WO2019029290A1 - 一种波束信息的指示、确定方法及装置、通信系统 - Google Patents

一种波束信息的指示、确定方法及装置、通信系统 Download PDF

Info

Publication number
WO2019029290A1
WO2019029290A1 PCT/CN2018/093180 CN2018093180W WO2019029290A1 WO 2019029290 A1 WO2019029290 A1 WO 2019029290A1 CN 2018093180 W CN2018093180 W CN 2018093180W WO 2019029290 A1 WO2019029290 A1 WO 2019029290A1
Authority
WO
WIPO (PCT)
Prior art keywords
mapping relationship
receiving
bpl identifier
cri
reference signal
Prior art date
Application number
PCT/CN2018/093180
Other languages
English (en)
French (fr)
Inventor
陈山枝
孙韶辉
高秋彬
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to JP2020507535A priority Critical patent/JP7027522B2/ja
Priority to US16/638,116 priority patent/US11025330B2/en
Priority to EP18843227.2A priority patent/EP3667941B1/en
Priority to KR1020207006716A priority patent/KR102305717B1/ko
Publication of WO2019029290A1 publication Critical patent/WO2019029290A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an indication, a method, and a device for determining beam information, and a communication system.
  • a large-scale antenna technology is introduced in a mobile communication system.
  • large-scale antenna arrays can have up to 512 or even 1024 antenna elements.
  • each antenna element is connected to a transceiver unit (TXRU), and there are up to 512 or even 1024 TXRUs.
  • TXRU transceiver unit
  • an antenna array of up to 32/64 antenna elements can also be configured. Beamforming on both sides of the base station and the terminal can obtain a huge beamforming gain to compensate for signal attenuation caused by path loss.
  • the path loss of high-band communication (for example, at 30 GHz) is more serious than that of the low-band, making the coverage of wireless signals extremely limited.
  • the coverage of wireless signals can be expanded to a practical range.
  • the transmitting end performs indication of beam information, so that the receiving end can adjust the receiving beam to achieve an optimal receiving effect.
  • the number of beams may reach 256, 1024 or more, and the indication of the primary beam information requires 8 bits, 10 bits, or even more. Therefore, the indication process overhead of the beam information Very large and inefficient.
  • the embodiment of the present application provides a method for indicating, determining, and determining beam information, and a communication system, which is used to reduce the overhead of transmitting beam information between a transmitting end and a receiving end.
  • a method for indicating beam information includes:
  • the transmitting end determines a first transmit beam to be used for transmission between the receiving end and the receiving end;
  • the transmitting end sends a signal to the receiving end by using the first sending beam.
  • the method for indicating the beam information provided by the embodiment of the present application establishes a first mapping relationship between the BPL identifier and the transmitting beam at the transmitting end, and establishes a second mapping relationship between the BPL identifier and the receiving beam at the receiving end. Therefore, the indication of the beam information only needs to indicate the BPL identifier, so that the receiving end can determine the corresponding receiving beam according to the BPL identifier, thereby reducing the system overhead of the beam information indicating process.
  • the first mapping relationship includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmission beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the sending end determines the first mapping relationship by:
  • the sending end configures a reference signal resource for the receiving end
  • the transmitting end sends a reference signal to the receiving end in the reference signal resource, where the receiving end performs measurement reporting;
  • the sending end determines the first mapping relationship by using a measurement report result of the receiving end.
  • the method for indicating the foregoing beam information further includes:
  • the sending end sends the mapping relationship between the BPL identifier and the CRI to the receiving end.
  • a method for determining beam information includes:
  • the receiving end receives the signal sent by the transmitting end by using the first receiving beam.
  • the first mapping relationship specifically includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmit beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the method for determining the foregoing beam information further includes:
  • the receiving end receives a mapping relationship between the BPL identifier sent by the sending end and the CRI.
  • the receiving end determines the second mapping relationship by:
  • the receiving end determines the second mapping relationship according to a mapping relationship between the CRI and the receiving beam, and a mapping relationship between the BPL identifier and the CRI.
  • a device for indicating beam information includes:
  • a first unit configured to determine a first transmit beam to be used for transmission between the receiving end and the receiving end;
  • a second unit configured to determine, according to a first mapping relationship between a BPL identifier and a transmit beam, a BPL identifier corresponding to the first transmit beam, where the receiving end has a BPL identifier and a receive beam Two mapping relationship;
  • a third unit configured to send the first BPL identifier to the receiving end
  • a fourth unit configured to send a signal to the receiving end by using the first transmit beam.
  • the first mapping relationship specifically includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmission beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the second unit determines the first mapping relationship by:
  • the first mapping relationship is determined by the measurement reporting result of the receiving end.
  • the third unit is further configured to:
  • mapping relationship between the BPL identifier and the CRI is sent to the receiving end.
  • the apparatus for determining beam information includes:
  • a fifth unit configured to receive a first beam pair BPL identifier indicated by the sending end
  • a sixth unit configured to determine, according to a second mapping relationship between the BPL identifier and the receiving beam, a first receiving beam corresponding to the first BPL identifier, where the sending end has a BPL identifier and a transmit beam First mapping relationship;
  • a seventh unit configured to receive, by using the first receive beam, a signal sent by the sending end.
  • the first mapping relationship specifically includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmission beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the sixth unit is further configured to:
  • the sixth unit determines the second mapping relationship by:
  • a communication system provided by the embodiment of the present application includes the foregoing apparatus for indicating beam information provided by the embodiment of the present application, and/or the apparatus for determining beam information provided by the embodiment of the present application.
  • the apparatus for indicating beam information includes:
  • a memory for storing program instructions
  • a processor configured to invoke a program instruction stored in the memory, and execute the indication method of the beam information according to any one of the foregoing according to the obtained program.
  • the apparatus for determining beam information includes:
  • a memory for storing program instructions
  • a processor configured to invoke a program instruction stored in the memory, and perform a method for determining beam information according to any one of the foregoing according to the obtained program.
  • a computer storage medium stores computer executable instructions, where the computer executable instructions are used to cause the computer to perform beam information of any of the foregoing The method of determining the method of determining beam information as described in any of the above.
  • FIG. 1 is a schematic flowchart of a method for processing (including indication and determination) of beam information according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for indicating beam information according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart diagram of a method for determining beam information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a device for indicating beam information according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a device for determining beam information according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another apparatus for indicating beam information according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another apparatus for determining beam information according to an embodiment of the present disclosure.
  • a notification method is to transmit a Quasi-co-located (QCL) hypothesis to the receiving end, that is, to indicate the DMRS port of the data or control channel of the receiving end and which reference signal port is related to the spatial parameter (space arrival angle) Mean, or spatial arrival angle expansion, or space departure angle mean, or spatial departure angle expansion, etc.) is QCL.
  • QCL Quasi-co-located
  • the spatial parameters of the other signal can be inferred from the spatial parameters of one signal (eg, the spatial parameters of the two signals are the same). If the transmitting end informs the receiving end of the data or the DMRS of the control channel and which (or which) reference port the spatial parameter is QCL, the receiving end may perform spatial parameter estimation based on the ports of the reference signals to determine the receiving beam. And use these receive beams to receive data or control signals.
  • the reference signal is a Channel State Information-Reference Signal (CSI-RS), which is a reference for the sender to notify the receiving end of the data or the DMRS of the control channel and which CSI-RS resource is transmitted.
  • the signal about the spatial parameter is QCL.
  • the base station transmitting end
  • the signal of each CSI-RS resource is transmitted through one beam.
  • the terminal measures N CSI-RS resources and selects the Q CSI-RS resources with the best quality, and feeds back the identifiers of the Q CSI-RS resources and their quality indicators to the base station.
  • the quality indicator may be Reference Signal Receiving Power (RSRP), or Reference Signal Receiving Quality (RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the base station receives the information fed back by the terminal, and accordingly determines the transmit beam used for the transmission, thereby determining the CSI-RS resource of the DMRS QCL of the data or control channel.
  • the base station sends the CSI-RS Resource Indicator (CRI) to the terminal, so that the terminal sets an appropriate receiving beam.
  • CRI CSI-RS Resource Indicator
  • the number of beams may reach 256, 1024 or more, and the primary beam information indication needs 8 bits, 10 bits, or more. Therefore, the beam information is provided in the embodiment of the present application. Indicates a method to reduce the overhead caused by the beam information indication.
  • the following is a method for processing a beam information between a transmitting end and a receiving end, as shown in FIG. 1 , which includes: a transmitting end as a base station and a receiving end as a terminal (UE).
  • a transmitting end as a base station
  • a receiving end as a terminal (UE).
  • Step S101 The base station configures N (N ⁇ 1) reference signal resources for the terminal.
  • a reference signal resource includes a plurality of time-frequency resources, for example, a plurality of resource elements (Resources, REs) included in one Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • the reference signal resources may be repeated in the time domain, for example, repeated in a certain period, and may appear multiple times in one cycle.
  • Step S102 The base station sends a reference signal to the terminal in the configured reference signal resource, where the terminal performs measurement reporting, and the terminal reports the measurement result to the base station.
  • a reference signal of P (P ⁇ 1) antenna ports can be mapped in each reference signal resource.
  • Reference signals transmitted from different reference signal resources may be transmitted using different downlink transmit beams.
  • the base station shares a downlink transmission beam of NTBS candidates, each downlink beam corresponds to a set of beamforming weights, and the transmit beam shaping weight of the nth beam is
  • K is the number of beam-shaped antenna units, which may be smaller than the number of antenna units of the base station. For example, when a downlink beam is sent from only K antenna units connected by one transceiver unit, the number of beam-formed antenna units is smaller than that of the base station. Number of antenna units.
  • the base station selects one reference signal resource for each candidate downlink transmit beam to send a corresponding downlink reference signal.
  • the base station can be configured Reference signal resources, each beam's reference signal is mapped to a reference signal resource.
  • the base station when the base station has 256 downlink transmit beams, the base station configures 256 reference signal resources, and the reference signals of each beam are mapped to one reference signal resource for transmission.
  • the reference signal of each downlink transmit beam is shaped by the beamforming weight corresponding to the beam and then sent on its mapped reference signal resource.
  • the N reference signal resources are periodic or semi-persistent resources, that is, the reference signal is periodic transmission or semi-persistent transmission.
  • the terminal receives the reference signal sent by the base station, and determines a receiving beam corresponding to each reference signal resource.
  • the receive beam of the terminal may be selected from candidate receive beams.
  • L is the number of beam-formed antenna elements, and L can be smaller than the number of antenna elements of the terminal.
  • the terminal may separately try to receive each receive beam, and select the receive beam with the strongest received signal power as the receive beam of the CSI-RS resource.
  • the terminal saves the receiving beam corresponding to each CSI-RS resource, and the terminal may also save the receiving beam corresponding to the partial CSI-RS resource, which is not limited herein.
  • the terminal may save the mapping relationship between the CSI-RS Resource Indicator (CRI) and the receive beam.
  • CRI CSI-RS Resource Indicator
  • the base station may also configure a CSI-RS resource for the terminal by using a resource set.
  • the base station configures S CSI-RS resource sets for the terminal.
  • the sth resource set includes N s CSI-RS resources.
  • the CSI-RS resource number here refers to the number in the CSI-RS resource within a set; each CSI-RS resource is uniquely determined by two numbers: Resource Setting Number (Resource Setting) Index, RSI) and CSI-RS resource number (ie CRI).
  • CSI-RS resource number A unified number of CSI-RS resources in all CSI-RS resource sets.
  • the CRI may be replaced by (RSI, CRI).
  • Step S103 The base station establishes a mapping relationship between a Beam Pair Link (BPL) identifier and a CRI.
  • BPL Beam Pair Link
  • the mapping relationship between the BPL identifier and the CRI defines the mapping relationship between the BPL identifier and the CRI.
  • the number of BPL identifiers may be a preset value or determined by the base station itself. If the number of BPL identifiers is determined by the base station, the number of them needs to be notified to the terminal by the base station. Usually, the number of BPL identifiers is much smaller than the number of downlink transmission beams. For example, when there are 256 downlink transmit beams, the number of BPL identifiers is 4 or 8.
  • the CRI to which the BPL identifier is mapped may be determined by the base station through the measurement report of the terminal, and the base station establishes a mapping table according to the measurement result reported by the terminal.
  • Each BPL identifier in the mapping table is mapped to a CSI-RS resource (represented by CRI). Since different CSI-RS resources are transmitted through different downlink transmit beams, different BPL identifiers represent different downlink transmit beams.
  • the number of BPL identifiers in Table 1 is 2, the BPL identifier '0' is mapped to CRI0, the corresponding transmit beam (Tx beam) 0, and the BPL identifier '1' is mapped to CRI1, corresponding to Tx beam1.
  • the terminal receives the downlink reference signal sent by the base station, and selects Q reference signal resources.
  • the following describes the manner in which the terminal selects the reference signal resource sent by the base station.
  • the terminal After receiving the reference signal resources sent by the base station, the terminal measures the received signal of each reference signal resource, calculates the quality of the received signal, and selects the Q reference signal resources with the strongest receiving quality, that is, the receiving quality is ranked from high to low.
  • the Q-bit reference information resource, wherein the indicator of the reception quality may be RSRP, or RSRQ.
  • the value of the Q may be determined by the base station, notified to the terminal, or determined by the terminal, and is not limited herein.
  • the terminal may determine the value of Q according to the number of independent instances whose receiving quality is greater than a certain threshold.
  • the terminal feeds back the identifiers of the Q reference signal resources to the base station.
  • the terminal reports the two CSI-RSs selected by the terminal.
  • the identity of the resource, CRI, and its corresponding RSRP as shown in Table 2 below:
  • the base station After receiving the information reported by the terminal, the base station establishes a BPL mapping table as shown in Table 3 below (assuming that the number of the CRI corresponding to the base station transmission beam is also x):
  • the base station refers to the information reported by the terminal to establish a BPL mapping table, which means that the base station may not completely establish the BPL mapping table according to the information reported by the terminal.
  • the base station can establish BPL, CRI, and transmit beam as shown in Table 3-1 below based on its own considerations, for example, based on the requirements of multi-user pairing.
  • Step S104 The base station sends a mapping relationship table between the BPL identifier and the CRI to the terminal.
  • the following table 4 corresponding to step S103 is sent to the terminal (the number information of the transmission beam is only stored on the base station side, and may not be transmitted to the terminal):
  • the mapping relationship between the BPL identifier and the CRI may be sent by the base station to the terminal by using the high layer signaling, where the high layer signaling is For example, it may refer to Radio Resource Control (RRC) signaling or Media Access Control (MAC) layer signaling.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • Step S105 The terminal receives a mapping relationship table between the BPL and the CRI sent by the base station, and determines an optimal receiving beam.
  • the terminal determines a mapping relationship between the BPL identifier and the receiving beam according to the mapping relationship between the saved CRI and the receiving beam.
  • a mapping relationship table as shown in Table 5 is established, assuming that the terminal has a total of eight receiving beams, and the best receiving beam for receiving the CSI-RS resource 24 is the receiving beam 4, and the best receiving beam for receiving the CSI-RS resource 37 is Upon receiving the beam 7, the terminal establishes a mapping relationship as shown in Table 5 below.
  • the mapping relationship between the BPL identifier and the CRI is that the terminal is obtained by the base station.
  • Step S106 The base station schedules data transmission or control channel transmission to the terminal.
  • the base station determines the transmit beam used for the transmission, and determines the BPL identifier corresponding to the transmit beam by using the mapping relationship between the BPL identifier and the transmit beam saved by the base station. For example, according to Table 3, the base station determines to transmit data to the terminal using the transmit beam 24, and its corresponding BPL flag is '0'.
  • the base station carries the BPL identification information in the control information for the terminal, for example, the downlink control signaling.
  • the BPL identification information takes a value of '0'.
  • the BPL identification information and the number of occupied bits are determined by the number of BPLs in the mapping relationship between the BPL identifier and the CRI. For example, if the number of BPL identifiers is 2, the BPL identification information field occupies 1 bit; for example, if the number of BPL identifiers is 4, the BPL identification information field occupies 2 bits.
  • the terminal receives the BPL identification information in the control information sent by the base station, and determines the data to be transmitted by the receiving base station or the receiving beam to be used by the control channel by searching the mapping relationship between the saved BPL identifier and the receiving beam.
  • the BPL identification information takes a value of '0', and the terminal determines to use the reception beam 4 for reception through the lookup table 5.
  • the method for indicating beam information provided by the present application limits the resources occupied by the beam information indication process by establishing a mapping relationship between the BPL and the CRI, thereby reducing the system overhead of the beam information indication process.
  • the basis for establishing a mapping relationship between the BPL identifier and the CRI may not be based on the measurement result reported by the base station, that is, Even if there is a report of the terminal, the base station may select the CRI mapped with the BPL identifier without being limited to the CRI selected and reported by the terminal.
  • the terminal selects and reports CRI 24 and CRI 37, but in order to better support multi-user transmission, the base station can establish a mapping relationship as shown in Table 3-1 below.
  • steps S101 and S102 are not necessarily steps that must be performed.
  • the base station may determine to update the mapping relationship between the BPL identifier and the CRI, for example, the terminal reports the latest CRI information, and the base station may perform the BPL identifier and the CRI according to the method.
  • the mapping relationship is updated. After the mapping relationship between the BPL identifier and the CRI is updated, the base station needs to send the updated mapping relationship between the BPL identifier and the CRI to the terminal.
  • the manner of updating the mapping relationship between the BPL identifier and the CRI may be multiple, as exemplified below.
  • Method 1 Complete update.
  • the mapping relationship of all BPL identifiers in the mapping relationship between the BPL identifier and the CRI is updated, that is, the entire mapping table is updated.
  • the base station sends a new form to the terminal. For example, the entire Table 4 has been updated and the updated Table 4 is sent to the terminal.
  • Method 2 Partial update.
  • the base station may only send the mapping relationship of the updated BPL identifier to the terminal.
  • the base station and the terminal still assume that the previous mapping relationship is true. For example, if only the mapping relationship of the first row in Table 4 (BPL 0 corresponds to CRI24) is updated, only the updated mapping relationship of the row may be sent, and the mapping relationship of the second row by default (BPL 1 corresponds to CRI 37) remains unchanged. change.
  • the mapping between the BPL identifier and the CRI is sent to the terminal, and the base station may change the transmit beam mapped with the BPL identifier, as long as the terminal does not need to be used.
  • the changed transmit beam can be received normally by changing the receive beam.
  • the mapping relationship between the BPL identifier and the CRI is not updated, that is, the base station does not need to send an update message to the terminal.
  • the terminal may also change the receiving beam mapped with the BPL identifier.
  • the relationship between the sending and receiving of the base station and the terminal may be interchanged, which is not limited herein.
  • the base station is a transmitting end
  • the terminal is a receiving end.
  • a method for indicating beam information in the embodiment of the present application includes:
  • Step S201 The transmitting end determines a first transmit beam that is used for transmitting between the receiving end and the receiving end.
  • the transmitting end determines the transmission beam used for data or signaling transmission between the receiving end and the receiving end, which is called the first transmitting beam.
  • the first transmitting beam the transmission beam used for data or signaling transmission between the receiving end and the receiving end.
  • Step S202 The transmitting end determines a BPL identifier corresponding to the first beam according to a first mapping relationship between the BPL identifier and the transmitting beam, where the receiving end has a second mapping relationship between the BPL identifier and the receiving beam.
  • Step S203 The sending end sends the first BPL identifier to the receiving end.
  • the BPL identifier sent by the sender to the receiver is referred to as the first BPL identifier.
  • the same reason is distinguished from the BPL identifiers mentioned in other descriptions, where the BPL identifier sent by the sender to the receiver.
  • Step S204 The transmitting end sends a signal to the receiving end by using the first sending beam.
  • the mapping relationship between the BPL identifier, the CRI, and the transmit beam established by the base station side may be referred to as a first mapping relationship, for example, The mapping relationship shown in Table 1 above.
  • the mapping relationship between the BPL identifier, the CRI, and the transmit beam established by the terminal may be referred to as a second mapping relationship, for example, The mapping relationship shown in Table 5 above.
  • the first mapping relationship includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmission beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the sending end determines the first mapping relationship by:
  • the sending end configures a reference signal resource for the receiving end
  • the transmitting end sends a reference signal to the receiving end in the reference signal resource, where the receiving end performs measurement reporting;
  • the sending end determines the first mapping relationship by using a measurement report result of the receiving end.
  • the measurement result is the identifier of the x reference signal resources selected by the terminal according to the quality of the reference signal resource sent by the base station. It can be set as needed, for example, it can be the measurement result shown in Table 2 above.
  • the method for indicating the beam information provided by the embodiment of the present application further includes:
  • the transmitting end sends the mapping relationship between the BPL identifier and the CRI (for example, the mapping relationship shown in Table 4 above) to the receiving end, and if the update of the mapping relationship is involved, the updated BPL may be further The mapping relationship between the identifier and the CRI is sent to the receiving end.
  • the mapping relationship between the BPL identifier and the CRI for example, the mapping relationship shown in Table 4 above
  • the present application further provides a method for determining beam information, where the method includes:
  • Step S301 The receiving end receives the first beam pair BPL identifier indicated by the sending end.
  • Step S302 The receiving end determines, according to a second mapping relationship between the BPL identifier and the receiving beam, a first receiving beam corresponding to the first BPL identifier, where the sending end is configured with a first between the BPL identifier and the transmitting beam. Mapping relations;
  • Step S303 The receiving end receives the signal sent by the sending end by using the first receiving beam.
  • the first mapping relationship specifically includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmit beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the method for determining the foregoing beam information further includes:
  • the receiving end receives a mapping relationship between the BPL identifier sent by the sending end and the CRI.
  • the receiving end determines the second mapping relationship by:
  • the receiving end determines the second mapping relationship according to a mapping relationship between the CRI and the receiving beam, and a mapping relationship between the BPL identifier and the CRI.
  • the receiving end may further include the step of receiving the mapping relationship between the updated BPL identifier and the CRI sent by the sending end, and using the updated mapping relationship between the BPL identifier and the CRI. Update the mapping relationship between the BPL identifier and the CRI in the receiving end.
  • the embodiment of the present application further provides the following devices:
  • a device for indicating beam information includes:
  • a first unit 41 configured to determine a first transmit beam to be used for transmission between the receiving end and the receiving end;
  • the second unit 42 is configured to determine, according to a first mapping relationship between the BPL identifier and the transmit beam, a first BPL identifier corresponding to the first transmit beam, where the receive end has a BPL identifier and a receive beam. a second mapping relationship between;
  • the third unit 43 is configured to send the first BPL identifier to the receiving end;
  • the fourth unit 44 is configured to send a signal to the receiving end by using the first transmit beam.
  • the first mapping relationship specifically includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmit beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the second unit 42 determines the first mapping relationship by:
  • the first mapping relationship is determined by the measurement reporting result of the receiving end.
  • the third unit 43 is further configured to:
  • mapping relationship between the BPL identifier and the CRI is sent to the receiving end.
  • a device for determining beam information includes:
  • the fifth unit 51 is configured to receive a first beam pair BPL identifier indicated by the sending end.
  • the sixth unit 52 is configured to determine, according to a second mapping relationship between the BPL identifier and the receiving beam, a first receiving beam corresponding to the BPL identifier indicated by the sending end, where the sending end has a BPL identifier and a transmitting beam.
  • the seventh unit 53 is configured to receive, by using the first receive beam, a signal sent by the sending end.
  • the first mapping relationship specifically includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmit beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the sixth unit is further configured to:
  • the sixth unit determines the second mapping relationship by:
  • another apparatus for indicating beam information provided by the embodiment of the present application includes:
  • the processor 500 is configured to read a program in the memory 520 and perform the following process:
  • the signal is transmitted to the receiving end by the transceiver 510 using the first transmit beam.
  • the first mapping relationship specifically includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmit beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • the processor 500 determines the first mapping relationship by:
  • the first mapping relationship is determined by the measurement reporting result of the receiving end.
  • processor 500 is further configured to:
  • the mapping relationship between the BPL identifier and the CRI is sent to the receiving end by the transceiver 510.
  • the transceiver 510 is configured to receive and transmit data under the control of the processor 500.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 can be a central buried device (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central buried device
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • CPLD complex programmable logic device
  • another apparatus for determining beam information provided by the embodiment of the present application includes:
  • the processor 600 is configured to read a program in the memory 620 and perform the following process:
  • the signal transmitted by the transmitting end is received by the transceiver 610 using the first receive beam.
  • the first mapping relationship specifically includes: a BPL identifier, a channel state information reference signal resource indication CRI, and a mapping relationship between the transmit beams;
  • the second mapping relationship specifically includes: a BPL identifier, a CRI, and a mapping relationship between the receiving beams.
  • processor 600 further includes:
  • mapping relationship between the BPL identifier sent by the sending end and the CRI is received by the transceiver 610.
  • the processor 600 determines the second mapping relationship by:
  • the transceiver 610 is configured to receive and transmit data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • the processor 600 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the embodiment of the present application further provides a communication system, including the above-mentioned beam information indicating device, and/or the device for determining beam information provided by the foregoing embodiment of the present application. That is, the communication system (or may also be referred to as a communication device) provided by the embodiment of the present application may have all or part of the functions of the indication device of the beam information and the determination device of the beam information.
  • the embodiment of the present application further provides a computer storage medium.
  • the computer storage medium is a non-volatile storage medium storing computer-executable instructions for causing the computer to perform the flow of processing of beam information as described in the previous embodiments.
  • the foregoing solution provided by the embodiment of the present application establishes a first mapping relationship between a BPL identifier and a transmit beam at a transmitting end, and correspondingly establishes a second mapping between a BPL identifier and a receive beam at a receiving end.
  • the relationship so that the indication of the beam information, only needs to indicate the BPL identifier, so that the receiving end can determine the corresponding receiving beam according to the BPL identifier, thereby reducing the system overhead of the beam information indicating process.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束信息的指示、确定方法及装置、通信系统,用以降低发送端和接收端之间传输波束信息的开销。本申请提供的一种波束信息的指示方法,包括:发送端确定与接收端之间进行传输所需使用的第一发送波束;所述发送端根据波束对BPL标识与发送波束之间的第一映射关系,确定所述第一发送波束对应的第一BPL标识;其中,所述接收端有BPL标识与接收波束之间的第二映射关系;所述发送端将所述第一BPL标识发送给所述接收端;所述发送端使用所述第一发送波束向所述接收端发送信号。

Description

一种波束信息的指示、确定方法及装置、通信系统
本申请要求在2017年8月11日提交中国专利局、申请号为201710686152.5、申请名称为“一种波束信息的指示、确定方法及装置、通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束信息的指示、确定方法及装置、通信系统。
背景技术
目前为了进一步提升多输入多输出(MIMO)技术,移动通信系统中引入大规模天线技术。对于基站,大规模天线阵列可以有高达512甚至1024个天线振子。采用全数字天线时每个天线振子连接一个收发单元(TXRU),此时会有高达512甚至1024个TXRU。对于终端,也可以配置高达32/64个天线振子的天线阵列。基站和终端两侧采用波束赋形可以获得巨大的波束赋形增益,以弥补路径损耗带来的信号衰减。尤其是高频段通信(例如30GHz频点上)的路径损耗比低频段更加严重,使得无线信号的覆盖范围极其有限。通过大规模天线的波束赋形技术,可以将无线信号的覆盖范围扩大到可以实用的范围内。
为了进一步提升模拟波束赋形性能,还有一种数字模拟混合波束赋形收发方案,该方案在数字波束赋形灵活性和模拟波束赋形的低复杂度间做了平衡,具有支撑多个数据流和多个用户同时赋形的能力,同时,复杂度也控制在合理范围内。
发送端进行波束信息的指示,使得接收端可以调整接收波束达到最佳的接收效果。但是,在采用大规模天线阵列的系统中,波束的个数可能达到256、1024或者更多,一次波束信息的指示就需要8比特、10比特、甚至更多,因 此,波束信息的指示过程开销很大,效率低。
发明内容
本申请实施例提供了一种波束信息的指示、确定方法及装置、通信系统,用以降低发送端和接收端之间传输波束信息的开销。
第一方面,本申请实施例提供的一种波束信息的指示方法,该方法包括:
发送端确定与接收端之间进行传输所需使用的第一发送波束;
所述发送端根据波束对BPL标识与发送波束之间的第一映射关系,确定所述第一发送波束对应的第一BPL标识;其中,所述接收端有BPL标识与接收波束之间的第二映射关系;
所述发送端将所述第一BPL标识发送给所述接收端;
所述发送端使用所述第一发送波束向所述接收端发送信号。
本申请实施例提供的上述波束信息的指示方法,通过在发送端建立BPL标识和发送波束之间的第一映射关系,以及相应的在接收端建立BPL标识与接收波束之间的第二映射关系,从而使得波束信息的指示,只需要指示BPL标识,使得接收端根据BPL标识就可以确定对应的接收波束,从而降低了波束信息指示过程的系统开销。
可选地,本申请实施例提供的上述波束信息的指示方法,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,本申请实施例提供的上述波束信息的指示方法,所述发送端通过如下方式确定所述第一映射关系:
所述发送端为所述接收端配置参考信号资源;
所述发送端在所述参考信号资源内,向所述接收端发送参考信号,用于所述接收端进行测量上报;
所述发送端通过所述接收端的测量上报结果,确定所述第一映射关系。
可选地,本申请实施例提供的上述波束信息的指示方法,该方法还包括:
所述发送端将BPL标识与CRI的映射关系发给所述接收端。
第二方面,本申请实施例提供的一种波束信息的确定方法,该方法包括:
接收端接收发送端指示的第一波束对BPL标识;
所述接收端根据BPL标识与接收波束之间的第二映射关系,确定所述第一BPL标识所对应的第一接收波束,其中,所述发送端有BPL标识与发送波束之间的第一映射关系;
所述接收端使用所述第一接收波束接收所述发送端发送的信号。
可选地,本申请实施例提供的上述波束信息的确定方法,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,本申请实施例提供的上述波束信息的确定方法,该方法还包括:
所述接收端接收所述发送端发送的BPL标识与CRI的映射关系。
可选地,本申请实施例提供的上述波束信息的确定方法,所述接收端通过如下方式确定所述第二映射关系:
所述接收端接收所述发送端发送的参考信号资源配置信息;
所述接收端在所述参考信号资源内接收所述发送端发送的参考信号,并确定每个参考信号资源对应的接收波束,确定CRI和接收波束之间的映射关系;
所述接收端根据所述CRI和接收波束之间的映射关系,以及所述BPL标识与CRI的映射关系,确定所述第二映射关系。
第三方面,本申请实施例提供的一种波束信息的指示装置,该装置包括:
第一单元,用于确定与接收端之间进行传输所需使用的第一发送波束;
第二单元,用于根据波束对BPL标识与发送波束之间的第一映射关系,确定所述第一发送波束对应的BPL标识;其中,所述接收端有BPL标识与接 收波束之间的第二映射关系;
第三单元,用于将所述第一BPL标识发送给所述接收端;
第四单元,用于使用第一所述发送波束向所述接收端发送信号。
可选地,本申请实施例提供的上述装置,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,本申请实施例提供的上述装置,所述第二单元通过如下方式确定所述第一映射关系:
为所述接收端配置参考信号资源;
在所述参考信号资源内,向所述接收端发送参考信号,用于所述接收端进行测量上报;
通过所述接收端的测量上报结果,确定所述第一映射关系。
可选地,本申请实施例提供的上述装置,所述第三单元还用于:
将BPL标识与CRI的映射关系发给所述接收端。
第四方面,本申请实施例提供的一种波束信息的确定装置,该装置包括:
第五单元,用于接收发送端指示的第一波束对BPL标识;
第六单元,用于根据BPL标识与接收波束之间的第二映射关系,确定所述第一BPL标识所对应的第一接收波束,其中,所述发送端有BPL标识与发送波束之间的第一映射关系;
第七单元,用于使用所述第一接收波束接收所述发送端发送的信号。
可选地,本申请实施例提供的上述装置,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,本申请实施例提供的上述装置,所述第六单元还用于:
接收所述发送端发送的BPL标识与CRI的映射关系。
可选地,本申请实施例提供的上述装置,所述第六单元通过如下方式确定所述第二映射关系:
接收所述发送端发送的参考信号资源配置信息;
在所述参考信号资源内接收所述发送端发送的参考信号,并确定每个参考信号资源对应的接收波束,确定CRI和接收波束之间的映射关系;
根据所述CRI和接收波束之间的映射关系,以及所述BPL标识与CRI的映射关系,确定所述第二映射关系。
第五方面,本申请实施例提供的一种通信系统,包括本申请实施例提供的上述波束信息的指示装置,和/或,本申请实施例提供的上述波束信息的确定装置。
第六方面,本申请实施例提供的一种波束信息的指示装置,该装置包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一所述的波束信息的指示方法。
第七方面,本申请实施例提供的一种波束信息的确定装置,该装置包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一所述的波束信息的确定方法。
第八方面,本申请实施例提供的一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一所述的波束信息的指示方法或上述任一所述的波束信息的确定方法。
附图说明
图1为本申请实施例提供的一种波束信息的处理(包括指示和确定)方法 的流程示意图;
图2为本申请实施例提供的一种波束信息的指示方法的流程示意图;
图3为本申请实施例提供的一种波束信息的确定方法的流程示意图;
图4为本申请实施例提供的一种波束信息的指示装置的结构示意图;
图5为本申请实施例提供的一种波束信息的确定装置的结构示意图;
图6为本申请实施例提供的另一种波束信息的指示装置的结构示意图;
图7为本申请实施例提供的另一种波束信息的确定装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在进行数据传输之前,为了让接收端能合理的设置接收波束,发送端需要将数据信道或者控制信道(数据或者控制信道的解调参考信号(Demodulation Reference Signal,DMRS))的发送波束相关信息通知给接收端。一种通知方式是将准共站址(Quasi-co-located,QCL)假设传递给接收端,即指示接收端其数据或者控制信道的DMRS端口与哪些参考信号的端口关于空间参数(空间到达角度均值,或者空间到达角度扩展,或者空间出发角度均值,或者空间出发角度扩展等)是QCL的。如果两个信号针对一个空间参数是QCL的,则可以从一个信号的空间参数推测出另外一个信号的空间参数(例如,两个信号的空间参数相同)。如果发送端通知了接收端其数据或者控制信道的DMRS与哪些(或哪个)参考信号的端口关于空间参数是QCL的,则接收端可以基于这些参考信号的端口进行空间参数的估计,确定接收波束,并用这些接收波束接收数据或者控制信号。
本申请实施例中以参考信号为信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)为例,即发送端通知接收端数据或者控 制信道的DMRS与哪个CSI-RS资源传输的参考信号关于空间参数是QCL的。例如,基站(发送端)为终端(接收端)配置N个CSI-RS资源,每个CSI-RS资源的信号通过一个波束发送。终端测量N个CSI-RS资源并选择质量最佳的Q个CSI-RS资源,将Q个CSI-RS资源的标识以及其质量指标反馈给基站。质量指标可以是参考信号接收功率(Reference Signal Receiving Power,RSRP),或者参考信号接收质量(Reference Signal Receiving Quality,RSRQ)等。基站接收终端反馈的信息,据此确定用于进行传输的发送波束,从而与确定数据或者控制信道的DMRS QCL的CSI-RS资源。基站将该CSI-RS资源的指示信息(CSI-RS Resource Indicator,CRI)发送给终端,令终端设置合适的接收波束。
采用大规模天线阵列的系统中,波束的个数可能达到256,1024或者更多,一次波束信息指示就需要8比特,10比特,或者更多,因此本申请实施例中提供一种波束信息的指示方法,以降低波束信息指示带来的系统开销。
下面以发送端为基站,接收端为终端(UE)为例,本申请实施例提供的一种发送端与接收端之间关于波束信息的处理方法,如图1所示,具体包括:
步骤S101、基站为终端配置N(N≥1)个参考信号资源。
一个参考信号资源包括若干时频资源,例如包括一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号内的若干个资源单元(Resource Element,RE)。参考信号资源在时域内可以重复出现,例如按照一定的周期重复出现,在一个周期内也可以出现多次。
步骤S102、基站在配置的参考信号资源内向终端发送参考信号,用于终端进行测量上报,并且终端将测量结果上报基站。
在基站侧:
每个参考信号资源内可以映射P(P≥1)个天线端口的参考信号。从不同的参考信号资源发送的参考信号可以采用不同的下行发送波束发送。假设基站共有NTBS个候选的下行发送波束,每个下行波束对应一组波束赋形权值,第 n个波束的发送波束赋形权值为
Figure PCTCN2018093180-appb-000001
其中,K是波束赋形的天线单元数,可以小于基站的天线单元数,例如当一个下行波束仅从一个收发单元连接的K个天线单元发出时,波束赋形的天线单元数K小于基站的天线单元数。
基站为每个候选的下行发送波束选择一个参考信号资源发送相应的下行参考信号。例如对于
Figure PCTCN2018093180-appb-000002
个下行发送波束,基站可以配置
Figure PCTCN2018093180-appb-000003
个参考信号资源,每个波束的参考信号映射到一个参考信号资源发送。
例如:当基站有256个下行发送波束时,基站配置256个参考信号资源,每个波束的参考信号映射到一个参考信号资源发送。每个下行发送波束的参考信号用该波束对应的波束赋形权值赋形之后在其映射的参考信号资源上发出。
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,上述N个参考信号资源为周期性或者半持续性资源,即参考信号为周期性发送或者半持续发送。
在终端侧:
终端接收基站发送的参考信号,确定每个参考信号资源对应的接收波束。终端的接收波束可以是从候选的接收波束中选择得到。终端共有
Figure PCTCN2018093180-appb-000004
个接收波束,每个接收波束对应一组波束赋形权值,第n个波束的接收波束赋形权值为
Figure PCTCN2018093180-appb-000005
其中L是波束赋形的天线振子数,L可以小于终端的天线振子数。对于一个CSI-RS资源上的参考信号,终端可以分别尝试使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该CSI-RS资源的接收波束。
可选地,在具体实施时,终端保存每个CSI-RS资源对应的接收波束,当然,终端也可以保存部分CSI-RS资源对应的接收波束,在此不做限定。在这里,终端保存的可以是CSI-RS资源的指示信息(CSI-RS Resource Indicator,CRI)和接收波束之间的映射关系。
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,基站也可以通过资源集合的方式为终端配置CSI-RS资源。例如,基站为终端配置了S个CSI-RS资源集合。第s个资源集合内,包含N s个CSI-RS资源。如此,对于CSI-RS资源的标识则有多种方式,下面举例说明。
方式一:
资源集合编号+CSI-RS资源编号:这里的CSI-RS资源编号是指在CSI-RS资源在一个集合内的编号;每个CSI-RS资源由两个编号唯一确定:资源集合编号(Resource Setting Index,RSI)和CSI-RS资源编号(即CRI)。
方式二:
CSI-RS资源编号:所有CSI-RS资源集合内的CSI-RS资源统一编号。
无论采用配置和标识方式,本申请实施例后续描述都统一采用CRI表示CSI-RS资源的编号。如果是资源集合编号+CSI-RS资源编号的方式,则将CRI用(RSI,CRI)代替即可。
步骤S103、基站建立波束对(Beam Pair Link,BPL)标识和CRI的映射关系。
BPL标识和CRI的映射关系定义了BPL标识和CRI的映射关系。BPL标识的个数可以为预先设定的值,或者由基站自行确定。如果BPL标识的个数由基站确定,则其个数需要由基站通过信令通知终端。通常BPL标识的个数远小于下行发送波束的个数。例如,当下行发送波束为256个时,BPL标识的个数为4个或者8个。
BPL标识映射到的CRI可以是基站通过终端的测量上报确定的,基站根据终端上报的测量结果建立映射表格。
映射表格中的每个BPL标识映射到一个CSI-RS资源(通过CRI表示)。由于不同的CSI-RS资源是通过不同的下行发送波束发送的,不同的BPL标识代表了不同的下行发送波束。
如下面的表1所示的一个BPL映射的例子,表1中BPL标识的个数为2,BPL标识‘0’映射到CRI0,对应发送波束(Tx beam)0,BPL标识‘1’ 映射到CRI1,对应Tx beam1。
Figure PCTCN2018093180-appb-000006
表1
在具体实施时,在本申请实施例提供上述波束信息的指示方法中,终端接收基站发送的下行参考信号,并选择Q个参考信号资源。
下面举例说明终端选择基站发送的参考信号资源的方式。
终端接收基站发送的参考信号资源后,测量每个参考信号资源的接收信号,计算其接收信号质量,选择接收质量最强的Q个参考信号资源,即将接收质量由高到低排序后排在前Q位的参考信息资源,其中,接收质量的指标可以是RSRP,或者RSRQ等。
可选地,在具体实施时,Q的值可以是由基站确定,通知给终端,或者由终端自行确定,在此不做限定。例如终端可以根据接收质量大于一定门限值的独立实例的个数确定Q的取值。
终端将Q个参考信号资源的标识反馈给基站。
例如,当N=256(N为基站发送的CSI-RS资源的个数),Q=2(Q为终端选择的CSI-RS资源的个数),则终端上报其选择的2个CSI-RS资源的标识,CRI,以及其对应的RSRP,如下面的表2所示:
CRI RSRP
24 -80dBm
37 -78dBm
表2
基站收到终端上报的信息后,则建立如下表3所示的BPL映射表格(假设CRI的编号x对应基站发送波束的编号亦为x):
Figure PCTCN2018093180-appb-000007
Figure PCTCN2018093180-appb-000008
表3
上面所述的基站参考终端上报的信息建立BPL映射表格,意味着基站可以不完全按照终端上报的信息建立BPL映射表格。例如,在终端依然按照表2所示的内容上报的情况下,基站可以基于自身的考虑,例如基于多用户配对的需求等原因,建立如下表3-1所示的BPL、CRI与发送波束的映射关系表格:
Figure PCTCN2018093180-appb-000009
表3-1
步骤S104、基站将BPL标识与CRI的映射关系表格发给终端。
例如,将和步骤S103对应的如下表4发给终端(发送波束的编号信息仅保存在基站侧,可以不发送给终端):
BPL标识 CRI
0 24
1 37
表4
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,上述BPL标识与CRI的映射关系表格可以由基站通过高层信令发送给终端,其中,所述高层信令例如可以为指无线资源控制(Radio Resource Control,RRC)信令或者介质访问控制(Media Access Control,MAC)层信令。
步骤S105、终端接收基站发送的BPL与CRI的映射关系表格,并确定最佳的接收波束。
终端根据保存的CRI和接收波束之间的映射关系,确定BPL标识和接收波束之间的映射关系。
例如,建立如表5所示的映射关系表,假设终端共计有8个接收波束,接收CSI-RS资源24的最佳接收波束是接收波束4,接收CSI-RS资源37的 最佳接收波束是接收波束7,则终端建立如下表5所示的映射关系。其中BPL标识和CRI的映射关系是终端由基站处获得。
Figure PCTCN2018093180-appb-000010
表5
步骤S106、基站调度对终端的数据或者控制信道传输。
基站确定传输所使用的发送波束,并通过基站侧保存的BPL标识和发送波束之间的映射关系,确定该发送波束对应的BPL标识。例如根据表3所示,基站确定使用发送波束24向终端传输数据,则其对应的BPL标识为‘0’。
基站在给终端的控制信息,例如下行控制信令中,携带BPL标识信息,如上述例子中,BPL标识信息取值为‘0’。
BPL标识信息与所占的比特数由BPL标识和CRI的映射关系中BPL的数目确定。例如BPL标识数目为2,则BPL标识信息域占用1比特;再例如,BPL标识数目为4,则BPL标识信息域占用2比特。
终端接收基站发送的控制信息中的BPL标识信息,通过检索保存的BPL标识和接收波束之间的映射关系,确定接收基站发送的数据或者控制信道所应使用的接收波束。如上述的例子中,BPL标识信息取值为‘0’,则终端通过查找表5确定使用接收波束4进行接收。
通过上述这种方式,本申请提供的波束信息的指示方法,通过使BPL和CRI建立映射关系,限制了波束信息指示过程中占用的资源,从而降低了波束信息指示过程的系统开销。
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,步骤S103中,基站建立BPL标识和CRI的映射关系的依据也可以不根据基站上报的测量结果,即:即使有终端的上报,基站也可以不限于终端选择并上报的CRI来选择与BPL标识映射的CRI。例如,上述例子中终端选择并上报了CRI 24和CRI 37,但为了更好的支持多用户传输,基站可以建立如 下表3-1所示的映射关系。
因此,上述步骤S101和S102不是必须要执行的步骤。
可选地,在本申请实施例提供上述波束信息的指示方法中,基站可以决定对BPL标识和CRI的映射关系进行更新,例如终端上报了最新的CRI信息,基站可以据此对BPL标识和CRI的映射关系进行更新。BPL标识和CRI的映射关系更新后,基站需要将更新后的BPL标识和CRI的映射关系发送给终端。
可选地,在具体实施时,在本申请实施例提供的上述波束信息的指示方法中,更新BPL标识和CRI的映射关系的方式可以由多种,下面举例说明。
方式一:完整更新。BPL标识和CRI的映射关系中的所有BPL标识的映射关系都进行更新,即整个映射表格进行更新。映射关系更新后基站向终端发送新的表格。例如,整个表4发生了更新,并将更新后的表4发给终端。
方式二:部分更新。BPL标识和CRI的映射关系中仅有部分BPL标识的映射关系需要进行更新,则基站可以只将这些发生更新的BPL标识的映射关系发送给终端。对于更新消息中没有包含的BPL标识,基站和终端仍然假设先前的映射关系成立。例如,表4中只有第一行的映射关系(BPL 0对应CRI24)发生了更新,则可以仅发送该行更新后的映射关系,默认第二行的映射关系(BPL 1对应CRI 37)保持不变。
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,BPL标识和CRI的映射关系发送给终端之后,基站可以变更与BPL标识映射的发送波束,只要终端不需要变更接收波束即可以正常接收变更后的发送波束。在这种情况下BPL标识和CRI的映射关系没有发生更新,即基站不用给终端发送更新消息。相应地,终端接收到BPL标识和CRI的映射关系之后,终端也可以变更与BPL标识映射的接收波束。
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,所述基站和所述终端之间发送和接收的关系可以互换,在此不做限定,在上述例子中,所述基站为发送端,所述终端为接收端。
综上所述,如图2所示,在发送端,本申请实施例一种波束信息的指示方法包括:
步骤S201、发送端确定与接收端之间进行传输所需使用的第一发送波束;
为了表述清楚,与其他描述中提及的发送波束相区分,此处将发送端确定与接收端之间进行数据或信令传输所需使用的发送波束,称为第一发送波束。相应地,在接收端侧,同理。
步骤S202、发送端根据波束对BPL标识与发送波束之间的第一映射关系,确定所述第一波束对应的BPL标识;其中,接收端有BPL标识与接收波束之间的第二映射关系;
步骤S203、发送端将所述第一BPL标识发送给接收端;
为了表述清楚,与其他描述中提及的BPL标识相区分,此处将发送端发送给接收端的BPL标识称为第一BPL标识。相应地,在接收端侧,同理。
步骤S204、发送端使用所述第一发送波束向所述接收端发送信号。
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,基站侧所建立的BPL标识、CRI和发送波束之间的映射关系可以称为第一映射关系,例如为上面的表1所示的映射关系。
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,终端侧所建立的BPL标识、CRI和发送波束之间的映射关系可以称为第二映射关系,例如为上面的表5所示的映射关系。
可选地,本申请实施例提供的上述波束信息的指示方法,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,本申请实施例提供的上述波束信息的指示方法,所述发送端通过如下方式确定所述第一映射关系:
所述发送端为所述接收端配置参考信号资源;
所述发送端在所述参考信号资源内,向所述接收端发送参考信号,用于所述接收端进行测量上报;
所述发送端通过所述接收端的测量上报结果,确定所述第一映射关系。
可选地,在具体实施时,在本申请实施例提供上述波束信息的指示方法中,所述测量结果即终端根据基站发送的参考信号资源的质量所选择的x个参考信号资源的标识,x可根据需要设定,例如可以为上面的表2所示的测量结果。
可选地,本申请实施例提供的上述波束信息的指示方法还包括:
所述发送端将BPL标识与CRI的映射关系(例如可以为上面的表4所示的映射关系)发给所述接收端,后续如果涉及对该映射关系的更新,还可以将更新后的BPL标识与CRI的映射关系发送给接收端。
相应地,如图3所示,在接收端,本申请还提供的一种波束信息的确定方法,该方法包括:
步骤S301、接收端接收发送端指示的第一波束对BPL标识;
步骤S302、接收端根据BPL标识与接收波束之间的第二映射关系,确定第一BPL标识所对应的第一接收波束,其中,所述发送端设置有BPL标识与发送波束之间的第一映射关系;
步骤S303、所述接收端使用所述第一接收波束接收所述发送端发送的信号。
可选地,本申请实施例提供的上述波束信息的确定方法,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,本申请实施例提供的上述波束信息的确定方法还包括:
所述接收端接收所述发送端发送的BPL标识与CRI的映射关系。
可选地,本申请实施例提供的上述波束信息的确定方法,所述接收端通 过如下方式确定所述第二映射关系:
所述接收端接收所述发送端发送的参考信号资源配置信息;
所述接收端在所述参考信号资源内接收所述发送端发送的参考信号,并确定每个参考信号资源对应的接收波束,确定CRI和接收波束之间的映射关系;
所述接收端根据所述CRI和接收波束之间的映射关系,以及所述BPL标识与CRI的映射关系,确定所述第二映射关系。
后续如果涉及到BPL标识与CRI的映射关系的更新,接收端还可以包括接收发送端发送的更新后的BPL标识与CRI的映射关系的步骤,并利用更新后的BPL标识与CRI的映射关系,更新接收端中的BPL标识与CRI的映射关系。
与上述方法相对应地,本申请实施例还提供了以下装置:
参见图4,在发送端,本申请实施例提供的一种波束信息的指示装置,该装置包括:
第一单元41,用于确定与接收端之间进行传输所需使用的第一发送波束;
第二单元42,用于根据波束对BPL标识与发送波束之间的第一映射关系,确定所述第一发送波束对应的第一BPL标识;其中,所述接收端有BPL标识与接收波束之间的第二映射关系;
第三单元43,用于将所述第一BPL标识发送给所述接收端;
第四单元44,用于使用所述第一发送波束向所述接收端发送信号。
可选地,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,所述第二单元42通过如下方式确定所述第一映射关系:
为所述接收端配置参考信号资源;
在所述参考信号资源内,向所述接收端发送参考信号,用于所述接收端 进行测量上报;
通过所述接收端的测量上报结果,确定所述第一映射关系。
可选地,所述第三单元43还用于:
将BPL标识与CRI的映射关系发给所述接收端。
参见图5,在接收端,本申请实施例提供的一种波束信息的确定装置,该装置包括:
第五单元51,用于接收发送端指示的第一波束对BPL标识;
第六单元52,用于根据BPL标识与接收波束之间的第二映射关系,确定所述发送端指示的BPL标识所对应的第一接收波束,其中,所述发送端有BPL标识与发送波束之间的第一映射关系;
第七单元53,用于使用所述第一接收波束接收所述发送端发送的信号。
可选地,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,所述第六单元还用于:
接收所述发送端发送的BPL标识与CRI的映射关系。
可选地,所述第六单元通过如下方式确定所述第二映射关系:
接收所述发送端发送的参考信号资源配置信息;
在所述参考信号资源内接收所述发送端发送的参考信号,并确定每个参考信号资源对应的接收波束,确定CRI和接收波束之间的映射关系;
根据所述CRI和接收波束之间的映射关系,以及所述BPL标识与CRI的映射关系,确定所述第二映射关系。
参见图6,在发送端,本申请实施例提供的另一种波束信息的指示装置,包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
确定与接收端之间进行传输所需使用的第一发送波束;
根据波束对BPL标识与发送波束之间的第一映射关系,确定第一发送波束对应的第一BPL标识;其中,所述接收端有BPL标识与接收波束之间的第二映射关系;
通过收发机510将所述第一BPL标识发送给所述接收端;
通过收发机510使用所述第一发送波束向所述接收端发送信号。
可选地,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,处理器500通过如下方式确定所述第一映射关系:
为所述接收端配置参考信号资源;
在所述参考信号资源内,向所述接收端发送参考信号,用于所述接收端进行测量上报;
通过所述接收端的测量上报结果,确定所述第一映射关系。
可选地,所述处理器500还用于:
通过收发机510将BPL标识与CRI的映射关系发给所述接收端。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate  Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
参见图7,在接收端,本申请实施例提供的另一种波束信息的确定装置,包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
通过收发机610接收发送端指示的第一波束对BPL标识;
根据BPL标识与接收波束之间的第二映射关系,确定所述第一BPL标识所对应的第一接收波束,其中,所述发送端有BPL标识与发送波束之间的第一映射关系;
通过收发机610使用所述第一接收波束接收所述发送端发送的信号。
可选地,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
可选地,所述处理器600还包括:
通过收发机610接收所述发送端发送的BPL标识与CRI的映射关系。
可选地,所述处理器600通过如下方式确定所述第二映射关系:
通过收发机610所述发送端发送的参考信号资源配置信息;
通过收发机610在所述参考信号资源内接收所述发送端发送的参考信号,并确定每个参考信号资源对应的接收波束,确定CRI和接收波束之间的映射关系;
根据所述CRI和接收波束之间的映射关系,以及所述BPL标识与CRI的映射关系,确定所述第二映射关系。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等 之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
相应地,本申请实施例还提供一种通信系统,包括上述的波束信息指示装置,和/或,上述本申请实施例提供的波束信息的确定装置。也就是说,本申请实施例提供的通信系统(或者也可以称为通信设备),可以同时具有上述波束信息的指示装置和波束信息的确定装置的全部或部分功能。
基于相同的技术构思,本申请实施例还提供了一种计算机存储介质。所述计算机存储介质是非易失性存储介质,存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行前述实施例所描述的波束信息的处理的流程。
综上所述,本申请实施例提供的上述方案,通过在发送端建立BPL标识和发送波束之间的第一映射关系,以及相应的在接收端建立BPL标识与接收波束之间的第二映射关系,从而使得波束信息的指示,只需要指示BPL标识,使得接收端根据BPL标识就可以确定对应的接收波束,从而降低了波束信息指示过程的系统开销。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种波束信息的指示方法,其特征在于,该方法包括:
    发送端确定与接收端之间进行传输所需使用的第一发送波束;
    所述发送端根据波束对BPL标识与发送波束之间的第一映射关系,确定所述第一发送波束对应的第一BPL标识;其中,所述接收端有BPL标识与接收波束之间的第二映射关系;
    所述发送端将所述第一BPL标识发送给所述接收端;
    所述发送端使用所述第一发送波束向所述接收端发送信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
    所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
  3. 根据权利要求2所述的方法,其特征在于,所述发送端通过如下方式确定所述第一映射关系:
    所述发送端为所述接收端配置参考信号资源;
    所述发送端在所述参考信号资源内,向所述接收端发送参考信号,用于所述接收端进行测量上报;
    所述发送端通过所述接收端的测量上报结果,确定所述第一映射关系。
  4. 根据权利要求2所述的方法,其特征在于,该方法还包括:
    所述发送端将BPL标识与CRI的映射关系发给所述接收端。
  5. 一种波束信息的确定方法,其特征在于,该方法包括:
    接收端接收发送端指示的第一波束对BPL标识;
    所述接收端根据BPL标识与接收波束之间的第二映射关系,确定所述第一BPL标识所对应的第一接收波束,其中,所述发送端有BPL标识与发送波束之间的第一映射关系;
    所述接收端使用所述第一接收波束接收所述发送端发送的信号。
  6. 根据权利要求5所述的方法,其特征在于,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
    所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
  7. 根据权利要求6所述的方法,其特征在于,该方法还包括:
    所述接收端接收所述发送端发送的BPL标识与CRI的映射关系。
  8. 根据权利要求7所述的方法,其特征在于,所述接收端通过如下方式确定所述第二映射关系:
    所述接收端接收所述发送端发送的参考信号资源配置信息;
    所述接收端在所述参考信号资源内接收所述发送端发送的参考信号,并确定每个参考信号资源对应的接收波束,确定CRI和接收波束之间的映射关系;
    所述接收端根据所述CRI和接收波束之间的映射关系,以及所述BPL标识与CRI的映射关系,确定所述第二映射关系。
  9. 一种波束信息的指示装置,其特征在于,该装置包括:
    第一单元,用于确定与接收端之间进行传输所需使用的第一发送波束;
    第二单元,用于根据波束对BPL标识与发送波束之间的第一映射关系,确定所述第一发送波束对应的BPL标识;其中,所述接收端有BPL标识与接收波束之间的第二映射关系;
    第三单元,用于将所述第一BPL标识发送给所述接收端;
    第四单元,用于使用所述第一发送波束向所述接收端发送信号。
  10. 根据权利要求9所述的装置,其特征在于,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
    所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射 关系。
  11. 根据权利要求10所述的装置,其特征在于,所述第二单元通过如下方式确定所述第一映射关系:
    为所述接收端配置参考信号资源;
    在所述参考信号资源内,向所述接收端发送参考信号,用于所述接收端进行测量上报;
    通过所述接收端的测量上报结果,确定所述第一映射关系。
  12. 根据权利要求9所述的装置,其特征在于,所述第三单元还用于:
    将BPL标识与CRI的映射关系发给所述接收端。
  13. 一种波束信息的确定装置,其特征在于,该装置包括:
    第五单元,用于接收发送端指示的第一波束对BPL标识;
    第六单元,用于根据BPL标识与接收波束之间的第二映射关系,确定所述第一BPL标识所对应的第一接收波束,其中,所述发送端有BPL标识与发送波束之间的第一映射关系;
    第七单元,用于使用所述第一接收波束接收所述发送端发送的信号。
  14. 根据权利要求13所述的装置,其特征在于,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
    所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
  15. 根据权利要求14所述的装置,其特征在于,所述第六单元还用于:
    接收所述发送端发送的BPL标识与CRI的映射关系。
  16. 根据权利要求15所述的装置,其特征在于,所述第六单元通过如下方式确定所述第二映射关系:
    接收所述发送端发送的参考信号资源配置信息;
    在所述参考信号资源内接收所述发送端发送的参考信号,并确定每个参考信号资源对应的接收波束,确定CRI和接收波束之间的映射关系;
    根据所述CRI和接收波束之间的映射关系,以及所述BPL标识与CRI的映射关系,确定所述第二映射关系。
  17. 一种通信系统,其特征在于,包括权利要求9~12任一所述的装置,和/或,权利要求13~16任一所述的装置。
  18. 一种波束信息的指示装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行下列过程:
    确定与接收端之间进行传输所需使用的第一发送波束;根据波束对BPL标识与发送波束之间的第一映射关系,确定所述第一发送波束对应的第一BPL标识;其中,所述接收端有BPL标识与接收波束之间的第二映射关系;将所述第一BPL标识发送给所述接收端;使用所述第一发送波束向所述接收端发送信号。
  19. 根据权利要求18所述的指示装置,其特征在于,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
    所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
  20. 根据权利要求19所述的指示装置,其特征在于,所述处理器还用于,通过如下方式确定所述第一映射关系:
    为所述接收端配置参考信号资源;
    在所述参考信号资源内,向所述接收端发送参考信号,用于所述接收端进行测量上报;
    通过所述接收端的测量上报结果,确定所述第一映射关系。
  21. 根据权利要求19所述的指示装置,其特征在于,所述处理器还用于:
    将BPL标识与CRI的映射关系发给所述接收端。
  22. 一种波束信息的确定装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行下列过程:
    接收发送端指示的第一波束对BPL标识;根据BPL标识与接收波束之间的第二映射关系,确定所述第一BPL标识所对应的第一接收波束,其中,所述发送端有BPL标识与发送波束之间的第一映射关系;使用所述第一接收波束接收所述发送端发送的信号。
  23. 根据权利要求22所述的确定装置,其特征在于,所述第一映射关系具体包括:BPL标识、信道状态信息参考信号资源指示CRI以及发送波束之间的映射关系;
    所述第二映射关系具体包括:BPL标识、CRI以及接收波束之间的映射关系。
  24. 根据权利要求23所述的确定装置,其特征在于,所述处理器还用于:
    接收所述发送端发送的BPL标识与CRI的映射关系。
  25. 根据权利要求24所述的确定装置,其特征在于,所述处理器还用于:通过如下方式确定所述第二映射关系:
    接收所述发送端发送的参考信号资源配置信息;
    在所述参考信号资源内接收所述发送端发送的参考信号,并确定每个参考信号资源对应的接收波束,确定CRI和接收波束之间的映射关系;
    根据所述CRI和接收波束之间的映射关系,以及所述BPL标识与CRI的映射关系,确定所述第二映射关系。
  26. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求1至4中任一项所述的方法或如权利要求5至8中任一项所述的方法。
PCT/CN2018/093180 2017-08-11 2018-06-27 一种波束信息的指示、确定方法及装置、通信系统 WO2019029290A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020507535A JP7027522B2 (ja) 2017-08-11 2018-06-27 ビーム情報を指示および決定するための方法および装置、ならびに通信システム
US16/638,116 US11025330B2 (en) 2017-08-11 2018-06-27 Method for indicating and determining beam information, device, and communication system
EP18843227.2A EP3667941B1 (en) 2017-08-11 2018-06-27 Method for indicating and determining beam information, device, and communication system
KR1020207006716A KR102305717B1 (ko) 2017-08-11 2018-06-27 빔 정보를 지시 및 결정하기 위한 방법 및 장치, 및 통신 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710686152.5 2017-08-11
CN201710686152.5A CN108988921B (zh) 2017-08-11 2017-08-11 一种波束信息的指示、确定方法及装置、通信系统

Publications (1)

Publication Number Publication Date
WO2019029290A1 true WO2019029290A1 (zh) 2019-02-14

Family

ID=64542171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093180 WO2019029290A1 (zh) 2017-08-11 2018-06-27 一种波束信息的指示、确定方法及装置、通信系统

Country Status (6)

Country Link
US (1) US11025330B2 (zh)
EP (1) EP3667941B1 (zh)
JP (1) JP7027522B2 (zh)
KR (1) KR102305717B1 (zh)
CN (1) CN108988921B (zh)
WO (1) WO2019029290A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740510A (zh) * 2018-07-18 2020-01-31 中兴通讯股份有限公司 一种信息元素的传输方法、装置及系统
CN113395780B (zh) * 2020-03-13 2023-09-12 大唐移动通信设备有限公司 上行信道传输方法、装置、基站、终端及存储介质
WO2023020317A1 (zh) * 2021-08-20 2023-02-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117254889A (zh) * 2022-06-08 2023-12-19 大唐移动通信设备有限公司 波束信息的确定方法、装置及通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和系统
WO2015090061A1 (zh) * 2013-12-20 2015-06-25 中兴通讯股份有限公司 一种实现下行波束索引处理的方法、装置和系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023366B1 (ko) * 2004-10-27 2011-03-18 삼성전자주식회사 빔 포밍 방식을 사용하는 다중 입력 다중 출력 무선 통신시스템에서 신호 송수신 장치 및 방법
HUE050086T2 (hu) * 2013-05-31 2020-11-30 Qualcomm Inc Lineáris elõkódolás teljes dimenziójú MIMO rendszerekben
US10211964B2 (en) * 2015-07-29 2019-02-19 Samsung Electronics Co., Ltd. Method and apparatus for CSI reporting
CN106961296A (zh) * 2016-01-08 2017-07-18 北京信威通信技术股份有限公司 一种开环多天线发送方法
WO2018083253A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for beam tracking process management and indices
WO2018173163A1 (ja) * 2017-03-22 2018-09-27 株式会社Nttドコモ ユーザ端末及び無線通信方法
EP3605861A4 (en) * 2017-03-23 2020-09-16 NTT DoCoMo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION PROCESS
KR20190118643A (ko) * 2017-03-24 2019-10-18 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 디바이스를 위한 전송기 및 수신기 구성을 결정하는 시스템 및 방법
US11006360B2 (en) * 2017-07-27 2021-05-11 Qualcomm Incorporated Multi-beam physical downlink control channel (PDCCH) monitoring during connected mode discontinuous reception (CDRX) operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和系统
WO2015090061A1 (zh) * 2013-12-20 2015-06-25 中兴通讯股份有限公司 一种实现下行波束索引处理的方法、装置和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "DL beam management", 3GPP TSG RAN WGI MEETING #88B, R1-1704229, 25 March 2017 (2017-03-25), pages 1 - 8, XP051251038 *
See also references of EP3667941A4

Also Published As

Publication number Publication date
EP3667941B1 (en) 2022-04-27
KR102305717B1 (ko) 2021-09-27
EP3667941A4 (en) 2020-07-08
JP7027522B2 (ja) 2022-03-01
KR20200036014A (ko) 2020-04-06
JP2020529802A (ja) 2020-10-08
US20200177262A1 (en) 2020-06-04
CN108988921A (zh) 2018-12-11
EP3667941A1 (en) 2020-06-17
US11025330B2 (en) 2021-06-01
CN108988921B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2018223972A1 (zh) 一种信道质量信息的上报方法及装置
WO2018082641A1 (zh) 传输信息的方法和设备
KR102340704B1 (ko) 빔 트레이닝 방법 및 장치, 통신 시스템
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2019029290A1 (zh) 一种波束信息的指示、确定方法及装置、通信系统
WO2018196529A1 (zh) 一种资源信息确定方法及终端设备、网络设备
WO2018137397A1 (zh) 一种配置信息的方法、装置及系统
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
WO2018121436A1 (zh) 波束确定方法、基站及用户设备
WO2023226046A1 (zh) Tci状态的指示方法、装置、设备及介质
WO2018059470A1 (zh) 传输信息的方法和设备
WO2019137162A1 (zh) 信息指示、确定方法及装置、计算机存储介质
JP7123195B2 (ja) 通信方法及び通信機器
WO2022077387A1 (zh) 一种通信方法及通信装置
JP2019530369A (ja) チャネル品質情報報告方法、装置およびシステム
CN110999112B (zh) 无线通信的波束指示
WO2020143605A1 (zh) 数据传输方法、终端和网络侧设备
JP7168290B2 (ja) 参照信号伝送方法および通信装置
WO2022206999A1 (zh) 定位方法、装置及存储介质
WO2018059571A1 (zh) 表征准共位置参数配置的方法和装置、发射及接收设备
US20230146882A1 (en) Wireless communication system
CN117812743A (zh) 通信方法及装置
CN117676873A (zh) 上行资源指示方法及通信装置
CN115707096A (zh) 一种时间误差信息的更新方法以及相关装置
CN115551073A (zh) 空间关系指示方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207006716

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018843227

Country of ref document: EP

Effective date: 20200311