WO2019031500A1 - 不死化汗腺筋上皮細胞 - Google Patents

不死化汗腺筋上皮細胞 Download PDF

Info

Publication number
WO2019031500A1
WO2019031500A1 PCT/JP2018/029594 JP2018029594W WO2019031500A1 WO 2019031500 A1 WO2019031500 A1 WO 2019031500A1 JP 2018029594 W JP2018029594 W JP 2018029594W WO 2019031500 A1 WO2019031500 A1 WO 2019031500A1
Authority
WO
WIPO (PCT)
Prior art keywords
sweat gland
cells
sphere
cell
immortalized
Prior art date
Application number
PCT/JP2018/029594
Other languages
English (en)
French (fr)
Inventor
智久 早川
倉田 隆一郎
郁尚 藤田
文裕 岡田
関口 清俊
Original Assignee
株式会社マンダム
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マンダム, 国立大学法人大阪大学 filed Critical 株式会社マンダム
Priority to CN201880041344.3A priority Critical patent/CN110770337B/zh
Priority to US16/626,052 priority patent/US11060061B2/en
Priority to CA3069571A priority patent/CA3069571C/en
Priority to JP2018567964A priority patent/JP6563145B2/ja
Priority to KR1020197037810A priority patent/KR102334203B1/ko
Priority to EP18844352.7A priority patent/EP3666889A4/en
Publication of WO2019031500A1 publication Critical patent/WO2019031500A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0661Smooth muscle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0625Epidermal cells, skin cells; Cells of the oral mucosa
    • C12N5/0633Cells of secretory glands, e.g. parotid gland, salivary glands, sweat glands, lacrymal glands
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2531/00Microcarriers

Definitions

  • the present invention relates to immortalized sweat gland myoepithelial cells. More particularly, the present invention relates to an immortalized sweat gland myoepithelial cell useful for the development of external preparations such as antiperspirants and deodorants, agents for improving sweat gland function and the like, and a method for producing the same.
  • Sweat gland myoepithelial cells are one of the cells that make up the sweat gland.
  • the sweat gland myoepithelial cells are involved in the movement of the sweat glands during sweat secretion.
  • sweat gland myoepithelial cells are stem cells of sweat glands (see, for example, Non-Patent Document 1). Therefore, it may be considered to use sweat gland myoepithelial cells for evaluation of the function of sweat glands, etc. in order to develop means for improving the dysfunction and hyperfunction of the sweat glands.
  • sweat gland myoepithelial cells isolated from sweat glands have the disadvantage of poor availability and handleability due to the small amount present in the sweat glands and the small number of times that can be subcultured. Therefore, it is desirable to immortalize the sweat gland myoepithelial cells to impart long-term cell proliferation ability to the sweat gland myoepithelial cells.
  • SV40 simian virus 40
  • non-patent document 2 a method of infecting sweat gland cells cultured in a state of being adhered to a culture vessel with a simian virus 40 (hereinafter referred to as "SV40") has been reported (see, for example, non-patent document 2) ).
  • the method has the disadvantage that it is difficult to obtain immortalized sweat gland cells having the same function and properties as sweat gland cells in the living body, because the sweat gland cells are cultured under an environment different from the living environment.
  • the present inventors have not found documents specifically describing a technique capable of introducing a foreign gene into sweat gland cells in a suspended state.
  • NCL-SG3 A human eccrine sweat cell line having transepithelial ion transport ability
  • NCL-SG3 human eccrine sweat gland cell line that retains the capacity for transepithelial ion transport
  • the present invention has been made in view of the above-mentioned prior art, and has the same function and property as sweat gland myoepithelial cells in vivo, and can immortalize cells having such function and property for a long period of time. It is an object of the present invention to provide a method for producing an transformed sweat gland myoepithelial cell, and an immortalized sweat gland myoepithelial cell capable of producing the immortalized sweat gland myoepithelial cell with high production efficiency.
  • the present invention (1) An immortalized sweat gland myoepithelial cell which expresses ⁇ -smooth muscle actin and pancytokeratin and has a sphere-forming ability after at least 5 passages. (2) The immortalized sweat gland myoepithelial cell according to the above (1), which further expresses ATP1a1.
  • a method for producing immortalized sweat gland myoepithelial cells (I) introducing an immortalizing gene into the sweat gland myoepithelial cell while culturing the cell structure in which the sweat gland myoepithelial cell is exposed on the surface in a suspended state in a medium to obtain a gene transfer body; And (II) A method for producing immortalized sweat gland myoepithelial cells comprising the step of culturing the gene transfer body obtained in the step (I) suspended in a medium to obtain immortalized sweat gland myoepithelial cells.
  • the method further includes the step of removing at least all or part of collagen fibers from the collected skin tissue before performing the step (I) to obtain a sweat gland-containing tissue, wherein the cells in the step (I)
  • the method for producing an immortalized sweat gland myoepithelial cell according to the above (3) or (4), wherein the sweat gland-containing tissue is used as a structure, and (6) before performing the step (I), The step of culturing in a suspended state to form a sphere in which the sweat gland myoepithelial cells are exposed on the surface, wherein in the step (I), the sphere is used as the cell structure (3) or (3) It relates to the manufacturing method of immortalized sweat gland myoepithelial cells as described in 4).
  • the immortalized sweat gland myoepithelial cell of the present invention has an excellent effect that cells having the same function and nature as the sweat gland myoepithelial cell in vivo can be proliferated for a long period of time. Is played. Moreover, according to the method for producing immortalized sweat gland myoepithelial cells of the present invention, the excellent effect that the immortalized sweat gland myoepithelial cells of the present invention can be produced with high production efficiency is exhibited.
  • (A) is a drawing-substituting photograph showing the result of fluorescence microscope observation of the virus-infected sweat gland sphere obtained in Reference Example 1
  • (B) shows the result of fluorescence microscope observation of the virus-infected sweat gland cell obtained in Reference Example 2
  • Photo substitute for drawing
  • (A) is a drawing-substituting photograph showing the results of examining the relationship between the sphere forming ability of the sweat gland cells contained in the virus-infected sweat gland sphere obtained in Example 1 and the passage number in Test Example 2 (1)
  • (B ) Is a drawing-substituting photograph showing the results of examining the relationship between the sphere forming ability and passage number of the dissociated sweat gland cells obtained in Comparative Example 1 in Test Example 2 (1).
  • (A) is a graph showing the result of examining the relationship between cell type and pancytokeratin expression level
  • (B) is a graph showing the result of examining the relationship between cell type and ⁇ -SMA expression level.
  • (A) is a drawing-substituting photograph showing the result of examining the relationship between the sphere forming ability of the sweat gland cells contained in the virus-infected tissue obtained in Example 2 and the passage number in Test Example 3
  • (B) is the Test Example 10 is a drawing-substituting photograph showing the results of examining the relationship between the sphere forming ability and passage number of the dissociated sweat gland cells obtained in Comparative Example 1 in No. 3.
  • the immortalized sweat gland myoepithelial cells of the present invention are characterized in that they express ⁇ -smooth muscle actin and pancytokeratin and have the ability to form spheres after at least 5 passages.
  • sweat gland myoepithelial cells isolated from sweat glands refer to sweat gland myoepithelial cells (hereinafter also referred to as “primary sweat gland myoepithelial cells”) separated from the sweat glands and subjected to primary culture.
  • ⁇ -smooth muscle actin and pancytokeratin are markers of sweat gland myoepithelial cells in vivo.
  • Alpha-smooth muscle actin is involved in the expression of the function of sweat gland myoepithelial cells to cause sweat gland contraction.
  • Pancytokeratin also forms the cytoskeleton of sweat gland myoepithelial cells. Since the immortalized sweat gland myoepithelial cells of the present invention express ⁇ -smooth muscle actin and pancytokeratin, they have the same functions and properties as sweat gland myoepithelial cells in vivo.
  • the immortalized sweat gland myoepithelial cells of the present invention have the ability to form spheres after at least 5 passages, they have the same function as sweat gland myoepithelial cells in vivo as compared to primary sweat gland myoepithelial cells. And cells with properties can be grown over an extended period of time.
  • the immortalized sweat gland myoepithelial cells of the present invention have at least 5, preferably 7 or more, more preferably 9 or more, still more preferably 18 or more, still more preferably 100 or more passages. Even, it has the ability to form a sphere.
  • the immortalized sweat gland myoepithelial cells of the present invention maintain their cell proliferation ability for a longer period of time as compared to primary sweat gland myoepithelial cells.
  • Examples of the “function similar to the function of the sweat gland myoepithelial cell in the living body” include, for example, contraction movement of the sweat gland at the time of secretion of sweat, but the present invention is not limited to such an illustration only.
  • Examples of the “properties similar to the properties of sweat gland myoepithelial cells in vivo” include the ability to differentiate into sweat gland luminal cells etc., self-replication ability, ⁇ -smooth muscle actin expression positive, pan cytokeratin expression positive, sodium / Although the ⁇ subunit of potassium ATPase (ATP1a1) expression is positive and the like, the present invention is not limited to such examples.
  • the immortalized sweat gland myoepithelial cells of the present invention further express ATP1a1.
  • ATP1a1 is a marker for sweat gland cells because it is not expressed in myoepithelial cells derived from organs other than sweat glands (eg, myoepithelial cells of mammary gland, etc.). Therefore, the immortalized sweat gland myoepithelial cells of the present invention expressing ATP1a1 can be differentiated from myoepithelial cells derived from organs other than sweat glands.
  • the immortalized sweat gland myoepithelial cell of the present invention has the same function and property as the sweat gland myoepithelial cell in vivo, it is used, for example, as a method for evaluating the differentiation regulatory action of the sweat gland myoepithelial cell possessed by the test substance. There is expected.
  • Such an evaluation method is, for example, (A) culturing the immortalized sweat gland myoepithelial cells of the present invention in a medium suspended state in the absence of a test substance to obtain a cell culture, (B) culturing the immortalized sweat gland myoepithelial cells of the present invention in the presence of a test substance in a suspended state in a medium to obtain a cell culture, and (C) obtaining in the step (A) The expression profile of the differentiation marker in the cell culture (A) and the expression profile of the differentiation marker in the cell culture (B) obtained in the step (B) are examined, and the expression of the differentiation marker in the cell culture (A) Evaluating the differentiation regulatory action of the sweat gland myoepithelial cell possessed by the test substance based on the difference between the profile and the expression profile of the differentiation marker in the cell culture (B).
  • the test substance When it is confirmed by the present evaluation method that the test substance has an action to promote differentiation of sweat gland myoepithelial cells, the test substance is, for example, for the improvement of the condition caused by the abnormal enhancement of the function of sweat gland myoepithelial cells. It is expected to be used. In addition, when it is confirmed by the present evaluation method that the test substance has an action of suppressing differentiation of sweat gland myoepithelial cells, the test substance is, for example, for the improvement of a condition caused by dysfunction of sweat gland myoepithelial cells. It is expected to be used.
  • the immortalized sweat gland myoepithelial cell of the present invention is, for example, cultured in the medium in which the cell structure in which the sweat gland myoepithelial cell is exposed on the surface is suspended in a culture medium, It can be manufactured by introducing or the like.
  • the method for producing immortalized sweat gland myoepithelial cells of the present invention is (I) introducing an immortalizing gene into the sweat gland myoepithelial cell while culturing the cell structure in which the sweat gland myoepithelial cell is exposed on the surface in a suspended state in a medium to obtain a gene transfer body; And (II) a step of culturing the gene transfer body obtained in the step (I) in a suspended state in a medium to obtain immortalized sweat gland myoepithelial cells (hereinafter referred to as “the present invention Also known as
  • an operation of introducing an immortalizing gene into the sweat gland myoepithelial cell while culturing the cell structure in which the sweat gland myoepithelial cell is exposed on the surface is suspended in the medium is As they are taken, immortalizing genes can be introduced into sweat gland myoepithelial cells with high transfer efficiency. Therefore, according to the method of the present invention, immortalized sweat gland myoepithelial cells can be produced with high production efficiency.
  • the immortalizing gene is introduced into the sweat gland myoepithelial cell to culture a gene transfer body while culturing the cell structure in which the sweat gland myoepithelial cell is exposed on the surface in a suspended state in the medium. obtain.
  • the cell structure may contain other sweat gland cells and the like as long as the sweat gland myoepithelial cells are exposed on the surface.
  • Other sweat gland cells include, for example, sweat gland luminal cells, sweat gland secretory cells, and the like, but the present invention is not limited to such examples.
  • Examples of cell structures include sweat gland-containing tissues in which sweat gland myoepithelial cells are exposed on the surface, spheres in which sweat gland myoepithelial cells are exposed on the surface, and the like, but the present invention is limited to such examples only. It is not something to be done.
  • the sweat gland-containing tissue is a tissue of a portion of the skin tissue containing the sweat gland.
  • the surface layer of the sweat gland contained in the sweat gland-containing tissue is covered by sweat gland myoepithelial cells.
  • sweat gland myoepithelial cells that are more differentiated from the surface to the inside.
  • the sweat gland-containing tissue can be separated, for example, by removing at least all or part of collagen fibers from the collected skin tissue.
  • the method of the present invention removes at least all or part of collagen fibers from the skin tissue collected prior to step (I) to form a surface of sweat gland myoepithelial cells.
  • the method may further include the step of obtaining the exposed sweat gland-containing tissue.
  • step (A1) separating tissue pieces including sweat glands from the collected skin tissue; and (a2) removing collagen fibers etc. from the tissue pieces obtained in step (a1) to expose the surface of the sweat gland myoepithelial cells
  • the method includes the step of obtaining the sweat gland-containing tissue, the present invention is not limited to such examples.
  • the collected skin tissue includes, for example, skin tissue in a living state obtained from surplus skin and the like generated during surgery, and the present invention is not limited to such examples. Absent.
  • the collected skin tissue is preferably fresh tissue in terms of better maintaining the function and properties of sweat gland myoepithelial cells in vivo.
  • the collected skin tissue is a tissue stored under refrigeration, it is preferably a tissue within 48 hours after excision from the viewpoint of maintaining the function and properties of sweat gland myoepithelial cells in vivo better.
  • living skin tissue refers to skin tissue in a state that exhibits biological activity and movement similar to the original biological activity and movement in vivo. Sources of skin tissue include, for example, humans, but the present invention is not limited to such examples.
  • a piece of tissue including a sweat gland is separated from the collected skin tissue.
  • a staining reagent such as neutral red to visualize the sweat gland.
  • the skin tissue is stained, it is preferable to wash away the tissue fragments separated from the skin tissue from the viewpoint of reducing the influence of the staining reagent on the sweat glands and the viewpoint of reducing contamination such as microorganisms.
  • step (a2) collagen fibers and the like are removed from the tissue piece obtained in step (a1) to obtain a sweat gland-containing tissue in which the sweat gland myoepithelial cells are exposed on the surface.
  • collagen fibers can be removed from the tissue fragments using, for example, enzymes such as dispase and collagenase, physical excision means, and the like.
  • Spheres are aggregates of sweat gland cells.
  • the spheres have a surface layer of sweat gland myoepithelial cells.
  • sweat gland cells that are more differentiated from the surface layer to the inside.
  • Spheres can be produced, for example, by culturing sweat gland cells in suspension in a medium.
  • the method of the present invention is, prior to step (I), culturing the sweat gland cells suspended in a medium, and exposing the surface of the sweat gland myoepithelial cells to the surface. Can be included.
  • a method of manufacturing a sphere for example, (B1) separating a piece of tissue including a sweat gland from the collected skin tissue; (B2) culturing the sweat gland cells obtained in the step (b2) from the tissue piece obtained in the step (b1) in a state in which the sweat gland cells obtained in the step (b2) are suspended
  • the method includes a step of forming a sphere in which the myoepithelial cells are exposed on the surface, the present invention is not limited to such an example.
  • step (b1) a piece of tissue including a sweat gland is separated from the collected skin tissue.
  • the collection of the tissue piece in the step (b1) can be performed by the same method as the collection of the tissue piece in the step (a1) of the method for producing the sweat gland-containing tissue.
  • step (b2) the sweat gland cells in the dissociated state are obtained from the tissue piece obtained in step (b1).
  • the step (b2) it is possible to obtain sweat gland cells in a dissociated state by dissociating the sweat gland cells from the tissue piece by causing the cell dissociation reagent to act on the tissue piece.
  • the cell dissociation reagent include enzymes such as thermolysin, dispase, collagenase, trypsin and the like, but the present invention is not limited to such examples.
  • the dissociated sweat gland cells obtained in the step (b2) are cultured in a suspended state in a culture medium for sphere formation, and the spheres in which the sweat gland myoepithelial cells are exposed on the surface are Let it form.
  • the medium for sphere formation include, for example, a medium containing an epidermal growth factor, a basic fibroblast growth factor, an artificial basement membrane matrix for cell culture, and a serum-free medium. It is not limited to When the sphere-forming medium is a medium containing an epidermal growth factor, the content of the epidermal growth factor in the sphere-forming medium varies depending on the type of skin tissue source and the like, and therefore can not be determined indiscriminately.
  • the content of epidermal growth factor in the culture medium for sphere formation is usually preferably 0.01 ng / mL or more, from the viewpoint of causing cells to proliferate appropriately and differentiate properly.
  • the concentration is preferably 1 ng / mL or more, and preferably 1 ⁇ g / mL or less, more preferably 100 ng / mL or less from the viewpoint of suppressing excessive proliferation and differentiation of cells.
  • the sphere-forming medium is a medium containing a basic fibroblast growth factor, the content of the basic fibroblast growth factor in the sphere-forming medium varies depending on the type of skin tissue source etc.
  • the content of the basic fibroblast growth factor in the culture medium for sphere formation is preferably from the viewpoint of appropriately proliferating cells and suppressing excessive differentiation of cells.
  • the concentration is preferably 0.01 ng / mL or more, more preferably 1 ng / mL or more, and preferably 1 ⁇ g / mL or less, more preferably 100 ng / mL or less, from the viewpoint of suppressing excessive proliferation of the cells and appropriately differentiating the cells. is there.
  • a serum-free medium for example, trade name of Stem Cell Technologies (Stem Cell Technologies): Complete Mammo Cult Human Medium, trade name of Thermo Fisher Scientific Co., Ltd .: Gibco (registered trademark) Keratinocyte-SFM, etc.
  • the present invention is not limited to such examples.
  • the culture conditions of the sweat gland cells are different depending on the type of the source of skin tissue and the like and can not be determined generally, it is preferable to appropriately determine according to the type of source of skin tissue and the like.
  • the culture conditions of sweat gland cells include, for example, culture temperature, culture time, pH of culture medium, carbon dioxide concentration in culture atmosphere, and the like.
  • the culture temperature is preferably 35 ° C. or higher, more preferably 36.5 ° C. or higher, from the viewpoint of maintaining the function and properties of sweat gland myoepithelial cells in vivo better.
  • the temperature is 38 ° C. or less, more preferably 37.5 ° C.
  • the culture temperature is usually preferably 35 to 38 ° C., more preferably 36.5 to 37.5 ° C., from the viewpoint of maintaining the function and properties of sweat gland myoepithelial cells in vivo better. It is.
  • the culture time is different depending on the culture temperature and the like and can not be determined uniquely, so it is preferable to appropriately determine according to the culture temperature and the like.
  • the culture time is preferably 60 hours or more, more preferably 144 hours or more from the viewpoint of maintaining the function and properties of sweat gland myoepithelial cells in vivo better, and in the same manner as described above, sweat gland myoepithelial cells in vivo Preferably, it is 672 hours or less, more preferably 168 hours or less from the viewpoint of maintaining the function and properties of Specifically, the culture time is usually preferably 60 to 672 hours, more preferably 144 to 168 hours, from the viewpoint of better maintaining the function and properties of the sweat gland myoepithelial cells in vivo.
  • the pH of the culture medium is preferably 6.8 or more, more preferably 7., from the viewpoint of better maintaining the function and properties of sweat gland myoepithelial cells in vivo. From the viewpoint of maintaining the function and properties of the sweat gland myoepithelial cells in vivo better as described above, it is preferably at most 7.6, more preferably at most 7.4. Specifically, from the viewpoint of maintaining the function and properties of sweat gland myoepithelial cells in vivo better, the pH is usually preferably 6.8 to 7.6, more preferably 7.0 to 7.
  • the carbon dioxide concentration in the culture atmosphere is preferably 4% by volume or more, more preferably 5% by volume or more, from the viewpoint of maintaining the function and properties of sweat gland myoepithelial cells in vivo better. From the viewpoint of better maintaining the function and properties of sweat gland myoepithelial cells in the body, it is preferably 10% by volume or less, more preferably 7% by volume or less. Specifically, the carbon dioxide concentration is generally preferably 4 to 10% by volume, more preferably 5 to 7% by volume, from the viewpoint of maintaining the function and properties of sweat gland myoepithelial cells in vivo better. is there.
  • the “state in which the sweat gland cells are suspended in the medium” is not particularly limited as long as the sweat gland cells are not in contact with the wall surface of the culture vessel used for culturing the sweat gland cells.
  • the culture vessel may be a vessel having on its inner surface a substance that inhibits the adhesion of sweat gland cells.
  • step (I) introduction of the immortalizing gene into sweat gland myoepithelial cells is carried out while culturing the cell construct in a suspended state in a culture medium.
  • the “state in which the cell structure is suspended in the medium” is not particularly limited as long as the cell structure is not in contact with the inner surface of the container used for culturing the cell structure.
  • the container used for culturing the cell structure may be a container having a substance on its inner surface that inhibits adhesion of the cell structure.
  • the medium for culturing the cell structure in a suspended state is a medium containing a nutrient component that allows the sweat gland myoepithelial cells to survive, gene transfer such as serum
  • the medium may be a medium having a low content of the component that inhibits or may be a medium not containing the component.
  • the suspension culture medium may be a low serum medium or a serum-free medium supplemented with a nutrient component, or a commercially readily available medium.
  • nutritional components include amino acids, vitamins, inorganic salts, saccharides, cell growth promoting factors (eg, epidermal growth factor, basic fibroblast growth factor, hydrocortisone-21-hemisuccinate etc.), etc.
  • the content of nutrient components in the suspension culture medium can not be determined indiscriminately because it varies depending on the type of low serum medium or serum-free medium, the type of nutrient component, etc. It is preferable to set appropriately according to the type of nutritional component and the like. These nutritional components may be used alone or in combination of two or more.
  • the serum-free medium for example, trade name: Complete Mammo Cult Human Medium manufactured by Stem Cell Technologies, trade name: Thermo Fisher Scientific Co., Ltd .: Gibco (registered trademark) Keratinocyte-SFM, Thermo Fisher Scientific Although trade name manufactured by KK: Opti-MEM (registered trademark) I Reduced Serum Medium, etc.
  • the present invention is not limited to such exemplification.
  • the low serum medium a medium obtained by adding serum to the aforementioned serum-free medium can be used.
  • the serum concentration of the low serum medium is preferably 0.01% by volume or more, more preferably 0.1% by volume or more, from the viewpoint of better maintaining the function and properties of sweat gland myoepithelial cells in vivo.
  • it is preferably at most 0.5% by volume, more preferably at most 0.1% by volume, from the viewpoint of better maintaining the function and properties of sweat gland myoepithelial cells in vivo.
  • the serum concentration is preferably 0.1 to 0.5% by volume, more preferably 0.01 to 0.1% by volume.
  • Examples of methods for introducing immortalizing genes into sweat gland myoepithelial cells include methods using viral vectors, transfection methods and the like, but the present invention is not limited to such examples. Among these methods, a method using a viral vector is preferable because high gene transfer efficiency can be obtained by a simple operation. Therefore, in the step (I), it is preferable to introduce an immortalizing gene into the sweat gland myoepithelial cell via a viral vector.
  • viral vectors examples include lentiviral vectors, retroviral vectors and the like, but the present invention is not limited to such examples.
  • lentiviral vectors are preferred because they have high gene transfer efficiency to sweat gland myoepithelial cells and can stably transfer immortalizing genes.
  • immortalizing genes include human telomerase reverse transcriptase (hTERT) gene, SV40 t (small t) antigen gene, SV40 T (large T) antigen gene, c-myc gene, papilloma virus E6 gene, papilloma virus E7 gene And the like, but the present invention is not limited to such examples.
  • These immortalizing genes may be used alone or in combination of two or more.
  • the surface of the sweat gland myoepithelial cell is a recombinant virus particle in which the viral vector into which the immortalizing gene has been incorporated is packaged.
  • Immortalization genes can be introduced into sweat gland myoepithelial cells by infecting the exposed cell structures.
  • a recombinant virus particle is cotransfected into a cell for cotransfection with a recombinant virus vector in which an immortalizing gene has been incorporated into a virus vector and a vector carrying a gene required for virus packaging, It can be prepared by a method of recovering virus particles and the like.
  • the recombinant virus particles may be commercially readily available recombinant virus particles.
  • the introduction of the immortalizing gene into cell structures can be carried out by contacting recombinant virus particles with cell structures in the presence of a gene transfer agent to infect them.
  • Examples of co-transfection cells include, for example, 293T cells, but the present invention is not limited to such examples.
  • Examples of the gene transfer adjuvant include polybrene and protamine, but the present invention is not limited to such examples.
  • a method of contacting the cell structure with the recombinant virus particle for example, a method of adding the recombinant virus particle to the medium for virus infection containing the cell structure in a suspended state, including the cell structure and the recombinant virus particle
  • the method etc. of mixing with the culture medium for virus infection etc. are mentioned, this invention is not limited only to this illustration.
  • a medium for virus infection for example, a medium in which the serum-free medium is supplemented with hydrocortisone-21-hemisuccinate, recombinant human epidermal growth factor, recombinant human basic fibroblast growth factor, glutamic acid, non-essential amino acid and the like, commercial Although the medium etc. which can be obtained easily are mentioned, this invention is not limited only to such an illustration.
  • the number of sweat glands contained in the sweat gland-containing tissue per 100 ⁇ L of the mixture of the sweat gland-containing tissue and the recombinant virus particle is a gene
  • the number is preferably 1 or more, more preferably 4 or more, from the viewpoint of improving the introduction efficiency to improve the production efficiency, and from the viewpoint of improving the gene introduction efficiency to improve the production efficiency as described above. 20 or less, more preferably 10 or less.
  • the number of sweat glands contained in the sweat gland-containing tissue per 100 ⁇ L of the mixture is preferably 1 to 20, more preferably 4 to 10.
  • the ratio of the number of infectious virus particles to the number of sweat glands is preferably 1 ⁇ 10 2 to 1 ⁇ 10 10 .
  • the number of the spheres per 100 ⁇ L of the mixture of the spheres and the recombinant virus particles improves the gene transfer efficiency to improve the production efficiency From the viewpoint of reducing the number, preferably 1 or more, more preferably 4 or more, and from the viewpoint of improving gene transfer efficiency to improve production efficiency as described above, preferably 20 or less, more preferably 10 or less It is.
  • the number of the spheres per 100 ⁇ L of the mixture is preferably 1 to 20, more preferably 4 to 10.
  • the ratio of the number of infectious virus particles to the number of spheres is preferably 1 ⁇ 10 2 to 1 ⁇ 10 10 .
  • step (II) the gene transfer product obtained in step (I) is cultured in the state of being suspended in a culture medium to obtain immortalized sweat gland myoepithelial cells.
  • the medium used in step (II) is the same as the floating culture medium used in step (I).
  • the culture conditions for the transgenic body in step (II) are the same as the culture conditions for sweat gland cells in the method for producing spheres.
  • the gene transfer body obtained in step (I) includes tissues other than the sweat gland, and so on.
  • a step of isolating transformed sweat gland myoepithelial cells can further be performed. Isolation of immortalized sweat gland myoepithelial cells from a gene transfer agent may be carried out, for example, by causing a cell dissociation reagent to act on the gene transfer body, applying a mechanical stimulus to the gene transfer body, a cell dissociation reagent and mechanical force. It can be performed by using in combination with stimulation.
  • the cell dissociation reagent is the same as the cell dissociation reagent used in the step (b2) of the method for producing the sphere.
  • mechanical stimulation includes stimulation by pipetting and the like, the present invention is not limited to such examples.
  • the method of the present invention can further include the step of isolating immortalized sweat gland myoepithelial cells after step (II).
  • the method for isolating immortalized sweat gland myoepithelial cells include cell sorting using a sweat gland myoepithelial cell specific marker as an index, but the present invention is not limited to such an example.
  • the immortalized sweat gland myoepithelial cells obtained by the method of the present invention are characterized by the characteristics (i) to (iii) of sweat gland myoepithelial cells: (i) ⁇ -smooth muscle actin expression positive (ii) pancytokeratin expression positive and ATP1a1 positive expression, and (iii) It can be identified by examining the ability to form spheres after 5 or more passages.
  • the presence or absence of the expression of each of ⁇ -smooth muscle actin, pancytokeratin and ATP1a1 can be confirmed by, for example, fluorescence immunocell staining, real-time RT-PCR, and the like.
  • the ability to form spheres can be confirmed by the same method as the method for producing spheres described above.
  • the immortalized myoepithelial cell of the present invention it is possible to proliferate cells having the same function and property as in the sweat gland myoepithelial cell in vivo and having the function and the property over a long period of time it can. Further, according to the method for producing immortalized myoepithelial cells of the present invention, the immortalized sweat gland myoepithelial cells of the present invention can be obtained with high production efficiency. Therefore, it is expected that the immortalized myoepithelial cells of the present invention and the method for producing immortalized myoepithelial cells of the present invention can be used for the development of external preparations such as antiperspirants, deodorants and the like, agents for improving sweat gland function, etc. It is expected that the immortalized myoepithelial cells of the present invention and the method for producing immortalized myoepithelial cells of the present invention can be used for the development of external preparations such as antiperspirants, deodorants and the like, agents for improving sweat gland function, etc. It is expected that the immortalized
  • Basal medium (Stem Cell Technologies, Inc., trade name: Complete Mammo Cult Human Medium), hydrocortisone-21-hemisuccinate, recombinant human epidermal growth factor, recombinant human basic fibroblast growth factor, heparin and penicillin / streptomycin mixed Solution (penicillin concentration 10000 units / mL, streptomycin concentration 10000 ⁇ g / mL) at a concentration of 10.5 ⁇ g / mL (hydrocortisone-21-hemisuccinate), 10 ng / mL (recombinant human epidermal growth factor), 10 ng / mL
  • the medium (I) was obtained by adding them to a human fibroblast growth factor, 4 ⁇ g / mL (heparin) and 100 ⁇ g / mL (penicillin / streptomycin mixed solution).
  • Basal medium (Stem Cell Technologies, Inc., trade name: Complete Mammo Cult Human Medium), hydrocortisone-21-hemisuccinate, recombinant human epidermal growth factor, recombinant human basic fibroblast growth factor, heparin and penicillin / streptomycin mixed Artificial basement membrane matrix for solution and cell culture (Corning Inc., trade name: Growth Factor Reduced Matrigel Matrix), each concentration 10.5 ⁇ g / mL (hydrocortisone-21-hemisuccinate), 10 ng / ML (recombinant human epidermal growth factor), 10 ng / mL (recombinant human basic fibroblast growth factor), 4 ⁇ g / mL (heparin), 100 ⁇ g / mL (peni
  • the medium (II) was obtained by adding it to a mixture of syrin / streptomycin and 2% by volume (artificial basement membrane matrix for cell culture).
  • Reference Example 1 (1) Production of Dissected Sweat Gland Cells As skin tissue, immediately after excision from a living body (a 68-year-old human), it was stored refrigerated at 4 ° C., and eyelid skin tissue within 48 hours after excision was used. The sweat glands in the skin tissue were incorporated with neutral red by immersing the skin tissue in PBS containing 10 ⁇ M neutral red. Next, a tissue piece including a sweat gland was separated from the skin tissue using a forceps and scissors under a light microscope. The separated tissue pieces were collected in sterile PBS in 15 mL volumetric tubes. After gently shaking the PBS containing the tissue piece, the tissue piece was washed by centrifuging the PBS at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant.
  • the medium (I) in the tube and the tissue fragments after removal of collagen fibers were transferred to a dish of 10 cm in diameter.
  • the tissue pieces on the dish were collected using a pipette under a light microscope. Collected tissue pieces were collected in sterile PBS in 15 mL volumetric tubes. After gently shaking the PBS containing the tissue piece, the tissue piece was washed by centrifuging the PBS at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant.
  • the washed tissue pieces and 1 mL of the 0.5 mass% trypsin-EDTA solution obtained in Production Example 4 were mixed in a 15 mL volumetric tube.
  • the sweat gland cells constituting the sweat glands were dissociated from each other to obtain sweat gland cells in a dissociated state (hereinafter also referred to as "dissociated sweat gland cells").
  • the mixture containing the dissociated sweat gland cells in the tube is passed through a cell strainer (mesh size: 40 ⁇ m, manufactured by Corning, trade name: Falcon (registered trademark) 40 ⁇ m cell strainer, blue, sterile, individual packaging). By removing the aggregated cells, a suspension of dissociated sweat gland cells was obtained.
  • a cell strainer mesh size: 40 ⁇ m, manufactured by Corning, trade name: Falcon (registered trademark) 40 ⁇ m cell strainer, blue, sterile, individual packaging.
  • the obtained mixed solution was placed in a low adhesion plate (manufactured by Corning, trade name: ultra low adhesion plate 24 wells).
  • the dissociated sweat gland cells were incubated in a 5% by volume carbon dioxide atmosphere at 37 ° C. while suspended in the medium (II) in the plate.
  • the spheres were transferred to a 15 mL volumetric tube.
  • the spheres were subjected to centrifugation at 350 ⁇ g and 4 ° C. for 5 minutes to remove liquid components.
  • 1 mL of a solution for cell recovery (manufactured by Corning, trade name: Cell Recovery Solution) was mixed with the sphere in the tube to obtain a sphere-containing liquid.
  • the tube containing the obtained sphere-containing solution was allowed to stand on ice for 1 to 2 hours.
  • Virus infection GFP recombinant virus particle solution (manufactured by Applied Biological Materials, trade name: GFP Control Lentivirus, GFP recombinant virus particle concentration: 1 ⁇ 10 6 U / mL) Concentrated according to polyethylene glycol precipitation method. The resulting concentrate was diluted with the above virus infection culture medium to a GFP recombinant virus particle concentration of 1 ⁇ 10 8 U / mL to obtain a GFP recombinant virus dilution solution.
  • the sphere-containing solution obtained in the above (2) "sphere culture” was mixed with 9 mL of PBS. Next, the resulting mixture was subjected to centrifugation at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant. Four to 10 spheres after centrifugation were mixed with 90 ⁇ L of the medium for virus infection obtained in Production Example 3. 10 ⁇ L of the GFP recombinant virus dilution solution was added to the obtained mixed solution to obtain a sphere-virus mixed solution.
  • the GFP gene was introduced into the cells constituting the spheres by infecting the sweat gland cells constituting the spheres with the recombinant virus by incubating the sphere-virus mixture in a 5% by volume carbon dioxide atmosphere at 37 ° C. Virus-infected sweat gland spheres were collected 24 hours after the start of virus infection.
  • Reference Example 2 The dissociated sweat gland cells obtained in (1) “Production of sweat gland cells in a dissociated state” in Reference Example 1 were mixed with 9 mL of PBS. Next, the resulting mixture was subjected to centrifugation at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant. 5 ⁇ 10 2 to 1 ⁇ 10 5 dissociated sweat gland cells after centrifugation and 90 ⁇ L of the medium for virus infection obtained in Production Example 3 were mixed. To the resulting mixture, 10 ⁇ l of the diluted GFP recombinant virus was added to obtain a sphere-virus mixture.
  • the GFP gene was introduced into the dissociated sweat gland cells by incubating the dissociated sweat gland cells with the recombinant virus by incubating the sphere-virus mixture in a 5% by volume carbon dioxide atmosphere at 37 ° C. Virus-infected sweat gland cells were collected 24 hours after the start of viral infection.
  • Test Example 1 The fluorescence based on the virus-infected sweat gland sphere obtained in Reference Example 1 and the virus-infected sweat gland cells obtained in Reference Example 2 was observed under a fluorescence microscope. Also, the virus-infected sweat gland sphere obtained in Reference Example 1 and the virus-infected sweat gland cells obtained in Reference Example 2 were observed under a confocal microscope.
  • FIG. 1 (A) The results of observing the GFP-based fluorescence in the virus-infected sweat gland sphere obtained in Reference Example 1 under a fluorescence microscope are shown in FIG. 1 (A), the fluorescence-based fluorescence in the virus-infected sweat gland cells obtained in Reference Example 2
  • Fig. 1 (B) The results observed under Fig. 1 (B), the virus-infected sweat gland sphere obtained in Reference Example 1 under a confocal microscope are shown in Fig. 1 (C), the virus-infected sweat gland cells obtained in Reference Example 2
  • FIG. 1 (D) The result of observation under a confocal microscope is shown in FIG. 1 (D).
  • the scale bar indicates 153 ⁇ m.
  • arrowheads in FIG. 1 (A) indicate virus-infected sweat gland spheres
  • arrowheads in FIG. 1 (B) indicate virus-infected sweat gland cells.
  • Example 1 The sphere-containing solution obtained in (2) "sphere culture” of Reference Example 1 was mixed with 9 mL of PBS. Next, the resulting mixture was subjected to centrifugation at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant. Four to 10 spheres after centrifugation were mixed with 100 ⁇ L of the medium for virus infection obtained in Production Example 3.
  • hTERT recombinant virus particle solution (trade name of Hightiter Lentivirus containing hTERT, hTERT recombinant virus particle concentration: 1 ⁇ 10 9 U / mL) manufactured by Applied Biological Materials
  • SV40 Tt recombinant virus particle solution (trade name of Applied Biological Materials: SV40 large and small T antigens, SV40 Tt recombinant virus particle concentration: 1 ⁇ 10 9 U / mL) 0.5 ⁇ L
  • SV40 Tt recombinant virus particle solution (trade name of Applied Biological Materials: SV40 large and small T antigens, SV40 Tt recombinant virus particle concentration: 1 ⁇ 10 9 U / mL)
  • the immortalization gene was introduced into the cells constituting the spheres by incubating the sweat gland cells constituting the spheres with the recombinant lentivirus by incubating the sphere-virus mixture in a 5% by volume carbon dioxide atmosphere at 37 ° C. .
  • Virus-infected sweat gland spheres were collected 24 hours after the start of virus infection.
  • Comparative Example 1 Spheres were obtained by performing the same operation as (1) “production of sweat gland cells in the dissociation state” in Reference Example 1 and “sphere culture” in (2).
  • Test example 2 (1) Sphere Passaging Culture Conducting the following (1-1) and (1-2) was defined as "one passaging culture”.
  • Example 1 Production of Dissociated Sweat Gland Cells
  • the virus-infected sweat gland sphere obtained in Example 1 and 1 mL of the 0.5% by mass trypsin-EDTA solution obtained in Production Example 4 were mixed in a 15 mL volumetric tube.
  • the sweat gland cells constituting the sweat glands were dissociated from each other by stirring the sweat glands in the tube for 3 minutes using a pipette to obtain dissociated sweat gland cells.
  • the mixture containing the dissociated sweat gland cells in the tube is aggregated through a cell strainer (mesh size: 40 ⁇ m, manufactured by Corning, trade name: Falcon® 40 ⁇ m cell strainer, blue, sterile, individual packaging). By removing the treated cells, a suspension of dissociated sweat gland cells was obtained.
  • a cell strainer (mesh size: 40 ⁇ m, manufactured by Corning, trade name: Falcon® 40 ⁇ m cell strainer, blue, sterile, individual packaging).
  • the spheres were transferred to a 15 mL volumetric tube.
  • the spheres were subjected to centrifugation at 350 ⁇ g and 4 ° C. for 5 minutes to remove liquid components.
  • 1 mL of a solution for cell recovery (manufactured by Corning, trade name: Cell Recovery Solution) was mixed with the sphere in the tube to obtain a sphere-containing liquid.
  • the tube containing the obtained sphere-containing solution was allowed to stand on ice for 1 to 2 hours.
  • FIG. 2 (A) The relationship between sphere forming ability and passage number of sweat gland cells contained in virus-infected sweat gland spheres obtained in Example 1 is shown in FIG. 2 (A).
  • Sphere formation of dissociated sweat gland cells obtained in Comparative Example 1 The result of examining the relationship between Noh and passage number is shown in FIG. 2 (B).
  • arrowheads indicate spheres.
  • Example 1 the sweat gland cells contained in the virus-infected sweat gland sphere obtained in Example 1 form a sphere even when passaged 20 times or more.
  • immortalized sweat gland cells can be obtained by infecting sweat gland cells contained in the sphere with a lentivirus having an immortalization gene in a state where the spheres are suspended in the culture medium.
  • fluorescence intensity A the intensity of fluorescence based on pancytokeratin in the dissociated sweat gland cells after immunostaining
  • fluorescence intensity B the intensity of fluorescence based on ⁇ -SMA
  • the pancytokeratin expression level in the cells to be evaluated was calculated.
  • the fluorescence intensity B in the dissociated sweat gland cells obtained in Comparative Example 1 was decreased from the fluorescence intensity B in the cells to be evaluated to determine the ⁇ -SMA expression amount in the cells to be evaluated.
  • FIG. 3 (A) The results of examining the relationship between the cell type and the amount of pancytokeratin expression are shown in FIG. 3 (A), and the results of examining the relationship between the cell type and the amount of ⁇ -SMA expression are shown in FIG. 3 (B).
  • lane 1 represents the pancytokeratin expression level in immortalized sweat gland cells contained in the virus-infected sweat gland sphere obtained in Example 1
  • lane 2 represents bread in the dissociated sweat gland cells obtained in Comparative Example 1. It shows cytokeratin expression level.
  • lane 1 represents the ⁇ -SMA expression amount in immortalized sweat gland cells contained in the virus-infected sweat gland sphere obtained in Example 1
  • lane 2 represents ⁇ in the dissociated sweat gland cells obtained in Comparative Example 1. -Shows SMA expression level.
  • the immortalized sweat gland cells contained in the virus-infected sweat gland sphere obtained in Example 1 are pancytokeratin, which is a myoepithelial cell marker. It can be seen that both E. coli and ⁇ -SMA are expressed. From these results, it can be understood that the immortalized sweat gland cells are immortalized sweat gland myoepithelial cells. Therefore, it is understood that immortalized sweat gland myoepithelial cells can be obtained by infecting the sweat gland cells contained in the sphere with the virus in a state where the spheres are suspended in the culture medium.
  • DNase / RNase-free purified water manufactured by invitrogen, trade name: UltraPure DNase / RNase-Free Distilled Water
  • concentration of the obtained total RNA was 1 ⁇ g / ⁇ L.
  • a reverse transcription kit [QIAGEN, trade name: Quatitect Reverse Transcription Kit]
  • a PCR kit manufactured by Toyobo Co., Ltd., trade name: THUNDERBIRD SYBR qPCR Mix
  • a real-time PCR device manufactured by Applied Biosystems, trade name: ViiA7
  • Ct B value The number of cycles (hereinafter referred to as "Ct B value") until the amount of nucleotide synthesis with the template as a template reaches a threshold was measured.
  • the thermal profile in real-time RT-PCR method is 40 cycles of 1 cycle of treatment at 95 ° C followed by denaturation at 95 ° C for 5 seconds, annealing at 55 ° C for 10 seconds and elongation at 72 ° C for 20 seconds. It is a reaction.
  • Example 1 the expression value of the ATP1a1 gene in immortalized sweat gland myoepithelial cells contained in the virus-infected sweat gland sphere obtained in Example 1 was determined.
  • the corrected expression value of the ATP1a1 gene in the immortalized sweat gland myoepithelial cells was determined. Next, based on the corrected expression value, it was evaluated whether the immortalized sweat gland myoepithelial cell expresses the ATP1a1 gene according to the following evaluation criteria. ⁇ Evaluation criteria> "Immortalized sweat gland myoepithelial cells express the ATP1a1 gene” The corrected expression value is a “positive value”. "Immortalized sweat gland myoepithelial cells do not express the ATP1a1 gene” The corrected expression value is “0” or “negative value”.
  • ATP1a1 is one of sweat gland myoepithelial cell markers. Therefore, it can be seen that the immortalized sweat gland myoepithelial cells contained in the virus-infected sweat gland sphere obtained in Example 1 express sweat gland myoepithelial cell markers.
  • Example 2 (1) Production of sweat gland-containing tissue As skin tissue, immediately after excision from a living body (a 41-year-old human), it was stored refrigerated at 4 ° C., and skin tissue of the eyelid within 48 hours after excision was used. The sweat glands in the skin tissue were incorporated with neutral red by soaking the skin tissue in PBS containing 10 ⁇ M neutral red. Next, a tissue piece including a sweat gland was separated from the skin tissue using a forceps and scissors under a light microscope. The separated tissue pieces were collected in sterile PBS in 15 mL volumetric tubes. After gently shaking the PBS containing the tissue piece, the tissue piece was washed by centrifuging the PBS at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant.
  • the medium (I) in the tube and the tissue fragments after removal of collagen fibers were transferred to a dish of 10 cm in diameter.
  • the tissue pieces on the dish were collected using a pipette under a light microscope. Collected tissue pieces were collected in sterile PBS in 15 mL volumetric tubes. After gently shaking the PBS containing the tissue piece, the tissue piece was washed by centrifuging the PBS at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant.
  • the washed tissue pieces and 10 mL of medium (I) were mixed in a 15 mL volumetric tube.
  • To the resulting mixture was added dispase to a concentration of 1 U / mL.
  • the obtained mixture was transferred to a dish of 10 cm in diameter, and then the mixture was incubated and incubated in a 5% by volume carbon dioxide atmosphere at 37 ° C. After 8 hours from the start of the incubation, 10 mL of a 2% by mass FBS / PBS solution was added to the mixture to dilute the mixture to stop the enzyme reaction.
  • tissue pieces were collected in sterile PBS in 15 mL volumetric tubes. The PBS containing the tissue pieces was gently shaken, and then the PBS was subjected to centrifugation at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant to obtain a sweat gland-containing tissue.
  • Virus infection hTERT recombinant virus particle solution and SV40 Tt recombinant virus particle solution in the medium for virus infection hTERT recombinant virus particle concentration is 1 ⁇ 10 8 U / mL and SV40 Tt recombinant virus particle concentration is 1 ⁇ It was diluted to 10 8 U / mL to obtain an immortalized gene-containing recombinant virus dilution.
  • the sweat gland-containing tissue obtained in (1) "Production of sweat gland-containing tissue” was mixed with 9 mL of PBS. Next, the resulting mixture was subjected to centrifugation at 350 ⁇ g and 4 ° C. for 5 minutes to remove the supernatant.
  • the sweat gland-containing tissue containing 4 to 10 sweat glands after centrifugation was mixed with 100 ⁇ L of the medium for virus infection obtained in Production Example 3.
  • To the resulting mixture was added 2 ⁇ L of the immortalized gene-containing recombinant virus dilution to obtain a tissue-virus mixture.
  • the tissue-virus mixture was incubated at 37 ° C. in a 5% by volume carbon dioxide atmosphere to infect the sweat gland cells constituting the sweat gland with the recombinant lentivirus.
  • the sweat gland cells are infected with the recombinant virus by containing the sweat gland cells in the sweat gland-containing tissue.
  • the immortalizing gene was introduced. After 33 hours from the start of viral infection, virus-infected tissue was recovered.
  • Test Example 3 In Test Example 2 (1) “Sphere Subculture”, except that the virus-infected tissue obtained in Example 2 was used instead of using the virus-infected sweat gland sphere obtained in Example 1. The same procedure as (1) "sphere passage culture” was carried out, and sphere passage culture was performed.
  • FIG. 4 (A) The relationship between the sphere forming ability of the sweat gland cells contained in the virus-infected tissue obtained in Example 2 and the passage number is shown in FIG. 4 (A), and the sphere forming ability of the dissociated sweat gland cells obtained in Comparative Example 1
  • FIG. 4 (B) The result of examining the relationship between and the passage number is shown in FIG. 4 (B).
  • arrowheads indicate spheres.
  • the sweat gland cells contained in the virus-infected tissue obtained in Example 2 can form a sphere even after the seventh passaging, while in Comparative Example 1, they can form spheres. It can be seen that the resulting dissociated sweat gland cells can not form spheres after the fourth passage.
  • the sweat gland cells contained in the virus-infected tissue obtained in Example 2 were confirmed to form spheres even when passaged 12 times or more. Further, when the presence or absence of expression of pancytokeratin and ⁇ -SMA in sweat gland cells contained in the virus-infected tissue obtained in Example 2 was examined, it was confirmed that pancytokeratin and ⁇ -SMA were expressed.
  • immortalized sweat gland myoepithelial cells can be obtained by infecting the sweat gland myoepithelial cells contained in the sweat gland-containing tissue with the sweat gland-containing tissue suspended in the medium.
  • Example 1 Production of dissociated sweat gland cells
  • skin tissue of a 20-year-old human eyelid is used instead of skin tissue of a 68-year-old human eyelid (Reference Example 3) Skin tissue of a 71-year-old human eyelid (Reference Example 4), Skin tissue of a 74-year-old human eyelid (Reference Example 5), 51-year-old human abdominal skin tissue (Reference Example 6) or 55
  • An operation was performed in the same manner as (1) "Production of sweat gland cells in a dissociated state” in Reference Example 1 except that skin tissue of the abdomen of a year-old human (Reference Example 7) was used to obtain dissociated sweat gland cells.
  • (2) Sphere culture in the (2) "sphere culture” of the reference example 1 reference examples 3 to 7 are used instead of using the dissociative sweat gland cells obtained in (1) "production of the sweat gland cells in the dissociation state" of the reference example 1.
  • the same procedure as (2) "sphere culture” in Reference Example 1 was carried out except using each of the dissociated sweat gland cells obtained in (1) "production of dissociated sweat gland cells", to obtain a sphere-containing solution. .
  • Example 1 the sphere-containing liquid (Example 3) obtained in Reference Example 3 instead of using the sphere-containing liquid obtained in (2) "sphere culture” of Reference Example 1; Sphere-containing solution (Example 4), Sphere-containing solution obtained in Reference Example 5 (Example 5), Sphere-containing solution obtained in Reference Example 6 (Example 6) or Sphere-containing solution obtained in Reference Example 7
  • the same procedure as in Example 1 was carried out except using the liquid (Example 7) to obtain a virus-infected sweat gland sphere.
  • Comparative Examples 3 to 7 In (1) "Production of sweat gland cells in the disaggregated state" of Reference Example 1, skin tissue of a 20-year-old human eyelid (Comparative Example 3), 71-year-old human instead of using skin tissue of a 68-year-old human eyelid Skin tissue of the eyelids of the present invention (comparative example 4), skin tissue of eyelids of the 74-year-old human (comparative example 5), abdominal skin tissue of the 51-year-old human (comparative example 6) or 55-year-old human abdominal skin tissue An operation similar to (1) “Production of sweat gland cells in a dissociated state” in Comparative Example 1 was performed except that (Comparative Example 7) was used, to obtain dissociated sweat gland cells.
  • Test Example 4 In (1) “sphere passage culture” of Test Example 2, a test was conducted except that the virus-infected tissue obtained in Examples 3 to 7 was used instead of using the virus-infected sweat gland sphere obtained in Example 1. The same operation as (1) "sphere passage culture” of Example 2 was performed, and sphere passage culture was performed.
  • the spheres used in Examples 1 and 3 to 7 and the sweat gland-containing tissue used in Example 2 both have a structure in which sweat gland myoepithelial cells are exposed on the surface. Therefore, by culturing a cell structure in which sweat gland myoepithelial cells are exposed on the surface in a suspended state in a culture medium, an immortalizing gene is obtained by infecting the cell structure with a virus having the immortalization gene. It can be seen that it can be introduced into myoepithelial cells.
  • Test Example 5 (1) Sphere Passaging Culture Conducting the following (1-1) and (1-2) was defined as "one passaging culture”.
  • the mixture containing the dissociated sweat gland cells in the tube is aggregated through a cell strainer (mesh size: 40 ⁇ m, manufactured by Corning, trade name: Falcon® 40 ⁇ m cell strainer, blue, sterile, individual packaging). By removing the treated cells, a suspension of dissociated sweat gland cells was obtained.
  • a cell strainer (mesh size: 40 ⁇ m, manufactured by Corning, trade name: Falcon® 40 ⁇ m cell strainer, blue, sterile, individual packaging).
  • the obtained dissociated sweat gland cells were added to the medium (II) obtained in Production Example 2 so as to be 2.5 ⁇ 10 3 cells / mL, to obtain a mixed solution containing the dissociated sweat gland cells.
  • the obtained mixed solution was placed in a low adhesion plate (manufactured by Corning, trade name: ultra low adhesion plate 24 wells).
  • the dissociated sweat gland cells were incubated in a 5% by volume carbon dioxide atmosphere at 37 ° C. while suspended in the medium (II) in the plate.
  • the spheres were transferred to a 15 mL volumetric tube.
  • the spheres were subjected to centrifugation at 350 ⁇ g and 4 ° C. for 5 minutes to remove liquid components.
  • 1 mL of a solution for cell recovery (manufactured by Corning, trade name: Cell Recovery Solution) was mixed with the sphere in the tube to obtain a sphere-containing liquid.
  • the tube containing the obtained sphere-containing solution was allowed to stand on ice for 1 to 2 hours.
  • Test Example 6 (1) Production of dissociated sweat gland cells In (1-1) “Production of dissociated sweat gland cells” in Test Example 2, the sphere obtained in Example 3 instead of using the virus-infected sweat gland sphere obtained in Example 1 ( Except for using the experiment No. 1), the sphere obtained in Example 4 (Experiment No. 2) or the sphere obtained in Example 5 (Experiment No. 3), (1-1) “Dissociation of Test Example 2” The same procedure as in "Production of sweat gland cells” was performed to obtain dissociated sweat gland cells. In the above, the sphere obtained at Example 3 has a sphere of 5 passages, the sphere obtained in Example 4 has a sphere of 8 times, and the sphere obtained in Example 5 has a sphere of 14 times. The sphere of
  • Test Example 6 (2) Sphere Formation In Test Example 2 (1-2) “Sphere Culture”, Test Example 6 is used instead of using the dissociative sweat gland cells obtained in (1-1) Test body 2 (Produced dissociated sweat gland cells). The same procedure as (1-2) "sphere culture” in Test Example 2 was performed except that the thawed cells obtained in (2) “freeze storage of dissociated sweat gland cells” were used, and experiment numbers 1 to 3 were used. The sphere-containing solution A was obtained.
  • Example 6 is the same as (1-2) "sphere culture” in Test Example 2 except that the dissociative sweat gland cells (Experiment No. 3) obtained in (3-1) "production of dissociated sweat gland cells” in Example 6 are used. The operation was performed to obtain Sphere-containing solution B of Experiment No. 3.
  • Spheres contained in the sphere-containing solution A of Experiment No. 1 instead of using the virus-infected sweat gland spheres obtained in Example 1 in (1-1) “Production of dissociated sweat gland cells” in Test Example 2, Experiment No. 2 Except that the spheres contained in the sphere-containing liquid A and the spheres contained in the sphere-containing liquid B of the experiment No. 3 (spheres of the experiment Nos. 1 to 3) were used, The same operation as in "Production of” was performed to obtain subcultured cells. The number of obtained subcultured cells (hereinafter referred to as "cell number D”) was measured.
  • immortalization is achieved by introducing an immortalizing gene into the sweat gland myoepithelial cell while culturing the cell structure in which the sweat gland myoepithelial cell is exposed on the surface in a suspended state in the medium. It can be seen that sweat gland myoepithelial cells are obtained.
  • immortalized sweat gland myoepithelial cells obtained by performing the above-mentioned operation have the same function and properties as sweat gland myoepithelial cells in vivo, and proliferate cells having the function and nature for a long period of time.
  • the method for producing immortalized sweat gland myoepithelial cells and immortalized sweat gland myoepithelial cells of the present invention is expected to be used for the development of external preparations such as antiperspirants and deodorants, agents for improving sweat gland function, etc. It is expected to be used for the development of external preparations such as antiperspirants and deodorants, agents for improving sweat gland function, etc. It is possible to be used for the development of external preparations such as antiperspirants and deodorants, agents for improving sweat gland function, etc. It is expected to be used for the development of external preparations such as antiperspirants and deodorants, agents for improving sweat gland function, etc. It is expected to be used for the development of external preparations such as antiperspirants and deodorants, agents for improving sweat gland function, etc. It is expected to be used for the development of external preparations such as antiperspirants and deodorants, agents for improving sweat gland function, etc. It is expected to be used for the development of external preparations such as antiperspirants and deodorants, agents for

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Dermatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

α-SMAおよびパンサイトケラチンを発現し、少なくとも5回の継代後にスフィア形成能を有する不死化汗腺筋上皮細胞、汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を該細胞に導入し、得られた遺伝子導入体を培地中に浮遊させた状態で培養して不死化汗腺筋上皮細胞を得る不死化汗腺筋上皮細胞の製法。

Description

不死化汗腺筋上皮細胞
 本発明は、不死化汗腺筋上皮細胞に関する。さらに詳しくは、本発明は、制汗剤、デオドラント剤などの外用剤、汗腺機能の改善剤などの開発などに有用な不死化汗腺筋上皮細胞およびその製造方法に関する。
 汗腺の機能不全および機能の異常亢進は、熱中症などの疾患、肌のベタつき、不快感などを引き起こすことがある。汗腺筋上皮細胞は、汗腺を構成する細胞の1つである。汗腺筋上皮細胞は、汗の分泌の際の汗腺の運動に関与している。また、汗腺筋上皮細胞は、汗腺の幹細胞であることが本発明者らによって報告されている(例えば、非特許文献1参照)。そこで、汗腺の機能不全および機能の異常亢進を改善する手段を開発するために、汗腺筋上皮細胞を汗腺の機能の評価などに用いることが考えられる。
 しかし、汗腺から単離された汗腺筋上皮細胞は、汗腺に存在する量が少なく、しかも継代培養が可能な回数が少ないことから、入手性および取り扱い性に劣るという欠点を有する。そこで、汗腺筋上皮細胞を不死化させて、長期間にわたる細胞増殖能を汗腺筋上皮細胞に付与することが望まれる。
 汗腺細胞を不死化させる方法として、培養容器に接着した状態で培養された汗腺細胞にシミアンウイルス40(以下、「SV40」という)を感染させる方法が報告されている(例えば、非特許文献2参照)。しかし、前記方法は、汗腺細胞を生体環境と異なる環境下で培養するため、生体内における汗腺細胞と同様の機能および性質を有する不死化汗腺細胞を得難いという欠点を有する。一方、汗腺細胞を培地中に浮遊させた状態で培養することが考えられる。しかし、本発明者らは、現時点では、浮遊状態の汗腺細胞に外来遺伝子を導入することができる技術を具体的に記載した文献を発見していない。
倉田 隆一郎ら、「ヒト皮膚からの汗腺筋上皮細胞の単離およびキャラクタリゼーション(Isolation And Characterization Of Sweat Gland Myoepithelial Cells From Human Skin)」、セル・ストラクチャー・アンド・ファンクション(Cell Structure and Function)、第39巻、2014年発行、pp.101-112 キャサリン・エム・リー(CATHERINE M. LEE)ら、「NCL-SG3:経上皮イオン輸送能を有するヒトエクリン汗腺細胞株(NCL-SG3: a human eccrine sweat gland cell line that retains the capacity for transepithelial ion transport)」、ジャーナル・オブ・セル・サイエンス(Journal of Cell Science)、第92巻、1989年発行、pp.241-249
 本発明は、前記従来技術に鑑みてなされたものであり、生体内における汗腺筋上皮細胞と同様の機能および性質を有し、当該機能および性質を有する細胞を長期間にわたって増殖させることができる不死化汗腺筋上皮細胞、ならびに当該不死化汗腺筋上皮細胞を高い製造効率で製造することができる不死化汗腺筋上皮細胞の製造方法を提供することを目的とする。
 本発明は、
(1)α-平滑筋アクチンおよびパンサイトケラチンを発現し、少なくとも5回の継代後にスフィア形成能を有していることを特徴とする不死化汗腺筋上皮細胞、
(2)ATP1a1をさらに発現している前記(1)に記載の不死化汗腺筋上皮細胞、
(3)不死化汗腺筋上皮細胞を製造する方法であって、
(I)汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を当該汗腺筋上皮細胞に導入して遺伝子導入体を得る工程、および
(II)前記工程(I)で得られた遺伝子導入体を培地中に浮遊させた状態で培養して不死化汗腺筋上皮細胞を得る工程
を含む不死化汗腺筋上皮細胞の製造方法、
(4)前記工程(I)において、ウイルスベクターを介して不死化遺伝子を前記汗腺筋上皮細胞に導入する(3)に記載の不死化汗腺筋上皮細胞の製造方法、
(5)前記工程(I)を行なう前に、採取された皮膚組織から少なくとも膠原繊維の全部または一部を除去して汗腺含有組織を得る工程をさらに含み、前記工程(I)において、前記細胞構造体として前記汗腺含有組織を用いる前記(3)または(4)に記載の不死化汗腺筋上皮細胞の製造方法、ならびに
(6)前記工程(I)を行なう前に、汗腺細胞を培地中に浮遊させた状態で培養し、汗腺筋上皮細胞が表面に露出しているスフィアを形成させる工程をさらに含み、前記工程(I)において、前記細胞構造体として前記スフィアを用いる前記(3)または(4)に記載の不死化汗腺筋上皮細胞の製造方法
に関する。
 本発明の不死化汗腺筋上皮細胞によれば、生体内における汗腺筋上皮細胞と同様の機能および性質を有し、当該機能および性質を有する細胞を長期間にわたって増殖させることができるという優れた効果が奏される。また、本発明の不死化汗腺筋上皮細胞の製造方法によれば、本発明の不死化汗腺筋上皮細胞を高い製造効率で製造することができるという優れた効果が奏される。
(A)は参考例1で得られたウイルス感染汗腺スフィアの蛍光顕微鏡観察の結果を示す図面代用写真、(B)は参考例2で得られたウイルス感染汗腺細胞の蛍光顕微鏡観察の結果を示す図面代用写真、(C)は参考例1で得られたウイルス感染汗腺スフィアの位相差顕微鏡観察の結果を示す図面代用写真、(D)は参考例2で得られたウイルス感染汗腺細胞の共焦点顕微鏡観察の結果を示す図面代用写真である。 (A)は試験例2(1)において、実施例1で得られたウイルス感染汗腺スフィアに含まれる汗腺細胞のスフィア形成能と継代数との関係を調べた結果を示す図面代用写真、(B)は試験例2(1)において、比較例1で得られた解離汗腺細胞のスフィア形成能と継代数との関係を調べた結果を示す図面代用写真である。 (A)は細胞の種類とパンサイトケラチン発現量との関係を調べた結果を示すグラフ、(B)は細胞の種類とα-SMA発現量との関係を調べた結果を示すグラフである。 (A)は試験例3において、実施例2で得られたウイルス感染組織に含まれる汗腺細胞のスフィア形成能と継代数との関係を調べた結果を示す図面代用写真、(B)は試験例3において、比較例1で得られた解離汗腺細胞のスフィア形成能と継代数との関係を調べた結果を示す図面代用写真である。
 本発明の不死化汗腺筋上皮細胞は、前記したように、α-平滑筋アクチンおよびパンサイトケラチンを発現し、少なくとも5回の継代後にスフィア形成能を有していることを特徴とする。
 本明細書において、「不死化」とは、少なくとも5回の継代後に細胞がスフィア形成能を有していることをいう。また、「汗腺から単離された汗腺筋上皮細胞」とは、汗腺から分離され、初代培養が行なわれた汗腺筋上皮細胞(以下、「初代汗腺筋上皮細胞」ともいう)をいう。
 α-平滑筋アクチンおよびパンサイトケラチンは、生体内における汗腺筋上皮細胞のマーカーである。α-平滑筋アクチンは、汗腺収縮を引き起こすという汗腺筋上皮細胞の機能の発現に関与する。またパンサイトケラチンは、汗腺筋上皮細胞の細胞骨格を形成している。本発明の不死化汗腺筋上皮細胞は、α-平滑筋アクチンおよびパンサイトケラチンを発現しているため、生体内における汗腺筋上皮細胞と同様の機能および性質を有する。さらに、本発明の不死化汗腺筋上皮細胞は、少なくとも5回の継代後にスフィア形成能を有しているので、初代汗腺筋上皮細胞と比べて、生体内における汗腺筋上皮細胞と同様の機能および性質を有する細胞を長期間にわたって増殖させることができる。
 初代汗腺筋上皮細胞は、4回目の継代より前にスフィア形成能を失う。これに対し、本発明の不死化汗腺筋上皮細胞は、少なくとも5回、好ましくは7回以上、より好ましくは9回以上、さらに好ましくは18回以上、より一層好ましくは100回以上の継代後であっても、スフィア形成能を有している。したがって、本発明の不死化汗腺筋上皮細胞は、初代汗腺筋上皮細胞と比べて、より長期間にわたって細胞増殖能を維持する。
 「生体内における汗腺筋上皮細胞の機能と同様の機能」としては、例えば、汗の分泌の際の汗腺の収縮運動などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。「生体内における汗腺筋上皮細胞の性質と同様の性質」としては、例えば、汗腺管腔細胞などへの分化能、自己複製能、α-平滑筋アクチン発現陽性、パンサイトケラチン発現陽性、ナトリウム/カリウムATPアーゼのαサブユニット(ATP1a1)発現陽性などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 本発明の不死化汗腺筋上皮細胞は、ATP1a1をさらに発現していることが好ましい。ATP1a1は、汗腺以外の器官由来の筋上皮細胞(例えば、乳腺の筋上皮細胞など)では発現していないことから、汗腺細胞のマーカーである。したがって、ATP1a1を発現する本発明の不死化汗腺筋上皮細胞は、汗腺以外の器官由来の筋上皮細胞と区別化することができる。
 本発明の不死化汗腺筋上皮細胞は、生体内における汗腺筋上皮細胞と同様の機能および性質を有することから、例えば、被験物質が有する汗腺筋上皮細胞の分化調節作用の評価方法に用いられることが期待される。かかる評価方法は、例えば、
(A)本発明の不死化汗腺筋上皮細胞を被験物質の非存在下で培地中に浮遊させた状態で培養して細胞培養物を得るステップ、
(B)本発明の不死化汗腺筋上皮細胞を被験物質の存在下で培地中に浮遊させた状態で培養して細胞培養物を得るステップ、および
(C)前記ステップ(A)で得られた細胞培養物(A)における分化マーカーの発現プロファイルと前記ステップ(B)で得られた細胞培養物(B)における分化マーカーの発現プロファイルとを調べ、前記細胞培養物(A)における分化マーカーの発現プロファイルと前記細胞培養物(B)における分化マーカーの発現プロファイルとの違いに基づき、前記被験物質が有する汗腺筋上皮細胞の分化調節作用を評価するステップ
を含む。本評価方法により、被験物質が汗腺筋上皮細胞の分化を促進する作用を有することが確認された場合、当該被験物質は、例えば、汗腺筋上皮細胞の機能の異常亢進に起因する状態の改善に用いられることが期待される。また、本評価方法により、被験物質が汗腺筋上皮細胞の分化を抑制する作用を有することが確認された場合、当該被験物質は、例えば、汗腺筋上皮細胞の機能不全に起因する状態の改善に用いられることが期待される。
 本発明の不死化汗腺筋上皮細胞は、例えば、汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を当該汗腺筋上皮細胞に導入することなどによって製造することができる。
 本発明の不死化汗腺筋上皮細胞の製造方法は、
(I)汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を当該汗腺筋上皮細胞に導入して遺伝子導入体を得る工程、および
(II)前記工程(I)で得られた遺伝子導入体を培地中に浮遊させた状態で培養して不死化汗腺筋上皮細胞を得る工程
を含むことを特徴とする(以下、「本発明の方法」ともいう)。
 本発明の方法によれば、汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を当該汗腺筋上皮細胞に導入するという操作が採られているので、不死化遺伝子を高い導入効率で汗腺筋上皮細胞に導入することができる。したがって、本発明の方法によれば、高い製造効率で不死化汗腺筋上皮細胞を製造することができる。
 工程(I)では、汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を当該汗腺筋上皮細胞に導入して遺伝子導入体を得る。
 細胞構造体は、汗腺筋上皮細胞が表面に露出しているものであれば、他の汗腺細胞などを含有していてもよい。他の汗腺細胞としては、例えば、汗腺管腔細胞、汗腺分泌細胞などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。細胞構造体としては、例えば、汗腺筋上皮細胞が表面に露出している汗腺含有組織、汗腺筋上皮細胞が表面に露出しているスフィアなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 汗腺含有組織は、皮膚組織のうち汗腺を含有する部分の組織である。汗腺含有組織に含まれる汗腺の表層は、汗腺筋上皮細胞によって覆われている。また、汗腺においては、表層から内部に向かって、より分化が進んだ汗腺細胞が存在している。汗腺含有組織は、例えば、採取された皮膚組織から少なくとも膠原繊維の全部または一部を除去することなどによって分離することができる。細胞構造体として汗腺含有組織を用いる場合、本発明の方法は、工程(I)を行なう前に、採取された皮膚組織から少なくとも膠原繊維の全部または一部を除去して汗腺筋上皮細胞が表面に露出している汗腺含有組織を得る工程をさらに含めることができる。
 汗腺含有組織の製造方法としては、例えば、
(a1)採取された皮膚組織から汗腺を含む組織片を分離する工程、および
(a2)工程(a1)で得られた組織片から膠原繊維などを除去して汗腺筋上皮細胞が表面に露出している汗腺含有組織を得る工程
を含む方法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 採取された皮膚組織としては、例えば、外科手術の際に生じた余剰皮膚などから取得され、生きている状態の皮膚組織などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。採取された皮膚組織は、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、新鮮な組織であることが好ましい。採取された皮膚組織が冷蔵保存された組織である場合、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、切除後48時間以内の組織であることが好ましい。なお、本明細書において、「生きている状態の皮膚組織」とは、生体内における本来の生物学的活性および本来の動きと同様の生物学的活性および動きを示す状態の皮膚組織をいう。皮膚組織の供給源としては、例えば、ヒトなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 工程(a1)では、採取された皮膚組織から汗腺を含む組織片を分離する。工程(a1)では、汗腺を視認しながら容易に汗腺を含む組織片を分離することができることから、皮膚組織をニュートラルレッドなどの染色試薬で染色して汗腺を可視化することが好ましい。皮膚組織を染色した場合、染色試薬による汗腺への影響を低減させる観点および微生物などのコンタミネーションを低減させる観点から、皮膚組織から分離された組織片を洗浄することが好ましい。
 つぎに、工程(a2)では、工程(a1)で得られた組織片から膠原繊維などを除去して汗腺筋上皮細胞が表面に露出している汗腺含有組織を得る。工程(a2)では、例えば、ディスパーゼ、コラゲナーゼなどの酵素、物理的な切除手段などを用いて組織片から膠原繊維を除去することができる。工程(a2)では、他の表皮付属器官の混入を防ぐ観点から、毛包、皮脂腺などを組織片からさらに除去することが好ましい。
 スフィアは、汗腺細胞の凝集塊である。スフィアは、汗腺筋上皮細胞からなる表面層を有する。スフィアにおいては、表面層から内部に向かって、より分化が進んだ汗腺細胞が存在している。スフィアは、例えば、汗腺細胞を培地中に浮遊させた状態で培養することなどによって製造することができる。細胞構造体としてスフィアを用いる場合、本発明の方法は、工程(I)を行なう前に、汗腺細胞を培地中に浮遊させた状態で培養し、汗腺筋上皮細胞が表面に露出しているスフィアを形成させる工程をさらに含めることができる。
 スフィアの製造方法としては、例えば、
(b1)採取された皮膚組織から汗腺を含む組織片を分離する工程、
(b2)工程(b1)で得られた組織片から解離状態の汗腺細胞を得る工程、および
(b3)工程(b2)で得られた汗腺細胞を培地中に浮遊させた状態で培養し、汗腺筋上皮細胞が表面に露出しているスフィアを形成させる工程
を含む方法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 工程(b1)では、採取された皮膚組織から汗腺を含む組織片を分離する。工程(b1)における組織片の採取は、汗腺含有組織の製造方法の工程(a1)における組織片の採取と同様の方法によって行なうことができる。
 つぎに、工程(b2)では、工程(b1)で得られた組織片から解離状態の汗腺細胞を得る。工程(b2)では、細胞解離用試薬を組織片に作用させることなどによって組織片から汗腺細胞を解離させることにより、解離状態の汗腺細胞を得ることができる。細胞解離用試薬としては、例えば、サーモリシン、ディスパーゼ、コラゲナーゼ、トリプシンなどの酵素などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 つぎに、工程(b3)では、工程(b2)で得られた解離状態の汗腺細胞をスフィア形成用培地中に浮遊させた状態で培養し、汗腺筋上皮細胞が表面に露出しているスフィアを形成させる。スフィア形成用培地としては、例えば、上皮増殖因子と塩基性線維芽細胞増殖因子と細胞培養用人工基底膜マトリックスと無血清培地とを含有する培地などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。スフィア形成用培地が上皮増殖因子を含有する培地である場合、スフィア形成用培地における上皮増殖因子の含有率は、皮膚組織の供給源の種類などによって異なるので一概には決定することができないことから、皮膚組織の供給源の種類などに応じて適宜決定することが好ましい。皮膚組織の供給源がヒトである場合、スフィア形成用培地における上皮増殖因子の含有率は、通常、細胞を適度に増殖させるとともに適度に分化させる観点から、好ましくは0.01ng/mL以上、より好ましくは1ng/mL以上であり、細胞の過度の増殖および分化を抑制する観点から、好ましくは1μg/mL以下、より好ましくは100ng/mL以下である。スフィア形成用培地が塩基性線維芽細胞増殖因子を含有する培地である場合、スフィア形成用培地における塩基性線維芽細胞増殖因子の含有率は、皮膚組織の供給源の種類などによって異なるので一概には決定することができないことから、皮膚組織の供給源の種類などに応じて適宜決定することが好ましい。皮膚組織の供給源がヒトである場合、スフィア形成用培地における塩基性線維芽細胞増殖因子の含有率は、通常、細胞を適度に増殖させるとともに細胞の過度の分化を抑制する観点から、好ましくは0.01ng/mL以上、より好ましくは1ng/mL以上であり、細胞の過度の増殖を抑制するとともに細胞を適度に分化させる観点から、好ましくは1μg/mL以下、より好ましくは100ng/mL以下である。無血清培地としては、例えば、ステム・セル・テクノロジーズ(Stem Cell Technologies)社製の商品名:Complete MammoCult Human Medium、サーモフィッシャーサイエンティフィック株式会社製の商品名:Gibco(登録商標)Keratinocyte-SFMなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 汗腺細胞の培養条件は、皮膚組織の供給源の種類などによって異なるので一概には決定することができないことから、皮膚組織の供給源の種類などに応じて適宜決定することが好ましい。汗腺細胞の培養条件は、例えば、培養温度、培養時間、培地のpH、培養雰囲気における二酸化炭素濃度などを含む。皮膚組織の供給源がヒトである場合、培養温度は、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは35℃以上、より好ましくは36.5℃以上であり、前記と同様に生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは38℃以下、より好ましくは37.5℃以下である。具体的には、前記培養温度は、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、通常、好ましくは35~38℃、より好ましくは36.5~37.5℃である。また、皮膚組織の供給源がヒトである場合、培養時間は、培養温度などによって異なるので一概に決定することができないことから、培養温度などに応じて適宜決定することが好ましい。培養時間は、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは60時間以上、より好ましくは144時間以上であり、前記と同様に生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは672時間以下、より好ましくは168時間以下である。具体的には、前記培養時間は、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、通常、好ましくは60~672時間、より好ましくは144~168時間である。さらに、皮膚組織の供給源がヒトである場合、培地のpHは、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは6.8以上、より好ましくは7.0以上であり、前記と同様に生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは7.6以下、より好ましくは7.4以下である。具体的には、前記pHは、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、通常、好ましくは6.8~7.6、より好ましくは7.0~7.4である。培養雰囲気における二酸化炭素濃度は、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは4体積%以上、より好ましくは5体積%以上であり、前記と同様に生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは10体積%以下、より好ましくは7体積%以下である。具体的には、前記二酸化炭素濃度は、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、通常、好ましくは4~10体積%、より好ましくは5~7体積%である。「汗腺細胞を培地中に浮遊させた状態」は、汗腺細胞の培養に用いられる培養容器の壁面に当該汗腺細胞が接触していない状態であればよく、特に限定されるものではない。培養容器は、汗腺細胞が接着するのを抑制する物質を内面に有する容器であってもよい。
 工程(I)において、汗腺筋上皮細胞への不死化遺伝子の導入は、細胞構造体を培地中に浮遊させた状態に培養しながら行なわれる。「細胞構造体を培地中に浮遊させた状態」は、細胞構造体の培養に用いられる容器の内面に当該細胞構造体が接触していない状態であればよく、特に限定されるものではない。細胞構造体の培養に用いられる容器は、細胞構造体が接着するのを抑制する物質を内面に有する容器であってもよい。細胞構造体を浮遊させた状態で培養するための培地(以下、「浮遊培養用培地」ともいう)は、汗腺筋上皮細胞を生存させる栄養成分を含有する培地であれば、血清などの遺伝子導入を阻害する成分の含有量が少ない培地であってもよく、当該成分を含んでいない培地であってもよい。浮遊培養用培地は、低血清培地または無血清培地に栄養成分を補った培地であってもよく、商業的に容易に入手可能な培地であってもよい。栄養成分としては、例えば、アミノ酸、ビタミン、無機塩、糖類、細胞増殖促進因子(例えば、上皮増殖因子、塩基性線維芽細胞増殖因子、ヒドロコルチゾン-21-ヘミスクシナートなど)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。浮遊培養用培地における栄養成分の含有率は、低血清培地または無血清培地の種類、栄養成分の種類などによって異なるので一概には決定することができないことから、低血清培地または無血清培地の種類、栄養成分の種類などに応じて適宜設定することが好ましい。これらの栄養成分は、単独で用いてもよく、2種類以上を併用してもよい。無血清培地としては、例えば、ステム・セル・テクノロジーズ社製の商品名:Complete MammoCult Human Medium、サーモフィッシャーサイエンティフィック株式会社製の商品名:Gibco(登録商標)Keratinocyte-SFM、サーモフィッシャーサイエンティフィック株式会社製の商品名:Opti-MEM(登録商標) I Reduced Serum Mediumなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。低血清培地は、前記無血清培地に血清が添加された培地を用いることができる。低血清培地の血清濃度は、生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは0.01体積%以上、より好ましくは0.1体積%以上であり、前記と同様に生体内における汗腺筋上皮細胞の機能および性質をより良好に維持する観点から、好ましくは0.5体積%以下、より好ましくは0.1体積%以下である。具体的には、前記血清濃度は、好ましくは0.1~0.5体積%、より好ましくは0.01~0.1体積%である。
 汗腺筋上皮細胞への不死化遺伝子の導入方法としては、例えば、ウイルスベクターを用いる方法、トランスフェクション法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの方法のなかでは、簡便な操作で高い遺伝子導入効率が得られることから、ウイルスベクターを用いる方法が好ましい。したがって、前記工程(I)において、ウイルスベクターを介して不死化遺伝子を前記汗腺筋上皮細胞に導入することが好ましい。
 ウイルスベクターとしては、例えば、レンチウイルスベクター、レトロウイルスベクターなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのウイルスベクターのなかでは、汗腺筋上皮細胞に対する高い遺伝子導入効率を有し、不死化遺伝子の安定導入を行なうことができることから、レンチウイルスベクターが好ましい。不死化遺伝子としては、例えば、ヒトテロメラーゼ逆転写酵素(hTERT)遺伝子、SV40t(スモールt)抗原遺伝子、SV40T(ラージT)抗原遺伝子、c-myc遺伝子、パピローマウイルスのE6遺伝子、パピローマウイルスのE7遺伝子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの不死化遺伝子は、単独で用いてもよく、2種類以上を併用してもよい。これらの不死化遺伝子のなかでは、汗腺筋上皮細胞に対する高い遺伝子導入効率が得られることから、hTERT遺伝子とSV40t抗原遺伝子とSV40T抗原遺伝子とを併用することが好ましい。
 工程(I)において、ウイルスベクターを用いる方法によって不死化遺伝子を汗腺筋上皮細胞に導入する場合、不死化遺伝子が組み込まれたウイルスベクターがパッケージングされた組換ウイルス粒子を汗腺筋上皮細胞が表面に露出している細胞構造体に感染させることにより、不死化遺伝子を汗腺筋上皮細胞に導入することができる。組換ウイルス粒子は、例えば、ウイルスベクターに不死化遺伝子が組み込まれた組換ウイルスベクターとウイルスのパッケージングに必要な遺伝子を保持するベクターとをコトランスフェクション用細胞にコトランスフェクションし、組換ウイルス粒子を回収する方法などによって調製することができる。組換ウイルス粒子は、商業的に容易に入手可能な組換ウイルス粒子であってもよい。胞構造体への不死化遺伝子の導入は、遺伝子導入補助剤の存在下で組換ウイルス粒子を細胞構造体に接触させて感染させることによって行なうことができる。コトランスフェクション用細胞としては、例えば、293T細胞などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。遺伝子導入補助剤としては、例えば、ポリブレン、プロタミンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 細胞構造体と組換ウイルス粒子との接触方法としては、例えば、浮遊した状態の細胞構造体を含むウイルス感染用培地に組換ウイルス粒子を添加する方法、細胞構造体と組換ウイルス粒子を含むウイルス感染用培地とを混合する方法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。ウイルス感染用培地としては、例えば、前記無血清培地にヒドロコルチゾン-21-ヘミスクシナート、組換ヒト上皮増殖因子、組換ヒト塩基性線維芽細胞増殖因子、グルタミン酸、非必須アミノ酸などを補った培地、商業的に容易に入手可能な培地などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 細胞構造体として汗腺筋上皮細胞が表面に露出している汗腺含有組織を用いる場合、前記汗腺含有組織と組換ウイルス粒子との混合物100μLあたりの当該汗腺含有組織に含まれる汗腺の数は、遺伝子導入効率を向上させて製造効率を向上させる観点から、好ましくは1個以上、より好ましくは4個以上であり、前記と同様に遺伝子導入効率を向上させて製造効率を向上させる観点から、好ましくは20個以下、より好ましくは10個以下である。具体的には、前記混合物100μLあたりの当該汗腺含有組織に含まれる汗腺の数は、好ましくは1~20個、より好ましくは4~10個である。また、細胞構造体として前記汗腺含有組織を用いる場合、感染ウイルス粒子数と汗腺数との比(感染ウイルス粒子数/汗腺数)は、好ましくは1×10~1×1010である。
 細胞構造体として汗腺筋上皮細胞が表面に露出しているスフィアを用いる場合、前記スフィアと組換ウイルス粒子との混合物100μLあたりの前記スフィアの数は、遺伝子導入効率を向上させて製造効率を向上させる観点から、好ましくは1個以上、より好ましくは4個以上であり、前記と同様に遺伝子導入効率を向上させて製造効率を向上させる観点から、好ましくは20個以下、より好ましくは10個以下である。具体的には、前記混合物100μLあたりの前記スフィアの数は、好ましくは1~20個、より好ましくは4~10個である。また、細胞構造体として前記スフィアを用いる場合、感染ウイルス粒子数とスフィア数との比(感染ウイルス数/スフィア数)は、好ましくは1×10~1×1010である。
 つぎに、工程(II)では、前記工程(I)で得られた遺伝子導入体を培地中に浮遊させた状態で培養して不死化汗腺筋上皮細胞を得る。
 工程(II)に用いられる培地は、工程(I)に用いられる浮遊培養用培地と同様である。工程(II)における遺伝子導入体の培養条件は、スフィアの製造方法における汗腺細胞の培養条件と同様である。
 細胞構造体として汗腺筋上皮細胞が表面に露出している汗腺含有組織を用いた場合、工程(I)で得られる遺伝子導入体は、汗腺以外の組織などを含むことから、遺伝子導入体から不死化汗腺筋上皮細胞を単離する工程をさらに行なうことができる。遺伝子導入体からの不死化汗腺筋上皮細胞の単離は、例えば、細胞解離用試薬を遺伝子導入体に作用させること、力学的刺激を遺伝子導入体に付与すること、細胞解離用試薬と力学的刺激とを併用することなどによって行なうことができる。細胞解離用試薬は、前記スフィアの製造方法の工程(b2)に用いられる細胞解離用試薬と同様である。力学的刺激としては、ピペッティングによる刺激などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 遺伝子導入体が不死化汗腺筋上皮細胞以外の細胞を含む場合、本発明の方法は、工程(II)の後に、不死化汗腺筋上皮細胞を単離する工程をさらに含めることができる。不死化汗腺筋上皮細胞の単離方法としては、例えば、汗腺筋上皮細胞特異的マーカーを指標に利用する細胞ソーティングなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 本発明の方法で得られた不死化汗腺筋上皮細胞は、汗腺筋上皮細胞の特徴(i)~(iii):(i)α-平滑筋アクチン発現陽性、
(ii)パンサイトケラチン発現陽性およびATP1a1発現陽性を示すこと、および
(iii)5回以上の継代後にスフィア形成能を有すること
を調べることによって同定することができる。α-平滑筋アクチン、パンサイトケラチンおよびATP1a1それぞれの発現の有無は、例えば、蛍光免疫細胞染色法、リアルタイムRT-PCR法などによって確認することができる。スフィア形成能は、前述のスフィアの製造方法と同様の方法によって確認することができる。
 以上説明したように、本発明の不死化筋上皮細胞によれば、生体内における汗腺筋上皮細胞と同様の機能および性質を有し、当該機能および性質を有する細胞を長期間にわたって増殖させることができる。また、本発明の不死化筋上皮細胞の製造方法によれば、本発明の不死化汗腺筋上皮細胞を高い製造効率で得ることができる。したがって、本発明の不死化筋上皮細胞および本発明の不死化筋上皮細胞の製造方法は、制汗剤、デオドラント剤などの外用剤、汗腺機能の改善剤などの開発などに用いられることが期待されるものである。
 以下に実施例により本発明をさらに詳しく説明するが、本発明は、かかる実施例のみに限定されるものではない。以下において、各略語および各用語の意味は、以下のとおりである。
<略語および用語の説明>
 EDTA:エチレンジアミン四酢酸
 FBS:ウシ胎児血清
 GAPDH:グリセルアルデヒド3リン酸脱水素酵素
 GFP:緑色蛍光タンパク質
 GFP組換ウイルス:GFP遺伝子を保持する組換レンチウイルス
 hTERT組換ウイルス:hTERT遺伝子を保持する組換レンチウイルス
 PBS:リン酸緩衝生理食塩水
 SV40Tt組換ウイルス:SV40t抗原遺伝子およびSV40T抗原遺伝子を保持する組換レンチウイルス
 α-SMA: α-平滑筋アクチン
製造例1
 基礎培地〔ステム・セル・テクノロジーズ社製、商品名:Complete MammoCult HumanMedium〕に、ヒドロコルチゾン-21-ヘミスクシナート、組換ヒト上皮増殖因子、組換ヒト塩基性線維芽細胞増殖因子、ヘパリンおよびペニシリン/ストレプトマイシン混合液〔ペニシリン濃度10000ユニット/mL、ストレプトマイシン濃度10000μg/mL〕をそれぞれの濃度が10.5μg/mL(ヒドロコルチゾン-21-ヘミスクシナート)、10ng/mL(組換ヒト上皮増殖因子)、10ng/mL(組換ヒト塩基性線維芽細胞増殖因子)、4μg/mL(ヘパリン)および100μg/mL(ペニシリン/ストレプトマイシン混合液)となるように添加して培地(I)を得た。
製造例2
 基礎培地〔ステム・セル・テクノロジーズ社製、商品名:Complete MammoCult HumanMedium〕に、ヒドロコルチゾン-21-ヘミスクシナート、組換ヒト上皮増殖因子、組換ヒト塩基性線維芽細胞増殖因子、ヘパリンおよびペニシリン/ストレプトマイシン混合液および細胞培養用人工基底膜マトリックス〔コーニング・インコーポレーティッド(Corning Inc.)製、商品名:Growth Factor Reduced Matrigel Matrix〕をそれぞれの濃度が10.5μg/mL(ヒドロコルチゾン-21-ヘミスクシナート)、10ng/mL(組換ヒト上皮増殖因子)、10ng/mL(組換ヒト塩基性線維芽細胞増殖因子)、4μg/mL(ヘパリン)、100μg/mL(ペニシリン/ストレプトマイシン混合液)および2体積%(細胞培養用人工基底膜マトリックス)となるように添加して培地(II)を得た。
製造例3
 基礎培地〔ステム・セル・テクノロジーズ社製、商品名:Complete MammoCult HumanMedium〕に、ヒドロコルチゾン-21-ヘミスクシナート、組換ヒト上皮増殖因子および組換ヒト塩基性線維芽細胞増殖因子をそれぞれの濃度が10.5μg/mL(ヒドロコルチゾン-21-ヘミスクシナート)、10ng/mL(組換ヒト上皮増殖因子)および10ng/mL(組換ヒト塩基性線維芽細胞増殖因子)となるように添加して培地(III)を得た。ポリブレンをその濃度が10μg/mLとなるように培地(III)に添加してウイルス感染用培地を得た。
製造例4
 トリプシン溶液〔サーモフィッシャーサイエンティフィック株式会社製、商品名:2.5% Trypsin (10×)、no Phenol Red〕、ダルベッコPBS〔サーモフィッシャーサイエンティフィック株式会社製、商品名:DPBS、no calcium、no magnesium〕、およびEDTA溶液〔ニッポンジーン社製、商品名:0.5M EDTA〕を混合することで、0.5質量%トリプシン-EDTA溶液を得た。
製造例5
 粉末状のディスパーゼ〔サーモフィッシャーサイエンティフィック株式会社製、商品名:Dispase II,powder〕をダルベッコPBS〔サーモフィッシャーサイエンティフィック株式会社製、商品名:DPBS,no calcium,no magnesium〕に溶解させることで、5U/mLディスパーゼ液を得た。
参考例1
(1)解離状態の汗腺細胞の製造
 皮膚組織として、生体(68歳のヒト)から切除後すぐに4℃で冷蔵保存され、切除後48時間以内の眼瞼の皮膚組織を用いた。皮膚組織を10μMニュートラルレッド(Neutral Red)含有PBSに浸すことにより、前記皮膚組織中の汗腺にニュートラルレッドを取り込ませた。つぎに、光学顕微鏡下でピンセットとハサミとを用い、前記皮膚組織から汗腺を含む組織片を分離した。分離された組織片を15mL容量チューブ中の無菌PBS内に集めた。前記組織片を含有するPBSを軽く振とうさせた後、当該PBSを350×gおよび4℃で5分間の遠心分離に供して上清を除去することにより、前記組織片を洗浄した。
 製造例1で得られた培地(I)10mLを前記チューブ中の前記組織片と混合した。つぎに、コラゲナーゼIIをその濃度が600U/mLとなるように前記チューブ中の培地(I)に添加した。その後、前記チューブ中の前記組織片をローテーターで回転させながら37℃の5体積%二酸化炭素雰囲気中でインキュベートすることにより、前記組織片から膠原繊維を除去した。
 インキュベーション開始時から4時間経過後、前記チューブ中の培地(I)および膠原繊維除去後の組織片を直径10cmのディッシュに移した。光学顕微鏡下でピペットを用い、前記ディッシュ上の前記組織片を採取した。採取された組織片を15mL容量チューブ中の無菌PBS内に集めた。前記組織片を含有するPBSを軽く振とうさせた後、当該PBSを350×gおよび4℃で5分間の遠心分離に供して上清を除去することにより、前記組織片を洗浄した。
 洗浄後の組織片と、製造例4で得られた0.5質量%トリプシン-EDTA溶液1mLとを15mL容量チューブ中で混合した。ピペットを用い、前記チューブ中の汗腺を3分間撹拌することにより、汗腺を構成する汗腺細胞を互いに解離させ、解離状態の汗腺細胞(以下、「解離汗腺細胞」ともいう)を得た。
(2)スフィア培養
 前記(1)「解離状態の汗腺細胞の製造」で得られた解離汗腺細胞と2質量%FBS/PBS溶液9mLとを混合した。得られた混合液を350×gおよび4℃で5分間の遠心分離に供して当該混合液から上清を除去した。前記チューブ中の解離汗腺細胞に製造例5で得られた5U/mLディスパーゼ液1mLを添加した後、ピペットを用い、前記チューブ中の解離汗腺細胞を撹拌した。つぎに、前記チューブ中の解離汗腺細胞を含有する混合液をセルストレーナー〔メッシュサイズ:40μm、コーニング社製、商品名:Falcon(登録商標)40μmセルストレーナー、ブルー、滅菌、個別包装〕に通して凝集した細胞を除去することにより、解離汗腺細胞の浮遊液を得た。
 2質量%FBS/PBS溶液9mLを前記チューブ中の解離汗腺細胞の浮遊液と混合した。得られた混合液を350×gおよび4℃で5分間の遠心分離に供して当該混合液から上清を除去し、細胞含有液を得た。細胞含有液の一部と血球計算盤とを用い、細胞含有液の細胞数を算出した。解離汗腺細胞の濃度が1×103~7×103個/mLとなるように前記チューブに製造例2で得られた培地(II)を添加し、解離汗腺細胞を含有する混合液を得た。得られた混合液を低接着プレート〔コーニング社製、商品名:超低接着プレート24ウェル〕に入れた。前記プレート中の培地(II)に浮遊させた状態で前記解離汗腺細胞を37℃の5体積%二酸化炭素雰囲気中でインキュベートした。
 培養開始後、スフィアが形成された時点で、前記スフィアを15mL容量チューブに移した。前記スフィアを350×gおよび4℃で5分間の遠心分離に供して液体成分を除去した。つぎに、細胞回収用溶液(コーニング社製、商品名:セルリカバリーソリューション)1mLを前記チューブ中のスフィアと混合し、スフィア含有液を得た。その後、得られたスフィア含有液が入ったチューブを氷上で1~2時間静置した。
(3)ウイルス感染
 GFP組換ウイルス粒子溶液〔アプライド・バイオロジカル・マテリアルズ(Applied Biological Materials)社製、商品名:GFP Control Lentivirus、GFP組換ウイルス粒子濃度:1×106U/mL〕をポリエチレングリコール沈殿法にしたがって濃縮した。得られた濃縮物を前記ウイルス感染用培地でGFP組換ウイルス粒子濃度が1×108U/mLになるように希釈することにより、GFP組換ウイルス希釈液を得た。
 前記(2)「スフィア培養」で得られたスフィア含有液とPBS9mLとを混合した。つぎに、得られた混合液を350×gおよび4℃で5分間の遠心分離に供して上清を除去した。遠心分離後のスフィア4~10個と製造例3で得られたウイルス感染用培地90μLとを混合した。得られた混合液に前記GFP組換ウイルス希釈液10μLを添加し、スフィア-ウイルス混合液を得た。前記スフィア-ウイルス混合液を37℃の5体積%二酸化炭素雰囲気中でインキュベートしてスフィアを構成する汗腺細胞に組換ウイルスを感染させることにより、スフィアを構成する細胞にGFP遺伝子を導入した。ウイルス感染開始時から24時間経過後、ウイルス感染汗腺スフィアを回収した。
参考例2
 参考例1の(1)「解離状態の汗腺細胞の製造」で得られた解離汗腺細胞とPBS9mLとを混合した。つぎに、得られた混合液を350×gおよび4℃で5分間の遠心分離に供して上清を除去した。遠心分離後の解離汗腺細胞5×102~1×105個と製造例3で得られたウイルス感染用培地90μLとを混合した。得られた混合液に、前記GFP組換ウイルス希釈液10μLを添加し、スフィア-ウイルス混合液を得た。前記スフィア-ウイルス混合液を37℃の5体積%二酸化炭素雰囲気中でインキュベートして解離汗腺細胞に組換ウイルスを感染させることにより、解離汗腺細胞にGFP遺伝子を導入した。ウイルス感染開始時から24時間経過後、ウイルス感染汗腺細胞を回収した。
試験例1
 参考例1で得られたウイルス感染汗腺スフィアおよび参考例2で得られたウイルス感染汗腺細胞におけるGFPに基づく蛍光を蛍光顕微鏡下に観察した。また、参考例1で得られたウイルス感染汗腺スフィアおよび参考例2で得られたウイルス感染汗腺細胞を共焦点顕微鏡下に観察した。
 参考例1で得られたウイルス感染汗腺スフィアにおけるGFPに基づく蛍光を蛍光顕微鏡下に観察した結果を図1(A)、参考例2で得られたウイルス感染汗腺細胞におけるGFPに基づく蛍光を蛍光顕微鏡下に観察した結果を図1(B)、参考例1で得られたウイルス感染汗腺スフィアを共焦点顕微鏡下に観察した結果を図1(C)、参考例2で得られたウイルス感染汗腺細胞を共焦点顕微鏡下に観察した結果を図1(D)に示す。図中、スケールバーは153μmを示す。また、図1(A)における矢頭はウイルス感染汗腺スフィア、図1(B)における矢頭はウイルス感染汗腺細胞を示す。
 図1(A)および(C)に示された結果から、参考例1で得られたウイルス感染汗腺スフィアでは、表面に存在する細胞全体にGFPが発現していることがわかる。これに対し、参考例2で得られたウイルス感染汗腺細胞は、GFPを発現している細胞がほとんど存在していないことがわかる。これらの結果から、培地中にスフィアを浮遊させた状態で当該スフィアに含まれる汗腺細胞にウイルスを感染させることにより、解離した状態の汗腺細胞にウイルスを感染させる場合と比べ、高い効率で遺伝子を汗腺細胞に導入することができることがわかる。
実施例1
 参考例1の(2)「スフィア培養」で得られたスフィア含有液とPBS9mLとを混合した。つぎに、得られた混合液を350×gおよび4℃で5分間の遠心分離に供して上清を除去した。遠心分離後のスフィア4~10個と製造例3で得られたウイルス感染用培地100μLとを混合した。得られた混合液に、hTERT組換ウイルス粒子溶液〔アプライドバイオロジカルマテリアルズ社製の商品名:High Titer Lentivirus containing hTERT、hTERT組換ウイルス粒子濃度:1×109U/mL〕0.5μLとSV40Tt組換ウイルス粒子溶液〔アプライドバイオロジカルマテリアルズ社製の商品名:High Titer Lentivirus expressing SV40 large and small T antigens、SV40Tt組換ウイルス粒子濃度:1×109U/mL〕0.5μLとを添加し、スフィア-ウイルス混合液を得た。前記スフィア-ウイルス混合液を37℃の5体積%二酸化炭素雰囲気中でインキュベートしてスフィアを構成する汗腺細胞に組換レンチウイルスを感染させることにより、スフィアを構成する細胞に不死化遺伝子を導入した。ウイルス感染開始時から24時間経過後、ウイルス感染汗腺スフィアを回収した。
比較例1
 参考例1の(1)「解離状態の汗腺細胞の製造」および(2)の「スフィア培養」と同様の操作を行なうことにより、スフィアを得た。
試験例2
(1)スフィア継代培養
 以下の(1-1)および(1-2)を行なうことを「1回の継代培養」と定義した。
(1-1)解離汗腺細胞の製造
 実施例1で得られたウイルス感染汗腺スフィアと、製造例4で得られた0.5質量%トリプシン-EDTA溶液1mLとを15mL容量チューブ中で混合した。ピペットを用い、前記チューブ中の汗腺を3分間撹拌することにより、汗腺を構成する汗腺細胞を互いに解離させ、解離汗腺細胞を得た。
 また、前記において、実施例で得られたウイルス感染汗腺スフィアを用いる代わりに比較例1で得られたスフィアを用いたことを除き、前記と同様の操作を行ない、解離汗腺細胞を得た。
(1-2)スフィア培養
 前記(1-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞と、2質量%FBS/PBS溶液9mLとを混合した。得られた混合液を350×gおよび4℃で5分間の遠心分離に供して上清を除去した。前記チューブ中の解離汗腺細胞に製造例5で得られた5U/mLディスパーゼ液1mLを添加した後、ピペットを用い、前記チューブ中の解離汗腺細胞を撹拌した。つぎに、前記チューブ中の解離汗腺細胞を含有する混合液をセルストレーナー〔メッシュサイズ:40μm、コーニング製、商品名:Falcon(登録商標)40μmセルストレーナー、ブルー、滅菌、個別包装〕に通して凝集した細胞を除去することにより、解離汗腺細胞の浮遊液を得た。
 2質量%FBS/PBS溶液9mLを前記チューブ中の解離汗腺細胞の浮遊液と混合した。得られた混合液を350×gおよび4℃で5分間の遠心分離に供して上清を除去した。つぎに、解離汗腺細胞の濃度が2.3×103~2.7×103個/mLとなるように前記チューブに製造例2で得られた培地(II)を添加し、解離汗腺細胞を含有する混合液を得た。得られた混合液を低接着プレート〔コーニング社製、商品名:超低接着プレート24ウェル〕に入れた。前記プレート中の培地(II)に浮遊させた状態で前記解離汗腺細胞を37℃の5体積%二酸化炭素雰囲気中でインキュベートした。
 培養開始後、スフィアが形成された時点で、前記スフィアを15mL容量チューブに移した。前記スフィアを350×gおよび4℃で5分間の遠心分離に供して液体成分を除去した。つぎに、細胞回収用溶液(コーニング社製、商品名:セルリカバリーソリューション)1mLを前記チューブ中のスフィアと混合し、スフィア含有液を得た。その後、得られたスフィア含有液が入ったチューブを氷上で1~2時間静置した。
(1-3)スフィア形成能の評価
 前記(1-1)「解離汗腺細胞の製造」および(1-2)「スフィア培養」からなる一連の操作を繰り返し、前記(1-2)「スフィア培養」におけるスフィアの形成の有無に基づき、スフィア形成能を調べた。
 実施例1で得られたウイルス感染汗腺スフィアに含まれる汗腺細胞のスフィア形成能と継代数との関係を調べた結果を図2(A)、比較例1で得られた解離汗腺細胞のスフィア形成能と継代数との関係を調べた結果を図2(B)に示す。図中、矢頭は、スフィアを示す。
 図2に示された結果から、実施例1で得られたウイルス感染汗腺スフィアに含まれる汗腺細胞は、9回の継代後であってもスフィア形成能を有していることがわかる。これに対し、比較例1で得られた解離汗腺細胞は、4回の継代後にスフィア形成能を有していないことがわかる。
 なお、実施例1で得られたウイルス感染汗腺スフィアに含まれる汗腺細胞は、20回以上継代した場合であってもスフィアを形成することが確認された。
 以上の結果から、培地中にスフィアを浮遊させた状態で当該スフィアに含まれる汗腺細胞に、不死化遺伝子を有するレンチウイルスを感染させることにより、不死化汗腺細胞が得られることがわかる。
(2)不死化汗腺細胞の同定
 抗パンサイトケラチン抗体、抗パンサイトケラチン抗体に対する蛍光標識二次抗体、抗α-SMA抗体および当該抗α-SMA抗体に対する蛍光標識二次抗体を用いて前記(1-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞および比較例1で得られた解離汗腺細胞の蛍光免疫染色を行なった。つぎに、免疫染色後の解離汗腺細胞におけるパンサイトケラチンに基づく蛍光の強度〔以下、「蛍光強度A」という〕およびα-SMAに基づく蛍光の強度〔以下、「蛍光強度B」という〕を測定した。
 つぎに、評価対象の細胞における蛍光強度Aから比較例1で得られた解離汗腺細胞における蛍光強度Aを減ずることにより、評価対象の細胞におけるパンサイトケラチン発現量を算出した。また、評価対象の細胞における蛍光強度Bから比較例1で得られた解離汗腺細胞における蛍光強度Bを減ずることにより、評価対象の細胞におけるα-SMA発現量を求めた。
 細胞の種類とパンサイトケラチン発現量との関係を調べた結果を図3(A)、細胞の種類とα-SMA発現量との関係を調べた結果を図3(B)に示す。図3(A)中、レーン1は実施例1で得られたウイルス感染汗腺スフィアに含まれる不死化汗腺細胞におけるパンサイトケラチン発現量、レーン2は比較例1で得られた解離汗腺細胞におけるパンサイトケラチン発現量を示す。図3(B)中、レーン1は実施例1で得られたウイルス感染汗腺スフィアに含まれる不死化汗腺細胞におけるα-SMA発現量、レーン2は比較例1で得られた解離汗腺細胞におけるα-SMA発現量を示す。
 図3(A)および(B)に示された結果から、実施例1で得られたウイルス感染汗腺スフィアに含まれる不死化汗腺細胞(レーン1参照)は、筋上皮細胞マーカーであるパンサイトケラチンおよびα-SMAの両方を発現していることがわかる。これらの結果から、前記不死化汗腺細胞は、不死化汗腺筋上皮細胞であることがわかる。したがって、培地中にスフィアを浮遊させた状態で当該スフィアに含まれる汗腺細胞にウイルスを感染させることにより、不死化汗腺筋上皮細胞が得られることがわかる。
(3)不死化汗腺筋上皮細胞における汗腺細胞マーカーの発現の検討
 前記(1-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞から全RNAを抽出した。得られた全RNAをその濃度が1μg/μLとなるようにDNアーゼ/RNアーゼフリーの精製水〔invitrogen社製、商品名:UltraPure DNase/RNase-Free Distilled Water〕を添加した。逆転写キット〔QIAGEN社製、商品名:Quatitect Reverse Transcription Kit〕を用い、前記全RNAからcDNAを合成し測定試料を得た。
 得られた測定試料を鋳型とし、PCR用キット〔東洋紡(株)製、商品名:THUNDERBIRD SYBR qPCR Mix〕とリアルタイムPCR装置〔アプライド・バイオ・システムズ(Applied bio systems)製、商品名:ViiA7〕と、ATP1a1遺伝子を増幅するためのプライマー対とを用い、ATP1a1遺伝子のcDNAを鋳型とするヌクレオチド合成量が閾値に達するまでのサイクル数(以下、「CtA値」という)を測定した。また、前記において、ATP1a1遺伝子を増幅するためのプライマー対を用いる代わりに対照遺伝子であるGAPDH遺伝子を増幅するためのプライマー対を用いたことを除き、前記と同様の操作を行ない、対照遺伝子のcDNAを鋳型とするヌクレオチド合成量が閾値に達するまでのサイクル数(以下、「CtB値」という)を測定した。リアルタイムRT-PCR法におけるサーマルプロファイルは、95℃で1分間の処理後、95℃で5秒間の変性と55℃で10秒間のアニーリングと72℃20秒間の伸長とを1サイクルとする40サイクルの反応である。
 CtA値およびCtB値を用い、式(I):
Figure JPOXMLDOC01-appb-M000001
にしたがい、実施例1で得られたウイルス感染汗腺スフィアに含まれる不死化汗腺筋上皮細胞におけるATP1a1遺伝子の発現値を求めた。
 また、前記において、前記(1-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞を用いる代わりに対照細胞としてATP1a1遺伝子を発現していない皮膚表皮細胞を用いたことを除き、前記と同様の操作を行ない、対照細胞におけるATP1a1遺伝子の発現値を求めた。
 不死化汗腺筋上皮細胞におけるATP1a1遺伝子の発現値から対照細胞におけるATP1a1遺伝子の発現値を減じることにより、不死化汗腺筋上皮細胞におけるATP1a1遺伝子の補正発現値を求めた。つぎに、前記補正発現値に基づき、以下の評価基準に従って、不死化汗腺筋上皮細胞がATP1a1遺伝子を発現しているかどうかを評価した。
<評価基準>
 「不死化汗腺筋上皮細胞がATP1a1遺伝子を発現している」
・・・補正発現値が「正の値」である。
 「不死化汗腺筋上皮細胞がATP1a1遺伝子を発現していない」
・・・補正発現値が「0」または「負の値」である。
 その結果、実施例1で得られたウイルス感染汗腺スフィアに含まれる不死化汗腺筋上皮細胞におけるATP1a1遺伝子の発現値が正の値であったことから、不死化汗腺筋上皮細胞がATP1a1遺伝子を発現していることがわかった。ATP1a1は、汗腺筋上皮細胞マーカーの1つである。したがって、実施例1で得られたウイルス感染汗腺スフィアに含まれる不死化汗腺筋上皮細胞は、汗腺筋上皮細胞マーカーを発現していることがわかる。
実施例2
(1)汗腺含有組織の製造
 皮膚組織として、生体(41歳のヒト)から切除後すぐに4℃で冷蔵保存され、切除後48時間以内の眼瞼の皮膚組織を用いた。皮膚組織を10μMニュートラルレッド含有PBSに浸すことにより、前記皮膚組織中の汗腺にニュートラルレッドを取り込ませた。つぎに、光学顕微鏡下でピンセットとハサミとを用い、前記皮膚組織から汗腺を含む組織片を分離した。分離された組織片を15mL容量チューブ中の無菌PBS内に集めた。前記組織片を含有するPBSを軽く振とうさせた後、当該PBSを350×gおよび4℃で5分間の遠心分離に供して上清を除去することにより、前記組織片を洗浄した。
 製造例1で得られた培地(I)10mLを前記チューブ中の前記組織片と混合した。つぎに、コラゲナーゼIIをその濃度が600U/mLとなるように前記チューブ中の培地(I)に添加した。その後、前記チューブ中の前記組織片をローテーターで回転させながら37℃の5体積%二酸化炭素雰囲気中でインキュベートすることにより、前記組織片から膠原繊維を除去した。
 インキュベーション開始時から4時間経過後、前記チューブ中の培地(I)および膠原繊維除去後の組織片を直径10cmのディッシュに移した。光学顕微鏡下でピペットを用い、前記ディッシュ上の前記組織片を採取した。採取された組織片を15mL容量チューブ中の無菌PBS内に集めた。前記組織片を含有するPBSを軽く振とうさせた後、当該PBSを350×gおよび4℃で5分間の遠心分離に供して上清を除去することにより、前記組織片を洗浄した。
 洗浄後の組織片と培地(I)10mLとを15mL容量チューブ中で混合した。得られた混合液にディスパーゼをその濃度が1U/mLとなるように添加した。得られた混合液を直径10cmのディッシュに移した後、前記混合液を静置状態で37℃の5体積%二酸化炭素雰囲気中でインキュベートした。インキュベーション開始時から8時間経過後、前記混合液に2質量%FBS/PBS溶液10mLを添加して混合液を希釈して酵素反応を停止させた。
 光学顕微鏡下でピペットを用い、前記ディッシュ上の汗腺を含む組織片を採取した。採取された組織片を15mL容量チューブ中の無菌PBS内に集めた。前記組織片を含むPBSを軽く振とうさせた後、当該PBSを350×gおよび4℃で5分間の遠心分離に供して上清を除去することにより、汗腺含有組織を得た。
(2)ウイルス感染
 hTERT組換ウイルス粒子溶液とSV40Tt組換ウイルス粒子溶液とを前記ウイルス感染用培地でhTERT組換ウイルス粒子濃度が1×108U/mLおよびSV40Tt組換ウイルス粒子濃度が1×108U/mLとなるように希釈して不死化遺伝子含有組換ウイルス希釈液を得た。
 前記(1)「汗腺含有組織の製造」で得られた汗腺含有組織とPBS9mLとを混合した。つぎに、得られた混合液を350×gおよび4℃で5分間の遠心分離に供して上清を除去した。遠心分離後の4~10個の汗腺を含有する汗腺含有組織と製造例3で得られたウイルス感染用培地100μLとを混合した。得られた混合液に前記不死化遺伝子含有組換ウイルス希釈液2μLを添加し、組織-ウイルス混合液を得た。前記組織-ウイルス混合液を37℃の5体積%二酸化炭素雰囲気中でインキュベートして汗腺を構成する汗腺細胞に組換レンチウイルスを感染させた。さらに、ウイルス感染開始から30分~12時間ごとに前記不死化遺伝子含有組換ウイルス希釈液2μLを添加して前記汗腺含有組織に含まれる汗腺細胞に組換ウイルスを感染させることにより、汗腺細胞に不死化遺伝子を導入した。ウイルス感染開始時から33時間経過後、ウイルス感染組織を回収した。
試験例3
 試験例2の(1)「スフィア継代培養」において、実施例1で得られたウイルス感染汗腺スフィアを用いる代わりに実施例2で得られたウイルス感染組織を用いたことを除き、試験例2の(1)「スフィア継代培養」と同様の操作を行ない、スフィア継代培養を行なった。
 実施例2で得られたウイルス感染組織に含まれる汗腺細胞のスフィア形成能と継代数との関係を調べた結果を図4(A)、比較例1で得られた解離汗腺細胞のスフィア形成能と継代数との関係を調べた結果を図4(B)に示す。図中、矢頭は、スフィアを示す。
 図4に示された結果から、実施例2で得られたウイルス感染組織に含まれる汗腺細胞は、7回目の継代培養後においてもスフィアを形成することができるのに対し、比較例1で得られた解離汗腺細胞は、4回目の継代培養後にスフィアを形成することができないことがわかる。
 なお、実施例2で得られたウイルス感染組織に含まれる汗腺細胞は、12回以上継代した場合であってもスフィアを形成することが確認された。また、実施例2で得られたウイルス感染組織に含まれる汗腺細胞におけるパンサイトケラチンおよびα-SMAの発現の有無を調べたところ、パンサイトケラチンおよびα-SMAが発現していることが確認された。
 以上の結果から、培地中に汗腺含有組織を浮遊させた状態で当該汗腺含有組織に含まれる汗腺筋上皮細胞にウイルスを感染させることにより、不死化汗腺筋上皮細胞が得られることがわかる。
参考例3~7
(1)解離汗腺細胞の製造
 参考例1の(1)「解離状態の汗腺細胞の製造」において、68歳のヒトの眼瞼の皮膚組織を用いる代わりに20歳のヒトの眼瞼の皮膚組織(参考例3)、71歳のヒトの眼瞼の皮膚組織(参考例4)、74歳のヒトの眼瞼の皮膚組織(参考例5)、51歳のヒトの腹部の皮膚組織(参考例6)または55歳のヒトの腹部の皮膚組織(参考例7)を用いたことを除き、参考例1の(1)「解離状態の汗腺細胞の製造」と同様の操作を行ない、解離汗腺細胞を得た。
(2)スフィア培養
 参考例1の(2)「スフィア培養」において、参考例1の(1)「解離状態の汗腺細胞の製造」で得られた解離汗腺細胞を用いる代わりに参考例3~7の(1)「解離汗腺細胞の製造」で得られた各解離汗腺細胞を用いたことを除き、参考例1の(2)「スフィア培養」と同様の操作を行ない、スフィア含有液を得た。
実施例3~7
 実施例1において、参考例1の(2)「スフィア培養」で得られたスフィア含有液を用いる代わりに参考例3で得られたスフィア含有液(実施例3)、参考例4で得られたスフィア含有液(実施例4)、参考例5で得られたスフィア含有液(実施例5)、参考例6で得られたスフィア含有液(実施例6)または参考例7で得られたスフィア含有液(実施例7)を用いたことを除き、実施例1と同様の操作を行ない、ウイルス感染汗腺スフィアを得た。
比較例3~7
 参考例1の(1)「解離状態の汗腺細胞の製造」において、68歳のヒトの眼瞼の皮膚組織を用いる代わりに20歳のヒトの眼瞼の皮膚組織(比較例3)、71歳のヒトの眼瞼の皮膚組織(比較例4)、74歳のヒトの眼瞼の皮膚組織(比較例5)、51歳のヒトの腹部の皮膚組織(比較例6)または55歳のヒトの腹部の皮膚組織(比較例7)を用いたことを除き、比較例1の(1)「解離状態の汗腺細胞の製造」と同様の操作を行ない、解離汗腺細胞を得た。
試験例4
 試験例2の(1)「スフィア継代培養」において、実施例1で得られたウイルス感染汗腺スフィアを用いる代わりに実施例3~7で得られたウイルス感染組織を用いたことを除き、試験例2の(1)「スフィア継代培養」と同様の操作を行ない、スフィア継代培養を行なった。
 また、試験例2の(1)「スフィア継代培養」において、比較例1で得られた解離汗腺細胞を用いる代わりに比較例3~7で得られた解離汗腺細胞を用いたことを除き、試験例2の(1)「スフィア継代培養」と同様の操作を行ない、スフィア継代培養を行なった。スフィア形成能を有する細胞の継代数を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示された結果から、実施例3~7で得られたウイルス感染汗腺スフィアに含まれる汗腺細胞は、少なくとも18回の継代後であってもスフィア形成能を有していることがわかる。これに対し、比較例3および5~7で得られた解離汗腺細胞は、2回の継代後にスフィア形成能を失うことがわかる。また、比較例4で得られた解離汗腺細胞は、3回の継代後にスフィア形成能を失うことがわかる。
 これらの結果から、培地中にスフィアを浮遊させた状態で当該スフィアに含まれる汗腺細胞にウイルスを感染させることにより、皮膚組織の供給源の種類の如何を問わず、不死化汗腺細胞が得られることがわかる。
 実施例1および3~7で用いられたスフィアならびに実施例2で用いられた汗腺含有組織は、いずれも、汗腺筋上皮細胞が表面に露出している構造を有している。したがって、汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を保持するウイルスを当該細胞構造体に感染させることにより、不死化遺伝子を筋上皮細胞に導入することができることがわかる。
試験例5
(1)スフィア継代培養
 以下の(1-1)および(1-2)を行なうことを「1回の継代培養」と定義した。
(1-1)解離汗腺細胞の製造
 試験例2の(1-1)「解離汗腺細胞の製造」において、実施例1で得られたウイルス感染汗腺スフィアを用いる代わりに実施例3~7で得られたウイルス感染汗腺スフィアを用いたことを除き、試験例2の(1-1)「解離汗腺細胞の製造」と同様の操作を行ない、解離汗腺細胞を得た。
(1-2)スフィア培養
 前記(1-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞の一部(細胞数Aの解離汗腺細胞)と、2質量%FBS/PBS溶液9mLとを混合した。得られた混合液を350×gおよび4℃で5分間の遠心分離に供して上清を除去した。前記チューブ中の解離汗腺細胞に製造例5で得られた5U/mLディスパーゼ液1mLを添加した後、ピペットを用い、前記チューブ中の解離汗腺細胞を撹拌した。つぎに、前記チューブ中の解離汗腺細胞を含有する混合液をセルストレーナー〔メッシュサイズ:40μm、コーニング製、商品名:Falcon(登録商標)40μmセルストレーナー、ブルー、滅菌、個別包装〕に通して凝集した細胞を除去することにより、解離汗腺細胞の浮遊液を得た。
 2質量%FBS/PBS溶液9mLを前記チューブ中の解離汗腺細胞の浮遊液と混合した。得られた混合液を350×gおよび4℃で5分間の遠心分離に供して上清を除去した。
 つぎに、得られた解離汗腺細胞を製造例2で得られた培地(II)に2.5×103個/mLになるように添加し、解離汗腺細胞を含有する混合液を得た。得られた混合液を低接着プレート〔コーニング社製、商品名:超低接着プレート24ウェル〕に入れた。前記プレート中の培地(II)に浮遊させた状態で前記解離汗腺細胞を37℃の5体積%二酸化炭素雰囲気中でインキュベートした。
 培養開始後、スフィアが形成された時点で、前記スフィアを15mL容量チューブに移した。前記スフィアを350×gおよび4℃で5分間の遠心分離に供して液体成分を除去した。つぎに、細胞回収用溶液(コーニング社製、商品名:セルリカバリーソリューション)1mLを前記チューブ中のスフィアと混合し、スフィア含有液を得た。その後、得られたスフィア含有液が入ったチューブを氷上で1~2時間静置した。
(1-3)細胞増殖能の評価
 前記(1-1)「解離汗腺細胞の製造」および(1-2)「スフィア培養」からなる一連の操作をスフィア形成が停止するまで繰り返した。
 前記細胞数Aと、継代数n(nは正の整数を示す)のスフィア継代培養時に前記(1-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞の数(以下、「細胞数B」という)とを用い、式(II):
 [各継代間での細胞増殖倍率(KX)]=[細胞数B]/[細胞数A]
                             (II)
にしたがい、各継代間での細胞増殖倍率(KX)を求めた。各継代間での細胞増殖倍率(KX)を用い、式(III)にしたがい、
 [総細胞増殖倍率]=K×K・・・×KX        (III)
(式中、Xは正の整数を示す)
にしたがい、実施例3~7で得られたスフィアに含まれる汗腺細胞の総細胞増殖倍率を求めた。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示された結果から、実施例3~7で得られたスフィアに含まれる不死化汗腺細胞の総細胞増殖倍率は、2.6×1013倍以上であることがわかる。これに対し、不死化されていない汗腺細胞の総細胞増殖倍率は2.1倍以下であった。これらの結果から、実施例3~7で得られたスフィアに含まれる不死化汗腺細胞の細胞増殖能は、不死化されていない汗腺細胞の細胞増殖能と比べて向上していることがわかる。
試験例6
(1)解離汗腺細胞の製造
 試験例2の(1-1)「解離汗腺細胞の製造」において、実施例1で得られたウイルス感染汗腺スフィアを用いる代わりに実施例3で得られたスフィア(実験番号1)、実施例4で得られたスフィア(実験番号2)または実施例5で得られたスフィア(実験番号3)を用いたことを除き、試験例2の(1-1)「解離汗腺細胞の製造」と同様の操作を行ない、解離汗腺細胞を得た。なお、前記において、実施例3で得られたスフィアとして継代数5回のスフィア、実施例4で得られたスフィアとして継代数8回のスフィア、実施例5で得られたスフィアとして継代数14回のスフィアを用いた。
(2)解離汗腺細胞の凍結保存
 試験例6の(1)「解離完成細胞の製造」で得られた解離汗腺細胞を表3に示される濃度となるように凍結保存液〔タカラバイオ(株)製、商品名CELLBANKER(登録商標) 1plus〕1mLに懸濁した。得られた懸濁液を-80℃に保たれたフリーザで凍結させ、凍結細胞を得た。得られた凍結細胞を-80℃に保たれたフリーザまたは液体窒素中で表3に示される期間保存した。その後、凍結物を解凍して実験番号1~3の解凍細胞を得た。得られた解凍細胞の数を測定した。以下において、解凍細胞の数を細胞数Cとして用いた。
Figure JPOXMLDOC01-appb-T000004
(2)スフィア形成
 試験例2の(1-2)「スフィア培養」において、試験例2の(1-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞を用いる代わりに試験例6の(2)「解離汗腺細胞の凍結保存」で得られた解凍細胞を用いたことを除き、試験例2の(1-2)「スフィア培養」と同様の操作を行ない、実験番号1~3のスフィア含有液Aを得た。
(3)スフィア継代培養
 以下の(3-1)および(3-2)を行なうことを「1回の継代培養」と定義した。
(3-1)解離汗腺細胞の製造
 試験例2の(1-1)「解離汗腺細胞の製造」において、実施例1で得られたウイルス感染汗腺スフィアを用いる代わりに試験例6の(2)「スフィア形成」で得られたスフィア含有液Aのうち、実験番号3のスフィア含有液Aを用いたことを除き、試験例2の(1-1)「解離汗腺細胞の製造」と同様の操作を行ない、実験番号3の解離汗腺細胞を得た。
(3-2)スフィア培養
 試験例2の(1-2)「スフィア培養」において、試験例2の(1-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞を用いる代わりに試験例6の(3-1)「解離汗腺細胞の製造」で得られた解離汗腺細胞(実験番号3)を用いたことを除き、試験例2の(1-2)「スフィア培養」と同様の操作を行ない、実験番号3のスフィア含有液Bを得た。
(3-3)細胞増殖能の評価
 試験例2の(1-1)「解離汗腺細胞の製造」において、実施例1で得られたウイルス感染汗腺スフィアを用いる代わりに実験番号1のスフィア含有液Aに含まれるスフィア、実験番号2のスフィア含有液Aに含まれるスフィアおよび実験番号3のスフィア含有液Bに含まれるスフィア(実験番号1~3のスフィア)を用いたことを除き、試験例2の(1-1)「解離汗腺細胞の製造」と同様の操作を行ない、継代培養細胞を得た。得られた継代培養細胞の数(以下、「細胞数D」という)を測定した。
 つぎに、細胞数Cと細胞数Dとを用い、式(IV):
 [細胞増殖倍率]=[細胞数D]/[細胞数C]     (IV)
にしたがい、実験番号1~3のスフィアに含まれる不死化汗腺細胞を凍結保存したときの細胞増殖倍率を求めた。細胞増殖能の評価結果を表4に示す。表中、細胞増殖能およびスフィア形成能の評価基準は、以下のとおりである。
<細胞増殖能の評価基準>
+:式(IV)にしたがって算出された細胞増殖率が1より大きい。
-:式(IV)にしたがって算出された細胞増殖率が1以下である。
<スフィア形成能の評価基準>
+:光学顕微鏡下でスフィアの形成が確認される。
-:光学顕微鏡下でスフィアの形成が確認されない。
Figure JPOXMLDOC01-appb-T000005
 表4に示された結果から、実験番号1~3のスフィアに含まれる不死化汗腺細胞は、良好な細胞増殖能および良好なスフィア形成能を有することがわかる。これらの結果から、実験番号1~3のスフィアに含まれる不死化汗腺細胞は、凍結保存をした場合であっても、細胞増殖能およびスフィア形成能に優れることから、保存安定性に優れることがわかる。
 以上説明したように、汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を当該汗腺筋上皮細胞に導入することにより、不死化汗腺筋上皮細胞が得られることがわかる。また、前記操作を行なうことによって得られた不死化汗腺筋上皮細胞は、生体内における汗腺筋上皮細胞と同様の機能および性質を有し、当該機能および性質を有する細胞を長期間にわたって増殖させることができることがわかる。したがって、本発明の不死化汗腺筋上皮細胞および不死化汗腺筋上皮細胞の製造方法は、制汗剤、デオドラント剤などの外用剤、汗腺機能の改善剤などの開発などに用いられることが期待されるものである。

Claims (6)

  1.  α-平滑筋アクチンおよびパンサイトケラチンを発現し、少なくとも5回の継代後にスフィア形成能を有していることを特徴とする不死化汗腺筋上皮細胞。
  2.  ATP1a1をさらに発現している請求項1に記載の不死化汗腺筋上皮細胞。
  3.  不死化汗腺筋上皮細胞を製造する方法であって、
    (I)汗腺筋上皮細胞が表面に露出している細胞構造体を培地中に浮遊させた状態で培養しながら、不死化遺伝子を当該汗腺筋上皮細胞に導入して遺伝子導入体を得る工程、および
    (II)前記工程(I)で得られた遺伝子導入体を培地中に浮遊させた状態で培養して不死化汗腺筋上皮細胞を得る工程
    を含む不死化汗腺筋上皮細胞の製造方法。
  4.  前記工程(I)において、ウイルスベクターを介して不死化遺伝子を前記汗腺筋上皮細胞に導入する請求項3に記載の不死化汗腺筋上皮細胞の製造方法。
  5.  前記工程(I)を行なう前に、採取された皮膚組織から少なくとも膠原繊維の全部または一部を除去して汗腺筋上皮細胞が表面に露出している汗腺含有組織を得る工程をさらに含み、前記工程(I)において、前記細胞構造体として前記汗腺含有組織を用いる請求項3または4に記載の不死化汗腺筋上皮細胞の製造方法。
  6.  前記工程(I)を行なう前に、汗腺細胞を培地中に浮遊させた状態で培養し、汗腺筋上皮細胞が表面に露出しているスフィアを形成させる工程をさらに含み、前記工程(I)において、前記細胞構造体として前記スフィアを用いる請求項3または4に記載の不死化汗腺筋上皮細胞の製造方法。
PCT/JP2018/029594 2017-08-09 2018-08-07 不死化汗腺筋上皮細胞 WO2019031500A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880041344.3A CN110770337B (zh) 2017-08-09 2018-08-07 永生化汗腺肌上皮细胞
US16/626,052 US11060061B2 (en) 2017-08-09 2018-08-07 Immortalized sweat gland myoepithelial cell
CA3069571A CA3069571C (en) 2017-08-09 2018-08-07 Immortalized sweat gland myoepithelial cell
JP2018567964A JP6563145B2 (ja) 2017-08-09 2018-08-07 不死化汗腺筋上皮細胞
KR1020197037810A KR102334203B1 (ko) 2017-08-09 2018-08-07 불사화(不死化) 땀샘 근상피 세포
EP18844352.7A EP3666889A4 (en) 2017-08-09 2018-08-07 IMMORTALIZED SWEAT GLANDS MYOEPITHELIAL CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017154503 2017-08-09
JP2017-154503 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019031500A1 true WO2019031500A1 (ja) 2019-02-14

Family

ID=65271210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029594 WO2019031500A1 (ja) 2017-08-09 2018-08-07 不死化汗腺筋上皮細胞

Country Status (7)

Country Link
US (1) US11060061B2 (ja)
EP (1) EP3666889A4 (ja)
JP (1) JP6563145B2 (ja)
KR (1) KR102334203B1 (ja)
CN (1) CN110770337B (ja)
CA (1) CA3069571C (ja)
WO (1) WO2019031500A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025661A (zh) * 2021-01-12 2021-06-25 重庆市药物种植研究所 一种永生化林麝香腺上皮细胞的构建方法
CN114181889B (zh) * 2021-11-24 2023-10-10 中国人民解放军总医院 一种原代汗腺细胞条件培养基及原代汗腺细胞培养方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503190A (ja) * 2010-11-02 2014-02-13 ヘルムホルツ−ツェントルム フュア インフェクツィオンスフォルシュンク ゲーエムベーハー 細胞不死化のための方法及びベクター

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT321680B (de) * 1973-10-29 1975-04-10 Voest Ag Dreiwalzenbiegemaschine
DE69623109T2 (de) * 1996-04-19 2002-12-12 Nestle Sa Menschliche immortalisierte Colon-Epithelialzellen
US7416885B2 (en) * 2002-02-08 2008-08-26 University Of South Florida Proliferated cell lines and uses thereof
CN100575481C (zh) * 2006-09-20 2009-12-30 中国人民解放军第三军医大学第三附属医院 一种人外泌汗腺上皮细胞培养方法
US20160075995A1 (en) 2014-09-17 2016-03-17 Krzysztof Kobielak Sweat gland-derived stem cells and methods of use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503190A (ja) * 2010-11-02 2014-02-13 ヘルムホルツ−ツェントルム フュア インフェクツィオンスフォルシュンク ゲーエムベーハー 細胞不死化のための方法及びベクター

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BHISE, N. S. ET AL.: "The relationship between terminal functionalization and molecular weight of a gene delivery polymer and transfection efficacy in mammary epithelial 2-D cultures and 3-D organotypic cultures", BIOMATERIALS, vol. 31, no. 31, 30 November 2010 (2010-11-30), pages 8088 - 8096, XP055119775 *
CATHERINE M. LEE ET AL.: "NCL-SG3: a human eccrine sweat gland cell line that retains the capacity for transepithelial ion transport", JOURNAL OF CELL SCIENCE, vol. 92, 1989, pages 241 - 249, XP002493651
KOO, B. K. ET AL.: "Controlled gene expression in ; primary Lgr5 organoid cultures", NATURE METHODS, vol. 9, no. 1, 2012, pages 81 - 83, XP055225249 *
KURATA, R. ET AL.: "Isolation and Characterization of Sweat Gland Myoepithelial Cells from Human Skin", CELL STRUCTURE AND FUNCTION, vol. 39, 2014, pages 101 - 112, XP055411992 *
KURATA, R. ET AL.: "Three-dimensional cell shapes : and arrangements in human sweat glands as revealed by whole-mount immunostaining", PLOS ONE, vol. 12, no. 6, 21 June 2017 (2017-06-21), pages 1 - 17, XP055570156, Retrieved from the Internet <URL:https://doi.org/10.1371/journal.pone.0178709> *
LI, H. ET AL.: "Three-dimensional culture and identification of human eccrine sweat glands in matrigel basement membrane matrix", CELL AND TISSUE RESEARCH, vol. 354, no. 3, December 2013 (2013-12-01), pages 897 - 902, XP035331816 *
MIYOSHI, H. ET AL.: "In vitro expansion and genetic : modification of gastrointestinal stem cells in spheroid culture", NATURE PROTOCOLS, vol. 8, no. 12, December 2013 (2013-12-01), pages 2471 - 2482, XP055570149, Retrieved from the Internet <URL:doi:10.1038/nprot.2013.153.> *
RYUICHIRO KURATA ET AL.: "Isolation and Characterization of Sweat Gland Myoepithelial Cells from Human Skin", CELL STRUCTURE AND FUNCTION, vol. 39, 2014, pages 101 - 112, XP055411992, DOI: 10.1247/csf.14009
See also references of EP3666889A4
YAO, B. ET AL.: "Identification of a new sweat gland progenitor population in mice and the role of their niche in tissue development", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 479, no. 4, 28 October 2016 (2016-10-28), pages 670 - 675, XP055570159, Retrieved from the Internet <URL:doi:10.1016/j.bbrc.2016.09.155> *

Also Published As

Publication number Publication date
KR20200010439A (ko) 2020-01-30
KR102334203B1 (ko) 2021-12-02
CN110770337B (zh) 2023-11-21
US11060061B2 (en) 2021-07-13
EP3666889A4 (en) 2021-04-28
CN110770337A (zh) 2020-02-07
CA3069571C (en) 2022-09-20
JP6563145B2 (ja) 2019-08-21
JPWO2019031500A1 (ja) 2019-11-07
CA3069571A1 (en) 2019-02-14
EP3666889A1 (en) 2020-06-17
US20200385680A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US20180100141A1 (en) Multipotent progenitor cell derived from adipose tissue
JP5791111B2 (ja) 馴化培地、および馴化培地を作る方法
EP3048169B1 (en) Method for preparing pluripotent stem cells
US20080254003A1 (en) Differentiation of Human Embryonic Stem Cells and Cardiomyocytes and Cardiomyocyte Progenitors Derived Therefrom
JPWO2005063967A1 (ja) 哺乳動物の骨髄細胞または臍帯血由来細胞と脂肪組織を利用した心筋細胞の誘導
JP6789572B2 (ja) 多能性幹細胞を減少させる方法、多能性幹細胞を減少させた細胞集団の製造方法
WO2011034106A1 (ja) 真皮幹細胞の単離方法
WO2006017320A9 (en) Compositions and methods for myogenesis of fat-derived stem cells expressing telomerase and myocardin
KR101562366B1 (ko) 메타크릴레이트화된 젤라틴을 포함하는, 심근세포분화 유도용 세포 지지체
US11913020B2 (en) Method for improving stem cell migration using ethionamide
CN111492051B (zh) 间充质基质细胞以及从脐带获得间充质基质细胞的方法
WO2008146991A1 (en) Process for the isolation of placenta-derived trophoblast stem cells
JP6563145B2 (ja) 不死化汗腺筋上皮細胞
JP6529976B2 (ja) 幹細胞からの洞房結節細胞(ペースメーカー細胞)の作製方法および作製された洞房結節細胞の使用
JP2013532989A (ja) 羊水由来多能性幹細胞の単離及び自己免疫疾患の処置又は予防におけるその使用
Chen et al. Heterogeneity of stem cells in human amniotic fluid
US20230357724A1 (en) Human umbilical cord mesenchymal stem cell sheets and methods for their production
RU2793467C2 (ru) Мезенхимальные стромальные клетки и способы получения мезенхимальных стромальных клеток из пуповины
CN116396924A (zh) 脱氢抗坏血酸和2,3-二酮-l-古洛糖酸在细胞重编程中的应用
JP2022051219A (ja) 分化誘導方法及びその利用
RU2505602C1 (ru) Способ получения резидентных стволовых клеток сердца млекопитающего из образцов миокарда
US20170044497A1 (en) Selection and use of stem cells
HU230661B1 (hu) Terápiás felhasználásra szánt Wharton kocsonya eredetű mesenchymális őssejtek (WJ-MSC) enzimes előkezelés nélküli izolálása

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567964

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197037810

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3069571

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018844352

Country of ref document: EP

Effective date: 20200309