材质并不作限定。
图3A示出了本公开一实施例提供的第一种像素单元的示意性电路图;图3B示出了本公开一实施例提供的第二种像素单元的示意性电路图;图4A示出了本公开一实施例提供的第三种像素单元的示意性电路图;图4B示出了本公开一实施例提供的第四种像素单元的示意性电路图。
例如,如图2和3A所示,本公开实施例提供的触控显示面板采用有源驱动的方式,像素单元12还包括驱动电路121,驱动电路121被配置为驱动发光器件122在显示阶段发光。
例如,驱动电路121包括第一晶体管T1和第二晶体管T2。第一晶体管T1可以被称为驱动晶体管,第二晶体管T2可以被称为选择晶体管。例如,触控检测线14可以与第一晶体管T1的栅极、源极或漏极位于同一层,和/或触控检测线14也可以与第二晶体管T2的栅极、源极或漏极位于同一层,从而可以在同一构图工艺形成触控检测线14和栅极、源极或漏极。
例如,如图2所示,在一个具体的示例中,第一晶体管T1采用底栅型结构,且第一晶体管T1包括依次设置在基板10上的栅极24、栅绝缘层26、有源层23、第一极21(例如可以为漏极)和第二极22(例如可以为源极),平坦层32设置有过孔25,且过孔25暴露第一极21,发光器件122的第一电极1221通过该过孔25与第一极21电连接。触控检测线14与第一晶体管T1的第一极21和第二极22位于同一层。例如,触控检测线14可以与第一极21和第二极22采用同一道构图工艺同时形成,从而可以减少工艺步骤、节约生产成本。
需要说明的是,栅极24、栅绝缘层26、有源层23、第一极21和第二极22的材质等可以参照通常设计。第一晶体管T1和第二晶体管T2可以采用底栅型结构,也可以采用顶栅型结构,本公开实施例对此不作限制。
例如,触控检测线14的延伸方向可以和数据线(未示出)的延伸方向相同。但不限于此,触控检测线14的延伸方向也可以和栅线(未示出)的延伸方向相同。
例如,触控检测线14也可以与数据线和/或栅线同层形成,从而简化触控显示面板的制作工艺,便于布线。
例如,如图3A-图4B所示,触控显示面板还包括第一电源端V1和第二电源端V2。例如,触控检测线14可以与第二电源端V2电连接,在显示阶段,第二电源端V2被配置输出电极电压信号,电极电压信号可以分别通过多条触控检测线14传输到多个触控电极11。
例如,如图3A和3B所示,在一些示例中,第一电源端V1为高压端,第二电源端V2为低压端,触控电极11可以被复用为发光器件122的阴极。在显示阶段,电极电压信号为低电平信号(例如,0V),电极电压信号可以通过触控检测线14传输到触控电极11,即发光器件122的阴极。
例如,如图4A和4B所示,在另一些示例中,第一电源端V1为低压端,第二电源端V2为高压端,触控电极11可以被复用为发光器件122的阳极。在显示阶段,电极电压信号为高电平信号(例如,5V),电极电压信号可以通过触控检测线14传输到触控电极11,即发光器件122的阳极。
例如,高压端可以电连接电源的正极以输出正电压。低压端可以电连接电源的负极以输出负电压。低压端还可以电连接至地端。
例如,触控显示面板还包括触控电源端V3,且触控电源端V3与触控检测线14电连接。在触控阶段,触控电源端V3被配置为输出触控驱动信号,触控 驱动信号通过触控检测线14传输到触控电极11。
例如,触控驱动信号可以为脉冲电压信号。
例如,如图1A所示,触控显示面板还包括控制电路100。在显示阶段,控制电路100被配置为控制多条触控检测线14将电极电压信号分别传输到多个触控电极11上。而在触控阶段,控制电路100被配置为控制多条触控检测线14将触控驱动信号分别传输到多个触控电极11上。控制电路100可以分时驱动触控电极11,例如在显示阶段,触控电极11用作发光器件122的阳极或阴极,在触控阶段,触控电极11可以用于感测触控信号,从而本公开实施例提供的触控显示面板可以实现触控和显示一体化。
例如,控制电路100可以包括信号产生子电路和选择子电路。信号产生子电路被配置为产生并输出控制信号EM;选择子电路被配置为根据控制信号EM控制多条触控检测线14将不同的信号(即电极电压信号和触控驱动信号)传输到触控电极11上。例如,当控制信号EM为第一极性时,多条触控检测线14将电极电压信号分别传输到多个触控电极11上,当控制信号EM为第二极性时,多条触控检测线14将触控驱动信号分别传输到多个触控电极11上。
例如,第一极性为正极性,第二极性为负极性,或者,第一极性为负极性,第二极性为正极性。
图5示出了本公开一实施例提供的一种控制电路的选择子电路的结构示意图。
例如,如图5所示,在一个具体的示例中,选择子电路可以由第五晶体管T5和第六晶体管T6构成。第五晶体管T5和第六晶体管T6的栅极均接收控制信号EM,第五晶体管T5和第六晶体管T6的第二极均与触控检测线14电连接,第五晶体管T5的第一极电连接到第二电源端V2,第六晶体管T6的第一极电连接到触控电源端V3,从而第五晶体管T5可以将第二电源端V2输出的电极电压信号传输至触控检测线14,而第六晶体管T6可以将触控电源端V3输出的触控驱动信号传输至触控检测线14。
例如,第五晶体管T5和第六晶体管T6的类型相反,从而在同一控制信号EM的控制下,其中一个晶体管开启,而另一个晶体管截止。例如,若第五晶体管T5为N型晶体管,则第六晶体管T6为P型晶体管;或者,若第五晶体管T5为P型晶体管,则第六晶体管T6为N型晶体管。
下面结合图3A-图4B对本公开实施例提供的像素单元进行详细说明。
例如,如图3A-图4B所示,除了第一晶体管T1和第二晶体管T2之外,驱动电路121还可以包括第三晶体管T3和存储电容C1,即利用三个TFT(Thin-film transistor,薄膜晶体管)和一个存储电容来实现驱动发光器件122发光的基本功能。也就是说,驱动电路121采用3T1C结构,在传统的2T1C结构的基础上增加了第三晶体管T3。
例如,触控检测线14也可以与第三晶体管T3的栅极、源极或漏极位于同一层。
例如,第一晶体管T1被配置向发光器件122传输与显示数据信号Vdata相对应的发光信号,从而驱动发光器件122发光。该发光信号例如可以为电流信号。第二晶体管T2被配置为在导通时,可以将显示数据信号Vdata写入到第一晶体管T1的栅极以控制流过第一晶体管T1的电流信号的大小。存储电容C1被配置为存储显示数据信号Vdata并将其保持在第一晶体管T1的栅极。该显示数据信号Vdata可以控制第一晶体管T1的导通程度,由此控制流过第一晶体管T1的电流信号的大小。流过第一晶体管T1的电流信号可以被传输至发光器件122以驱动其发光,该电流信号可以决定发光器件122发光的灰阶(即发光强度)。第三晶体管T3可以被称为发光控制晶体管。在显示阶段,第三晶体管T3被配置为使得第一晶体管T1和发光器件122导通,从而驱动发光器件122发光;而在触控阶段,第三晶体管T3被配置为将第一晶体管T1一侧浮置,使第一晶体管T1不能驱动发光器件122发光,从而第三晶体管T3可避免触控显示面板的显示功能与触控功能之间相互干扰。
例如,图3A示出了第一种像素单元的电路图。在图3A所示的示例中,第三晶体管T3的第一极与第一晶体管T1电连接,第三晶体管T3的第二极与发光器件122电连接,且第三晶体管T3被配置为控制将发光器件122和第一晶体管T1导通或断开。在显示阶段,第三晶体管T3被配置为将发光器件122和第一晶体管T1导通,以控制发光器件122发光,从而触控显示面板实现显示功能。在触控阶段,第三晶体管T3被配置为将发光器件122和第一晶体管T1断开,从而触控显示面板实现触控功能。
例如,在图3A所示的示例中,第二晶体管T2的栅极可以与栅线电连接以接收扫描信号Gate,第二晶体管T2的第一极与数据线电连接以接收显示数据信号Vdata,第二晶体管T2的第二极电连接到第一节点N1,也即,第一晶体管T1的栅极。第一晶体管T1的第一极电连接到第一电源端V1,第一晶体 管T1的第二极电连接到第三晶体管T3的第一极,第一晶体管T1的栅极电连接到第一节点N1。存储电容C1的第一端电连接到第一节点N1(即,第二晶体管T2的第二极和第一晶体管T1的栅极之间),存储电容C1的第二端电连接到第一晶体管T1的第一极和第一电源端V1之间。第三晶体管T3的栅极接收控制信号EM,第三晶体管T3的第二极电连接到发光器件122的第一端(例如,发光器件122的正极端);发光器件122的第二端(例如,发光器件122的负极端)电连接到第三节点N3,第二电源端V2和触控电源端V3经由控制电路100连接到第三节点N3。
例如,第三晶体管T3和第五晶体管T5的类型相同。从而,在控制信号EM的控制下,第三晶体管T3和第五晶体管T5可以同时导通或截止。例如,在显示阶段,在控制信号EM的控制下,第三晶体管T3和第五晶体管T5同时导通,即第三晶体管T3将发光器件122和第一晶体管T1导通,第五晶体管T5将发光器件122和第二电源端V2导通,从而触控显示面板实现显示功能。
例如,图3B示出了第二种像素单元的电路图。图3B所示的像素单元和图3A所示的像素单元类似,但是其驱动电路121中的第三晶体管T3的连接方式与图3A所示的示例不同。例如,图3A所示的像素单元相对于图3B所示的像素单元的不同之处在于:在图3B所示的示例中,第三晶体管T3的第一极与第一电源端V1电连接,第三晶体管T3的第二极与第一晶体管T1电连接,且第三晶体管T3被配置为控制将第一晶体管T1和第一电源端V1导通或断开。在显示阶段,第三晶体管T3被配置为将第一晶体管T1和第一电源端V1导通,以控制发光器件122发光,从而触控显示面板可以实现显示功能。在触控阶段,第三晶体管T3被配置为将第一晶体管T1和第一电源端V1断开,从而触控显示面板可以实现触控功能。
例如,图3B所示的驱动电路121的工作方式与图3A所示的驱动电路121的工作方式基本相同。为了清楚起见,以下仅描述图3B所示的示例与图3A所示的示例的不同之处(即第三晶体管T3的连接方式),与图3A所示的示例相似的内容不再赘述。在图3B所示的示例中,第一晶体管T1的第一极电连接到第二节点N2,第一晶体管T1的第二极电连接到发光器件122的第一端(例如,发光器件122的正极端);第三晶体管T3的第一极可以电连接到第一电源端V1,第三晶体管T3的第二极电连接到第二节点N2(即第一晶体管T1的第一极);存储电容C1的第二端电连接到第二节点N2(即,第一晶体管T1的第 一极和第三晶体管T3的第二极)。
例如,图4A示出了第三种像素单元的电路图。在图4A所示的示例中,驱动电路121各个元件之间的连接方式以及发光器件122与驱动电路121之间的连接方式与图3A所示的示例不同。例如,为了清楚起见,以下仅描述图4A所示的示例与图3A所示的示例的不同之处,与图3A所示的示例相似的内容不再赘述。
例如,如图4A所示,第二晶体管T2的栅极可以与栅线电连接以接收扫描信号Gate,第二晶体管T2的第一极与数据线电连接以接收显示数据信号Vdata,第二晶体管T2的第二极电连接到第一节点N1,也即,第一晶体管T1的栅极。第一晶体管T1的第一极电连接到第三晶体管T3的第二极,第一晶体管T1的第二极电连接到第一电源端V1,第一晶体管T1的栅极电连接到第一节点N1。存储电容C1的第一端电连接到第一节点N1(即,第二晶体管T2的第二极和第一晶体管T1的栅极之间),存储电容C1的第二端电连接到第一晶体管T1的第二极和第一电源端V1之间。第三晶体管T3的栅极接收控制信号EM,第三晶体管T3的第一极电连接到发光器件122的第二端(例如,发光器件122的负极端);发光器件122的第一端(例如,发光器件122的正极端)电连接到第四节点N4,第二电源端V2和触控电源端V3经由控制电路100连接到第四节点N4。
例如,图4A所示的驱动电路121的工作方式与图3A所示的驱动电路121的工作方式基本相同,重复之处不再赘述。
例如,图4B示出了第四种像素单元的电路图。在图4B所示的示例中,驱动电路121各个元件之间的连接方式以及发光器件122与驱动电路121之间的连接方式与图4A所示的示例类似,不同之处在于第三晶体管T3的连接方式。为了清楚起见,以下仅描述图4B所示的示例与图4A所示的示例的不同之处(即第三晶体管T3的连接方式),与图4A所示的示例相似的内容不再赘述。例如,在图4B所示的示例中,第一晶体管T1的第二极电连接到第二节点N2,第一晶体管T1的第一极电连接到发光器件122的第二端(例如,发光器件122的负极端);第三晶体管T3的第二极可以电连接到第一电源端V1,第三晶体管T3的第一极电连接到第二节点N2;存储电容C1的第二端电连接到第二节点N2(即,第一晶体管T1的第二极和第三晶体管T3的第一极之间)。
例如,图4B所示的驱动电路121的工作方式与图3B所示的驱动电路121 的工作方式基本相同,重复之处不再赘述。
例如,本公开实施例仅以驱动电路121采用3T1C结构为例进行说明,但是本公开实施例的驱动电路121不限于3T1C结构。例如,根据需要该驱动电路121还可以包括传输晶体管、检测晶体管和复位晶体管等。又例如,根据实际应用需求,驱动电路121还可以具备电学补偿功能,以补偿晶体管的阈值电压漂移,提升包含该触控显示面板的显示均匀度。例如,补偿功能可以通过电压补偿、电流补偿或混合补偿来实现,可以为内部补偿方式或外部补偿方式,具有补偿功能的驱动电路121例如可以为4T1C、4T2C、6T1C以及其它具有电学补偿功能的驱动电路121。
例如,如图1B所示,触控显示面板还包括多条补偿感测线15。多条补偿感测线15分别与多个触控电极11对应电连接,例如一一对应电连接,但是也可以一条补偿感测线15感测多个触控电极11。多条补偿感测线15被配置为可在显示阶段读取多个触控电极11的发光电流或发光电压。
在公开本实施例提供的触控显示面板中,复用为发光器件122的阳极或阴极的触控电极11被划分为多个电极块,从而可以单独对不同的发光器件122输入电极电压信号,补偿由于电压降(IR drop)引起的发光器件122的显示电压差异,提高显示画质、改善显示效果。
例如,绝缘层300(例如,图2所示的平坦层32和像素界定层31)中还可以设置有多个第二连接孔16,每个触控电极11与至少一个第二连接孔16对应,多条补偿感测线15通过多个第二连接孔16与多个触控电极11电连接。
例如,每个触控电极11可以仅对应一个第二连接孔16,也可以对应多个第二连接孔16。多个第二连接孔16可以减小触控电极11和补偿感测线15之间的接触电阻。
例如,如图1B所示,补偿感测线15与触控检测线14的延伸方向相同。例如,当补偿感测线15、触控检测线14和数据线的延伸方向相同时,数据驱动电路(未示出)和控制电路100可以设置在一起或者集成在一块芯片上。
例如,补偿感测线15可以与触控检测线14同层形成,从而进一步简化触控显示面板的制作工艺,便于布线。
下面结合图3A对本公开实施例提供的触控显示面板的补偿功能进行详细说明。
例如,如图3A所示,触控显示面板还包括补偿电路17。补偿电路17包 括差值子电路和调节子电路。补偿感测线15可以与差值子电路连接,以向差值子电路传输感测到的发光器件122的发光电压或发光电流。差值子电路被配置为接收该发光电流或发光电压,并计算发光电流或发光电压与发光器件122的预设电流或预设电压之间的差值;调节子电路被配置为根据差值调节第二电源端V2输出的电极电压信号。
例如,差值子电路和调节子电路均可以利用硬件电路实现。差值子电路和调节子电路例如可以采用晶体管、电阻、电容和放大器等元件构成。
又例如,差值子电路也可以通过FPGA、DSP、CMU等信号处理器实现。差值子电路例如可以包括处理器和存储器,处理器执行存储器中存储的软件程序实现对发光电流(或发光电压)与发光器件122的预设电流(或预设电压)作差值处理的功能。
例如,当触控检测线14将电极电压信号传输到触控电极11上时,即在显示阶段,控制电路100还被配置为控制补偿感测线15读取触控电极11上的发光电流或发光电压。
例如,像素单元还包括补偿控制电路18。补偿控制电路18被配置为在控制电路100的控制下控制补偿感测线15感测发光器件122的发光电流或发光电压。如图3A所示,补偿控制电路18可以包括第四晶体管T4。第四晶体管T4的栅极接收控制信号EM,第四晶体管T4的第一极用于与差值子电路连接,第四晶体管T4的第二极电连接到第三节点N3,也即第四晶体管T4的第二极电连接到发光器件122的阴极,即触控电极11。
例如,如图3A和图5所示,第四晶体管T4、第三晶体管T3和第五晶体管T5的类型均相同。从而,在控制信号EM的控制下,第三晶体管T3、第四晶体管T4和第五晶体管T5可以同时导通或截止。例如,在显示阶段,在控制信号EM的控制下,第三晶体管T3、第四晶体管T4和第五晶体管T5同时导通,此时,补偿感测线15感测到的发光器件122的发光电流或发光电压可以实时传输到差值子电路,并进行后续补偿操作,从而触控显示面板可以实现补偿功能。
需要说明的是,补偿感测线15不局限于连接在第三节点N3的位置,也可以连接在其它可以感测发光器件122的发光电流或发光电压的位置。
图6A示出了本公开一实施例提供的一种触控显示面板的在未补偿状态下的示意图;图6B示出了本公开一实施例提供的一种触控显示面板的在补偿状 态下的示意图。
例如,在一个具体的示例中,发光器件122的预设电压为Vref。如图6A所示,触控显示面板可以包括第一触控电极11a、第二触控电极11b、第一触控检测线14a和第二触控检测线14b。与第一触控电极11a电连接的第一触控检测线14a的线阻为Ra,而与第二触控电极11b电连接的第二触控检测线14b的线阻为Rb。由于IR drop,在未补偿状态下,与第一触控电极11a连接的第一触控检测线14a上的电压降为Va,与第二触控电极11b连接的第二触控检测线14b上的电压降为Vb,由于第二电源端V2输出的电极电压信号均为Vref,从而最终传输到第一触控电极11a和第二触控电极11b上的发光电压分别为Vref-Va和Vref-Vb,当Va和Vb不相同时,不同的电压降将导致触控显示面板上显示的画面不均匀。
例如,如图6B所示,当补偿感测线感测到第一触控电极11a和第二触控电极11b上的发光电压分别为Vref-Va和Vref-Vb时,可以通过补偿电路生成补偿数据,例如,补偿数据可以通过将感测到的发光电流(或发光电压)减去该发光器件122的预设电流(或预设电压)得到。然后,根据该补偿数据实时调整第二电源端V2输出的电极电压信号,例如,与第一触控电极11a电连接的第二电源端V2输出的电极电压信号被调整为Vref+Va,与第二触控电极11b电连接的第二电源端V2输出的电极电压信号被调整为Vref+Vb。进行电压补偿后,传输到第一触控电极11a和第二触控电极11b上的发光电压均为Vref和Vref,从而提高显示画面的均匀性。
图7示出了本公开一实施例提供的一种电子装置的示意性框图。
例如,如图7所示,该电子装置1包括本公开任一实施例提供的触控显示面板2。
例如,触控显示面板2可以为矩形触控面板、圆形触控面板、椭圆形触控面板或多边形触控面板等。另外,该触控显示面板2不仅可以为平面触控面板,也可以为曲面触控面板,甚至球面触控面板。当触控显示面板2为曲面显示面板时,用于实现触控功能的触控电极与发光器件的阳极或阴极一体设置,从而该触控显示面板2可以提高柔性显示的稳定性。
例如,本公开实施例提供的电子装置1可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有触控显示功能的产品或部件。
需要说明的是,对于该电子装置1的其它组成部分(例如控制装置、图像数据编码/解码装置、行扫描驱动器、列扫描驱动器、时钟电路等)均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
本公开的实施例还提供一种用于本公开任一实施例提供的触控显示面板的驱动方法。图8示出了本公开一实施例提供的一种驱动方法的流程图。
例如,如图8所示,该驱动方法的一个示例可以包括以下操作:
S10:生成控制信号;
S20:显示阶段,通过控制信号控制多条触控检测线分别向多个触控电极传输电极电压信号,以实现显示功能;
S30:触控阶段,通过控制信号控制多条触控检测线分别向多个触控电极传输触控驱动信号,并通过多个触控检测线分别读取多个触控电极的触控感应信号,以实现触控功能。
例如,在显示阶段,控制信号可以将第三晶体管和第五晶体管导通,同时,控制信号将第六晶体管截止。由于第六晶体管处于截止状态,触控驱动信号不能被传输到触控电极上。而第五晶体管处于导通状态,从而第二电源端输出的电极电压信号可以通过触控检测线传输到触控电极(即发光器件的阳极或阴极)上;同时,由于第三晶体管也处于导通状态,发光信号可以被传输到发光器件中。由此,发光器件发光,触控显示面板实现显示功能。
例如,在触控阶段,控制信号将第三晶体管和第五晶体管截止,同时,控制信号将第六晶体管导通。由于第三晶体管和第五晶体管均处于截止状态,发光信号和电极电压信号均不能被传输到发光二极管,由此,发光器件不发光。而第六晶体管处于导通状态,从而触控电源端输出的触控驱动信号可以通过触控检测线传输到触控电极上,进而实现触控功能。
上述操作并没有先后顺序,也并非要求在每个显示阶段都需要伴随一个触控阶段,在满足触控时间精度的情况下,可以为每两个或更多个显示阶段设置一个触控阶段,由此减少功耗。
例如,驱动该像素电路的时序图可以根据实际需求进行设定,本公开的实施例对此不作具体限定。
例如,图9示出了本公开一实施例提供的一种触控显示面板的驱动方法的示意性时序图。图9例如为包括图3A所示的像素单元的触控显示面板的驱动方法的时序图。
例如,如图9所示,触控阶段的时间长度小于显示阶段的时间长度,但本公开的实施例不限于此。例如,根据实际应用需求,触控阶段的时间长度可以与显示阶段的时间长度相等;触控阶段的时间长度也可以等于显示阶段的时间长度的二分之一或者十分之一。本公开的实施例对此不作限制。
例如,如图9所示,在一个示例中,一帧时间被划分为显示阶段和触控阶段。当控制信号为低电平信号时,触控显示面板处于显示阶段,此时,触控检测线向触控电极传输电极电压信号(例如,低电平信号),触控显示面板实现显示功能。当控制信号为高电平信号时,触控显示面板处于触控阶段,此时,触控检测线向触控电极传输触控驱动信号(例如,脉冲电压信号),触控显示面板实现触控功能。综上,触控显示面板可以在控制信号的控制下分时将不同的信号(即电极电压信号、触控驱动信号)传输至触控电极,以分别实现显示功能和触控功能,在不增加额外工序的情况下,可通过分时复用实现触控和显示一体化,降低生产成本,降低显示面板的体积和重量,提升产品的附加值。
例如,如图9所示,VSYNC为场同步信号,HSYNC为行同步信号。当VSYNC为高电平时,VSYNC有效;HSYNC为高电平时,HSYNC有效。在VSYNC有效的时间段内,触控显示面板接收到的所有图像数据信息组成一帧显示画面;在HSYNC有效的时间段内,触控显示面板接收到的所有图像数据信息组成一行显示画面。
例如,在一个示例中,显示阶段可以包括感测阶段和补偿阶段。该驱动方法还包括以下操作:
S101:感测阶段,通过控制信号控制多条补偿感测线读取多个触控电极的发光电压或发光电流;
S102:补偿阶段,计算发光电压或发光电流与发光器件的预设电压或预设电流之间的差值,并根据差值调节电极电压信号。
例如,在感测阶段,控制信号可以将第四晶体管导通,从而多条补偿感测线可以读取多个触控电极的发光电压或发光电流,并将该发光电压或发光电流传输到补偿电路中。
例如,在补偿阶段,差值子电路可以接收多条补偿感测线感测到的发光二极管的发光电压或发光电流,并计算发光电流或发光电压与发光器件的预设电流或预设电压之间的差值;调节子电路可以根据该差值调节第二电源端输出的电极电压信号,从而实现信号补偿。
例如,显示阶段还可以包括发光阶段。在发光阶段,发光器件根据接收到的显示数据信号发出与该显示数据信号相对应的光。
例如,感测阶段、补偿阶段和发光阶段的设置方式可以根据实际应用需求进行设定,本公开的实施例对此不作具体限定。例如,感测阶段和补偿阶段可以位于发光阶段之前的时间段。又例如,可以多个显示阶段设置一个感测阶段和一个补偿阶段,由此减少功耗。需要说明的是,根据实际电路设计,显示阶段还可以包括复位阶段和重置阶段等。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种触控显示面板,包括:多条触控检测线、多个触控电极、多个像素单元和绝缘层,
    其中,所述多个触控电极分别与所述多条触控检测线一一对应;
    每个触控电极通过所述绝缘层中的至少一个连接孔与对应的触控检测线电连接;
    每个像素单元包括发光器件;
    所述多个触控电极被配置为在触控阶段实现触控功能;
    所述多个触控电极还被配置为在显示阶段复用为所述发光器件的阴极或阳极,以实现显示功能。
  2. 根据权利要求1所述的触控显示面板,其中,所述绝缘层覆盖在所述多条触控检测线上,所述多个触控电极设置在所述绝缘层上。
  3. 根据权利要求1或2所述的触控显示面板,其中,每个像素单元还包括驱动电路,所述驱动电路被配置为驱动所述发光器件在所述显示阶段发光。
  4. 根据权利要求3所述的触控显示面板,其中,所述驱动电路包括第一晶体管和第二晶体管,
    所述多条触控检测线与所述第一晶体管的栅极、源极或漏极位于同一层;和/或,所述多条触控检测线与所述第二晶体管的栅极、源极或漏极位于同一层。
  5. 根据权利要求3或4所述的触控显示面板,还包括第一电源端,
    其中,所述驱动电路还包括第三晶体管,
    所述第三晶体管的第一极与所述第一晶体管电连接,所述第三晶体管的第二极与所述发光器件电连接,且所述第三晶体管被配置为控制将所述发光器件与所述第一晶体管导通或断开;或者
    所述第三晶体管的第一极与所述第一电源端电连接,所述第三晶体管的第二极与所述第一晶体管电连接,且所述第三晶体管被配置为控制将所述第一晶体管和所述第一电源端导通或断开。
  6. 根据权利要求1-5任一项所述的触控面板触控显示面板,还包括多条补偿感测线,
    其中,所述多条补偿感测线与所述多个触控电极对应电连接,
    所述多条补偿感测线被配置为在所述显示阶段读取所述多个触控电极的 发光电流或发光电压。
  7. 根据权利要求6所述的触控显示面板,还包括补偿电路和第二电源端,
    其中,所述补偿电路包括差值子电路和调节子电路,
    所述第二电源端被配置为输出电极电压信号,且所述电极电压信号通过所述多条触控检测线分别传输到所述多个触控电极,
    所述差值子电路被配置为接收所述发光电流或发光电压,并计算所述发光电流或发光电压与所述发光器件的预设电流或预设电压之间的差值;
    所述调节子电路被配置为根据所述差值调节所述电极电压信号。
  8. 根据权利要求1-5任一项所述的触控显示面板,还包括控制电路,
    其中,所述控制电路被配置为控制所述多条触控检测线在所述显示阶段将电极电压信号分别传输到所述多个触控电极上;
    所述控制电路还被配置为控制所述多条触控检测线在所述触控阶段将触控驱动信号分别传输到所述多个触控电极上。
  9. 根据权利要求8所述的触控显示面板,其中,所述控制电路被配置为输出控制信号,
    当所述控制信号为第一极性时,所述多条触控检测线将所述电极电压信号分别传输到所述多个触控电极上,当所述控制信号为第二极性时,所述多条触控检测线将所述触控驱动信号分别传输到所述多个触控电极上,
    所述第一极性为正极性,所述第二极性为负极性,或者,所述第一极性为负极性,所述第二极性为正极性。
  10. 根据权利要求8或9所述的触控显示面板,其中,当所述多条触控检测线将所述电极电压信号分别传输到所述多个触控电极上时,所述控制电路还被配置为控制补偿感测线读取所述多个触控电极上的发光电流或发光电压。
  11. 根据权利要求1-10任一项所述的触控显示面板,所述发光器件为上发光型发光二极管,每个触控电极被复用为所述上发光型发光二极管的阴极。
  12. 根据权利要求1-10任一项所述的触控显示面板,所述发光器件为下发光型发光二极管,每个触控电极被复用为所述下发光型发光二极管的阳极。
  13. 根据权利要求1-12任一项所述的触控显示面板,其中,所述多个触控电极阵列排布,且每个触控电极与像素单元组相对应,所述像素单元组包括至少一个像素单元。
  14. 根据权利要求1-13任一项所述的触控显示面板,其中,每个触控电 极的形状为矩形。
  15. 一种电子装置,包括:权利要求1-14任一项所述的触控显示面板。
  16. 一种根据权利要求1-14任一项所述的触控显示面板的驱动方法,包括:
    生成控制信号;
    显示阶段,通过所述控制信号控制所述多条触控检测线分别向所述多个触控电极传输电极电压信号,以实现显示功能;
    触控阶段,通过所述控制信号控制所述多条触控检测线分别向所述多个触控电极传输触控驱动信号,并通过所述多条触控检测线分别读取所述多个触控电极的触控感应信号,以实现触控功能。
  17. 根据权利要求16所述的驱动方法,其中,所述显示阶段包括感测阶段和补偿阶段,所述驱动方法还包括:
    感测阶段,通过所述控制信号控制多条补偿感测线分别读取所述多个触控电极的发光电压或发光电流;
    补偿阶段,计算所述发光电压或发光电流与所述发光器件的预设电压或预设电流之间的差值,并根据所述差值调节所述电极电压信号。
PCT/CN2018/085854 2017-08-14 2018-05-07 触控显示面板及其驱动方法、电子装置 WO2019033798A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18810873.2A EP3671413A4 (en) 2017-08-14 2018-05-07 TOUCH DISPLAY PANEL, METHOD FOR USING IT AND ELECTRONIC DEVICE
JP2018564909A JP7299023B2 (ja) 2017-08-14 2018-05-07 タッチ表示パネル及びその駆動方法、電子装置
US16/309,011 US11249580B2 (en) 2017-08-14 2018-05-07 Touch display panel, method for driving touch display panel, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710693774.0A CN109388273B (zh) 2017-08-14 2017-08-14 触控显示面板及其驱动方法、电子装置
CN201710693774.0 2017-08-14

Publications (1)

Publication Number Publication Date
WO2019033798A1 true WO2019033798A1 (zh) 2019-02-21

Family

ID=65361781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085854 WO2019033798A1 (zh) 2017-08-14 2018-05-07 触控显示面板及其驱动方法、电子装置

Country Status (5)

Country Link
US (1) US11249580B2 (zh)
EP (1) EP3671413A4 (zh)
JP (1) JP7299023B2 (zh)
CN (1) CN109388273B (zh)
WO (1) WO2019033798A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993179A (zh) * 2020-12-15 2021-06-18 合肥维信诺科技有限公司 一种显示面板及显示装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109872692B (zh) * 2017-12-04 2021-02-19 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
US11888017B2 (en) * 2018-08-15 2024-01-30 PlayNitride Display Co., Ltd. Transparent display panel
TWI693708B (zh) * 2018-08-15 2020-05-11 英屬開曼群島商錼創科技股份有限公司 透明顯示面板
US11526233B2 (en) * 2018-08-23 2022-12-13 Analogix (China) Semiconductor, Inc Method for controlling touch screen, apparatus and device, storage medium and processor
CN111105720A (zh) * 2018-10-09 2020-05-05 财团法人工业技术研究院 拼接显示装置
US11244937B2 (en) * 2018-10-09 2022-02-08 Industrial Technology Research Institute Spliced display with LED modules disposed on transparent substrate
CN110364118A (zh) 2019-07-25 2019-10-22 京东方科技集团股份有限公司 像素电路、显示装置及像素驱动方法
CN110993654B (zh) * 2019-11-22 2022-08-09 京东方科技集团股份有限公司 显示装置及其制作方法
CN111625133B (zh) * 2020-05-15 2022-11-25 武汉华星光电半导体显示技术有限公司 Oled显示面板
CN113268166B (zh) * 2020-06-16 2023-04-28 友达光电股份有限公司 触控显示面板
TWI771879B (zh) * 2020-06-16 2022-07-21 友達光電股份有限公司 觸控顯示面板
CN111933066A (zh) * 2020-08-28 2020-11-13 京东方科技集团股份有限公司 Oled显示基板、显示模组、显示面板
CN112698746B (zh) * 2020-12-29 2023-10-31 厦门天马微电子有限公司 一种触控显示面板及其驱动方法、触控显示装置
CN113268159A (zh) * 2021-05-18 2021-08-17 中国科学院长春光学精密机械与物理研究所 基于led的显示触控面板
CN115547218A (zh) * 2021-06-30 2022-12-30 宸鸿科技(厦门)有限公司 驱动电路及驱动方法
CN114415854B (zh) * 2021-12-16 2023-09-22 深圳市华星光电半导体显示技术有限公司 mini LED触控面板及其驱动方法和制备方法
US11749157B2 (en) * 2022-01-25 2023-09-05 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device
CN114613330B (zh) * 2022-04-12 2023-10-17 昆山国显光电有限公司 一种显示面板、显示面板的驱动方法及显示装置
CN117413312A (zh) * 2022-04-24 2024-01-16 京东方科技集团股份有限公司 电子设备及显示驱动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376994B1 (en) * 1999-01-22 2002-04-23 Pioneer Corporation Organic EL device driving apparatus having temperature compensating function
CN104898887A (zh) * 2015-06-23 2015-09-09 京东方科技集团股份有限公司 一种内嵌式触摸显示屏、其驱动方法及显示装置
CN106384739A (zh) * 2016-08-29 2017-02-08 上海天马微电子有限公司 有机发光显示面板及其驱动方法、有机发光显示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW561445B (en) * 2001-01-02 2003-11-11 Chi Mei Optoelectronics Corp OLED active driving system with current feedback
TW569016B (en) * 2001-01-29 2004-01-01 Semiconductor Energy Lab Light emitting device
JP2002304155A (ja) 2001-01-29 2002-10-18 Semiconductor Energy Lab Co Ltd 発光装置
US6806497B2 (en) * 2002-03-29 2004-10-19 Seiko Epson Corporation Electronic device, method for driving the electronic device, electro-optical device, and electronic equipment
KR101634791B1 (ko) * 2008-11-28 2016-06-30 삼성디스플레이 주식회사 접촉 감지 기능이 있는 유기 발광 표시 장치
US9336723B2 (en) * 2013-02-13 2016-05-10 Apple Inc. In-cell touch for LED
KR102057660B1 (ko) * 2013-03-07 2019-12-23 삼성디스플레이 주식회사 터치스크린패널 일체형 표시장치 및 그 구동방법
JP6232595B2 (ja) * 2014-04-23 2017-11-22 株式会社Joled 表示装置及びその制御方法
KR101679977B1 (ko) 2015-05-29 2016-11-28 엘지디스플레이 주식회사 자기 정전용량식 터치 센서 일체형 표시장치와 그 제조방법
CN104835454B (zh) * 2015-06-01 2017-10-10 京东方科技集团股份有限公司 一种有机电致发光触控面板、其驱动方法显示装置
CN104881179B (zh) 2015-06-23 2017-07-28 京东方科技集团股份有限公司 一种内嵌式触摸显示屏、其驱动方法及显示装置
CN105139804B (zh) * 2015-09-28 2018-12-21 京东方科技集团股份有限公司 一种像素驱动电路、显示面板及其驱动方法和显示装置
CN105552106B (zh) * 2016-01-29 2018-07-06 上海天马微电子有限公司 Oled面板以及触控检测方法
CN105702205A (zh) * 2016-04-19 2016-06-22 天马微电子股份有限公司 一种显示面板及显示装置
CN106201142B (zh) * 2016-07-15 2018-11-06 京东方科技集团股份有限公司 一种内嵌式触摸屏、其驱动方法及显示装置
CN106354339A (zh) * 2016-10-31 2017-01-25 京东方科技集团股份有限公司 Oled触控显示基板、显示面板、显示装置及控制方法
KR20180062282A (ko) * 2016-11-30 2018-06-08 엘지디스플레이 주식회사 표시 장치용 발광 제어부 및 이를 적용한 유기 발광 표시 장치
JP6734771B2 (ja) * 2016-12-28 2020-08-05 株式会社ジャパンディスプレイ 表示装置
US11635832B2 (en) * 2017-02-17 2023-04-25 Novatek Microelectronics Corp. Method of driving touch panel and touch with display driver system using the same
US10672338B2 (en) * 2017-03-24 2020-06-02 Apple Inc. Organic light-emitting diode display with external compensation and anode reset
TWI620111B (zh) * 2017-05-19 2018-04-01 友達光電股份有限公司 顯示裝置與其操作方法
CN106952612B (zh) * 2017-05-22 2019-09-03 京东方科技集团股份有限公司 像素电路、显示面板及其驱动方法
US10592024B2 (en) * 2017-08-02 2020-03-17 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch screen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376994B1 (en) * 1999-01-22 2002-04-23 Pioneer Corporation Organic EL device driving apparatus having temperature compensating function
CN104898887A (zh) * 2015-06-23 2015-09-09 京东方科技集团股份有限公司 一种内嵌式触摸显示屏、其驱动方法及显示装置
CN106384739A (zh) * 2016-08-29 2017-02-08 上海天马微电子有限公司 有机发光显示面板及其驱动方法、有机发光显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3671413A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993179A (zh) * 2020-12-15 2021-06-18 合肥维信诺科技有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
EP3671413A1 (en) 2020-06-24
JP7299023B2 (ja) 2023-06-27
US20190384445A1 (en) 2019-12-19
CN109388273A (zh) 2019-02-26
US11249580B2 (en) 2022-02-15
CN109388273B (zh) 2020-10-30
EP3671413A4 (en) 2021-05-05
JP2020530595A (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
CN109388273B (zh) 触控显示面板及其驱动方法、电子装置
US10139958B2 (en) Organic electroluminescent touch panel integrating touch control function, driving method for the same, and display device comprising the same
US10998382B2 (en) Self-light emitting display unit and electronic device
WO2019227943A1 (zh) 显示面板及显示装置
WO2019205898A1 (zh) 像素电路及其驱动方法、显示面板
US10175797B2 (en) Array substrate for OLED display panel, method for driving the same, and OLED display panel and display apparatus having the same
WO2020134914A1 (zh) 一种显示屏、移动终端及其控制方法
WO2023005648A1 (zh) 像素电路及其驱动方法、阵列基板和显示装置
WO2020192734A1 (zh) 显示驱动电路及其驱动方法、显示面板及显示装置
US20190064552A1 (en) Electroluminescent Display
US20140043219A1 (en) Light emitting device, electronic apparatus, and method of driving light emitting device
WO2015196597A1 (zh) 像素电路、显示面板和显示装置
WO2015196598A1 (zh) 像素电路、显示面板及显示装置
KR20210100786A (ko) 표시 장치 및 그 구동 방법
TWI818705B (zh) 顯示面板和包含該顯示面板的電子裝置
US11527199B2 (en) Pixel circuit including discharge control circuit and storage control circuit and method for driving pixel circuit, display panel and electronic device
US10475384B2 (en) Display device comprising a lighting part
US20240143113A1 (en) Display device
WO2023016335A1 (zh) 显示基板及显示装置
KR20240019495A (ko) 표시패널과 이를 포함한 웨어러블 표시장치
CN114582931A (zh) 显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018564909

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018810873

Country of ref document: EP

Effective date: 20200316