WO2019033279A1 - 一种高速激光测距装置 - Google Patents

一种高速激光测距装置 Download PDF

Info

Publication number
WO2019033279A1
WO2019033279A1 PCT/CN2017/097545 CN2017097545W WO2019033279A1 WO 2019033279 A1 WO2019033279 A1 WO 2019033279A1 CN 2017097545 W CN2017097545 W CN 2017097545W WO 2019033279 A1 WO2019033279 A1 WO 2019033279A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
reflected
light beam
receiving
speed laser
Prior art date
Application number
PCT/CN2017/097545
Other languages
English (en)
French (fr)
Inventor
张瓯
朱亚平
Original Assignee
杭州欧镭激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州欧镭激光技术有限公司 filed Critical 杭州欧镭激光技术有限公司
Priority to US16/639,149 priority Critical patent/US11681018B2/en
Priority to EP17921767.4A priority patent/EP3671274A4/en
Priority to JP2020508353A priority patent/JP2020530571A/ja
Publication of WO2019033279A1 publication Critical patent/WO2019033279A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4804Auxiliary means for detecting or identifying lidar signals or the like, e.g. laser illuminators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/499Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the present invention relates to the field of ranging, and in particular to a high speed laser ranging device.
  • a directional reflection target (reflecting prism) is generally placed on the target object to be tested so that the laser radar can be easily identified for positioning.
  • the intensity of the light reflected by the reflection target (reflecting prism) is too high, and the light formed by the reflection of the reflection target (reflecting prism) using the same photoelectric device and the light reflected by the target object to be measured may cause the laser radar receiver. Irreversible damage can lead to a decrease in measurement accuracy in the long run.
  • the invention provides a high-speed laser ranging device, which uses a polarizing plate and a polarization beam splitter to realize the recognition of the reflected light formed by the high-speed laser ranging device and the target object, and respectively Received with receivers of different sensitivities. It can not only avoid irreversible damage to the receiver, but also effectively filter out the interference caused by various particles in the environment.
  • the present invention provides a high speed laser ranging device, the high speed laser ranging device comprising a transmitting portion and a receiving portion;
  • the emitting portion includes an arc tube, a mirror, and an emission objective lens
  • the receiving portion includes a receiving objective lens group, a filter, and a receiving tube group;
  • the emitting portion further includes a polarizing plate disposed between the light emitting tube and the mirror;
  • the receiving portion further includes a polarization beam splitter disposed between the filter and the receiving tube group, wherein the receiving tube group includes a first receiving tube and a second receiving tube;
  • the light emitting tube emits an outgoing light beam to the polarizing plate, and the polarizing plate is passed through to form an outgoing polarized light beam incident on the mirror, reflected by the reflecting mirror and transmitted through the emitting objective lens to a target On the object
  • the emitted polarized light beam is reflected by the target object to form a reflected polarized light beam, is transmitted through the receiving objective lens group to the filter, filtered through the filter, and then incident on the polarization beam splitter,
  • the reflected polarized light beam is split by the polarization beam splitter into a first reflected polarized light beam and a second reflected polarized light beam, wherein
  • the first reflected polarized light beam is transmitted through the polarizing beam splitter and incident on the first receiving tube;
  • the second reflected polarized light beam is reflected by the polarizing beam splitter and incident on the second receiving tube.
  • a light exiting direction of the first polarized reflected light beam is a first light emitting direction; a light emitting direction of the second polarized reflected light beam is a second light emitting direction; and the first light emitting direction is orthogonal to the second light emitting direction .
  • the reflected polarized light beam comprises p-polarized light and s-polarized light; when the first reflected polarized light beam is the p-polarized light, the second reflected polarized light beam is the s-polarized light; When the first reflected polarized light beam is the s-polarized light, the second reflected polarized light beam is the p-polarized light.
  • the target object is provided with a directional reflection target
  • the test environment between the high-speed laser distance measuring device and the target object includes a particulate object
  • the p-polarized light is filtered by the outgoing polarized beam
  • the directional reflection target, the particle object and the target object are formed by reflection; the s-polarized light is formed by the reflected polarized light beam being reflected by the target object.
  • the polarized light beam is reflected by the directional reflection target to form first p-polarized light; the polarized light beam is reflected by the granular object to form a second p-polarized light; and the polarized light beam is reflected by the background object to form a first Three p-polarized light.
  • the first p-polarized light has a light intensity level greater than the second p-polarized light and the third p-polarized light; the first receiving tube or the second receiving tube is of an order of magnitude according to the light intensity Identifying the photoelectric signal of the first p-polarized light.
  • the photoelectric signals of the first p-polarized light and the s-polarized light are identified.
  • the high speed laser ranging device calculates a relative position of the target object based on the photoelectric signal.
  • FIG. 1 is a schematic structural view of a high-speed laser ranging device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a high speed laser ranging device in accordance with an embodiment of the present invention.
  • the present invention provides a high speed laser ranging device, the high speed laser ranging device comprising a transmitting portion and a receiving portion;
  • the emitting portion includes an arc tube, a mirror, and an emission objective lens
  • the receiving portion includes a receiving objective lens group, a filter, and a receiving tube group;
  • the emitting portion further includes a polarizing plate disposed between the light emitting tube and the mirror;
  • the receiving portion further includes a polarization beam splitter disposed between the filter and the receiving tube group, wherein the receiving tube group includes a first receiving tube and a second receiving tube;
  • the light emitting tube emits an outgoing light beam to the polarizing plate, and the polarizing plate is passed through to form an outgoing polarized light beam incident on the mirror, reflected by the reflecting mirror and transmitted through the emitting objective lens to a target On the object
  • the emitted polarized light beam is reflected by the target object to form a reflected polarized light beam, is transmitted through the receiving objective lens group to the filter, filtered through the filter, and then incident on the polarization beam splitter,
  • the reflected polarized light beam is split by the polarization beam splitter into a first reflected polarized light beam and a second reflected polarized light beam, wherein
  • the first reflected polarized light beam is transmitted through the polarizing beam splitter and incident on the first receiving tube;
  • the second reflected polarized light beam is reflected by the polarizing beam splitter and incident on the second receiving tube.
  • a high-speed laser ranging device includes a transmitting portion and a receiving portion.
  • the emitting portion includes an arc tube 1, a polarizing plate 2, a mirror 3, and an emission objective 4.
  • the receiving portion includes a receiving objective lens group 5, a filter 6, a polarization beam splitter 7, a first receiving tube 8, and a second receiving tube 9.
  • the polarizing plate 2 faces the light-emitting tube 1, and is disposed below the vertical direction of the light-emitting tube 1.
  • the mirror 3 faces the polarizing plate 2 and is disposed below the polarizing plate 2 in the vertical direction.
  • the polarization beam splitter 7 is disposed between the filter 6 and the first receiving tube 8 and the second receiving tube 9.
  • the receiving tube 8 is disposed in the horizontal direction of the polarization beam splitter 7; the second receiving tube 9 is disposed in the vertical direction of the polarization beam splitter 7.
  • the light-emitting tube 1 emits an outgoing beam downward to the polarizing plate 2, and the outgoing beam passes through the polarizing plate 2 to form an outgoing polarized beam incident on the mirror 3, and the outgoing polarized beam is reflected by the mirror 3 and transmitted through the emitting objective lens. 4 exits onto a target object.
  • the reflected polarized light beam emitted from the light-emitting device of the high-speed laser ranging device is reflected by the target object to form a reflected polarized light beam.
  • the reflected polarized light beam is transmitted through the receiving objective lens group 5 to the filter 6, and the filter 6 is not filtered by the stray light emitted from the high-speed laser ranging device, and the filtered polarized light beam is incident on the polarizing beam splitter 7 after filtering.
  • the polarized beam is split by the polarization beam splitter 7 to form a first reflected polarized beam and a second reflected polarized beam.
  • the first reflected polarized light beam is transmitted through the polarization beam splitter 7 and incident on the first receiving tube 8 located in the horizontal direction of the polarization beam splitter 7; the second reflected polarized light beam is reflected by the polarization beam splitter 7 and incident on the polarizing beam splitter 7 vertical
  • the second receiving tube 9 is oriented.
  • the first receiving tube 8 and the second receiving tube 9 are two photo receiving devices, such as components such as an APD.
  • the first receiving tube 8 and the second receiving tube 9 of the high-speed laser ranging device receive the first reflected polarized light beam and the second reflected polarized light beam, and are calculated according to the intensity signals of the first reflected polarized light beam and the second reflected polarized light beam Target object distance. In this way, the high-speed laser ranging device can separately process two different orders of magnitude signals and adjust the sensitivity of the receiving tube receiving high energy to avoid irreversible loss.
  • FIG. 2 it is a schematic structural diagram of a high-speed laser ranging device in accordance with an embodiment of the present invention.
  • the emitting portion of a high-speed laser ranging device as shown in FIG. 2 includes an arc tube 1, a polarizing plate 2, a mirror 3, and an emission objective 4.
  • the receiving portion includes a receiving objective lens group 5, a filter 6, a polarization beam splitter 7, The first receiving tube 8 and the second receiving tube.
  • the polarizing plate 2 faces the light-emitting tube 1 and is disposed below the vertical direction of the light-emitting tube 1.
  • the mirror 3 faces the polarizing plate 2 and is disposed below the polarizing plate 2 in the vertical direction.
  • the polarization beam splitter 7 is disposed between the filter 6 and the first receiving tube 8 and the second receiving tube 9.
  • the receiving tube 8 is disposed in the horizontal direction of the polarization beam splitter 7; the second receiving tube 9 is disposed in the vertical direction of the polarization beam splitter 7.
  • the light-emitting tube 1 emits an outgoing beam downward to the polarizing plate 2, and the outgoing beam passes through the polarizing plate 2 to form an outgoing polarized beam incident on the mirror 3, and the outgoing polarized beam is reflected by the mirror 3 and transmitted through the emitting objective lens. 4 exits onto a target object.
  • the reflected polarized light beam emitted from the light-emitting device of the high-speed laser ranging device is reflected by the target object to form a reflected polarized light beam.
  • the reflected polarized light beam is transmitted through the receiving objective lens group 5 to the filter 6, and the filter 6 is not filtered by the stray light emitted from the high-speed laser ranging device, and the filtered polarized light beam is incident on the polarizing beam splitter 7 after filtering.
  • the polarized beam is split by the polarization beam splitter 7 to form a first reflected polarized beam and a second reflected polarized beam.
  • the light-emitting direction of the first reflected polarized light beam is defined as a first light-emitting direction
  • the light-emitting direction of the second reflected polarized light beam is a second light-emitting direction.
  • the reflected polarized light beam is split by the polarizing beam splitter 7 to obtain a first reflected polarized light beam transmitted in the first light emitting direction and a second reflected polarized light beam reflected in the second light emitting direction.
  • the first light emitting direction is orthogonal to the second light emitting direction.
  • the reflected polarized light beam is split by the polarization beam splitter 7 and can be divided into s-polarized light and p-polarized light. That is, the first reflected polarized light beam is p-polarized light, the second reflected polarized light beam is s-polarized light or the first reflected polarized light beam is s-polarized light, and the second reflected polarized light beam is p-polarized light.
  • the first reflected polarized light beam is defined as s-polarized light
  • the second reflected polarized light beam is p-polarized light.
  • the s-polarized light is transmitted through the polarization beam splitter 7 and incident on the first receiving tube 8 located in the horizontal direction of the polarization beam splitter 7; the p-polarized light is reflected by the polarization beam splitter 7 and incident on the second receiving tube 9 in the vertical direction of the polarization beam splitter 7. .
  • the first receiving tube 8 and the second receiving tube 9 are two photo receiving devices, such as components such as an APD.
  • a directional reflection target (reflecting prism) is provided on the target object to allow the high speed laser ranging device to be identified for positioning.
  • high-speed laser ranging devices have certain particulate objects, such as tiny dust and water mist, in the test environment.
  • the emitted polarized light beam emitted by the high-speed laser ranging device will only reflect and form p-polarized light when it encounters the reflective target and the particulate object.
  • the outgoing polarized beam emitted by the high-speed laser ranging device encounters the target object, it will reflect p-polarized light and s-polarized light.
  • the p-polarized light received by the second receiving tube 9 includes reflections from the three parts of the directional reflection target, the granular object, and the target object.
  • the first receiving tube 8 also receives an s-polarized light reflected by the target object.
  • a first p-polarized light from a directional reflective target, a second p-polarized light from a particulate object, and a third p-polarized light from a target object are defined.
  • the light intensity of the first p-polarized light is on the order of magnitude greater than the second p-polarized light and the third p-polarized light.
  • the second receiving tube 9 of the high-speed laser ranging device receives the first p-polarized light, the second p-polarized light, and the third p-polarized light reflected by the polarization beam splitter, the first p from the directional reflection target
  • the polarized light has a high intensity higher than that of the second p-polarized light and the third p-polarized light
  • the second receiving tube 9 automatically recognizes the photoelectric signal of the first p-polarized light from the directional reflecting target, and ignores the second Photoelectric signals of p-polarized light and third p-polarized light.
  • the first receiving tube 8 recognizes the photoelectric signal of the s-polarized light based on the received s-polarized light from the target object.
  • the high-speed laser ranging device calculates the relative position of the target object based on the reflected signals formed by the first receiving tube 8 and the second receiving tube 9 and the photoelectric signals formed by the reflection of the target object.
  • a polarizing plate is further disposed in the transmitting portion of the conventional high-speed laser ranging device, and a polarization beam splitter is further disposed in the receiving portion.
  • the high-intensity first p-polarized light formed by the shot further ignores the interference caused by the second p-polarized light formed by the reflection of the particulate object on the high-speed laser ranging device.
  • the high-speed laser ranging device provided by the present invention can recognize the light formed by the reflection of the directional reflection target and the target object based on a simple device structure, and correspondingly receive the receiving device with different sensitivity, and can also effectively filter.
  • the interference caused by the particle object in the test environment to the test thereby avoiding the loss of the receiving device of the high-speed laser ranging device and improving the measurement accuracy to some extent.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种高速激光测距装置,包含发射部和接收部;发射部进一步包含置于发光管(1)与反射镜(3)间的偏振片(2);接收部进一步包含置于滤光片(6)与接收管组间的偏振分光镜(7);发光管(1)射出一出射光束至偏振片(2),形成一出射偏振光束入射至反射镜(3),经反射镜(3)反射并透过发射物镜(4)出射到一目标物体上,经反射形成一反射偏振光束,透过接收物镜组(5)出射至滤光片(6),经过滤后入射至偏振分光镜(7),经分束为第一反射偏振光束和第二反射偏振光束,分别入射至第一接收管(8)和第二接收管(9)。高速激光测距装置可以识别定向反射目标与目标物体反射形成的光,并采用不同的接收器件接收,同时可以有效滤出测试环境中的颗粒物体对测试造成的干扰。

Description

一种高速激光测距装置 技术领域
本发明涉及测距领域,尤其涉及一种高速激光测距装置。
背景技术
目前在激光雷达的使用中,普遍会在待测的目标物体上安置定向反射目标(反射棱镜)以便激光雷达能够轻松识别以定位。然而,经反射目标(反射棱镜)反射形成的光强度过高,使用同一光电装置接收反射目标(反射棱镜)反射形成的光与经被测的目标物体反射形成的光会对激光雷达接收器造成不可逆的损害,长期会导致测量精度的下降。
另一方面,基于现有的激光雷达测试技术无法对测量环境中存在的微小粉尘、水雾等颗粒物体进行精确地鉴别,测量环境中的微小粉尘以及水雾等颗粒物体的存在会对测试结果造成一定的干扰。例如,在实验中在激光雷达周围喷射水雾,扫描后获得的图像变成了周围水雾的形状,从而导致激光雷达无法对室内轮廓进行精确测量。
因此,需要提供一种新的高速激光测距装置,可以识别定向反射目标及目标物体反射形成的光,并分别以不同的光电感应装置接收。既能避免接收器受到不可逆的损害,又能有效滤除环境中各种颗粒物对测试结果造成的干扰。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种高速激光测距装置。
本发明提供的一种高速激光测距装置,采用偏振片与偏振分光镜实现高速激光测距装置对定向反射目标及目标物体形成的反射光的识别,并分别采 用不同灵敏度的接收器接收。既能避免接收器受到不可逆的损害,又能有效滤除环境中各种颗粒物对测试结果造成的干扰。
本发明提供了一种高速激光测距装置,所述高速激光测距装置包含发射部和接收部;
所述发射部包含发光管、反射镜、发射物镜;
所述接收部包含接收物镜组、滤光片和接收管组;
所述发射部进一步包含置于所述发光管与所述反射镜间的偏振片;
所述接收部进一步包含置于所述滤光片与所述接收管组间的偏振分光镜,其中所述接收管组包括第一接收管及第二接收管;
所述发光管射出一出射光束至所述偏振片,透过所述偏振片后形成一出射偏振光束入射至所述反射镜,经所述反射镜反射并透过所述发射物镜出射到一目标物体上;
所述出射偏振光束经所述目标物体反射形成一反射偏振光束,透过所述接收物镜组出射至所述滤光片,经所述滤光片过滤后入射至所述偏振分光镜,所述反射偏振光束经所述偏振分光镜分束为第一反射偏振光束和第二反射偏振光束,其中,
所述第一反射偏振光束经所述偏振分光镜透射并入射至所述第一接收管;
所述第二反射偏振光束经所述偏振分光镜反射并入射至所述第二接收管。
优选地,所述第一偏振反射光束的出光方向为第一出光方向;所述第二偏振反射光束的出光方向为第二出光方向;所述第一出光方向与所述第二出光方向正交。
优选地,所述反射偏振光束包含p偏振光和s偏振光;当所述第一反射偏振光束为所述p偏振光时,所述第二反射偏振光束为所述s偏振光;当所述第一反射偏振光束为所述s偏振光时,所述第二反射偏振光束为所述p偏振光。
优选地,当所述目标物体上设有定向反射目标,所述高速激光测距装置与所述目标物体之间的测试环境中包含颗粒物体时,所述p偏振光由所述出射偏振光束经所述定向反射目标、颗粒物体及所述目标物体反射形成;所述s偏振光由所述出射偏振光束经所述目标物体反射形成。
优选地,所述偏振光束经所述定向反射目标反射形成第一p偏振光;所述偏振光束经所述颗粒物体反射形成第二p偏振光;所述偏振光束经所述背景物体反射形成第三p偏振光。
优选地,所述第一p偏振光的光强度数量级大于所述第二p偏振光与所述第三p偏振光;所述第一接收管或所述第二接收管根据所述光强度数量级识别所述第一p偏振光的光电信号。
优选地,所述第一接收管与所述第二接收管分别接收所述p偏振光与所述s偏振光后,识别所述第一p偏振光与所述s偏振光的光电信号,所述高速激光测距装置根据所述光电信号计算所述目标物体的相对位置。
与现有技术相比较,本发明的技术优势在于:
1.结构简单;
2.可以识别定向反射目标与目标物体反射形成的光,并采用不同的接收元件接收;
3.可以有效滤出测试环境中的颗粒物体对测试造成的干扰;
4.测量精度高。
附图说明
图1为符合本发明实施例中的一种高速激光测距装置结构示意图;
图2为符合本发明实施例中的一种高速激光测距装置结构示意图。
附图标记:
1-发光管
2-偏振片
3-反射镜
4-发射物镜
5-接收物镜组
6-滤光片
7-偏振分光镜
8-第一接收管
9-第二接收管
具体实施方式
本发明提供了一种高速激光测距装置,所述高速激光测距装置包含发射部和接收部;
所述发射部包含发光管、反射镜、发射物镜;
所述接收部包含接收物镜组、滤光片和接收管组;
所述发射部进一步包含置于所述发光管与所述反射镜间的偏振片;
所述接收部进一步包含置于所述滤光片与所述接收管组间的偏振分光镜,其中所述接收管组包括第一接收管及第二接收管;
所述发光管射出一出射光束至所述偏振片,透过所述偏振片后形成一出射偏振光束入射至所述反射镜,经所述反射镜反射并透过所述发射物镜出射到一目标物体上;
所述出射偏振光束经所述目标物体反射形成一反射偏振光束,透过所述接收物镜组出射至所述滤光片,经所述滤光片过滤后入射至所述偏振分光镜,所述反射偏振光束经所述偏振分光镜分束为第一反射偏振光束和第二反射偏振光束,其中,
所述第一反射偏振光束经所述偏振分光镜透射并入射至所述第一接收管;
所述第二反射偏振光束经所述偏振分光镜反射并入射至所述第二接收管。
以下结合附图与具体实施例进一步阐述本发明的优点。
实施例一
如图1所示,为本发明实施例中的一种高速激光测距装置包括发射部和接收部。发射部包括发光管1、偏振片2、反射镜3和发射物镜4。接收部包括接收物镜组5、滤光片6、偏振分光镜7、第一接收管8和第二接收管9。
如图1所示,偏振片2面向发光管1,并设于发光管1垂直方向的下方。反射镜3面向偏振片2,并设于偏振片2垂直方向的下方。偏振分光镜7设于滤光片6与第一接收管8、第二接收管9之间。接收管8设于偏振分光镜7的水平方向;第二接收管9设于偏振分光镜7的垂直方向。
发光管1向下射出一出射光束至偏振片2,该出射光束透过偏振片2后形成一出射偏振光束入射至反射镜3,该出射偏振光束经反射镜3反射并透过所述发射物镜4出射到一目标物体上。由高速激光测距装置的发光装置出射的出射偏振光束经目标物体的反射后形成一反射偏振光束。该反射偏振光束透过接收物镜组5出射至滤光片6,滤光片6将不是从高速激光测距装置发射的杂光滤除,过滤后反射偏振光束入射至偏振分光镜7,该反射偏振光束经偏振分光镜7分束,形成第一反射偏振光束和第二反射偏振光束。第一反射偏振光束经偏振分光镜7透射并入射至位于偏振分光镜7水平方向的第一接收管8;第二反射偏振光束经所述偏振分光镜7反射并入射至位于偏振分光镜7垂直方向第二接收管9。第一接收管8与第二接收管9为两个光电接收器件,如APD等元件。当高速激光测距装置的第一接收管8与第二接收管9接收到第一反射偏振光束与第二反射偏振光束后,并根据第一反射偏振光束与第二反射偏振光束的强度信号计算目标物体距离。以此,高速激光测距装置可以分开处理两种不同数量级的信号,并对接收高能量的接收管的灵敏度作相应的调节,避免不可逆的损耗。
实施例二
如图2所示,为符合本发明实施例中的高速激光测距装置结构示意图。如图2所示的一种高速激光测距装置的发射部包括发光管1、偏振片2、反射镜3和发射物镜4。接收部包括接收物镜组5、滤光片6、偏振分光镜7、 第一接收管8和第二接收管。
如图2所示,偏振片2面向发光管1,并设于发光管1垂直方向的下方。反射镜3面向偏振片2,并设于偏振片2垂直方向的下方。偏振分光镜7设于滤光片6与第一接收管8、第二接收管9之间。接收管8设于偏振分光镜7的水平方向;第二接收管9设于偏振分光镜7的垂直方向。
发光管1向下射出一出射光束至偏振片2,该出射光束透过偏振片2后形成一出射偏振光束入射至反射镜3,该出射偏振光束经反射镜3反射并透过所述发射物镜4出射到一目标物体上。由高速激光测距装置的发光装置出射的出射偏振光束经目标物体的反射后形成一反射偏振光束。该反射偏振光束透过接收物镜组5出射至滤光片6,滤光片6将不是从高速激光测距装置发射的杂光滤除,过滤后反射偏振光束入射至偏振分光镜7,该反射偏振光束经偏振分光镜7分束,形成第一反射偏振光束和第二反射偏振光束。
优选地,本发明实施例中,定义第一反射偏振光束的出光方向为第一出光方向,第二反射偏振光束的出光方向为第二出光方向。反射偏振光束经偏正分光镜7分束后得到的一沿第一出光方向透射的第一反射偏振光束与一沿第二出光方向反射的第二反射偏振光束。且第一出光方向与第二出光方向正交。
优选地,本发明实施例中反射偏振光束经偏振分光镜7分束后可以分为s偏振光与p偏振光。即第一反射偏振光束为p偏振光,第二反射偏振光束为s偏振光或第一反射偏振光束为s偏振光,第二反射偏振光束为p偏振光。在本实施例中定义第一反射偏振光束为s偏振光,第二反射偏振光束为p偏振光。s偏振光经偏振分光镜7透射并入射至位于偏振分光镜7水平方向的第一接收管8;p偏振光经偏振分光镜7反射并入射至位于偏振分光镜7垂直方向第二接收管9。第一接收管8与第二接收管9为两个光电接收器件,如APD等元件。当高速激光测距装置的第一接收管8与第二接收管9接收到s与p偏振光束后,可根据s偏振光与p偏振光的光电信号计算目标物体的相对距离。
优选地,在目前高速激光测距装置的使用中,会在目标物体上设有定向反射目标(反射棱镜)以便让高速激光测距装置识别以定位。此外,高速激光测距装置测试环境中存在一定的颗粒物体,如微小粉尘、水雾等。在该情况下,高速激光测距装置的发射的出射偏振光束遇到反射目标、颗粒物体后只会反射形成p偏振光。而当高速激光测距装置发射的出射偏振光束遇到目标物体后会反射形成p偏振光和s偏振光。也就是说,在本发明实施例中,第二接收管9会接收到的p偏振光包含来自定向反射目标、颗粒物体和目标物体三部分的反射。同时,第一接收管8还会接收到一由目标物体反射的s偏振光。
本发明实施例中,定义来自定向反射目标的第一p偏振光、来自颗粒物体的第二p偏振光以及来自目标物体的第三p偏振光。其中,第一p偏振光的光强度数量级远大于第二p偏振光及第三p偏振光。因此,当高速激光测距装置的第二接收管9接收到由偏振分光镜反射的第一p偏振光、第二p偏振光及第三p偏振光后,由于来自定向反射目标的第一p偏振光具有的高强度高出第二p偏振光和第三p偏振光多个数量级,第二接收管9会自动识别出来自定向反射目标的第一p偏振光的光电信号,并忽略第二p偏振光与第三p偏振光的光电信号。相应地,第一接收管8根据接收所得的来自目标物体的s偏振光识别s偏振光的光电信号。完成识别光电信号后,高速激光测距装置根据第一接收管8和第二接收管9识别的经定向反射目标及目标物体反射形成的光电信号计算目标物体的相对位置。
采用本发明提供的一种高速激光测距装置,在现有的高速激光测距装置发射部中进一步设有一偏振片,在接收部中进一步设有偏振分光镜。采用上述配置后,将高速激光测距装置发出的光束转化为出射偏振光束,并且将经定向反射目标、颗粒物体及目标物体反射后的反射偏振光束分束为p偏振光与s偏振光,同时采用灵敏度不同的第一接收管8与第二接收管9相应接收,以此避免经定向反射目标反射形成的p偏振光过高的光强度对接收管造成的不可逆伤害。此外,通过对反射偏振光束的分束,以及利用定向反射目标反 射形成的高强度第一p偏振光,进一步忽略颗粒物体反射形成的第二p偏振光对高速激光测距装置测试造成的干扰。
综上所述,本发明提供的一种高速激光测距装置基于简单的装置结构可以识别定向反射目标与目标物体反射形成的光,并相应地采用灵敏度不同的接收器件接收,同时还可以有效滤出测试环境中的颗粒物体对测试造成的干扰,从而避免对高速激光测距装置接收器件的损耗并在一定程度上提高测量精度。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (7)

  1. 一种高速激光测距装置,所述高速激光测距装置包含发射部和接收部;
    所述发射部包含发光管、反射镜、发射物镜;
    所述接收部包含接收物镜组、滤光片和接收管组;
    其特征在于,
    所述发射部进一步包含置于所述发光管与所述反射镜间的偏振片;
    所述接收部进一步包含置于所述滤光片与所述接收管组间的偏振分光镜,其中所述接收管组包括第一接收管及第二接收管;
    所述发光管射出一出射光束至所述偏振片,透过所述偏振片后形成一出射偏振光束入射至所述反射镜,经所述反射镜反射并透过所述发射物镜出射到一目标物体上;
    所述出射偏振光束经所述目标物体反射形成一反射偏振光束,透过所述接收物镜组出射至所述滤光片,经所述滤光片过滤后入射至所述偏振分光镜,所述反射偏振光束经所述偏振分光镜分束为第一反射偏振光束和第二反射偏振光束,其中,
    所述第一反射偏振光束经所述偏振分光镜透射并入射至所述第一接收管;
    所述第二反射偏振光束经所述偏振分光镜反射并入射至所述第二接收管。
  2. 如权利要求1所述的高速激光测距装置,其特征在于,所述第一偏振反射光束的出光方向为第一出光方向;所述第二偏振反射光束的出光方向为第二出光方向;所述第一出光方向与所述第二出光方向正交。
  3. 如权利要求1所述的高速激光测距装置,其特征在于,所述反射偏振光束包含p偏振光和s偏振光;当所述第一反射偏振光束为所述p偏振光时,所述第二反射偏振光束为所述s偏振光;当所述第一反射偏振光束为所述s偏振光时,所述第二反射偏振光束为所述p偏振光。
  4. 如权利要求3所述的高速激光测距装置,其特征在于,当所述目标物体上设有定向反射目标,所述高速激光测距装置与所述目标物体之间的测试环境中包含颗粒物体时,所述p偏振光由所述出射偏振光束经所述定向反射 目标、颗粒物体及所述目标物体反射形成;所述s偏振光由所述出射偏振光束经所述目标物体反射形成。
  5. 如权利要求4所述的高速激光测距装置,其特征在于,所述出射偏振光束经所述定向反射目标反射形成第一p偏振光;所述偏振光束经所述颗粒物体反射形成第二p偏振光;所述偏振光束经所述目标物体反射形成第三p偏振光。
  6. 如权利要求5所述的高速激光测距装置,其特征在于,所述第一p偏振光的光强度数量级大于所述第二p偏振光与所述第三p偏振光;所述第一接收管或所述第二接收管根据所述光强度数量级识别所述第一p偏振光的光电信号。
  7. 如权利要求5所述的高速激光测距装置,其特征在于,所述第一接收管与所述第二接收管接收所述p偏振光与所述s偏振光后,识别所述第一p偏振光与所述s偏振光的光电信号,所述高速激光测距装置根据所述光电信号计算所述目标物体的相对位置。
PCT/CN2017/097545 2017-08-14 2017-08-15 一种高速激光测距装置 WO2019033279A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/639,149 US11681018B2 (en) 2017-08-14 2017-08-15 High-speed laser distance measuring device
EP17921767.4A EP3671274A4 (en) 2017-08-14 2017-08-15 HIGH SPEED LASER DISTANCE MEASURING DEVICE
JP2020508353A JP2020530571A (ja) 2017-08-14 2017-08-15 高速レーザ測距装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710693375.4 2017-08-14
CN201710693375.4A CN107367736B (zh) 2017-08-14 2017-08-14 一种高速激光测距装置

Publications (1)

Publication Number Publication Date
WO2019033279A1 true WO2019033279A1 (zh) 2019-02-21

Family

ID=60309398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097545 WO2019033279A1 (zh) 2017-08-14 2017-08-15 一种高速激光测距装置

Country Status (5)

Country Link
US (1) US11681018B2 (zh)
EP (1) EP3671274A4 (zh)
JP (1) JP2020530571A (zh)
CN (1) CN107367736B (zh)
WO (1) WO2019033279A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966707A (zh) * 2017-12-15 2018-04-27 杭州欧镭激光技术有限公司 一种激光测距系统
JP6965784B2 (ja) * 2018-02-13 2021-11-10 株式会社リコー 距離測定装置、およびこれを用いた移動体
CN109991614B (zh) * 2019-03-27 2021-02-05 深圳市速腾聚创科技有限公司 激光雷达测距装置
CN113917473B (zh) * 2021-09-17 2024-04-26 西安理工大学 一种适用于雨雾环境的脉冲式偏振激光测距方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308926A (zh) * 2013-06-18 2013-09-18 浙江大学 一种高光谱分辨率激光雷达装置
US9097511B2 (en) * 2011-05-11 2015-08-04 Dmg Mori Seiki Co., Ltd. Displacement detecting device with a polarization change to a twice-diffracted beam
CN106443710A (zh) * 2016-11-04 2017-02-22 北京遥测技术研究所 一种双波长偏振高光谱分辨激光雷达装置
CN106705858A (zh) * 2016-11-29 2017-05-24 中国计量大学 一种基于合成干涉信号偏振态检测技术的纳米测量系统
CN207096452U (zh) * 2017-08-14 2018-03-13 杭州欧镭激光技术有限公司 一种高速激光测距装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358099B2 (ja) * 1994-03-25 2002-12-16 オムロン株式会社 光学式センサ装置
JPH08136455A (ja) * 1994-11-02 1996-05-31 Kobe Steel Ltd レーザレーダによる大気の汚染監視方法とその監視装置
US20020109829A1 (en) * 1999-10-28 2002-08-15 Hayes Cecil L. Single aperture, alignment insensitive ladar system
JP2003130954A (ja) * 2001-10-24 2003-05-08 Nikon Corp 測距装置
KR20050025904A (ko) * 2003-09-08 2005-03-14 소니 가부시끼 가이샤 화상투사장치
JP2009008404A (ja) * 2007-06-26 2009-01-15 Nikon-Trimble Co Ltd 距離測定装置
CN101825711A (zh) * 2009-12-24 2010-09-08 哈尔滨工业大学 一种2μm全光纤相干激光多普勒测风雷达系统
CA2838226C (en) * 2011-06-30 2023-03-28 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US9116243B1 (en) * 2013-09-20 2015-08-25 Rockwell Collins, Inc. High altitude ice particle detection method and system
CN104777486A (zh) * 2015-02-04 2015-07-15 杨军 手持式激光近距离测距仪
CN104820223B (zh) * 2015-04-10 2017-07-14 中国科学院上海光学精密机械研究所 基于m序列相位编码的光学域匹配滤波测距装置
CN104977725A (zh) * 2015-06-29 2015-10-14 中国科学院长春光学精密机械与物理研究所 用于光电吊舱的光学系统
CN106249252B (zh) * 2016-07-22 2019-02-01 西安理工大学 探测云中过冷水的机载近红外激光雷达系统及反演方法
KR102496509B1 (ko) * 2016-09-20 2023-02-07 이노비즈 테크놀로지스 엘티디 Lidar 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9097511B2 (en) * 2011-05-11 2015-08-04 Dmg Mori Seiki Co., Ltd. Displacement detecting device with a polarization change to a twice-diffracted beam
CN103308926A (zh) * 2013-06-18 2013-09-18 浙江大学 一种高光谱分辨率激光雷达装置
CN106443710A (zh) * 2016-11-04 2017-02-22 北京遥测技术研究所 一种双波长偏振高光谱分辨激光雷达装置
CN106705858A (zh) * 2016-11-29 2017-05-24 中国计量大学 一种基于合成干涉信号偏振态检测技术的纳米测量系统
CN207096452U (zh) * 2017-08-14 2018-03-13 杭州欧镭激光技术有限公司 一种高速激光测距装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3671274A4 *

Also Published As

Publication number Publication date
US11681018B2 (en) 2023-06-20
CN107367736A (zh) 2017-11-21
EP3671274A4 (en) 2021-03-24
JP2020530571A (ja) 2020-10-22
US20200233063A1 (en) 2020-07-23
EP3671274A1 (en) 2020-06-24
CN107367736B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
WO2019033279A1 (zh) 一种高速激光测距装置
CN101210806B (zh) 基于辅助光源的激光发射轴与机械基准面法线沿方位轴方向角度偏差及俯仰角度偏差的测量方法
TW201641927A (zh) 具有透明基底的薄膜的測量裝置及測量方法
US10451738B2 (en) Laser processing device and laser processing system
CN205808344U (zh) 移位传感器
CN205942120U (zh) 一种带有偏振分束元件的自准光路系统
CN102385170A (zh) 一种高精度测量调整光学镜片中心偏差的光学系统
CN105652261A (zh) 激光雷达光学系统及激光雷达
CN107643055A (zh) 基于偏振光束的自参考准直光路系统及计算被测角度方法
CN105277131B (zh) 三维孔结构的测量装置与测量方法
CN112798605A (zh) 一种表面缺陷检测装置及方法
JP4684215B2 (ja) 表面欠陥検査装置
CN105651733B (zh) 材料散射特性测量装置及方法
CN103727887A (zh) 非相干成像玻璃测厚方法
JPS6312249B2 (zh)
CN201318936Y (zh) 轮廓测量投影装置
CN109269417A (zh) 一种基于反射镜的非接触式振动位移传感器
JPS6319506A (ja) 滴下液滴の検出方法
JP3983549B2 (ja) 表面欠陥検査装置
CN205826560U (zh) 一种球体表面微小瑕疵的光学快速检测装置
JPS5982726A (ja) ペリクル付基板の異物検査装置
CN218886153U (zh) 一种激光雷达装置、设备及系统
JPS58100742A (ja) 硝子ビンのすり傷検出方法
JPH07119703B2 (ja) 表面欠陥検査装置
KR20140029237A (ko) 이동 재료 웹 캡쳐 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017921767

Country of ref document: EP

Effective date: 20200316