WO2019031255A1 - 車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法 - Google Patents

車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法 Download PDF

Info

Publication number
WO2019031255A1
WO2019031255A1 PCT/JP2018/028028 JP2018028028W WO2019031255A1 WO 2019031255 A1 WO2019031255 A1 WO 2019031255A1 JP 2018028028 W JP2018028028 W JP 2018028028W WO 2019031255 A1 WO2019031255 A1 WO 2019031255A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
acceleration
region
generated
jerk
Prior art date
Application number
PCT/JP2018/028028
Other languages
English (en)
French (fr)
Inventor
絢也 高橋
悠基 秋山
健太 前田
直樹 平賀
敏之 印南
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/631,708 priority Critical patent/US11383698B2/en
Priority to CN201880042722.XA priority patent/CN110799399B/zh
Priority to DE112018003166.7T priority patent/DE112018003166T5/de
Publication of WO2019031255A1 publication Critical patent/WO2019031255A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/025Control of vehicle driving stability related to comfort of drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed
    • B60W2720/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw

Definitions

  • the present invention relates to a vehicle motion control device and method for controlling the traveling of a vehicle such as a car, and a target trajectory generation device and method for generating a target trajectory on which the vehicle travels.
  • ADAS Advanced Driving Support System
  • ADAS Advanced Driving Support System
  • Adaptive cruise control, lane keeping assist systems, emergency automatic brakes, etc. have come into practical use as functions to automate part of the driving operation.
  • these are all systems for automatically controlling only one of the longitudinal movement and the lateral movement of the vehicle.
  • Driving scenes that turn with acceleration / deceleration, for example, a curved road where the curvature is tight and the lateral acceleration becomes excessive when traveling at a constant speed, and to realize smooth vehicle movement by overtaking, merging, etc.
  • the fact is that there is no established control method that comprehensively handles movement and lateral movement.
  • Patent Document 1 With regard to the lateral movement of the vehicle, as related prior art, for example, Patent Document 1 can be mentioned.
  • traveling alone along a curve shape of a road is not sufficient for smooth traveling in automatic driving, and a section where the rate of change of curvature of the road becomes constant Disclosed a method of traveling on a track with a correction.
  • Patent Document 2 describes a method of moderating a change in lateral force acting on a vehicle and an occupant by making the rate of change of curvature of a track continuous in railway track design.
  • Patent Document 3 proposes a control method of acceleration / deceleration based on lateral additive acceleration (time change or change rate of lateral acceleration) generated by steering.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to suppress the occurrence of unstable behavior of the vehicle accompanying the change in acceleration at the time of turning by automatic travel control, and to improve the passenger comfort. It is an object of the present invention to provide a vehicle motion control device and method that can be improved, and a target trajectory generation device and method.
  • a vehicle motion control apparatus and method is a vehicle capable of automatically controlling the lateral acceleration generated in the vehicle, in which the road curvature absolute value of the traveling road is increased to a maximum value or constant
  • the state in which the lateral acceleration at the time of turning is the maximum is the steady turning state, and the region of half acceleration or less at the time of the steady turning state is first
  • the region, which is larger than half of the lateral acceleration in the steady turning state is set as a second region, in the first region, the jerk as a time change of the acceleration generated in the vehicle becomes maximum, and
  • the acceleration generated on the vehicle may be controlled such that the average value of the acceleration in one region is larger than the average value of the acceleration in the second region.
  • the road curvature absolute value of the traveling road is increased to turn around to a maximum value or a constant value.
  • the state in which the lateral acceleration at the time of turning is maximum is the steady turning state
  • the region of half or less of the lateral acceleration in the steady turning state is the first region
  • the steady turning state When a region larger than half of the lateral acceleration at the time is set as a second region, the jerk which is a temporal change of the acceleration generated in the vehicle becomes maximum in the first region, and the jerk time in the first region
  • a target trajectory is generated in which the average value is larger than the jerk time average value in the second region.
  • the acceleration change occurs in a region where the lateral acceleration generated by the vehicle traveling on the straight section is small while the lateral acceleration generated during the steady turning state is small and the generated acceleration is large.
  • FIG. 6 is a diagram showing lateral acceleration and lateral jerk when traveling at a constant speed on a traveling track that is a clothoid curve.
  • FIG. 7 is a view showing lateral acceleration and lateral jerk when traveling at a constant speed so that lateral jerk becomes maximum in a region where lateral acceleration is small. It is the figure which showed the relationship between a jerk absolute value and the normalized acceleration which normalized acceleration with steady turning acceleration.
  • FIG. 1 is a conceptual view of a vehicle equipped with a first embodiment of a vehicle motion control device according to the present invention.
  • 1 is a configuration diagram of a first embodiment of a vehicle motion control device according to the present invention.
  • FIG. 1 is a control flowchart of a first embodiment of a vehicle motion control device according to the present invention. It is an example of the target track acquisition method by a 1st embodiment of the vehicle movement control device concerning the present invention.
  • FIGS. 1 to 4B Prior to the description of the specific embodiment, in order to facilitate understanding of the present invention, first, an acceleration control method from straight road to curve entry and steady turning will be described using FIGS. 1 to 4B.
  • the center of gravity of the vehicle is the origin
  • the longitudinal direction of the vehicle is x
  • the direction perpendicular thereto (lateral (left and right) direction of the vehicle) is y
  • acceleration in the x direction is longitudinal acceleration in the y direction
  • Acceleration is the lateral acceleration.
  • the longitudinal acceleration is positive in the forward direction of the vehicle, that is, when the vehicle is traveling in the forward direction, the longitudinal acceleration that increases the speed is positive.
  • the lateral acceleration when the vehicle travels in the forward direction, the lateral acceleration generated when turning counterclockwise (counterclockwise) is positive, and the reverse direction is negative.
  • the turning radius in the counterclockwise direction is positive, and the reciprocal thereof is the traveling curvature of the vehicle.
  • the turning radius counterclockwise is positive, and the reciprocal thereof is the target trajectory curvature.
  • the steering angle in the counterclockwise direction is positive.
  • FIG. 1 illustrates a straight section (curvature 0), a relaxation curve section (curvature monotonous change), a curved road having a constant curvature section (steady turn) (a road including a curve section), and FIG. 1 when describing the speed control of this embodiment. It shows a conceptual diagram of a vehicle traveling there.
  • FIG. 2 is a lateral acceleration when traveling at a constant speed so that the traveling track of the relaxation curve section where the curvature monotonously increases from a to b in FIG. 1 becomes a clothoid curve as one form of lateral acceleration control of the vehicle; And the time change (lateral acceleration) of the lateral acceleration. That is, FIG. 2 shows a typical lateral acceleration change generated in the vehicle when traveling at a constant speed on a relaxation curve section constituted by a clothoid curve.
  • the lateral jerk becomes large in the vicinity of b in FIG. 2, that is, the region where the lateral acceleration generated in the vehicle is large, and depending on the road surface condition etc., unstable behavior due to large lateral acceleration change may occur.
  • a change in acceleration in a state where the acceleration generated in the vehicle is large may make the occupant uncomfortable.
  • the vehicle accompanying the acceleration change is controlled (automatically) by controlling the acceleration generated in the vehicle so as to suppress the jerk in the region where the acceleration is large. Control the occurrence of unstable behavior and improve the comfort of the occupants.
  • the lateral jerk generated on the vehicle takes the maximum value J ymax in the region where the lateral acceleration is small, Thereafter, as the lateral acceleration increases, the acceleration generated on the vehicle is controlled to decrease the lateral jerk.
  • the region where the lateral acceleration is small is the region (region A) that is less than or equal to half the lateral acceleration (maximum value) G ymax generated during steady turning, and the region where the lateral acceleration is large is:
  • An area (area B) in which the lateral acceleration generated in the vehicle is larger than half of the lateral acceleration (maximum value) Gymax generated in steady turning is assumed.
  • traveling in which the traveling track when traveling on the relaxation curve section is a clothoid curve is referred to as clothoid curve traveling, and traveling according to the present embodiment is referred to as non-crossoid curve traveling.
  • FIG. 4A is a normalized acceleration obtained by normalizing the acceleration generated in the vehicle by the acceleration (steady rotation acceleration) generated in the vehicle at the time of steady turning (steady turning state) in the case of the curvedoid curve traveling and the non-crossoid curve traveling respectively It shows the relationship with the jerk absolute value. Assuming that the horizontal axis is the normalized acceleration and the vertical axis is the jerk absolute value, in the clothoid curve traveling, the jerk absolute value becomes substantially constant with respect to the increase of the normalized acceleration.
  • the jerk absolute value takes the maximum value J max in the region where the normalized acceleration is smaller than 0.5 (in the illustrated example, the region from 0.3 to 0.5), and then It tends to decrease as the normalized acceleration increases.
  • FIG. 4B shows the time average of the jerk in each of the said area
  • the acceleration average time in the area A and the acceleration average in the area B are substantially the same.
  • the acceleration average value in the region A becomes larger than the acceleration average value in the region B.
  • acceleration lateral acceleration or longitudinal acceleration and lateral acceleration
  • FIG. 5 shows a block diagram of a vehicle equipped with the vehicle motion control device according to the first embodiment of the present invention.
  • the vehicle motion control device 1 of the present embodiment is mounted on a vehicle 20, and a sensor (acceleration sensor 2, gyro sensor 3, wheel speed sensor 8) for acquiring vehicle motion state information, and a sensor for acquiring driver operation information (Steering angle sensor 5, brake pedal sensor 17, accelerator pedal sensor 18) and various sensors obtained from the vehicle (road course acquisition sensor 6, vehicle position detection sensor 9, external world information detection sensor 19) for acquiring the vehicle traveling path information
  • a sensor acceleration sensor 2, gyro sensor 3, wheel speed sensor 8
  • a sensor for acquiring driver operation information (Steering angle sensor 5, brake pedal sensor 17, accelerator pedal sensor 18) and various sensors obtained from the vehicle (road course acquisition sensor 6, vehicle position detection sensor 9, external world information detection sensor 19) for acquiring the vehicle traveling path information
  • An actuator (a brake actuator 11, a drive actuator 13, a steering angle control actuator, etc.) capable of performing calculations required for acceleration control based on the information and controlling longitudinal acceleration and / or lateral acceleration generated in the vehicle based on the calculation results 16) each control unit (brake control unit 10,
  • any sensor or means capable of acquiring vehicle speed, longitudinal acceleration, lateral acceleration, and yaw rate may be used, and the sensor configuration is not limited to the above.
  • the vehicle speed may be acquired by differentiating position information obtained by the global positioning system (GPS).
  • GPS global positioning system
  • the yaw rate, the longitudinal acceleration, and the lateral acceleration of the vehicle may be acquired using an image acquisition sensor such as a camera.
  • the vehicle motion control device 1 may not have direct sensor input.
  • necessary information may be obtained through the communication line 14 from another control unit (for example, the brake control unit 10).
  • a sensor for acquiring driver operation information it is only necessary to acquire the operation amount of the steering wheel 4 by the driver and the operation amounts of the brake pedal and the accelerator pedal (not shown), as in the acquisition of the vehicle movement state information described above. 1 need not have direct sensor input.
  • necessary information may be obtained through the communication line 14 from another control unit (for example, the brake control unit 10).
  • a global positioning system is used as a vehicle position detection sensor 9 as a sensor for acquiring travel path information of the vehicle, and an obstacle is detected around the vehicle such as a camera or radar as an external world information detection sensor 19 Using a sensor capable of detecting a possible region, a course shape acquisition sensor 6 such as a navigation system that can acquire travel route information of the host vehicle can be used.
  • a sensor for acquiring the own vehicle traveling path information any means capable of acquiring the course shape and the travelable area in the traveling direction of the own vehicle may be used, and the invention is not limited to these sensors.
  • it may be a method of acquiring the course shape in front of the host vehicle by communication with a data center or an apparatus for transmitting road information installed on the road, or by an imaging device such as a camera.
  • a method of acquiring both images and acquiring the course shape ahead of the host vehicle may be used.
  • a method may be used in which a course shape in the traveling direction of the host vehicle is obtained through a communication line 14 from a unit that calculates the course shape by any one of these means or a combination thereof.
  • the acceleration / deceleration actuators capable of controlling the longitudinal acceleration generated in the vehicle 20 control the longitudinal acceleration generated in the vehicle 20 by controlling the force generated between the tire 7 and the road surface.
  • Possible actuators for example, controlling the braking / driving torque applied to the tire 7 by controlling the combustion state and controlling the combustion engine capable of controlling the longitudinal acceleration of the vehicle 20 or controlling the tire 7 by controlling the current
  • An electric motor capable of controlling the drive torque and controlling the longitudinal acceleration of the vehicle 20, or a transmission capable of controlling the longitudinal acceleration of the vehicle 20 by changing the gear ratio when transmitting power to each wheel, or
  • a friction brake that generates longitudinal acceleration on the vehicle 20 by pressing the brake disc against the brake pad Tsu and can be applied to the acceleration and deceleration actuators capable of controlling the longitudinal acceleration.
  • the vehicle motion control device 1 includes an arithmetic device having a storage area, arithmetic processing capability, and signal input / output means, etc., according to the vehicle motion state information, the driver operation information, and the host vehicle travel path information.
  • the acceleration / deceleration actuator (brake actuator (brake actuator) is operated by using the acceleration / deceleration actuator capable of generating the longitudinal acceleration command value to be generated in the vehicle 20 from various information obtained and generating the longitudinal acceleration serving as the longitudinal acceleration command value. 11, the longitudinal acceleration command value is sent to the drive controller (brake control unit 10, drive torque control unit 12) of the drive actuator 13).
  • a steering angle control actuator capable of generating a lateral movement by calculating a lateral movement command value to be generated in the vehicle 20 from various information obtained from the vehicle movement state information, the driver operation information, and the host vehicle traveling path information.
  • the steering angle command value as the lateral motion command value is sent to the drive controller (steering angle control unit 15) of the steering angle control actuator 16 by using 16 as a turning motion generating means (the details will be described later).
  • the signal sent from the vehicle motion control device 1 is not the longitudinal acceleration itself, but may be a signal that can realize the longitudinal acceleration command value by the acceleration / deceleration actuator.
  • the signal sent from the vehicle motion control device 1 may not be the steering angle itself, but may be a signal that can realize the steering angle command value by the steering angle control actuator 16.
  • a braking / driving torque command value capable of realizing the longitudinal acceleration command value is sent to the driving torque control unit 12.
  • the drive signal of the combustion engine that realizes the longitudinal acceleration command value may be sent directly to the control actuator of the combustion engine without using the drive torque control unit 12.
  • a hydraulic friction brake is used to press the brake pad against the brake disc by hydraulic pressure
  • a hydraulic pressure command value for realizing a longitudinal acceleration command value is sent to the brake control unit 10.
  • the drive signal of the hydraulic friction brake drive actuator for realizing the longitudinal acceleration command value may be sent directly to the hydraulic friction brake drive actuator without using the brake control unit 10.
  • the acceleration / deceleration actuator that performs drive control according to the longitudinal acceleration command value may be changed.
  • the combustion engine and the hydraulic friction brake are provided as the acceleration / deceleration actuator, the combustion engine is drive-controlled as long as the longitudinal acceleration command value can be realized by the braking / driving torque control of the combustion engine.
  • the longitudinal acceleration command value is a negative value in a range that can not be realized by the braking / driving torque control of the combustion engine
  • the hydraulic friction brake is driven and controlled together with the combustion engine.
  • the electric motor and the combustion engine are used as the acceleration / deceleration actuator, the electric motor is driven and controlled when the time change of the longitudinal acceleration is large, and the combustion engine is controlled when the time change of the longitudinal acceleration is small.
  • Driving control may be performed.
  • the longitudinal acceleration command value is driven and controlled by the electric motor, and when the longitudinal acceleration command can not be realized by the electric motor due to the condition of the battery, other acceleration / deceleration actuators (combustion engine, hydraulic friction brake, etc.) Driving control may be performed.
  • Ethernet may be used for communication with a sensor that acquires host vehicle travel path information that needs to exchange large volumes of data
  • Controller Area Network CAN
  • CAN Controller Area Network
  • FIG. 6 shows a block diagram of the vehicle motion control device 1 according to the first embodiment of the present invention.
  • the vehicle motion control device 1 includes a target track acquisition unit 1a, a vehicle motion state acquisition unit 1b, a vehicle motion control calculation unit 1c, and a control command transmission unit 1d.
  • the target track acquisition unit 1a acquires a target track and a drivable area for causing the vehicle 20 to travel from the host vehicle travel path information and the vehicle motion state information.
  • the method of creating the target track may be a method of creating the target track from the shape of the course on which the host vehicle travels, or the past travel data of the road surface on which the host vehicle travels by communicating with the data center.
  • a trajectory may be acquired and created based on the trajectory.
  • the vehicle motion state acquisition unit 1b acquires the motion state (traveling speed, turning state, driver operation amount, etc.) of the vehicle 20 from the vehicle motion state information.
  • the vehicle motion control calculation unit 1c based on the information obtained by the target track obtaining unit 1a and the vehicle motion condition obtaining unit 1b, the longitudinal acceleration command value by the speed control or the longitudinal acceleration command value by the speed control Both steering angle command values under steering angle control are calculated, and the calculation result is sent to the control command transmission unit 1d.
  • the control command transmission unit 1d calculates the longitudinal acceleration and / or the tire actual steering angle based on the longitudinal acceleration command value generated by the vehicle motion control calculation unit 1c or both the longitudinal acceleration command value and the steering angle command value.
  • Control command values are sent to control units (the brake control unit 10, the drive torque control unit 12, the steering angle control unit 15) that perform drive control of the controllable actuators (the brake actuator 11, the drive actuator 13, the steering angle control actuator 16). send.
  • FIG. 7 shows a control flowchart in the vehicle motion control device 1 of the first embodiment.
  • the target trajectory is node point position data NP n on coordinates taken along the Xv axis with the vehicle center of gravity as the origin and the direction of the vehicle velocity vector as positive and the Yv axis orthogonal thereto. Converted as (Xv n , Yv n ).
  • n is an integer which is 0 at the point closest to the vehicle and increases to 1, 2,..., nmax in the traveling direction of the host vehicle.
  • nmax is the maximum value of the obtainable node point position data number n.
  • Yv 0 is Yv axis component of the NP 0 is a lateral deviation of the vehicle.
  • Each node point also has information such as a travelable range at the node point position and a vehicle speed control range.
  • the longitudinal acceleration is calculated from the target track, the vehicle speed control range, and the vehicle motion state. For example, when the vehicle speed is high beyond the vehicle speed control range, a negative longitudinal acceleration command value is calculated so as to fall within the vehicle speed control range.
  • the target track has a curved road shape (a shape where the road curvature absolute value of the traveling road increases and reaches a maximum value or almost constant), and when performing acceleration / deceleration control according to the curved road, Based on the longitudinal acceleration command value is calculated.
  • the lateral acceleration is calculated from the target track and the vehicle motion state.
  • the target track has a curved road shape (a shape in which the road curvature absolute value of the traveling road increases and reaches a maximum value or substantially constant), and the vehicle 20 is subjected to lateral acceleration control according to the curved road.
  • the lateral acceleration is calculated so that the relationship between the generated lateral acceleration and the lateral jerk becomes the relationship shown in FIGS. 3 to 4A described above.
  • the lateral acceleration from the turning start time t0 to the time t1 at which the lateral acceleration becomes maximum is Gy1 and from the time t1 to the time t2 at which the lateral acceleration Gymax in the steady turning state is obtained.
  • Gy1 and Gy2 are given by the following equations (1) and (2) using two tuning variables ⁇ , k and time t.
  • the lateral acceleration and the lateral jerk become the relationships shown in FIG. 3 to FIG. 4A.
  • the longitudinal acceleration based on the lateral movement is calculated.
  • longitudinal acceleration control based on lateral jerk shown in Patent Document 3 mentioned above can be mentioned.
  • the traveling track of the vehicle 20 and the vehicle speed are estimated based on the vehicle motion state, the calculated lateral acceleration, and the longitudinal acceleration.
  • S500 it is determined whether the estimated traveling track and vehicle speed are within the controllable range. Here, if it is determined that it is out of the control range, it proceeds to S600, and if it is determined that it is in the control range, it proceeds to S700.
  • the longitudinal acceleration and the lateral acceleration are corrected.
  • the traveling path is changed in S400 by changing the tuning variables ⁇ and k shown in the numbers (1) and (2).
  • the traveling track and the vehicle speed are changed in S400. Thereafter, again at S500, it is determined whether the traveling track and the vehicle speed are within the controllable range.
  • the control command value of each actuator is calculated and transmitted based on the longitudinal acceleration command value and the lateral acceleration command value. For example, when controlling longitudinal acceleration using a combustion engine and controlling yaw moment (lateral acceleration) using electric power steering, a controller of the combustion engine generates a braking / driving torque command value that causes the vehicle to generate longitudinal acceleration. Feeding: A steering angle command value for causing the vehicle to generate the lateral acceleration is sent to the controller of the electric power steering.
  • the region where the lateral acceleration in which the acceleration is generated before the vehicle 20 traveling in the straight section reaches the steady turning state is small (the lateral acceleration generated in the vehicle 20 Is the largest in the region A) half or less of the lateral acceleration G ymax generated during steady turning, and the generated acceleration is large (region where the lateral acceleration generated on the vehicle 20 is larger than half the lateral acceleration G ymax occurring during steady turning
  • the change in acceleration in B it is possible to suppress the occurrence of unstable behavior of the vehicle 20 accompanied by the change in acceleration during turning by automatic travel control, and it is also possible to expect an effect of improving the comfort of the occupant.
  • FIG. 10 shows a configuration diagram of a vehicle motion control device (target track generation device) 1A according to a second embodiment of the present invention.
  • the vehicle motion control device (target track generation device) 1A is provided outside the vehicle 20, but may be provided in the vehicle 20 as in the first embodiment.
  • the vehicle motion control device 1A is provided with a plurality of arithmetic devices having a storage area, arithmetic processing capability, signal input / output means, etc., mainly including the track arithmetic unit 1Aa and the traveling control arithmetic unit It has 1 Ab.
  • the track calculation unit 1Aa creates a target track and a target vehicle speed of the vehicle 20 from the course shape, the outside world information, the vehicle position information, and the vehicle movement state information.
  • the travel control calculation unit 1Ab calculates the lateral motion command value to be generated by the vehicle 20 or both the lateral motion command value and the longitudinal acceleration command value from the target track, the target vehicle speed and the vehicle motion state information, and the longitudinal acceleration A drive controller (brake control unit 10, drive torque control unit 12) of the acceleration / deceleration actuator (brake actuator 11, drive actuator 13) using the acceleration / deceleration actuator capable of generating longitudinal acceleration as a command value as the longitudinal acceleration generation means
  • the track calculation unit 1Aa creates a target track and a target vehicle speed from the course shape, the external world information, the vehicle position information, and the vehicle movement state information, the acceleration generated in the vehicle 20 during turning
  • the target trajectory and the target vehicle speed are created such that the relationship between the acceleration and the acceleration becomes as shown in FIGS. 3 to 4A described above.
  • the curvature (trajectory curvature) of the target trajectory when entering a curved route from a straight route and reaching a steady turning state is a convex curve.
  • the relationship between the time change of the curvature of the target track and the curvature is half the curvature (maximum value) max max at steady-state turning (steady turning state) ⁇ max / as shown in FIG.
  • the target trajectory is generated such that the time t1 at which the time change of curvature becomes maximum is earlier than the time t3 at which 2 is reached. That is, the trajectory calculation unit 1Aa changes the curvature and the curvature of the vehicle 20 moving on the target trajectory at a substantially constant speed in a transition section until the curvature of the target trajectory becomes a maximum value or a constant value from a substantially linear state.
  • the target trajectory is generated so that the time change of the curvature becomes maximum in a region (region C) equal to or less than half the maximum value max max of the target trajectory max max / 2.
  • the time average value of the curvature time change in the region (region C) in which the curvature of the target trajectory is not more than half the maximum value max max max max / 2 is the maximum value ⁇ max of the curvature. It becomes a target trajectory which becomes larger than the time average value of the curvature time change in the region (region D) larger than half max max / 2.
  • the travel control calculation unit 1Ab generates the lateral motion command value or the lateral motion command value and the longitudinal acceleration to be generated by the vehicle 20 in order to realize the target trajectory and the target vehicle speed created by the trajectory calculation unit 1Aa.
  • a drive controller of the acceleration / deceleration actuators (the brake actuator 11 and the drive actuator 13) using the acceleration / deceleration actuator capable of calculating both the command values and generating the longitudinal acceleration serving as the longitudinal acceleration command value as the longitudinal acceleration generating means
  • a steering angle control actuator 16 capable of transmitting the longitudinal acceleration command value to the brake control unit 10 and the drive torque control unit 12) and generating the lateral motion command value to be generated in the vehicle 20 is the steering motion control means
  • the lateral motion command value is sent to the drive controller (steering angle control unit 15) of the actuator 16 Send a steering angle command value.
  • the vehicle motion control device (target trajectory generation device) 1A when the target trajectory is generated by the vehicle motion control device (target trajectory generation device) 1A, the relationship between the curvature of the target trajectory and the time change of the curvature is described in FIG.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. Further, each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a storage device such as a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD solid state drive
  • control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.
  • Vehicle motion control device (first embodiment) 1A: Vehicle Motion Control Device (Target Trajectory Generating Device) (Second Embodiment) 1a: Target track acquisition unit 1b: Vehicle motion state acquisition unit 1c: Vehicle motion control calculation unit 1d: Control command transmission unit 2: Acceleration sensor 3: Gyro sensor 4: Steering wheel 5: Steering angle sensor 6: Course shape acquisition sensor 7 : Tire 8: Wheel speed sensor 9: Vehicle position detection sensor 10: Brake control unit 11: Brake actuator 12: Drive torque control unit 13: Drive actuator 14: Communication line 15: Rudder angle control unit 16: Rudder angle control actuator 17 : Brake pedal sensor 18: Accelerator pedal sensor 19: External information detection sensor 20: Vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

自動走行制御による旋回走行時の不安定挙動の発生および乗員の不快感を抑制することのできる車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法を提供する。本発明は、車両に発生する横加速度を自動制御可能な車両において、カーブ進入時に発生する横加速度が定常旋回時の加速度の半分以下の領域において、加速度の時間変化である加加速度が最大となり、加速度の増加と共に当該加加速度が減少するよう、車両に発生する加速度を制御する。

Description

車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法
 本発明は、自動車等の車両の走行を制御する車両運動制御装置及びその方法、並びに、車両が走行する目標軌道を生成する目標軌道生成装置及びその方法に関する。
 自動車におけるADAS(先進運転支援システム)及び自動運転関連技術の開発が、近年、急速に進められている。運転操作の一部を自動化する機能として、アダプティブクルーズコントロール、レーンキープアシストシステム、緊急自動ブレーキ等が実用化に至っている。しかしながら、これらはいずれも車両の前後運動と横運動のどちらか一方のみを自動制御するシステムである。加減速を伴って旋回する走行シーン、例えば、曲率がきつく、一定の速度で走行すると横加速度が過大となるカーブ路や、追い越し、合流等でスムーズな車両運動を実現するために、車両の前後運動と横運動を総合的に扱う制御方法は確立されていないのが実情である。
 車両の横運動については、関連する先行技術として、例えば特許文献1が挙げられる。
  この特許文献1では、自動運転において、スムーズな走行のためには道路のカーブ形状に沿って走行するだけでは不十分であることが述べられており、道路の曲率の変化率が一定となる区間を持つ軌道に修正して走行する方法が開示されている。
 また、例えば特許文献2では、鉄道の軌道設計において、線路の曲率の変化率を連続とすることによって、車両と乗員に作用する横方向の力の変化を穏やかにする方法について述べられている。
 しかし、上記特許文献1、2のいずれの文献でも、加減速を伴ってカーブを走行する場合については触れられていない。
 一方、車両の加減速と横運動を関連付けた制御技術として、特許文献3では、操舵により発生する横加加速度(横加速度の時間変化ないし変化率)に基づく加減速の制御方法が提案されている。
特表2013-513149号公報 特開2005-200847号公報 特開2008-285066号公報
 しかしながら、上記特許文献3における加減速の制御では、横運動については人間の運転者自身が操舵を担うことを前提としている。人間の運転者による運転では、既定の走行軌道に対する厳密な軌道追従制御がなされるわけではなく、この先に走行したいおおよその軌道と加減速の程度を常に想定しながら、車両の横運動と前後運動を同時に制御していると考えられる。そのため、単に道路形状に沿った軌道追従による自動運転では、加減速を伴う場合にスムーズな運動を実現する方法が明らかでなく、加減速を考慮した横運動生成と加減速制御の方法が課題となっていた。
 本発明は、上記事情に鑑みてなされたものであって、その目的とするところは、自動走行制御による旋回走行時の加速度変化に伴う車両の不安定挙動の発生を抑え、乗員の快適性を向上させることのできる車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法を提供することにある。
 上記課題を解決するために、本発明に係る車両運動制御装置及びその方法は、車両に発生する横加速度を自動制御可能な車両において、走行路の道路曲率絶対値が増加して最大値もしくは一定に至る旋回走行をする際、前記車両に発生する加速度について、前記旋回走行時の横加速度が最大となる状態を定常旋回状態とし、前記定常旋回状態時の横加速度の半分以下の領域を第1領域、前記定常旋回状態時の横加速度の半分より大きい領域を第2領域としたとき、前記第1領域において、前記車両に発生する加速度の時間変化である加加速度が最大となり、かつ、前記第1領域における加加速度時間平均値が、前記第2領域における加加速度時間平均値よりも大きくなるよう、前記車両に発生する加速度を制御することを特徴とする。
 また、本発明に係る目標軌道生成装置及びその方法は、車両に発生する横加速度を自動制御可能な車両において、走行路の道路曲率絶対値が増加して最大値もしくは一定に至る旋回走行をする際、前記車両に発生する加速度について、前記旋回走行時の横加速度が最大となる状態を定常旋回状態とし、前記定常旋回状態時の横加速度の半分以下の領域を第1領域、前記定常旋回状態時の横加速度の半分より大きい領域を第2領域としたとき、前記第1領域において、前記車両に発生する加速度の時間変化である加加速度が最大となり、かつ、前記第1領域における加加速度時間平均値が、前記第2領域における加加速度時間平均値よりも大きくなる目標軌道を生成することを特徴とする。
 本発明によれば、例えば直線区間を走行してきた車両が定常旋回状態に至るまでの間に発生する加加速度が発生する横加速度が小さい領域で最大とし、発生する加速度が大きい状態での加速度変化を抑制することで、自動走行制御による旋回走行時の加速度変化に伴う車両の不安定挙動の発生を抑制でき、乗員の快適性を向上する効果も期待できる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
カーブ区間を含む道路の形状の一部を示した図である。 クロソイド曲線となる走行軌道で定速走行した際の横加速度および横加加速度を示した図である。 横加速度が小さい領域で横加加速度が最大となるように定速走行した際の横加速度および横加加速度を示した図である。 加加速度絶対値と加速度を定常旋回加速度にて正規化した正規化加速度との関係を示した図である。 クロソイド曲線となる走行軌道で定速走行した際と横加速度が小さい領域で横加加速度が最大となるように定速走行した際の加加速度時間平均を示した図である。 本発明に係る車両運動制御装置の第1実施形態を搭載した車両の概念図である。 本発明に係る車両運動制御装置の第1実施形態の構成図である。 本発明に係る車両運動制御装置の第1実施形態の制御フローチャート図である。 本発明に係る車両運動制御装置の第1実施形態による目標軌道取得方法の一例である。 本発明に係る車両運動制御装置の第1実施形態による横加速度および横加加速度の演算結果の一例である。 本発明に係る車両運動制御装置の第2実施形態の構成図である。 本発明に係る車両運動制御装置の第2実施形態による目標軌道の曲率および曲率の時間変化の演算結果の一例である。
 以下、本発明の実施形態について、図面を参照して説明する。
 [実施形態の概要説明]
  具体的な実施形態の説明に先立ち、本発明の理解が容易になるよう、まず、図1~図4Bを用いて、直線路からカーブ進入、定常旋回状態に至るまでの加速度制御方法について説明する。なお、本例では、車両の重心点を原点とし、車両の前後方向をx、それに直角な方向(車両の横(左右)方向)をyとした場合、x方向の加速度を前後加速度、y方向の加速度を横加速度とする。また、前後加速度は、車両前方向を正、すなわち車両が前方向に対して進行している際、その速度を増加させる前後加速度を正とする。また、横加速度は、車両が前方向に対して進行している際、左回り(反時計回り)旋回時に発生する横加速度を正とし、逆方向を負とする。また、左回りの旋回半径を正とし、その逆数を車両走行曲率とする。同様に、目標軌道に関しても、左回りの旋回半径を正とし、その逆数を目標軌道曲率とする。また、左回り(反時計回り)方向の操舵角を正とする。
 図1は、本実施形態の速度制御の説明に際し、直線区間(曲率0)、緩和曲線区間(曲率単調変化)、曲率一定区間(定常旋回)を持つカーブ路(カーブ区間を含む道路)、およびそこを走行する車両の概念図を示している。
 図2は、車両の横加速度制御の一形態として、図1のaからbに至る曲率単調増加となる緩和曲線区間の走行軌道がクロソイド曲線となるよう一定速度で走行した場合の、横加速度、および横加速度の時間変化(横加加速度)を示したものである。つまり、図2は、クロソイド曲線で構成される緩和曲線区間を一定速度で走行する際に車両に発生する典型的な横加速度変化を示している。
 図1のaからbに至る曲率単調増加区間において、クロソイド曲線となる走行軌道にて定速走行した場合、図2に示すように、横加速度は線形に増加し、定常旋回時の横加速度(最大値)Gymaxに至る。この時、車両に発生する横加加速度は、図2のaからbに至るまでの間、ほぼ一定の値となる。
 この場合、図2のb付近、すなわち車両に発生する横加速度が大きい領域まで横加加速度が大きくなり、路面状態等によっては、横加速度変化が大きいことによる不安定挙動が発生する可能性がある。また、車両に発生する加速度が大きい状態での加速度変化は、乗員に不快感を与える可能性がある。
 本実施形態では、これらの加速度と加加速度の関係を鑑み、加速度が大きい領域では加加速度を抑制するように、車両に発生する加速度を(自動的に)制御することにより、加速度変化に伴う車両の不安定挙動の発生を抑制し、乗員の快適性を向上する。具体的には、図3に示すように、図1のaからbに至る曲率単調増加となる緩和曲線区間において、車両に発生する横加加速度が横加速度の小さい領域で最大値Jymaxをとり、その後、横加速度の増加と共に、横加加速度が減少するよう、車両に発生する加速度を制御する。ここで、横加速度の小さい領域とは、車両に発生する横加速度が定常旋回時に発生する横加速度(最大値)Gymaxの半分以下の領域(領域A)とし、横加速度の大きい領域とは、車両に発生する横加速度が定常旋回時に発生する横加速度(最大値)Gymaxの半分より大きい領域(領域B)とする。
 以下、緩和曲線区間走行時の走行軌道がクロソイド曲線となる走行をクロソイド曲線走行、本実施形態による走行を非クロソイド曲線走行と呼ぶ。
 図4Aは、クロソイド曲線走行、非クロソイド曲線走行それぞれの場合の、定常旋回時(定常旋回状態)に車両に発生する加速度(定常旋回加速度)で車両に発生する加速度を正規化した正規化加速度と加加速度絶対値との関係を示したものである。横軸を正規化加速度、縦軸を加加速度絶対値とした場合、クロソイド曲線走行では、正規化加速度の増加に対し、加加速度絶対値がほぼ一定となる。それに対し、非クロソイド曲線走行(本実施形態)では、正規化加速度が0.5よりも小さい領域(図示例では、0.3から0.5までの領域)で加加速度絶対値が最大値Jmaxを取り、その後、正規化加速度の増加とともに減少する傾向となる。
 また、図4Bは、クロソイド曲線走行、非クロソイド曲線走行それぞれの場合の、前記領域A、Bそれぞれにおける加加速度の時間平均を示したものである。図4Bに示すように、クロソイド曲線走行では、前記領域Aにおける加加速度時間平均値と前記領域Bにおける加加速度時間平均値とがほぼ同じとなる。それに対し、非クロソイド曲線走行(本実施形態)では、前記領域Aにおける加加速度時間平均値は、前記領域Bにおける加加速度時間平均値よりも大きくなる。
 なお、前述の図3や図4Aでは、定速走行での車両横方向に発生する加速度である横加速度(の絶対値)とその横加速度の時間変化である横加加速度(の絶対値)の関係等を示したが、前後加速度を伴う場合であっても、車両横方向に発生する加速度である横加速度(の絶対値)と車両前後方向に発生する加速度である前後加速度(の絶対値)との合成加速度(の絶対値)と、その合成加速度(の絶対値)の時間変化ないし変化率である合成加加速度(の絶対値)との関係が、図3に示した関係となるように前後加速度および横加速度を制御すればよい。また、同様に、合成加速度を定常旋回時の合成加速度にて正規化した正規化合成加速度と合成加速度の時間変化(合成加加速度)の絶対値との関係が、図4Aに示した関係となるように前後加速度および横加速度を制御すればよい。
 このような加速度(横加速度、もしくは、前後加速度および横加速度)制御を行うことにより、自動走行制御による旋回走行時の加速度変化に伴う車両の不安定挙動の発生を抑制でき、乗員の快適性を向上させることができる。
[第1実施形態] 以下、図5~図9を用いて、本発明の第1実施形態による車両運動制御装置の構成及び動作について説明する。
 最初に、図5、6を用いて、本発明の第1実施形態による車両運動制御装置を搭載した車両および当該車両運動制御装置の構成について説明する。
 図5は、本発明の第1実施形態による車両運動制御装置を搭載した車両の構成図を示したものである。
 本実施形態の車両運動制御装置1は車両20に搭載されるものであり、車両運動状態情報を取得するセンサ(加速度センサ2、ジャイロセンサ3、車輪速センサ8)、ドライバ操作情報を取得するセンサ(操舵角センサ5、ブレーキペダルセンサ17、アクセルペダルセンサ18)および自車両走行路情報を取得するセンサ(コース形状取得センサ6、自車両位置検出センサ9、外界情報検出センサ19)から得られる各種情報に基づいて、加速度制御に必要な演算を行い、その演算結果に基づいて、車両に発生する前後加速度および/もしくは横加速度を制御可能なアクチュエータ(ブレーキアクチュエータ11、駆動アクチュエータ13、舵角制御アクチュエータ16)の駆動制御を行う各制御ユニット(ブレーキ制御ユニット10、駆動トルク制御ユニット12、舵角制御ユニット15)に通信ライン14を通じて制御指令値を送信する。
 ここで、前記車両運動状態情報を取得するセンサとして、車両速度、前後加速度、横加速度、ヨーレイトを取得できるセンサ、もしくは手段であればよく、上記センサ構成に限定するものではない。例えばグローバルポジショニングシステム(GPS)により得られる位置情報を微分することで、車両速度を取得してもよい。また、カメラのような画像取得センサを用いて車両のヨーレイト、前後加速度、横加速度を取得してもよい。また、前記車両運動制御装置1が直接センサの入力を持たなくともよい。例えば別な制御ユニット(例えばブレーキ制御ユニット10)から通信ライン14を通じて必要な情報を取得してもよい。
 ドライバ操作情報を取得するセンサとして、ドライバによるステアリングホイール4の操作量、図示していないブレーキペダルおよびアクセルペダルの操作量を取得できればよく、上述の車両運動状態情報の取得同様、前記車両運動制御装置1が直接センサの入力を持たなくともよい。例えば別な制御ユニット(例えばブレーキ制御ユニット10)から通信ライン14を通じて必要な情報を取得してもよい。
 自車両走行路情報を取得するセンサとして、グローバルポジショニングシステム(GPS)を自車両位置検出センサ9として用い、外界情報検出センサ19として、カメラやレーダ等、自車両周辺の障害物を検出して走行可能な領域を検出可能なセンサを用い、コース形状取得センサ6として、ナビゲーションシステムのような自車両の走行経路情報を取得できるものを利用できる。ここで、自車両走行路情報を取得するセンサとして、自車両の進行方向におけるコース形状および走行可能領域が取得できる手段であればよく、これらセンサに限定するものではない。例えばデータセンタや路上に設置された道路情報を送信する機器との通信により自車両前方のコース形状を取得する方法であってもよいし、カメラのような撮像手段により自車両前方もしくは周囲、またはその両方の画像を取得し、自車両前方のコース形状を取得する方法であってもよい。また、これら手段のいずれか、もしくはその組み合わせにより、自車両進行方向のコース形状を演算するユニットから通信ライン14を通じて取得する方法であってもよい。
 前記車両20に発生する前後加速度を制御可能な加減速アクチュエータ(ブレーキアクチュエータ11、駆動アクチュエータ13)は、タイヤ7と路面間に発生する力を制御することで当該車両20に発生する前後加速度を制御可能なアクチュエータであり、例えば、燃焼状態を制御することでタイヤ7にかかる制駆動トルクを制御し、車両20の前後加速度を制御可能な燃焼エンジン、もしくは電流を制御することでタイヤ7にかかる制駆動トルクを制御し、車両20の前後加速度を制御可能な電動モータ、もしくは動力を各車輪に伝達する際の変速比を変えることで車両20の前後加速度を制御可能な変速機、もしくは各車輪のブレーキパッドにブレーキディスクを押しつけることで車両20に前後加速度を発生させる摩擦ブレーキといった、前後加速度を制御可能な加減速アクチュエータを適用することができる。
 また、車両運動制御装置1は、記憶領域、演算処理能力、および信号の入出力手段等を有する演算装置を備えており、前記車両運動状態情報、前記ドライバ操作情報、前記自車両走行路情報により得られた各種情報から車両20に発生させる前後加速度指令値を演算し、前記前後加速度指令値となる前後加速度を発生し得る前記加減速アクチュエータを前後加速度発生手段として、前記加減速アクチュエータ(ブレーキアクチュエータ11、駆動アクチュエータ13)の駆動制御器(ブレーキ制御ユニット10、駆動トルク制御ユニット12)へ前記前後加速度指令値を送る。また、前記車両運動状態情報、前記ドライバ操作情報、前記自車両走行路情報により得られた各種情報から車両20に発生させる横運動指令値を演算し、前記横運動を発生し得る舵角制御アクチュエータ16を旋回運動発生手段として、前記舵角制御アクチュエータ16の駆動制御器(舵角制御ユニット15)へ前記横運動指令値としての舵角指令値を送る(詳細は後述)。
 ここで、車両運動制御装置1から送る信号は前後加速度そのものではなく、前記加減速アクチュエータによって前記前後加速度指令値を実現し得る信号であればよい。同様に、車両運動制御装置1から送る信号は舵角そのものではなく、前記舵角制御アクチュエータ16により、舵角指令値を実現し得る信号であればよい。
 例えば、前記加減速アクチュエータが燃焼エンジンである場合、前記前後加速度指令値を実現し得る制駆動トルク指令値を駆動トルク制御ユニット12へ送る。また、駆動トルク制御ユニット12を介さず、前後加速度指令値を実現する燃焼エンジンの駆動信号を、燃焼エンジンの制御アクチュエータに直接送ってもよい。また、油圧によりブレーキパッドをブレーキディスクに押し付ける油圧式摩擦ブレーキを用いる場合、前後加速度指令値を実現する油圧指令値をブレーキ制御ユニット10へ送る。また、ブレーキ制御ユニット10を介さず、前後加速度指令値を実現する油圧式摩擦ブレーキ駆動アクチュエータの駆動信号を油圧式摩擦ブレーキ駆動アクチュエータに直接送ってもよい。
 また、前後加速度指令値を実現する際に、前後加速度指令値に応じて駆動制御を行う前記加減速アクチュエータを変更してもよい。
 例えば、前記燃焼エンジンと油圧式摩擦ブレーキを前記加減速アクチュエータとして持つ場合、前記前後加速度指令値が前記燃焼エンジンの制駆動トルク制御により実現できる範囲であれば、前記燃焼エンジンを駆動制御し、前記前後加速度指令値が前記燃焼エンジンの制駆動トルク制御で実現できない範囲の負の値である場合、前記燃焼エンジンと合わせて油圧式摩擦ブレーキを駆動制御する。また、前記電動モータと前記燃焼エンジンを前記加減速アクチュエータとして持つ場合、前記前後加速度の時間変化が大きい場合は前記電動モータを駆動制御し、前記前後加速度の時間変化が小さい場合は前記燃焼エンジンを駆動制御するようにしてもよい。また、通常時は前記前後加速度指令値を電動モータにより駆動制御し、バッテリーの状態等により電動モータにより前後加速度指令を実現できない場合、他の加減速アクチュエータ(燃焼エンジン、油圧式摩擦ブレーキ等)を駆動制御するようにしてもよい。
 また、通信ライン14として、信号によって異なる通信ラインおよび通信プロトコルを用いてもよい。例えば大容量のデータをやり取りする必要のある自車両走行路情報を取得するセンサとの通信にイーサネットを用い、各アクチュエータとの通信にはController Area Network(CAN)を用いる構成であってもよい。
 図6は、本発明の第1実施形態による車両運動制御装置1の構成図を示したものである。
 図示するように、車両運動制御装置1は、目標軌道取得部1a、車両運動状態取得部1b、車両運動制御演算部1c、および制御指令送信部1dからなる。
 目標軌道取得部1aでは、前記自車両走行路情報、および車両運動状態情報から車両20を走行させるための目標軌道および走行可能領域を取得する。ここで、目標軌道の作成方法としては、自車両が走行するコース形状から目標軌道を作成する方法であってもよいし、データセンタとの通信により、自車両が走行する路面の過去の走行データ軌跡を取得し、その軌跡に基づいて作成する方法であってもよい。
 車両運動状態取得部1bでは、前記車両運動状態情報から車両20の運動状態(走行速度、旋回状態、ドライバ操作量等)を取得する。
 車両運動制御演算部1cでは、前記目標軌道取得部1aおよび車両運動状態取得部1bにより得られた情報に基づいて、前記速度制御による前後加速度指令値、もしくは前記速度制御による前後加速度指令値と前記舵角制御による舵角指令値の両方を演算し、その演算結果を制御指令送信部1dに送る。
 制御指令送信部1dでは、前記車両運動制御演算部1cにより作成された前後加速度指令値、もしくは前後加速度指令値と舵角指令値の両方に基づいて、前記前後加速度および/もしくはタイヤ実舵角を制御可能なアクチュエータ(ブレーキアクチュエータ11、駆動アクチュエータ13、舵角制御アクチュエータ16)の駆動制御を行う各制御ユニット
(ブレーキ制御ユニット10、駆動トルク制御ユニット12、舵角制御ユニット15)に制御指令値を送る。
 図7は、第1実施形態の前記車両運動制御装置1における制御フローチャートを示したものである。
 S000では、上述のように目標軌道、走行可能範囲、車速制御範囲、車両運動状態を取得する。ここで、目標軌道は、図8に示すように、車両重心位置を原点とし、車両速度ベクトルの方向を正としたXv軸、それと直行するYv軸を取った座標上のノード点位置データNPn(Xvn,Yvn)として変換される。nは、最も車両に近い点を0とし、自車両進行方向に向かって1、2・・・、nmaxと増加する整数である。また、nmaxは取得可能なノード点位置データ番号nの最大値である。また、NP0のYv軸成分であるYv0は、車両の横方向偏差となる。また、各ノード点はノード点位置における走行可能範囲、および車速制御範囲といった情報も合わせて持つものとする。
 S100では、目標軌道、車速制御範囲、車両運動状態から前後加速度を演算する。例えば車両速度が車速制御範囲を超えて高い場合、車速制御範囲に収まるよう負の前後加速度指令値を演算する。また、目標軌道がカーブ路形状(走行路の道路曲率絶対値が増加して最大値もしくは略一定に至る形状)となっており、カーブ路に応じた加減速制御をおこなう場合、カーブ路形状に基づいた前後加速度指令値が演算される。
 S200では、目標軌道、車両運動状態から横加速度を演算する。ここで、目標軌道がカーブ路形状(走行路の道路曲率絶対値が増加して最大値もしくは略一定に至る形状)となっており、カーブ路に応じた横加速度制御をおこなう場合、車両20に発生する横加速度と横加加速度の関係が、上述の図3ないし図4Aに示した関係となるよう横加速度を演算する。
 例えば、図9に示すように、旋回走行開始時刻t0から横加加速度が最大となる時刻t1までの間の横加速度をGy1とし、時刻t1から定常旋回状態の横加速度Gymaxとなる時刻t2までの間の横加速度をGy2とすると、Gy1、Gy2は二つのチューニング変数ω、kおよび時刻tを用いて、以下の式(1)、(2)で与える。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
  ここで、0<k<1の値に設定することで、横加速度と横加加速度が図3ないし図4Aに示した関係となる。なお、ここでは、旋回走行開始時刻t0から横加加速度が最大となる時刻t1までの期間よりも、横加加速度が最大値となる時刻t1から当該横加加速度が減少して定常旋回状態に至る時刻t2までの期間の方が長くなる。
 図7に戻り、S300では、横運動に基づいた前後加速度を演算する。この横運動に基づいた前後加速度の演算方法としては、例えば上記特許文献3に示す横加加速度に基づいた前後加速度制御が挙げられる。
 S400では、車両運動状態、演算された横加速度、前後加速度に基づいて、車両20の走行軌道、車速の推定を行う。
 S500では、推定された走行軌道、車速が制御可能範囲内か否かを判定する。ここで、制御範囲外と判定された場合、S600に進み、制御範囲内と判定された場合、S700へと進む。
 S600では、前後加速度、横加速度の補正を行う。例えば、横加速度の補正においては、数(1)、(2)に示したチューニング変数ω、kを変更することで、S400にて走行軌道を変化させる。また、上記特許文献3に示す横加加速度に基づいた前後加速度制御の制御ゲインを変更することで、S400にて走行軌道および車速を変化させる。その後、再び、S500にて、走行軌道、車速が制御可能範囲内か否かを判定する。
 S700では、前記前後加速度指令値、横加速度指令値に基づいて、各アクチュエータの制御指令値を演算して送信する。例えば、燃焼エンジンを用いて前後加速度を制御し、電動パワーステアリングを用いてヨーモーメント(横加速度)を制御する場合、前記前後加速度を車両に発生させる制駆動トルク指令値を燃焼エンジンの制御コントローラに送り、前記横加速度を車両に発生させる舵角指令値を電動パワーステアリングの制御コントローラに送る。
 以上のように、本第1実施形態では、直線区間を走行してきた車両20が定常旋回状態に至るまでの間に発生する加加速度が発生する横加速度が小さい領域(車両20に発生する横加速度が定常旋回時に発生する横加速度Gymaxの半分以下の領域A)で最大とし、発生する加速度が大きい状態(車両20に発生する横加速度が定常旋回時に発生する横加速度Gymaxの半分より大きい領域B)での加速度変化を抑制することで、自動走行制御による旋回走行時の加速度変化に伴う車両20の不安定挙動の発生を抑制でき、乗員の快適性を向上する効果も期待できる。
 [第2実施形態]
  次に、図10~図11を用いて、本発明の第2実施形態による車両運動制御装置(目標軌道生成装置)の構成及び動作について説明する。
 図10は、本発明の第2実施形態による車両運動制御装置(目標軌道生成装置)1Aの構成図を示したものである。なお、図10に示す例では、車両運動制御装置(目標軌道生成装置)1Aは車両20の外部に備えられているが、上記第1実施形態と同様、車両20内に配備してもよい。
 本実施形態では、車両運動制御装置1Aは、記憶領域、演算処理能力、および信号の入出力手段等を有する複数の演算装置を備えており、主に、軌道演算部1Aa、および走行制御演算部1Abを備える。
 軌道演算部1Aaでは、前記コース形状、前記外界情報、前記自車両位置情報、および前記車両運動状態情報から、車両20の目標軌道および目標車速を作成する。
 走行制御演算部1Abでは、前記目標軌道、目標車速および前記車両運動状態情報から、車両20に発生させる横運動指令値、もしくは横運動指令値と前後加速度指令値の両方を演算し、前記前後加速度指令値となる前後加速度を発生し得る前記加減速アクチュエータを前後加速度発生手段として、前記加減速アクチュエータ(ブレーキアクチュエータ11、駆動アクチュエータ13)の駆動制御器(ブレーキ制御ユニット10、駆動トルク制御ユニット12)へ前記前後加速度指令値を送り、車両20に発生させる前記横運動指令値を発生し得る舵角制御アクチュエータ16を旋回運動発生手段として、前記舵角制御アクチュエータ16の駆動制御器(舵角制御ユニット15)へ前記横運動指令値としての舵角指令値を送る。
 詳しくは、前記軌道演算部1Aaは、前記コース形状、前記外界情報、前記自車両位置情報、および前記車両運動状態情報から目標軌道および目標車速を作成する際、旋回走行時に車両20に発生する加速度と加加速度の関係が上述の図3ないし図4Aに示す形となるよう、目標軌道および目標車速を作成する。例えば、直線路からカーブ路に進入し、定常旋回状態に至る際の目標軌道の曲率(軌道曲率)を上に凸の曲線とする。目標車速が略一定であれば、目標軌道の曲率の時間変化と曲率の関係が、図11に示すように、定常旋回時(定常旋回状態)の曲率(最大値)κmaxの半分κmax/2となる時刻t3よりも、曲率の時間変化が最大となる時刻t1が早くなるよう、目標軌道を生成する。すなわち、前記軌道演算部1Aaは、目標軌道の曲率が略直線状態から最大値もしくは一定となるまでの遷移区間において、前記目標軌道上を略一定速で移動する車両20における曲率と曲率の時間変化において、図11に示すように、前記目標軌道の曲率の最大値κmaxの半分κmax/2以下の領域(領域C)において、前記曲率の時間変化が最大となるよう、目標軌道を生成する。ここで生成される目標軌道は、前記目標軌道の曲率が最大値κmaxの半分κmax/2以下の領域(領域C)における曲率時間変化の時間平均値が、前記曲率の最大値κmaxの半分κmax/2より大きい領域(領域D)における曲率時間変化の時間平均値よりも大きくなる目標軌道となる。
 前記走行制御演算部1Abは、前記したように、軌道演算部1Aaで作成された目標軌道および目標車速を実現するために、車両20に発生させる横運動指令値、もしくは横運動指令値と前後加速度指令値の両方を演算し、前記前後加速度指令値となる前後加速度を発生し得る前記加減速アクチュエータを前後加速度発生手段として、前記加減速アクチュエータ(ブレーキアクチュエータ11、駆動アクチュエータ13)の駆動制御器(ブレーキ制御ユニット10、駆動トルク制御ユニット12)へ前記前後加速度指令値を送り、車両20に発生させる前記横運動指令値を発生し得る舵角制御アクチュエータ16を旋回運動発生手段として、前記舵角制御アクチュエータ16の駆動制御器(舵角制御ユニット15)へ前記横運動指令値としての舵角指令値を送る。
 以上のように、本第2実施形態では、車両運動制御装置(目標軌道生成装置)1Aにて目標軌道を生成する際に、目標軌道の曲率と曲率の時間変化の関係を前記した図11に示すような制約を与えることで、走行可能範囲内を走行可能かつ車両20に発生する加速度と加加速度の関係が図3ないし図4Aに示すようになる目標軌道および目標車速が軌道演算部1Aa側で演算できる。そのため、上記第1実施形態と同様の効果が得られるとともに、走行制御演算部1Ab側の演算負荷を低減でき、また、軌道演算装置(軌道演算部1Aa)を他の走行制御演算装置(走行制御演算部1Ab)と組み合わせた制御も実現できる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1 : 車両運動制御装置(第1実施形態)
 1A: 車両運動制御装置(目標軌道生成装置)(第2実施形態)
 1a: 目標軌道取得部
 1b: 車両運動状態取得部
 1c: 車両運動制御演算部
 1d: 制御指令送信部
 2 : 加速度センサ
 3 : ジャイロセンサ
 4 : ステアリングホイール
 5 : 操舵角センサ
 6 : コース形状取得センサ
 7 : タイヤ
 8 : 車輪速センサ
 9 : 自車両位置検出センサ
10 : ブレーキ制御ユニット
11 : ブレーキアクチュエータ
12 : 駆動トルク制御ユニット
13 : 駆動アクチュエータ
14 : 通信ライン
15 : 舵角制御ユニット
16 : 舵角制御アクチュエータ
17 : ブレーキペダルセンサ
18 : アクセルペダルセンサ
19 : 外界情報検出センサ
20 : 車両

Claims (10)

  1.  車両に発生する横加速度を自動制御可能な車両において、
     走行路の道路曲率絶対値が増加して最大値もしくは一定に至る旋回走行をする際、
     前記車両に発生する加速度について、前記旋回走行時の横加速度が最大となる状態を定常旋回状態とし、前記定常旋回状態時の横加速度の半分以下の領域を第1領域、前記定常旋回状態時の横加速度の半分より大きい領域を第2領域としたとき、前記第1領域において、前記車両に発生する加速度の時間変化である加加速度が最大となり、かつ、前記第1領域における加加速度時間平均値が、前記第2領域における加加速度時間平均値よりも大きくなるよう、前記車両に発生する加速度を制御することを特徴とする車両運動制御装置。
  2.  前記車両に発生する加加速度が、前記第2領域において加速度の増加と共に減少するよう、前記車両に発生する加速度を制御することを特徴とする請求項1に記載の車両運動制御装置。
  3.  前記車両に発生する加速度は、車両横方向の加速度である横加速度の絶対値であり、
     前記車両に発生する加加速度は、前記横加速度の時間変化である横加加速度の絶対値であることを特徴とする請求項1に記載の車両運動制御装置。
  4.  前記車両に発生する加速度は、車両横方向の加速度である横加速度の絶対値と車両前後方向の加速度である前後加速度の絶対値との合成加速度の絶対値であり、
     前記車両に発生する加加速度は、前記合成加速度の絶対値の時間変化であることを特徴とする請求項1に記載の車両運動制御装置。
  5.  前記車両に発生する加速度を前記定常旋回状態における加速度にて正規化した正規化加速度と前記加速度の時間変化との関係において、前記正規化加速度が0.3から0.5までの領域において前記加速度の時間変化が最大となるよう、前記車両に発生する加速度を制御することを特徴とする請求項1に記載の車両運動制御装置。
  6.  走行路の道路曲率絶対値が増加して最大値もしくは一定に至る旋回走行をする際、
     前記旋回走行の旋回開始から前記加速度の時間変化が最大となる期間よりも、前記加速度の時間変化が最大値から減少して定常旋回状態に至るまでの期間の方が長くなるよう、前記車両に発生する加速度を制御することを特徴とする請求項1に記載の車両運動制御装置。
  7.  車両に発生する横加速度を自動制御可能な車両において、
     走行路の道路曲率絶対値が増加して最大値もしくは一定に至る旋回走行をする際、
     前記車両に発生する加速度について、前記旋回走行時の横加速度が最大となる状態を定常旋回状態とし、前記定常旋回状態時の横加速度の半分以下の領域を第1領域、前記定常旋回状態時の横加速度の半分より大きい領域を第2領域としたとき、前記第1領域において、前記車両に発生する加速度の時間変化である加加速度が最大となり、かつ、前記第1領域における加加速度時間平均値が、前記第2領域における加加速度時間平均値よりも大きくなる目標軌道を生成することを特徴とする目標軌道生成装置。
  8.  前記目標軌道について、
     前記目標軌道の軌道曲率が直線状態から最大値となるまでの遷移区間において、
     前記目標軌道上を一定速で移動する車両における曲率と曲率の時間変化において、
     前記曲率の最大値の半分以下の領域を第3領域、前記曲率の最大値の半分より大きい領域を第4領域としたとき、前記第3領域において、前記曲率の時間変化が最大となり、かつ、前記第3領域における曲率時間変化の時間平均値が、前記第4領域における曲率時間変化の時間平均値よりも大きくなる目標軌道を生成することを特徴とする請求項7に記載の目標軌道生成装置。
  9.  車両に発生する横加速度を自動制御可能な車両において、
     走行路の道路曲率絶対値が増加して最大値もしくは一定に至る旋回走行をする際、
     前記車両に発生する加速度について、前記旋回走行時の横加速度が最大となる状態を定常旋回状態とし、前記定常旋回状態時の横加速度の半分以下の領域を第1領域、前記定常旋回状態時の横加速度の半分より大きい領域を第2領域としたとき、前記第1領域において、前記車両に発生する加速度の時間変化である加加速度が最大となり、かつ、前記第1領域における加加速度時間平均値が、前記第2領域における加加速度時間平均値よりも大きくなるよう、前記車両に発生する加速度を制御することを特徴とする車両運動制御方法。
  10.  車両に発生する横加速度を自動制御可能な車両において、
     走行路の道路曲率絶対値が増加して最大値もしくは一定に至る旋回走行をする際、
     前記車両に発生する加速度について、前記旋回走行時の横加速度が最大となる状態を定常旋回状態とし、前記定常旋回状態時の横加速度の半分以下の領域を第1領域、前記定常旋回状態時の横加速度の半分より大きい領域を第2領域としたとき、前記第1領域において、前記車両に発生する加速度の時間変化である加加速度が最大となり、かつ、前記第1領域における加加速度時間平均値が、前記第2領域における加加速度時間平均値よりも大きくなる目標軌道を生成することを特徴とする目標軌道生成方法。
PCT/JP2018/028028 2017-08-10 2018-07-26 車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法 WO2019031255A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/631,708 US11383698B2 (en) 2017-08-10 2018-07-26 Device and method for controlling vehicle movement, and device and method for generating target course
CN201880042722.XA CN110799399B (zh) 2017-08-10 2018-07-26 车辆运动控制装置及其方法、和目标轨道生成装置及其方法
DE112018003166.7T DE112018003166T5 (de) 2017-08-10 2018-07-26 Einrichtung und verfahren zum steuern einer fahrzeugbewegung und einrichtung und verfahren zum erzeugen eines zielkurses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017155858A JP6814710B2 (ja) 2017-08-10 2017-08-10 車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法
JP2017-155858 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031255A1 true WO2019031255A1 (ja) 2019-02-14

Family

ID=65272305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028028 WO2019031255A1 (ja) 2017-08-10 2018-07-26 車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法

Country Status (5)

Country Link
US (1) US11383698B2 (ja)
JP (1) JP6814710B2 (ja)
CN (1) CN110799399B (ja)
DE (1) DE112018003166T5 (ja)
WO (1) WO2019031255A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389462A (zh) * 2019-08-16 2021-02-23 现代自动车株式会社 自动驾驶方法、加速度曲线生成设备以及记录介质
CN113460055A (zh) * 2021-06-11 2021-10-01 吉林大学 在线的车辆行驶控制区域划分及区域边界估计方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7078120B2 (ja) * 2018-09-05 2022-05-31 日本電気株式会社 モーション制御装置、モーション制御方法、モーション制御プログラム、及びモーション制御システム
CN111267853B (zh) * 2018-12-03 2021-06-18 广州汽车集团股份有限公司 一种自适应车辆弯道辅助控制方法、装置、计算机设备和存储介质
US11618439B2 (en) * 2019-04-11 2023-04-04 Phantom Auto Inc. Automatic imposition of vehicle speed restrictions depending on road situation analysis
JP7263946B2 (ja) * 2019-07-03 2023-04-25 トヨタ自動車株式会社 車両
US20230347888A1 (en) * 2020-01-30 2023-11-02 Hitachi Astemo, Ltd. Vehicle Control Device, Vehicle Control Method, and Vehicle Control System
CN111674403B (zh) * 2020-05-12 2021-12-07 坤泰车辆系统(常州)有限公司 自动驾驶系统车道居中辅助功能进出弯道的控制方法
JP7485051B2 (ja) 2020-08-20 2024-05-16 日産自動車株式会社 運転支援方法及び運転支援装置
EP4219257A4 (en) * 2020-09-28 2024-03-06 Nissan Motor Co., Ltd. VEHICLE TRAVEL CONTROL METHOD AND VEHICLE TRAVEL CONTROL DEVICE
JP7211551B1 (ja) * 2021-05-28 2023-01-24 日産自動車株式会社 運転制御方法及び運転制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290650A (ja) * 2006-04-27 2007-11-08 Hitachi Ltd 車両の運動制御装置
WO2012042935A1 (ja) * 2010-09-29 2012-04-05 トヨタ自動車株式会社 車両の制御装置
JP2015067271A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 車両の運転補助を行うための方法及び装置
JP2015193329A (ja) * 2014-03-31 2015-11-05 日立オートモティブシステムズ株式会社 車両の運動制御システム、車両、および、プログラム
JP2017001520A (ja) * 2015-06-10 2017-01-05 マツダ株式会社 運転支援装置
JP2017081482A (ja) * 2015-10-30 2017-05-18 日立オートモティブシステムズ株式会社 車両運動制御装置及びその方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803100B2 (ja) 2004-01-13 2006-08-02 東海旅客鉄道株式会社 走行路の曲線区間構造
JP4568302B2 (ja) 2007-05-18 2010-10-27 株式会社日立製作所 加加速度情報を用いた車両の前後加速度制御装置
JP4967806B2 (ja) * 2007-05-22 2012-07-04 株式会社日立製作所 経路曲率に応じた車両の速度制御装置
JP4602444B2 (ja) * 2008-09-03 2010-12-22 株式会社日立製作所 ドライバ運転技能支援装置及びドライバ運転技能支援方法
JP5143103B2 (ja) * 2009-09-30 2013-02-13 日立オートモティブシステムズ株式会社 車両の運動制御装置
DE102009047476A1 (de) 2009-12-04 2011-06-09 Robert Bosch Gmbh Verfahren und Steuergerät zur Bestimmung einer Schnitttrajektorie eines Kurvenabschnitts einer Fahrbahn
US9199639B2 (en) * 2010-09-28 2015-12-01 Hitachi Automotive Systems, Ltd. Motion control system of vehicle
WO2012153367A1 (ja) * 2011-05-11 2012-11-15 日立オートモティブシステムズ株式会社 車両運動制御装置及び車両運動制御システム
JP5970322B2 (ja) * 2012-10-01 2016-08-17 日立オートモティブシステムズ株式会社 車両の運動制御装置
EP2853457B1 (en) * 2013-09-30 2019-11-27 Hitachi, Ltd. Method and apparatus for performing driving assistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290650A (ja) * 2006-04-27 2007-11-08 Hitachi Ltd 車両の運動制御装置
WO2012042935A1 (ja) * 2010-09-29 2012-04-05 トヨタ自動車株式会社 車両の制御装置
JP2015067271A (ja) * 2013-09-30 2015-04-13 株式会社日立製作所 車両の運転補助を行うための方法及び装置
JP2015193329A (ja) * 2014-03-31 2015-11-05 日立オートモティブシステムズ株式会社 車両の運動制御システム、車両、および、プログラム
JP2017001520A (ja) * 2015-06-10 2017-01-05 マツダ株式会社 運転支援装置
JP2017081482A (ja) * 2015-10-30 2017-05-18 日立オートモティブシステムズ株式会社 車両運動制御装置及びその方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389462A (zh) * 2019-08-16 2021-02-23 现代自动车株式会社 自动驾驶方法、加速度曲线生成设备以及记录介质
CN113460055A (zh) * 2021-06-11 2021-10-01 吉林大学 在线的车辆行驶控制区域划分及区域边界估计方法
CN113460055B (zh) * 2021-06-11 2022-05-31 吉林大学 在线的车辆行驶控制区域划分及区域边界估计方法

Also Published As

Publication number Publication date
DE112018003166T5 (de) 2020-04-02
CN110799399B (zh) 2022-11-01
US11383698B2 (en) 2022-07-12
CN110799399A (zh) 2020-02-14
US20200164870A1 (en) 2020-05-28
JP6814710B2 (ja) 2021-01-20
JP2019034591A (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6814710B2 (ja) 車両運動制御装置及びその方法、並びに、目標軌道生成装置及びその方法
JP6731234B2 (ja) 車両運動制御装置及びその方法
JP6976142B2 (ja) 車両運動制御装置、その方法、そのプログラム、及びそのシステム、並びに、目標軌道生成装置、その方法、そのプログラム、及びそのシステム
JP6764312B2 (ja) 車両運動制御装置、車両運動制御方法、車両運動制御プログラム
JP7000765B2 (ja) 車両の走行制御装置
JP6654121B2 (ja) 車両運動制御装置
JP5012925B2 (ja) 車両用運動制御装置
WO2023139867A1 (ja) 車両運動制御装置、および、車両運動制御方法
JP5808977B2 (ja) 車両のヨーモーメント発生旋回効率化装置
JPWO2017145555A1 (ja) 走行制御装置及び走行制御システム
WO2018047873A1 (ja) 加減速制御システム、加減速制御方法
WO2020129633A1 (ja) 車両運動制御装置及びその方法
JPWO2018230341A1 (ja) 車両制御装置
JP2010069984A (ja) 運転支援装置
WO2019044025A1 (ja) 移動体の運動制御装置、コンピュータプログラム、移動体の運動制御方法、および制御器
JP2020032893A (ja) 車両運動制御装置
CN116142191A (zh) 车辆运动控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842907

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18842907

Country of ref document: EP

Kind code of ref document: A1