WO2018121436A1 - 波束确定方法、基站及用户设备 - Google Patents

波束确定方法、基站及用户设备 Download PDF

Info

Publication number
WO2018121436A1
WO2018121436A1 PCT/CN2017/118016 CN2017118016W WO2018121436A1 WO 2018121436 A1 WO2018121436 A1 WO 2018121436A1 CN 2017118016 W CN2017118016 W CN 2017118016W WO 2018121436 A1 WO2018121436 A1 WO 2018121436A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
information
candidate
configuration information
candidate beam
Prior art date
Application number
PCT/CN2017/118016
Other languages
English (en)
French (fr)
Inventor
周凯捷
邓天乐
王新征
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018121436A1 publication Critical patent/WO2018121436A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the embodiments of the present disclosure relate to the field of wireless communications, and in particular, to a beam determining method, a base station, and a user equipment.
  • New radio access technology provides shorter latency, greater bandwidth, and supports a large number of connections for mobile communications compared to existing radio access technologies. Growing demand.
  • the base station uses a narrow beam to transmit data to user equipment (UE), but the narrow beam is easily blocked by an obstacle, thereby causing communication interruption.
  • UE user equipment
  • the narrow beam is easily blocked by an obstacle, thereby causing communication interruption.
  • a macro base station receives a reference signal received power (RSRP) or a reference signal received quality (RSRQ) according to a reference signal received by a UE.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the embodiment of the present application provides a beam determining method, a base station, and a user equipment.
  • an embodiment of the present application provides a beam determining method, including:
  • the first base station receives the channel quality indication information from the UE; the first base station sends the channel quality indication information to the second base station, where the channel quality indication information is used by the second base station to determine the first beam for the UE.
  • the first beam belongs to the second base station, the first beam is used for communication between the second base station and the UE, and the first base station receives the first beam from the second base station.
  • the first base station sends the identification information of the first beam to the UE.
  • the first base station sends the channel quality indication information from the UE to the second base station, and the second base station selects, in the beam belonging to the second base station, the information according to the channel quality indication information.
  • the UE sends the beam of the downlink data, and sends the identifier information of the selected beam to the UE by using the first base station.
  • the channel quality indicator information can reflect the fast channel change. Therefore, the second base station can select an appropriate beam for the UE to transmit data accurately and timely, and enhance the communication reliability. In the scenario where the UE switches the beam, the communication continuity can be improved. Sex.
  • the method further includes
  • the first base station determines a candidate beam for the UE; the first base station sends configuration information of the candidate beam to the UE, where the configuration information includes identification information of the candidate beam, and the candidate beam
  • the configuration information is used by the UE to measure a reference signal of the candidate beam; then, the first base station may receive channel quality indication information obtained by the UE measuring a reference signal of the candidate beam.
  • the configuration information of the candidate beam may further include time slot information of the candidate beam.
  • the method further includes
  • the first base station receives configuration information of at least one beam belonging to the second base station from the second base station; then, the first base station may determine the candidate beam according to configuration information of the at least one beam.
  • the first base station may send downlink control information to the UE, where the downlink control information includes identifier information of the first beam.
  • the first base station when the first base station is a low frequency base station, and the second base station is a high frequency base station, the first base station is responsible for information transmission with the UE, which can save signaling overhead and improve transmission. effectiveness.
  • the embodiment of the present application provides a base station, where the base station has the function of implementing the first base station in the beam determining method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station includes multiple function modules or units for implementing the beam determining method of any one of the foregoing first aspects.
  • the base station includes a processor and a transceiver, where the processor is configured to support the apparatus to perform the first of the beam determining methods of any one of the foregoing first aspects.
  • the transceiver is configured to support communication between the base station and the terminal.
  • the base station can also include a memory for coupling with the processor that retains program instructions and data necessary for the apparatus to perform the beam determining method described above.
  • the base station may further include a communication interface for supporting communication between the base station and the second base station.
  • an embodiment of the present application provides a beam determining method, including:
  • the second base station receives channel quality indication information from the UE by using the first base station; the second base station determines a first beam for the UE according to the channel quality indication information; and the second base station notifies the UE of the first Identification information of a beam; wherein the first beam belongs to a second base station, and the first beam is used for communication between the second base station and the UE.
  • the method further includes
  • the second base station may receive, by the first base station, the channel quality indication information obtained by using a reference signal of the UE measurement candidate beam.
  • the method includes
  • the second base station sends the configuration information of the candidate beam to the UE, where the configuration information of the candidate beam is used by the UE to measure the signal of the candidate beam to obtain the channel quality indication information, and the configuration of the candidate beam
  • the information includes identification information of the candidate beam, and the candidate beam belongs to the second base station.
  • the second base station may send configuration information of the beam managed by the UE to the UE in a broadcast manner without forwarding through the first base station.
  • the second base station notifying the UE of the identifier information of the first beam, the second base station sending the identifier information of the first beam to the first base station And transmitting, by the first base station, the identifier information of the first beam to the UE.
  • the embodiment of the present application provides a base station, where the base station has the function of implementing the first base station in the beam determining method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station includes multiple function modules or units for implementing the beam determining method of any one of the foregoing first aspects.
  • the base station includes a processor and a transceiver, where the processor is configured to support the apparatus to perform the first of the beam determining methods of any one of the foregoing third aspects.
  • the transceiver is configured to support communication between the base station and the terminal.
  • the base station can also include a memory for coupling with the processor that retains program instructions and data necessary for the apparatus to perform the beam determining method described above.
  • the base station may further include a communication interface for supporting communication between the base station and the second base station.
  • the embodiment of the present application provides a beam determining method, where the method includes: receiving, by a first base station, channel quality indication information from a user equipment UE, where the first base station is configured according to the channel quality indication information Determining, by the UE, a first beam, the first beam belongs to a second base station, the first beam is used for communication between the second base station and the UE, and the first base station sends the first beam to the UE And the first base station sends a notification message to the second base station, where the notification message is used to indicate the first beam.
  • the first base station receives the channel quality indication information reported by the UE, and selects, according to the channel quality indication information, a beam for transmitting downlink data to the UE, and selects a beam that belongs to the second base station.
  • the identification information of the outgoing beam is sent to the UE.
  • the channel quality indicator information can reflect the fast channel change. Therefore, the first base station can accurately and timely select a suitable beam of the second base station for the UE to transmit data, thereby enhancing communication reliability. In the scenario where the UE switches the beam, Can improve communication continuity.
  • the method further includes
  • the first base station determines a candidate beam for the UE; the first base station sends configuration information of the candidate beam to the UE, where the configuration information includes identification information of the candidate beam, and the candidate beam
  • the configuration information is used by the UE to measure a reference signal of the candidate beam; then, the first base station may receive the channel quality indication information obtained by the UE measuring a reference signal of the candidate beam.
  • the first base station is a low frequency base station; and the second base station is a high frequency base station.
  • the method further includes
  • the first base station determines the candidate beam according to configuration information of the at least one beam.
  • the configuration information of the candidate beam further includes time slot information of the candidate beam.
  • the first base station when the first base station is a low frequency base station, and the second base station is a high frequency base station, the first base station is responsible for information transmission with the UE, which can save signaling overhead and improve transmission. effectiveness.
  • the embodiment of the present application provides a base station, where the base station has a function of implementing the first base station in the beam determining method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station includes multiple function modules or units for implementing the beam determining method of any one of the foregoing fifth aspects.
  • the base station includes a processor and a transceiver, where the processor is configured to support the apparatus to perform the first one of the beam determining methods of any one of the foregoing fifth aspects.
  • the transceiver is configured to support communication between the base station and the terminal.
  • the base station can also include a memory for coupling with the processor that retains program instructions and data necessary for the apparatus to perform the beam determining method described above.
  • the base station may further include a communication interface for supporting communication between the base station and the second base station.
  • an embodiment of the present application provides a beam determining method, where the method includes
  • the second base station receives a notification message from the first base station, where the notification message is used to indicate a first beam determined by the first base station, the first beam belongs to the second base station, and the second base station determines to use the first A beam communicates with the user equipment UE.
  • the method further includes: sending, by the second base station, configuration information of the at least one beam of the second base station to the first base station, where configuration information of the at least one beam is used by A candidate beam is determined at the first base station.
  • the configuration information of the at least one beam includes identification information of the at least one beam.
  • the embodiment of the present application provides a base station, where the base station has a function of implementing the first base station in the beam determining method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station includes multiple function modules or units, and is used to implement any one of the foregoing seventh aspects.
  • the base station includes a processor and a transceiver, where the processor is configured to support the apparatus to perform the first of the beam determining methods of any one of the foregoing eighth aspects.
  • the transceiver is configured to support communication between the base station and the terminal.
  • the base station can also include a memory for coupling with the processor that holds program instructions and data necessary for the base station to perform the beam determining method described above.
  • the base station may further include a communication interface for supporting communication between the base station and the second base station.
  • the embodiment of the present application provides a beam determining method, where the method includes
  • the UE obtains channel quality indication information; the UE sends the channel quality indication information to the first base station, where the channel quality indication information is used to determine a first beam, the first beam belongs to a second base station, and the first beam Used for communication between the UE and the second base station; the UE receives identification information of the first beam from the first base station.
  • the channel quality indication information may be specifically used by the first base station to determine the first beam, or used by the second base station to determine the first beam.
  • the method further includes
  • the UE receives the configuration information of the candidate beam, and the configuration information of the candidate beam includes the identification information of the candidate beam; then, the UE may measure the reference signal of the candidate beam, and obtain the channel corresponding to the candidate beam. Quality indication information.
  • the receiving, by the UE, configuration information of the candidate beam that the UE receives configuration information of the candidate beam from the second base station, where the candidate beam belongs to the first Two base stations.
  • the UE may receive downlink control information from the first base station, where the downlink control information includes identifier information of the first beam.
  • the embodiment of the present application provides a UE, where the base station has the function of implementing the UE in the beam determining method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the UE includes multiple function modules or units, and is used to implement any one of the foregoing tenth aspects.
  • the UE is configured to include a processor and a transceiver, where the processor is configured to support the UE to perform the first one of the beam determining methods of any one of the foregoing seventh aspects.
  • the transceiver is configured to support communication between the UE and a base station.
  • the UE may also include a memory for coupling with the processor that holds program instructions and data necessary for the apparatus to perform the beam determining method described above.
  • the embodiment of the present application provides a communication system, where the communication system includes the base station according to the second aspect, the base station according to the fourth aspect, and the UE according to the tenth aspect.
  • the embodiment of the present application provides a communication system, where the communication system includes the base station according to the sixth aspect, the base station according to the eighth aspect, and the UE according to the tenth aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions for a base station provided by the second aspect, which includes a program for executing the above first aspect or the designed program.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station provided in the fourth aspect, which includes a program designed to execute the foregoing third aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station provided in the sixth aspect, which includes a program for executing the fifth aspect or the designed program.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station provided in the foregoing eighth aspect, which includes a program designed to execute the seventh aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the UE provided in the above tenth aspect, which includes a program designed to execute the foregoing ninth aspect.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a beam determining method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a signaling flow of a beam determining method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a beam determining method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a signaling flow of a beam determining method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a base station 600 according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a base station 700 according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a base station 800 according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a base station 900 according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a possible design of a base station according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a possible design of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a possible design of a UE according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a communication system 1400 according to an embodiment of the present application.
  • the techniques described in the embodiments of the present application can be applied to various communication systems, such as an LTE system, or a communication system employing New RAT.
  • the communication system using the New RAT includes an evolved LTE (evolved LTE, eLTE) system, or a communication system using a 5G communication technology, and the like.
  • the UE involved in the embodiments of the present application may include a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to the wireless modem, and various forms of user equipment, mobile stations (mobile Station, MS), terminal, terminal equipment, etc., are referred to as “user equipment” or “UE” in this application for convenience of description.
  • the base station involved in the embodiment of the present application may be an evolved Node B (NodeB or eNB or e-NodeB, evolved Node B) in the LTE system, or a base station device gNB in the 5G system, or a base station device eLTE eNB in the eLTE system. .
  • NodeB or eNB or e-NodeB, evolved Node B in the LTE system
  • gNB in the 5G system
  • eLTE eNB base station device in the eLTE system.
  • the embodiment of the present application does not specifically limit the type of the base station.
  • the embodiment of the present application defines that the unidirectional communication link of the base station to the UE is a downlink, and the unidirectional communication link of the UE to the base station is an uplink.
  • Multiple appearing in the embodiments of the present application means two or more.
  • the descriptions of the first, second, and the like appearing in the embodiments of the present application are only used for the purpose of indicating and distinguishing the description objects, and there is no order, and does not mean that the number of devices in the embodiment of the present application is particularly limited, and the present application cannot be Any limitations of the embodiments.
  • connection appearing in the embodiment of the present application refers to various connection modes such as direct connection or indirect connection, for example, connecting different devices through a communication interface, without any limitation.
  • the "network” and the “system” appearing in the embodiment of the present application express the same concept, and the communication system is a communication network.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • a first base station and a second base station that are non-colocated are included.
  • the first base station and the second base station can be connected by an ideal backhaul or a non-ideal backhaul.
  • the first base station and the second base station may also be co-located, that is, the first base station and the second base station are deployed on the same site.
  • the first base station and the second base station may share a control device such as a baseband unit (BBU), and respectively use a signal transceiver device such as a radio remote unit (RRU), and the first The base station and the second base station can independently transmit and receive signals.
  • BBU baseband unit
  • RRU radio remote unit
  • the first base station and the second base station can communicate directly or indirectly.
  • the first base station and the second base station communicate using a communication interface.
  • the communication interface can adopt an existing communication interface between base stations or a newly established communication interface.
  • the communication interface may be fixed, similar to the X2 interface between the eNBs in the LTE system, or may be triggered by an event. This application does not specifically limit this.
  • the communication interface is an internal interface. After the communication interface completes the initial establishment, the first base station and the second base station can perform information interaction and data transmission through the communication interface.
  • the physical medium of the communication interface may be a connection mode of a copper cable, a microwave, an optical fiber, or the like, which is not specifically limited in the embodiment of the present application.
  • FIG. 1 the number of the second base stations shown in FIG. 1 is only a schematic. In an actual networking scenario, one first base station can connect multiple second base stations.
  • the signal coverage of the second base station is within the signal coverage of the first base station, and the second base station may complement or enhance the signal coverage of the first base station.
  • the signal coverage of the first base station may overlap with the signal coverage of the second base station.
  • the dotted area marked in Fig. 1 is the signal coverage of the first base station or the second base station.
  • the first base station may serve as a macro base station
  • the second base station may serve as a small base station.
  • the signal coverage of the first base station may be referred to as a macro cell
  • the signal coverage of the second base station may be referred to as a micro cell.
  • the small base station may be a device such as a micro base station (Micro), a pico base station (Pico), and a femto base station (Femto), a home base station, an access point (AP), and the like. Specially limited.
  • the second base station is a non-standalone (NSA) base station, that is, the second base station only establishes a user plane for transmitting data, and the control plane of the second base station is established at the first base station.
  • the second base station needs the first base station to assist in communicating with the core network.
  • the second base station is a standalone (SA) base station, that is, the user plane and the control plane are established on the second base station, and the second base station can independently communicate with the core network. It can be understood that whether the second base station is deployed independently or not independently, the second base station can perform operations such as resource scheduling, including determining a beam used for communication with the UE.
  • the first base station is an independently deployed base station, and has a complete protocol stack, and can independently communicate with the core network.
  • the UE is in the signal coverage of the first base station and the second base station, and the UE can access the first base station by using dual-connection (DC) or carrier aggregation (CA). And the second base station, the UE can receive downlink data from the first base station and the second base station at the same time, and improve the data transmission rate.
  • DC dual-connection
  • CA carrier aggregation
  • the first base station and the second base station may be in the same system or in a heterogeneous manner.
  • the first base station and the second base station are both LTE-based base stations; or, the first base station and the second base station are both NR-type base stations; or the first base station is an LTE-based base station, and the second base station is an NR standard Base station.
  • the first base station is a low frequency base station, and the second base station is a high frequency base station; or the first base station is a high frequency base station, and the second base station is a high frequency base station.
  • the low frequency base station refers to a base station that transmits data using a low frequency signal (for example, a signal with a carrier frequency less than 6 GHz), and the high frequency base station refers to transmission using a high frequency signal (for example, a signal with a carrier frequency greater than or equal to 6 GHz).
  • Base station for data It can be understood that the low frequency and the high frequency described in the embodiments of the present application are relative concepts, indicating that the signal frequency band used by the second base station is higher than the signal frequency band used by the first base station.
  • High-frequency signals have a large bandwidth (for example, greater than 1 GHz) and are suitable for transmitting high-speed data.
  • beam forming can be used to improve signal quality.
  • the high frequency base station can transmit the high frequency signal using one or more beams. Since the beam is blocked by the obstacle, the UE can measure the signal quality of the beam of each high-frequency base station and report it to the network side. If the performance of the currently used beam of the UE is not good, the network side may select another beam for the UE to continue to transmit the high frequency signal and notify the UE.
  • the beam included in the embodiment of the present application includes a transmit beam, which refers to a radio wave having a certain direction and shape when a wireless signal is transmitted by at least one antenna port of the base station, and the beam has a certain coverage.
  • the method for forming a beam may include weighting the amplitude and/or phase of the data transmitted by the at least one antenna port to form a beam, and may also form a beam by other methods, such as adjusting related parameters of the antenna unit, which is used in this embodiment of the present application. No special restrictions.
  • the beam in the embodiment of the present application includes a beam of a horizontal plane and/or a beam of a vertical plane.
  • FIG. 2 is a schematic flowchart of a beam determining method according to an embodiment of the present application.
  • the beam determining method may be applied to the communications system shown in FIG. 1.
  • a communication connection exists between the UE and the first base station, the UE, and the second base station, respectively.
  • the UE may access the first base station and the at least one second base station in a DC or CA manner.
  • the access mode of the UE is not limited in this embodiment.
  • the first base station may separately communicate with the at least the second base station, and specifically, the first base station and each of the second base stations have an independent communication interface. For details, refer to the related description of the communication system shown in FIG. I will not repeat them here.
  • the method comprises the following steps:
  • S201 The UE sends channel quality indication information to the first base station.
  • the channel quality indication information may specifically be a channel quality indictor (CQI).
  • CQI channel quality indictor
  • the UE may report the channel quality indication information periodically or aperiodically, or the UE may report the channel quality indication information based on an event, which is not specifically limited in this embodiment of the present application.
  • S202 The first base station sends the received channel quality indication information to the second base station.
  • the second base station selects the first beam for the UE according to the received channel quality indication information.
  • the first beam belongs to a second base station, and the first beam is used for communication between the second base station and the UE.
  • the first beam is used for communication between the second base station and the UE, and the second base station may send downlink data to the UE by using the first beam.
  • the first beam belongs to the second base station, that is, the first beam is managed by the second base station, or the second base station transmits the first beam.
  • each second base station may be configured with one or more beams, and the beam configured on the second base station may be used to carry a high frequency signal, and the high frequency signal may be used to transmit downlink data sent to the UE.
  • the first beam is a narrow beam.
  • the UE can use two or more beams to receive data at the same time. Therefore, the second base station can be based on the maximum number of beams supported by the UE. And selecting a corresponding number of beams in the beams belonging to the second base station for downlink data transmission of the UE. For example, if the UE supports 4 beam communication, the second base station can select up to 4 beams belonging to the second base station for the UE, that is, determine 4 first beams.
  • the second base station sends the identifier information of the first beam to the first base station.
  • the identifier information of the first beam may be sent to the first base station, and forwarded by the first base station to the UE.
  • the first base station is a low frequency base station and the second base station is a high frequency base station
  • the first base station sends the identification information of the first beam to the UE, the signaling overhead is small, and the information transmission efficiency is high.
  • the first base station sends the identifier information of the received first beam to the UE.
  • the first base station may send downlink control information (DCI) to the UE, where the downlink control information includes identifier information of the first beam.
  • DCI downlink control information
  • the UE determines the first beam according to the identifier information in the received DCI, and communicates with the second base station on the first beam.
  • the identification information of the first beam includes a beam identity (beam ID), and/or information of a reference signal of the first beam.
  • the information of the reference signal of the first beam includes the identification information of the reference signal and/or the offset of the reference signal.
  • the identification information of the reference signal may be represented by a root sequence, and the offset of the reference signal is an offset of the root sequence. Different root sequences can be mapped to different beams; or, when the root sequences are the same, they can also be mapped to corresponding beams by the offset of each root sequence.
  • the method further includes the following steps:
  • the first base station determines at least one candidate beam for the UE.
  • the first base station sends configuration information of the candidate beam to the UE.
  • the configuration information of the candidate beam includes identification information of the candidate beam.
  • the identifier information of the candidate beam includes information of a beam identifier of the candidate beam and/or a reference signal of the candidate beam.
  • the UE measures the reference signal of the candidate beam according to the configuration information of the candidate beam, and obtains channel quality indication information corresponding to the candidate beam.
  • the UE may obtain the identification information of the candidate beam, and then retrieve the corresponding candidate beam, and measure the signal quality of the reference signal of the candidate beam.
  • the channel quality indication information corresponding to the candidate beam is the channel quality indication information that the UE sends to the first base station in S201.
  • the S203 may include: the second base station selects the first beam among the candidate beams according to the channel quality information of the candidate beam reported by the UE.
  • the first base station receives configuration information of at least one beam that belongs to the second base station, and determines the candidate beam according to configuration information of the at least one beam. Specifically, since the second base station manages one or more beams, the second base station may send the identifier information of one or more beams that it manages to the first base station through the communication interface, and the first base station may belong to the second according to the received The configuration information of the beam of the base station determines the candidate beam. For example, the first base station selects a beam belonging to the second base station as a candidate beam of the UE, or selects a part of the beams belonging to the second base station as a candidate beam, and sends the beam to the UE. Configuration information of candidate beams.
  • each high frequency The base station can send the identification information of the beam to the low-frequency base station, that is, the low-frequency base station receives the identification information of the multiple beams sent by the multiple high-frequency base stations, and selects candidate beams, that is, candidates, among the beams belonging to the multiple high-frequency base stations. Multiple beams belonging to different high frequency base stations may be included in the beam.
  • the high-frequency base station may determine, according to the channel quality indication information reported by the UE, that it needs to switch to a beam of another high frequency base station, and the high frequency base station may send a beam switching request to the target high frequency base station, and if the target high frequency base station agrees to the beam switching request, An acknowledgment message is sent to the source HF base station, and further, the UE can switch on the beams of different HF base stations.
  • the high-frequency base station can also select other beams belonging to the high-frequency base station for transmitting data for the UE, that is, the UE can also be different beams of the same high-frequency base station. Switch on. This embodiment of the present application does not specifically limit this.
  • the high-frequency base station may determine to switch the part or all of the beams. Wherein, when the partial beam is switched, the remaining beams can still be used normally by the UE. It can be understood that when two or more beams need to be switched, the high frequency base station switches one by one for each beam, and no further description is made.
  • the configuration information of the candidate beam further includes time slot information of the candidate beam, and according to the time slot information, the UE may learn a period in which the second base station transmits the candidate beam, where the second base station is specific. At which point the candidate beam is transmitted.
  • configuration information of the candidate beam may be sent by the second base station to the UE.
  • the second base station may use the beam belonging to the second base station as the candidate beam, and include configuration information of the candidate beam in the broadcast message, and the UE may acquire the second information by reading the broadcast message of the second base station.
  • the embodiment of the present application does not limit the type or system of the first base station and the second base station.
  • the first base station is a low frequency base station of the LTE system
  • the second base station is a high frequency base station of the NR system
  • the first base station is a low frequency base station of the NR system
  • the second base station is a high frequency base station of the NR system
  • the first base station is a high frequency base station of the NR system
  • the second base station is a high frequency base station of the NR system.
  • the beam determining method provided by the embodiment of the present application is applicable to the UE switching from the currently accessed beam to the first beam.
  • the UE may also switch between different beams of the same high frequency base station, or the UE may switch from the beam of one high frequency base station to the beam of another high frequency base station, and details are not described herein.
  • the beam determining method provided by the embodiment of the present application is applicable to a scenario in which the UE initially accesses a beam, for example, the UE has accessed the low-frequency base station and the high-frequency base station, but has not started data transmission with the high-frequency base station, and the low-frequency base station is not yet started.
  • the configuration information of all the beams managed by the high-frequency base station can be sent to the UE, and the reference signal of the beams is measured by the UE to report the CQI to the low-frequency base station, and the high-frequency base station or the low-frequency base station is in the beam of the high-frequency base station according to the CQI.
  • the UE selects a suitable beam, and the UE can perform data transmission with the high frequency base station by using the selected beam.
  • FIG. 3 is a signaling flowchart of a beam determining method according to an embodiment of the present application.
  • FIG. 3 is a further explanation and description of the beam determining method provided by the embodiment of the present application on the basis of the embodiment shown in FIG. 2, and the content already introduced in the embodiment shown in FIG. 2 will not be Make a statement.
  • the embodiment shown in FIG. 3 uses the first base station as a low frequency base station and the second base station as a high frequency base station.
  • the low frequency base station and the high frequency base station have a communication interface, and the UE respectively accesses the low frequency base station and High frequency base station.
  • a low-frequency base station can communicate with one or more high-frequency base stations.
  • the high-frequency base station in the embodiment shown in FIG. 3 is only an example, and does not constitute any limitation on the embodiments of the present application.
  • the method includes the following steps:
  • the low frequency base station configures a candidate beam for the UE.
  • the candidate beam may include one or more beams belonging to a high frequency base station.
  • the high frequency base station may send a configuration message of the beam to the low frequency base station, and the low frequency base station determines the candidate beam set according to the received beam configuration information.
  • the low frequency base station may select part or all of the beam to form a candidate beam set in the beam of the high frequency base station according to the historical information, where the historical information includes an identifier of a beam used by the UE, and the UE is in the used beam. Information such as signal transmission quality.
  • the low frequency base station can satisfy the signal transmission quality to a certain threshold, and the beam belonging to the high frequency base station used by the UE is used as the candidate beam.
  • the low frequency base station sends configuration information of the candidate beam to the UE.
  • S303 The UE measures a reference signal of the candidate beam according to configuration information of the candidate beam.
  • the UE measures the signal quality of the reference signal of the candidate beam, and obtains a CQI corresponding to the candidate beam, where the CQI may include: a modulation coding mode recommended by the UE to the network side according to the measured signal quality of the reference signal. And coding scheme, MCS) and other information.
  • MCS modulation coding mode
  • S304 The UE sends the CQI corresponding to the candidate beam to the low frequency base station.
  • the UE may also report a precoding matrix indicator (PMI) and/or a rank indicator (RI) to the low frequency base station, where the high frequency base station selects a beam for the UE.
  • PMI precoding matrix indicator
  • RI rank indicator
  • the base station can learn from the RI that the UE supports a maximum of several beams for simultaneous communication. If the UE supports multi-beam communication, the high-frequency base station can select multiple beams for transmitting downlink data to the UE.
  • the low frequency base station sends the candidate beam corresponding CQI to the high frequency base station.
  • the high frequency base station selects the first beam among the candidate beams according to the CQI.
  • the first beam is a beam suitable for transmitting downlink data to the UE.
  • the high frequency base station may select a beam that satisfies the transmission condition as the first beam according to the CQI.
  • the specific condition of the transmission condition is not specifically limited in the embodiment of the present application.
  • the transmission condition may include one or more conditions that the throughput meets a certain threshold, or the signal quality meets a certain threshold, or the reliability is optimal.
  • the high frequency base station sends the identification information of the first beam to the low frequency base station.
  • the low-frequency base station sends a DCI to the UE, where the DCI includes the identifier information of the first beam.
  • S309 The UE acquires identification information of the first beam.
  • the UE receives the DCI information, and acquires identifier information of the first beam included in the DCI.
  • the high-frequency base station can communicate with the UE by using the first beam, for example, using the first beam to send downlink data for the UE.
  • the UE is connected to the low frequency base station and the plurality of high frequency base stations, for example, the high frequency base station 1 and the high frequency base station 2, and the beam currently used by the UE belongs to the high frequency base station 1
  • the candidate beam measured by the UE may include the beam of the high frequency base station 1 and the high frequency base station 2, and the CQI reported by the UE includes the CQI corresponding to the beams belonging to the different high frequency base stations.
  • the high-frequency base station 1 selects the beam of the high-frequency base station 2 as the first beam according to the CQI reported by the UE, and the high-frequency base station 1 transmits a handover request message to the high-frequency base station 2 in addition to the identification information of the first beam of the UE.
  • the handover request message may include identifier information of the first beam, where the message is used to request to switch the currently used beam of the UE to the first beam.
  • the high frequency base station 2 confirms that the first beam can be used to communicate with the UE, an acknowledgment message is sent to the high frequency base station 1, and then the high frequency base station 1 and the UE complete the beam switching process, and further, the high frequency base station 2 can adopt the first A beam transmits downlink data to the UE.
  • the high frequency base station 1 can directly send a handover request message to the high frequency base station 2, and the high frequency base station 2 can directly go to the high frequency base station 1
  • the acknowledgment message is sent; or the HF base station 1 or the HF base station 2 can forward the handover request message or the acknowledgment message through the low frequency base station.
  • the first base station sends channel quality indication information from the UE to the second base station, and the second base station belongs to the second base station according to the channel quality indication information.
  • a beam for transmitting downlink data to the UE is selected in the beam, and the identifier information of the selected beam is sent to the UE by the first base station.
  • the channel quality indicator information can reflect the fast channel change. Therefore, the second base station can select an appropriate beam for the UE to transmit data accurately and timely, and enhance the communication reliability. In the scenario where the UE switches the beam, the communication continuity can be improved. Sex.
  • FIG. 4 is a schematic flowchart diagram of another beam determining method according to an embodiment of the present disclosure.
  • the beam determining method may be applied to the communications system shown in FIG. 1.
  • the first base station determines the first beam according to the channel quality indication information.
  • the same parts as those described in the embodiment shown in FIG. 2 or FIG. 3 will not be described again.
  • the method comprises the following steps:
  • S401 The UE sends channel quality indication information to the first base station.
  • the first base station selects a first beam for the UE according to the channel quality indication information.
  • the first beam belongs to the second base station, and the first beam is used for communication between the UE and the second base station.
  • the first beam is used for communication between the UE and the second base station.
  • the first base station sends the identifier information of the first beam to the UE.
  • the identification information of the first beam includes information of a beam ID and/or a reference signal of the first beam.
  • the first base station sends a notification message to the second base station, where the notification message is used to indicate the first beam.
  • the second base station determines to communicate with the UE by using the first beam.
  • the first base station is a low frequency base station
  • the second base station is a high frequency base station.
  • the first base station can separately notify the UE and the second base station of the information about the first beam. Therefore, S403 and S404 do not have a sequence of execution, and may be performed according to the above sequence. The S404 is executed first and then the S403 is executed, or is performed at the same time. The embodiment of the present invention does not limit this.
  • the notification message may include identifier information of the first beam, configured to notify the second base station that the beam can be activated, and transmit downlink data for the UE.
  • the notification message may further include a flag bit for notifying the second base station that the currently used beam of the UE is to be switched to the beam of the second base station, for example, the flag bit is “1” indicating beam switching.
  • the first base station determines a candidate beam for the UE, and sends configuration information of the candidate beam to the UE, where the UE may measure the location according to the configuration information of the candidate beam.
  • the reference signal of the candidate beam is used to obtain channel quality indication information corresponding to the candidate beam, and is sent to the first base station.
  • the first base station may send downlink control information to the UE, where the downlink control information includes identifier information of the first beam.
  • FIG. 5 is a schematic diagram of a signaling flow of a beam determining method according to an embodiment of the present application.
  • FIG. 5 is a further explanation and description of the beam determining method provided by the embodiment of the present application on the basis of the embodiment shown in FIG. 3, and the content already introduced in other embodiments of the present application will not be performed. Narration.
  • the embodiment shown in FIG. 5 illustrates that the first base station is a low frequency base station, and the second base station is a high frequency base station, wherein a communication interface exists between the low frequency base station and the high frequency base station, and the UE accesses the low frequency base station and High frequency base station.
  • the method comprises the following steps:
  • the low frequency base station configures a candidate beam for the UE.
  • the candidate beam may be selected from the beam of the low-frequency base station that belongs to the high-frequency base station.
  • the candidate beam refer to related content in other embodiments of the present application, and details are not described herein.
  • the low frequency base station sends configuration information of the candidate beam to the UE.
  • S503 The UE measures a reference signal of the candidate beam according to configuration information of the candidate beam.
  • S504 The UE reports the CQI related to the candidate beam to the low frequency base station.
  • the UE may directly report the CQI to the low frequency base station; or the UE reports the CQI to the high frequency base station and is forwarded by the high frequency base station to the low frequency base station.
  • the UE may also report the PMI and/or the RI to the low-frequency base station, and the low-frequency base station selects a beam for the UE, which is not described herein.
  • the low frequency base station selects the first beam among the candidate beams according to the CQI.
  • the first beam is a beam suitable for transmitting downlink data to the UE.
  • the low frequency base station sends a notification message to the high frequency base station, where the notification message is used to indicate the first beam.
  • the high frequency base station determines to use the first beam to send downlink data to the UE.
  • the low-frequency base station sends the DCI information to the UE, where the DCI information includes the identifier information of the first beam.
  • S509 The UE acquires identification information of the first beam.
  • S507-S508 and S508-S509 have no order of execution, and may execute S507-S508 first, then execute S508-S509, or execute S508-S509 first, then execute S507-S508, or execute simultaneously. This embodiment of the present application does not specifically limit this.
  • the high-frequency base station can communicate with the UE by using the first beam, for example, using the first beam to send downlink data for the UE.
  • the first base station receives the channel quality indication information reported by the UE, and selects, according to the channel quality indication information, the beam that belongs to the second base station to send to the UE.
  • the beam of the downlink data is sent to the UE by the identifier information of the selected beam.
  • the channel quality indicator information can reflect the fast channel change. Therefore, the first base station can accurately and timely select a suitable beam of the second base station for the UE to transmit data, thereby enhancing communication reliability.
  • the UE switches the beam Can improve communication continuity.
  • the first base station is responsible for information transmission with the UE, which can save signaling overhead and improve transmission efficiency.
  • FIG. 6 is a schematic structural diagram of a base station 600 according to an embodiment of the present application.
  • the base station 600 can perform the operations of the first base station in the embodiment shown in FIG. 2 or FIG. 3, and the specific description about the functions of the units in the base station 600 can be performed by referring to the first base station in the embodiment shown in FIG. 2 or FIG. Introduction to related operations.
  • the base station 600 includes:
  • the first receiving unit 601 is configured to receive channel quality indication information from the UE.
  • the first sending unit 602 is configured to send the channel quality indication information to the second base station, where the channel quality indication information is used by the second base station to determine a first beam for the UE, where the first beam belongs to
  • the second base station is configured to use the first beam to communicate with the second base station and the UE.
  • the second receiving unit 603 is configured to receive identifier information of the first beam from the second base station.
  • the second sending unit 604 sends the identifier information of the first beam to the UE.
  • the second sending unit 604 is configured to send downlink control information to the UE, where the downlink control information includes identifier information of the first beam.
  • the identification information of the first beam may include information including a beam ID and/or a reference signal of the first beam, and details are not described herein.
  • the base station further includes a processing unit 605, configured to determine a candidate beam for the UE; optionally, the second sending unit 604 is further configured to send the The configuration information of the candidate beam, where the configuration information includes the identification information of the candidate beam, and the configuration information of the candidate beam is used by the UE to measure a reference signal of the candidate beam; in this embodiment, the first The receiving unit 601 is specifically configured to receive, by the UE, the channel quality indication information obtained by measuring a reference signal of the candidate beam.
  • the second receiving unit 603 is further configured to: receive, by the second base station, configuration information of at least one beam that belongs to the second base station; and the processing unit 605 may be configured to configure according to the at least one beam. Information determines the candidate beam.
  • the configuration information of the candidate beam further includes time slot information of the candidate beam.
  • time slot information For a detailed description of the time slot information, reference may be made to related content of other embodiments of the present application, and details are not described herein.
  • the base station 600 is a low frequency base station; and the second base station is a high frequency base station.
  • each unit in the base station 600 can be connected to each other by means of a communication bus. It is not shown in FIG. 6.
  • the units in the base station may also be connected by other direct or indirect connection methods, which is not specifically limited in the embodiment of the present invention.
  • the functions of the first receiving unit 601 and the second transmitting unit 604 may be performed by a transceiver; the first transmitting unit 602 and the second receiving unit 603 may be executed by the communication interface.
  • the functionality of the processing unit 605 can be performed by a processor.
  • the transceiver is used for communication between the base station 600 and the user equipment, and the communication interface is used for communication between the base station 600 and other network devices, such as the foregoing second base station, and the processor may be embedded or independent in hardware.
  • the processor of the base station it may also be stored in the memory of the base station in software, so that the processor calls to perform operations corresponding to the above units.
  • the base station 600 provided by the embodiment of the present application receives the channel quality indication information reported by the UE, and sends the channel quality indication information to the second base station, so that the second base station selects a beam for transmitting downlink data to the UE, and then sends the first beam to the UE.
  • the identification information is used by the base station 600 to transmit information between the UE and the UE.
  • the base station 600 is a low-frequency base station, signaling overhead can be saved and transmission efficiency can be improved.
  • FIG. 7 is a schematic structural diagram of a base station 700 according to an embodiment of the present application.
  • the base station 700 can perform the operations of the second base station in the embodiment shown in FIG. 2 or 3.
  • the base station 700 can perform the operations of the second base station in the embodiment shown in FIG. 2 or 3.
  • the functions of the units in the base station 700 reference may be made to the description of the related operations performed by the second base station in the embodiment shown in FIG. 2 or FIG.
  • the base station 700 includes:
  • the receiving unit 701 is configured to receive channel quality indication information from the UE by using the first base station.
  • the processing unit 702 is configured to determine, according to the channel quality indication information, a first beam for the UE, where the first beam belongs to the base station 700, and the first beam is used for communication between the base station 700 and the UE.
  • the first sending unit 703 is configured to notify the UE of the identifier information of the first beam.
  • the first sending unit 703 is further configured to: send, to the first base station, configuration information of at least one beam that belongs to the base station 700, where configuration information of the at least one beam is used for
  • the first base station determines a candidate beam for the UE, and the configuration information of the at least one beam includes the identifier information of the at least one beam.
  • the receiving unit 701 is specifically configured to receive the UE measurement candidate from the first base station. The channel quality indication information obtained by the reference signal of the beam.
  • the base station 700 further includes a second sending unit 704, configured to send configuration information of the candidate beam to the UE, where configuration information of the candidate beam is used by the UE to measure a signal of the candidate beam to obtain the Channel quality indication information, the configuration information of the candidate beam includes identification information of the candidate beam, and the candidate beam belongs to the second base station.
  • a second sending unit 704 configured to send configuration information of the candidate beam to the UE, where configuration information of the candidate beam is used by the UE to measure a signal of the candidate beam to obtain the Channel quality indication information, the configuration information of the candidate beam includes identification information of the candidate beam, and the candidate beam belongs to the second base station.
  • the first sending unit 703 is specifically configured to send the identifier information of the first beam to the first base station, where the first base station sends the identifier information of the first beam to the UE.
  • the units in the base station 700 can be connected to each other by means of a communication bus. It is not shown in FIG. 7 that the units in the base station may be connected by other direct or indirect connection methods, which is not specifically limited in the embodiment of the present invention.
  • the functions of the receiving unit 701 and the first transmitting unit 703 may be performed by the communication unit; the functions of the second transmitting unit 704 may be performed by the transceiver; may be executed by the processor
  • the transceiver is used for communication between the base station 700 and the user equipment, and the communication interface is used for communication between the base station 700 and other network devices, such as the first base station, and the processor may be embedded or independent in hardware.
  • the processor of the base station it may also be stored in the memory of the base station in software, so that the processor calls to perform operations corresponding to the above units.
  • the base station 700 provided by the embodiment of the present application selects a beam for transmitting downlink data for the UE according to the channel quality indication information sent by the UE, and the channel quality indicator information can reflect the fast channel change. Therefore, the base station 700 can select the UE accurately and timely.
  • a suitable beam is used to transmit the data.
  • FIG. 8 is a schematic structural diagram of a base station 800 according to an embodiment of the present application.
  • the base station 800 can perform the operations of the first base station in the embodiment shown in FIG. 4 or 5.
  • the base station 800 can perform the operations of the first base station in the embodiment shown in FIG. 4 or 5.
  • the functions of the units in the base station 800 reference may be made to the description of the related operations performed by the first base station in the embodiment shown in FIG. 4 or FIG.
  • Base station 800 includes:
  • the first receiving unit 801 is configured to receive, by the UE, channel quality indication information.
  • the processing unit 802 is configured to determine, according to the channel quality indication information, a first beam, where the first beam belongs to a second base station, and the first beam is used for communication between the second base station and the UE.
  • the first sending unit 803 is configured to send identifier information of the first beam to the UE.
  • the second sending unit 804 is configured to send a notification message to the second base station, where the notification message is used to indicate the first beam.
  • the processing unit 802 is further configured to: determine a candidate beam for the UE; the first sending unit 803 is further configured to: send configuration information of the candidate beam to the UE, where The configuration information includes the identifier information of the candidate beam, and the configuration information of the candidate beam is used by the UE to measure the reference signal of the candidate beam.
  • the first receiving unit 801 is specifically configured to: receive the UE measurement. The channel quality indication information obtained by the reference signal of the candidate beam.
  • the base station 800 further includes a second receiving unit 805: configured to receive, by the second base station, configuration information of at least one beam that belongs to the second base station, where the processing unit 802 is specifically configured to: according to the A base station determines the candidate beam according to configuration information of the at least one beam.
  • a second receiving unit 805 configured to receive, by the second base station, configuration information of at least one beam that belongs to the second base station, where the processing unit 802 is specifically configured to: according to the A base station determines the candidate beam according to configuration information of the at least one beam.
  • the configuration information of the candidate beam further includes time slot information of the candidate beam.
  • the first sending unit 803 is specifically configured to send downlink control information to the UE, where the downlink control information includes identifier information of the first beam.
  • the base station 800 is a low frequency base station; and the second base station is a high frequency base station.
  • each unit in the base station 800 can be connected to each other by means of a communication bus. It is not shown in FIG. 8 that the units in the base station may be connected by other direct or indirect connection methods, which is not specifically limited in the embodiment of the present invention.
  • the functions of the first receiving unit 801 and the first transmitting unit 803 may be performed by a transceiver; the second transmitting unit 804 and the second receiving unit 805 may be executed by the communication unit.
  • the functionality of the processing unit 802 can be performed by a processor.
  • the transceiver is used for communication between the base station 800 and the user equipment, and the communication interface is used for communication between the base station 800 and other network devices, such as the second base station, and the processor may be embedded or independent in hardware.
  • the processor of the base station it may also be stored in the memory of the base station in software, so that the processor calls to perform operations corresponding to the above units.
  • the base station 800 provided by the embodiment of the present application receives the channel quality indication information reported by the UE, and selects a beam for transmitting downlink data to the UE in the beam belonging to the second base station according to the channel quality indication information, and selects a beam.
  • the identification information of the beam is sent to the UE. Since the channel quality indication information can reflect the fast channel change, the base station 800 can accurately and timely select a suitable beam of the second base station for the UE to transmit data, thereby enhancing communication reliability, and in the scenario where the UE switches the beam, Improve communication continuity.
  • FIG. 9 is a schematic structural diagram of a base station 900 according to an embodiment of the present application.
  • the base station 900 can perform the operations of the second base station in the embodiment shown in FIG. 4 or 5.
  • the base station 900 can perform the operations of the second base station in the embodiment shown in FIG. 4 or 5.
  • the functions of the units in the base station 900 reference may be made to the description of the related operations performed by the second base station in the embodiment shown in FIG. 4 or FIG.
  • the base station 900 includes:
  • the receiving unit 901 is configured to: receive, by the second base station, a notification message from the first base station, where the notification message is used to indicate a first beam that is determined by the first base station, where the first beam belongs to the second base station;
  • the processing unit 902 is configured to determine to perform communication between the base station 900 and the UE by using the first beam.
  • the base station 900 further includes: a sending unit, configured to send, to the first base station, configuration information of the at least one beam of the second base station, where configuration information of the at least one beam is used by the first base station to determine a candidate Beam.
  • a sending unit configured to send, to the first base station, configuration information of the at least one beam of the second base station, where configuration information of the at least one beam is used by the first base station to determine a candidate Beam.
  • the configuration information of the at least one beam includes identification information of the at least one beam.
  • the first base station may determine the first beam in the candidate beam according to the measurement result of the reference signal of the candidate beam by the UE, for example, CQI.
  • CQI the measurement result of the reference signal of the candidate beam by the UE.
  • the units in the base station 900 can be connected to each other by means of a communication bus. It is not shown in FIG. 9 that the units in the base station may be connected by other direct or indirect connection methods, which is not specifically limited in the embodiment of the present invention.
  • the functions of the receiving unit 901 and the transmitting unit 902 may be performed by a communication unit; the functions of the processing unit 902 may be performed by a processor.
  • the communication interface is used for communication between the base station 900 and other network devices, such as the first base station, and the processor may be embedded in the hardware of the base station or stored in software. In the memory of the base station, so that the processor calls to perform operations corresponding to the above respective units.
  • the base station 900 provided by the embodiment of the present application can be switched to the beam used by the UE to transmit downlink data in time, which enhances communication reliability and communication continuity.
  • FIG. 10 is a schematic structural diagram of a UE 1000 according to an embodiment of the present application.
  • the UE 1000 may perform the operations of the UE in any of the embodiments of FIGS. 2-5.
  • the UE 1000 may perform the operations of the UE in any of the embodiments of FIGS. 2-5.
  • UE1000 includes:
  • the processing unit 1001 is configured to acquire channel quality indication information.
  • the sending unit 1002 is configured to send the channel quality indication information to the first base station, where the channel quality indication information is used to determine a first beam, where the first beam belongs to a second base station, and the first beam is used by the first beam Communication between the UE and the second base station.
  • the channel quality indicator information may be used by the first base station to determine the first beam. For details, refer to the operations performed by the first base station in the embodiment shown in FIG. 4 or FIG. 5; or the channel quality indication information.
  • the second base station may be used to determine the first beam. For details, refer to the operations performed by the second base station in the embodiment shown in FIG. 2 or FIG. 3.
  • the receiving unit 1003 is configured to receive identifier information of the first beam from the first base station.
  • the receiving unit 1003 is further configured to receive the configuration information of the candidate beam, where the configuration information of the candidate beam includes the identification information of the candidate beam.
  • the processing unit 1001 is specifically configured to: measure the reference signal of the candidate beam. Obtaining the channel quality indication information.
  • the receiving unit 1003 is specifically configured to: receive configuration information of the candidate beam from the first base station, where the candidate beam is configuration information of the first base station according to at least one beam that belongs to the second base station.
  • the configuration information of the at least one beam includes the identification information of the at least one beam, which is determined by the UE.
  • the receiving unit 1003 is specifically configured to: receive configuration information of the candidate beam from the second base station, where the candidate beam belongs to the second base station.
  • the receiving unit 1003 is specifically configured to: receive downlink control information from the first base station, where the downlink control information includes identifier information of the first beam.
  • units in the base station 1000 can be connected to each other by means of a communication bus. It is not shown in FIG. 10 that the units in the base station may be connected by other direct or indirect connection methods, which is not specifically limited in the embodiment of the present invention.
  • the functions of the processing unit 1001 may be performed by a processor; the functions of the transmitting unit 1002 and the receiving unit 1003 may be performed by a transceiver.
  • the transceiver is used for communication between the base station 700 and the user equipment, and may include a transmitter and a receiver.
  • the processor may be embedded in or independent of the processor of the UE in hardware, or may be stored in software. In the memory of the base station, so that the processor calls to perform the operations corresponding to the above respective units.
  • the UE provided by the embodiment of the present invention obtains the corresponding channel quality indication information by measuring the reference signal of the candidate beam, so that the network side can select the beam suitable for transmitting the downlink data for the UE according to the channel quality indication information accurately and timely. Communication reliability, in the scenario where the UE switches beams, communication continuity can be improved.
  • Figure 11 is a simplified schematic diagram showing one possible design structure of a base station involved in the above embodiment.
  • the base station includes: the processor 1101 is configured to control and manage the actions of the base station, and perform various functions to support the communication service provided by the control device.
  • the processor 1101 is configured to support the base station to perform the operations performed by the first base station in the embodiment shown in FIG. 2 or FIG. 3, or the processor 1101 is configured to support the base station to perform the first base station execution in the embodiment shown in FIG. 4 or FIG. Operation.
  • the memory 1102 is configured to store program codes and data used by the base station to perform the beam determining method provided by the embodiment of the present application, where the program code includes computer operating instructions.
  • the program code stored in the memory 1102 can be executed by the processor 1101.
  • a transmitter/receiver 1104 is used to support base station communication with the UE.
  • the communication module 1103 is configured to support communication between the base station and other network devices, for example, to support communication with other base station devices, and the communication module 1103 can include a communication interface between the base station and other base station devices.
  • the base station is a low frequency base station.
  • Fig. 12 is a simplified schematic diagram showing a possible design structure of a base station involved in the above embodiment.
  • the base station includes: the processor 1201 is configured to control and manage the actions of the base station, and perform various functions to support the communication service provided by the control device.
  • the processor 1201 is configured to support the base station to perform the operations performed by the second base station in the embodiment shown in FIG. 2 or FIG. 3, or the processor 1201 is configured to support the base station to perform the second base station execution in the embodiment shown in FIG. 4 or FIG. Operation.
  • the memory 1202 is configured to store program codes and data used by the base station to perform the beam determining method provided by the embodiment of the present application, where the program code includes computer operating instructions.
  • the program code stored in the memory 1202 can be executed by the processor 1201.
  • a transmitter/receiver 1204 is used to support base station communication with the UE.
  • the communication module 1203 is configured to support communication between the base station and other network devices, for example, to support communication with other base station devices, and the communication module 1203 may include a communication interface between the base station and other base station devices.
  • the base station may be a high frequency base station.
  • Figure 11 or Figure 12 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication modules, etc., and details are not described herein.
  • FIG. 13 shows a simplified schematic diagram of one possible design structure of the UE involved in the above embodiment.
  • the UE includes a transmitter 1301, a receiver 1302, a processor 1303, a memory 1304, and a modem processor 1305.
  • Transmitter 1301 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Receiver 1302 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 13013 receives data and signaling messages to be transmitted on the uplink and processes (eg, formats, codes, and interleaves) the data and signaling messages.
  • Modulator 1307 further processes (e.g., symbol maps and modulates) the encoded data and signaling messages and provides output samples.
  • Demodulator 1309 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 13013 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 13013, modulator 1307, demodulator 1309, and decoder 13013 may be implemented by a composite modem processor 1305.
  • the processor 1303 performs control management on the action of the UE, and is used to perform processing performed by the UE in the foregoing embodiment, for example, a reference signal for controlling a UE to measure a candidate beam, and/or other processes of the technology described in this embodiment. The steps performed by the UE in the embodiment shown in any of Figures 2-5 are included.
  • Memory 1304 is used to store program code and data for the UE.
  • FIG. 14 is a schematic diagram of a communication system 1400 according to an embodiment of the present application.
  • Communication system 1400 includes a first base station 1401, a second base station 1402, and a UE 1403.
  • the UE has a communication connection with the first base station 1401 and the first base station 1402, respectively.
  • the first base station 1401 and the second base station 1402 can communicate using a communication interface.
  • the first base station may perform the first base station in the embodiment shown in FIG. 2 or FIG. The steps performed by the low frequency base station; and the second base station may perform the steps performed by the second base station or the high frequency base station in the embodiment shown in FIG. 2 or FIG.
  • the first base station may perform the steps performed by the first base station or the low frequency base station in the embodiment shown in FIG. 4 or FIG. 5; and the second base station may perform the second base station or the high frequency in the embodiment shown in FIG. 4 or FIG.
  • the steps performed by the base station are not described here.
  • the network side selects a beam for transmitting downlink data to the UE among the beams belonging to the second base station according to the channel quality indication information, and passes the first base station.
  • the identification information of the selected beam is sent to the UE. Since the channel quality indication information can reflect the fast channel change, the network side can accurately and timely select an appropriate beam for the UE to transmit data, which enhances communication reliability, and particularly improves the communication in the scenario where the UE switches the beam.
  • the first base station is a low-frequency base station
  • the second base station is a high-frequency base station
  • the first base station is responsible for information transmission with the UE, which can save signaling overhead and improve transmission efficiency.
  • the processor described in the embodiments of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or Other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the bus described in the embodiment of the present application may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the bus in the drawings of the present application is represented by only one double arrowed line, but does not indicate that there is only one bus or one type of bus.
  • the steps of the method or algorithm described in connection with the disclosure of the present application may be implemented in a hardware manner, or may be implemented by a processor executing a software instruction, or may be implemented by a computer program product.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment. Of course, the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the disclosed systems, devices, and methods may be implemented in other manners without departing from the scope of the present application.
  • the embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. .
  • Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the described systems, devices, and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electronic, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种波束确定方法,包括:第一基站向第二基站发送来自于UE的信道质量指示信息,由第二基站根据所述信道质量指示信息在属于第二基站的波束中选择用于向UE发送下行数据的波束,并通过第一基站将选择出的波束的标识信息发送给UE。由于信道质量指示信息能够反映快速信道变化,因而,第二基站能够准确、及时地为UE选择合适的波束用于传输数据,增强了通信可靠性。

Description

波束确定方法、基站及用户设备
本申请要求于2016年12月30日提交中国专利局、申请号为201611265371.8、申请名称为“波束确定方法、基站及用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,特别涉及一种波束确定方法、基站及用户设备。
背景技术
新无线接入技术(new radio access technology,New RAT or NR)相比于现有的无线接入技术,能够提供更短的时延,更大的带宽,并且支持大量连接,用于满足移动通信日益增长的需求。
在NR系统中,为了获取较大的信号覆盖面积,基站会使用窄波束向用户设备(user equipment,UE)发送数据,但窄波束容易被障碍物遮挡,进而造成通信中断。为了提升通信可靠性与连续性,需要及时更新波束。
在现有技术中,例如长期演进(long term evolution,LTE)系统中,宏基站根据UE上报的参考信号接收功率(reference signal received power,RSRP)或者参考信号接收质量(reference signal received quality,RSRQ)为UE选择新的载波或者微基站。如采用类似现有技术的方案为UE选择波束,由于RSRP或者RSRQ等测量值反映的是链路长期统计特性,无法反映快速信道变化,因此,不能及时地为UE更新波束。
发明内容
本申请实施例提供了一种波束确定方法、基站及用户设备。
第一方面,本申请实施例提供了一种波束确定方法,包括:
第一基站从UE接收信道质量指示信息;所述第一基站将所述信道质量指示信息发送给第二基站,所述信道质量指示信息用于所述第二基站为所述UE确定第一波束,所述第一波束属于所述第二基站,所述第一波束用于所述第二基站与所述UE间的通信;所述第一基站从所述第二基站接收所述第一波束的标识信息;所述第一基站将所述第一波束的标识信息发送给所述UE。
采用本申请实施例提供的技术方案,第一基站向第二基站发送来自于UE的信道质量指示信息,由第二基站根据所述信道质量指示信息在属于第二基站的波束中选择用于向UE发送下行数据的波束,并通过第一基站将选择出的波束的标识信息发送给UE。由于信道质量指示信 息能够反映快速信道变化,因而,第二基站能够准确、及时地为UE选择合适的波束用于传输数据,增强了通信可靠性,在UE切换波束的场景中,能够提升通信连续性。
在第一方面的一种可能的实现方式中,所述方法还包括,
所述第一基站为所述UE确定候选波束;所述第一基站向所述UE发送所述候选波束的配置信息,所述配置信息中包括所述候选波束的标识信息,所述候选波束的配置信息用于所述UE测量所述候选波束的参考信号;则,所述第一基站可以接收到所述UE测量所述候选波束的参考信号得到的信道质量指示信息。
其中,所述候选波束的配置信息中还可以包括所述候选波束的时隙信息。
在第一方面的一种可能的实现方式中,所述方法还包括,
所述第一基站从所述第二基站接收属于所述第二基站的至少一个波束的配置信息;则,所述第一基站可以根据所述至少一个波束的配置信息确定所述候选波束。
在第一方面的一种可能的实现方式中,所述第一基站可以向所述UE发送下行控制信息,所述下行控制信息中包含所述第一波束的标识信息。
在第一方面的一种可能的实现方式中,第一基站为低频基站,且第二基站为高频基站时,由第一基站负责与UE间的信息传输,可以节约信令开销,提升传输效率。
第二方面,为了实现上述第一方面的波束确定方法,本申请实施例提供了一种基站,该基站具有实现上述波束确定方法中第一基站的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第二方面的一种可能的实现方式中,该基站包括多个功能模块或单元,用于实现上述第一方面中的任一种波束确定方法。
在第二方面的一种可能的实现方式中,该基站的结构中包括处理器、收发器,所述处理器被配置为支持该装置执行上述第一方面中任一种波束确定方法中第一基站的相应的功能。所述收发器用于支持该基站与终端之间的通信。该基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置执行上述波束确定方法必要的程序指令和数据。该基站中还可以包括通信接口,用于支持该基站与第二基站之间的通信。
第三方面,本申请实施例提供了一种波束确定方法,包括:
第二基站通过第一基站接收来自于UE的信道质量指示信息;所述第二基站根据所述信道质量指示信息为所述UE确定第一波束;所述第二基站通知所述UE所述第一波束的标识信息;其中,所述第一波束属于第二基站,所述第一波束用于所述第二基站与所述UE间的通信。
在第三方面的一种可能的实现方式中,所述方法还包括,
所述第二基站向所述第一基站发送属于所述第二基站的至少一个波束的配置信息,所述至少一个波束的配置信息用于所述第一基站为所述UE确定候选波束,所述至少一个波束的配置信息中包括所述至少一个波束的标识信息;则,所述第二基站可以从所述第一基站接收UE 测量候选波束的参考信号得到的所述信道质量指示信息。
在第三方面的一种可能的实现方式中,所述方法包括,
所述第二基站向所述UE发送候选波束的配置信息,所述候选波束的配置信息用于所述UE测量所述候选波束的信号以得到所述信道质量指示信息,所述候选波束的配置信息包括所述候选波束的标识信息,所述候选波束属于所述第二基站。第二基站可以通过广播方式向UE发送由其管理的波束的配置信息,无需通过第一基站转发。
在第三方面的一种可能的实现方式中,所述第二基站通知UE所述第一波束的标识信息包括,所述第二基站向所述第一基站发送所述第一波束的标识信息,由所述第一基站将所述第一波束的标识信息发送给所述UE。
第四方面,为了实现上述第三方面的波束确定方法,本申请实施例提供了一种基站,该基站具有实现上述波束确定方法中第一基站的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第四方面的一种可能的实现方式中,该基站包括多个功能模块或单元,用于实现上述第一方面中的任一种波束确定方法。
在第四方面的一种可能的实现方式中,该基站的结构中包括处理器、收发器,所述处理器被配置为支持该装置执行上述第三方面中任一种波束确定方法中第一基站的相应的功能。所述收发器用于支持该基站与终端之间的通信。该基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置执行上述波束确定方法必要的程序指令和数据。该基站中还可以包括通信接口,用于支持该基站与第二基站之间的通信。
第五方面,本申请实施例提供了一种波束确定方法,所述方法包括,第一基站接收从用户设备UE接收信道质量指示信息;所述第一基站根据所述信道质量指示信息为所述UE确定第一波束,所述第一波束属于第二基站,所述第一波束用于所述第二基站和UE间的通信;所述第一基站向所述UE发送所述第一波束的标识信息,所述第一基站向第二基站发送通知消息,所述通知消息用于指示所述第一波束。
采用本申请提供的技术方案,第一基站接收UE上报的信道质量指示信息,并根据所述信道质量指示信息在属于第二基站的波束中选择用于向UE发送下行数据的波束,并将选择出的波束的标识信息发送给UE。由于信道质量指示信息能够反映快速信道变化,因而,第一基站能够准确、及时地为UE选择合适的第二基站的波束用于传输数据,增强了通信可靠性,在UE切换波束的场景中,能够提升通信连续性。
在第五方面的一种可能的实现方式中,所述方法还包括,
所述第一基站为所述UE确定候选波束;所述第一基站向所述UE发送所述候选波束的配置信息,所述配置信息中包括所述候选波束的标识信息,所述候选波束的配置信息用于所述UE测量所述候选波束的参考信号;则,所述第一基站可以接收所述UE测量所述候选波束的参考信号得到的所述信道质量指示信息。
其中,所述第一基站为低频基站;且所述第二基站为高频基站。
在第五方面的一种可能的实现方式中,所述方法还包括,
所述第一基站从所述第二基站接收属于所述第二基站的至少一个波束的配置信息;
所述第一基站为所述UE确定候选波束包括,
所述第一基站根据所述至少一个波束的配置信息确定所述候选波束。
在第五方面的一种可能的实现方式中,所述候选波束的配置信息还包括所述候选波束的时隙信息。
在第五方面的一种可能的实现方式中,所述第一基站向所述UE发送所述第一波束的标识信息包括,所述第一基站向所述UE发送下行控制信息,所述下行控制信息中包含所述第一波束的标识信息。
在第五方面的一种可能的实现方式中,第一基站为低频基站,且第二基站为高频基站时,由第一基站负责与UE间的信息传输,可以节约信令开销,提升传输效率。
第六方面,为了实现上述第五方面的波束确定方法,本申请实施例提供了一种基站,该基站具有实现上述波束确定方法中第一基站的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第六方面的一种可能的实现方式中,该基站包括多个功能模块或单元,用于实现上述第五方面中的任一种波束确定方法。
在第六方面的一种可能的实现方式中,该基站的结构中包括处理器、收发器,所述处理器被配置为支持该装置执行上述第五方面中任一种波束确定方法中第一基站的相应的功能。所述收发器用于支持该基站与终端之间的通信。该基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置执行上述波束确定方法必要的程序指令和数据。该基站中还可以包括通信接口,用于支持该基站与第二基站之间的通信。
第七方面,本申请实施例提供了一种波束确定方法,所述方法包括,
第二基站从第一基站接收通知消息,所述通知消息用于指示由第一基站确定的第一波束,所述第一波束属于所述第二基站;所述第二基站确定使用所述第一波束与用户设备UE进行通信。
在第六方面可能的一种实现方式中,所述方法还包括,第二基站向第一基站发送所述所述第二基站的至少一个波束的配置信息,所述至少一个波束的配置信息用于所述第一基站确定候选波束。
所述至少一个波束的配置信息包括所述至少一个波束的标识信息。
第八方面,为了实现上述第七方面的波束确定方法,本申请实施例提供了一种基站,该基站具有实现上述波束确定方法中第一基站的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第八方面的一种可能的实现方式中,该基站包括多个功能模块或单元,用于实现上述第七方面中的任一种波束确定方法。
在第八方面的一种可能的实现方式中,该基站的结构中包括处理器、收发器,所述处理器被配置为支持该装置执行上述第八方面中任一种波束确定方法中第一基站的相应的功能。所述收发器用于支持该基站与终端之间的通信。该基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存该基站执行上述波束确定方法必要的程序指令和数据。该基站中还可以包括通信接口,用于支持该基站与第二基站之间的通信。
第九方面,本申请实施例提供了一种波束确定方法,所述方法包括,
UE获取信道质量指示信息;所述UE向第一基站发送所述信道质量指示信息,所述信道质量指示信息用于确定第一波束,所述第一波束属于第二基站,所述第一波束用于所述UE与所述第二基站间的通信;所述UE从所述第一基站接收所述第一波束的标识信息。
其中,所述信道质量指示信息具体可以用于第一基站确定第一波束,或者用于第二基站确定第一波束。
在第九方面的一种可能的实现方式中,所述方法还包括,
所述UE接收候选波束的配置信息,所述候选波束的配置信息包括所述候选波束的标识信息;则,所述UE可以测量所述候选波束的参考信号,并得到所述候选波束对应的信道质量指示信息。
在第九方面的一种可能的实现方式中,所述UE接收候选波束的配置信息包括,所述UE从所述第一基站接收所述候选波束的配置信息,所述候选波束是所述第一基站根据属于所述第二基站的至少一个波束的配置信息为所述UE确定的,所述至少一个波束的配置信息中包括所述至少一个波束的标识信息或所述至少一个波束的波束的参考信号的标识信息。
在第九方面的一种可能的实现方式中,所述UE接收候选波束的配置信息包括,所述UE从所述第二基站接收所述候选波束的配置信息,所述候选波束属于所述第二基站。
在第九方面的一种可能的实现方式中,所述UE可以接收来自于所述第一基站的下行控制信息,所述下行控制信息中包括所述第一波束的标识信息。
第十方面,为了实现上述第九方面的波束确定方法,本申请实施例提供了一种UE,该基站具有实现上述波束确定方法中UE的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第十方面的一种可能的实现方式中,该UE包括多个功能模块或单元,用于实现上述第十方面中的任一种波束确定方法。
在第十方面的一种可能的实现方式中,该UE的结构中包括处理器、收发器,所述处理器被配置为支持该UE执行上述第七方面中任一种波束确定方法中第一基站的相应的功能。所述收发器用于支持该UE与基站之间的通信。该UE中还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置执行上述波束确定方法必要的程序指令和数据。
第十一方面,本申请实施例提供了一种通信系统,该通信系统包括上述第二方面所述的基站、第四方面所述的基站以及第十方面所述的UE。
第十二方面,本申请实施例提供了一种通信系统,该通信系统包括上述第六方面所述的 基站、第八方面所述的基站以及第十方面所述的UE。
第十三方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第二方面提供的基站所用的计算机软件指令,其包含用于执行上述第一方面或者所设计的程序。
第十四方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第四方面提供的基站所用的计算机软件指令,其包含用于执行上述第三方面所设计的程序。
第十五方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第六方面提供的基站所用的计算机软件指令,其包含用于执行上述第五方面或者所设计的程序。
第十六方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第八方面提供的基站所用的计算机软件指令,其包含用于执行上述第七方面所设计的程序。
第十七方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第十方面提供的UE所用的计算机软件指令,其包含用于执行上述第九方面所设计的程序。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种波束确定方法的流程示意图;
图3是本申请实施例提供的一种波束确定方法的信令流程示意图;
图4是本申请实施例提供的一种波束确定方法的流程示意图;
图5是本申请实施例提供的一种波束确定方法的信令流程示意图;
图6是本申请实施例提供的一种基站600的结构示意图;
图7是本申请实施例提供的一种基站700的结构示意图;
图8是本申请实施例提供的一种基站800的结构示意图;
图9是本申请实施例提供的一种基站900的结构示意图;
图10是本申请实施例提供的一种UE的结构示意图;
图11是本申请实施例提供的一种基站的一种可能的设计的结构示意图;
图12是本申请实施例提供的一种基站的一种可能的设计的结构示意图;
图13是本申请实施例提供的一种UE的一种可能的设计的结构示意图;
图14是本申请实施例提供的一种通信系统1400的示意图。
具体实施方式
本申请实施例中描述的技术可用于多种通信系统,例如LTE系统,或者采用New RAT的通信系统。其中,采用New RAT的通信系统包括演进的LTE(evolved LTE,eLTE)系统,或采用5G通信技术的通信系统等,对此不做限定。
本申请实施例所涉及到的UE可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备,移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment)等等,为方便描述,本申请中,称为“用户设备”或“UE”。
本申请实施例涉及的基站可以是LTE系统中的演进型节点B(NodeB或eNB或e-NodeB,evolved Node B),或者5G系统中的基站设备gNB,或者eLTE系统中的基站设备eLTE eNB等。本申请实施例对基站类型不做特别限定。
本申请实施例定义基站到UE的单向通信链路为下行链路,而UE到基站的单向通信链路为上行链路。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,例如通过通信接口连接不同设备,不做任何限定。
本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
图1是本申请实施例提供的一种通信系统示意图。
如图1所示的通信系统中,包括非同站部署(non co-located)的第一基站和第二基站。第一基站和第二基站可以通过理想回程线路(backhaul)或者非理想backhaul连接。
图1中未示,第一基站和第二基站也可以同站部署(co-located),即第一基站和第二基站部署在同一个站点上。具体地,第一基站和第二基站可以共用例如基带处理单元(base band unit,BBU)等控制装置,且分别使用例如射频拉远单元(radio remote unit,RRU)等信号收发装置,则第一基站和第二基站可以独立收发信号。
第一基站和第二基站可以直接或间接通信。例如,第一基站和第二基站采用通信接口进行通信。该通信接口可以采用现有的基站间的通信接口,也可以是新建立的通信接口。该通信接口可以是固定的,类似LTE系统中eNB之间的X2接口,也可以是事件触发建立的,本申请对此不做特别限定。可选地,当第一基站和第二基站共站时,所述通信接口是内部接口。在通信接口完成初始建立之后,第一基站和第二基站可以通过该通信接口进行信息交互与数据传输。上述通信接口的物理媒介可以是铜缆,微波,光纤等连接方式,本申请实施例对此 不做特别限定。
可以理解,图1中示出的第二基站的数量仅为示意,实际组网场景中,一个第一基站可以连接多个第二基站。
如图1所示,第二基站的信号覆盖范围在第一基站的信号覆盖范围内,第二基站可以对第一基站的信号覆盖起到补充或增强的作用。图1中未示,第一基站的信号覆盖范围可以与第二基站的信号覆盖范围存在重叠区域。图1中虚线标记区域为第一基站或第二基站的信号覆盖范围。
可选地,当第二基站的信号覆盖范围在第一基站的信号覆盖范围内时,第一基站可以作为宏基站(macro base station),第二基站可以作为小基站(small base station),则第一基站的信号覆盖范围可以称为宏小区(macro cell),第二基站的信号覆盖范围可以称为微小区(micro cell)。其中,小基站具体可以是微基站(Micro)、微微基站(Pico)、以及毫微微基站(Femto)、家庭基站、接入点(access point,AP)等设备,本申请实施例对此不做特别限定。
可选地,第二基站为非独立部署(non-stand alone,NSA)的基站,即第二基站上只建立用户面,用于传输数据,而第二基站的控制面建立在第一基站,第二基站需要第一基站协助与核心网通信。可选地,第二基站为独立部署(stand alone,SA)的基站,即第二基站上建立用户面和控制面,第二基站可以独立与核心网通信。可以理解,无论第二基站是独立部署还是非独立部署,第二基站可以进行资源调度等操作,包括确定与UE通信使用的波束。另外,本申请中,第一基站是独立部署的基站,具有完整的协议栈,可以独立与核心网通信。
如图1所示,UE同时处于第一基站与第二基站的信号覆盖范围内,UE可以采用双连接(dual-connection,DC)方式或载波聚合(carrier aggregation,CA)方式接入第一基站和第二基站,则UE可以同时从第一基站和第二基站接收下行数据,提升数据传输速率。
在本申请实施例中,第一基站和第二基站可以是同制式的,也可以是异制式的。例如,第一基站和第二基站都是LTE制式的基站;或者,第一基站和第二基站都是NR制式的基站;或者,第一基站是LTE制式的基站,第二基站是NR制式的基站。
可选地,第一基站为低频基站,第二基站为高频基站;或者,第一基站为高频基站,且第二基站为高频基站。其中,所述低频基站是指使用低频信号(例如,载波频率小于6GHz的信号)传输数据的基站,所述高频基站是指使用高频信号(例如,载波频率大于或等于6GHz的信号)传输数据的基站。可以理解,本申请实施例中所述的低频和高频是相对的概念,表示第二基站使用的信号频段比第一基站使用的信号频段高。
高频信号的带宽较大(例如,大于1GHz),适合传输高速数据,但是由于高频信号在传播过程中路损严重,信息传输可靠性差,因此,可以采用波束成形(beam forming)来提升信号质量。具体地,高频基站可以采用一个或多个波束发送高频信号。由于波束会被障碍物遮挡,为了保证通信的可靠性,UE可以测量各个高频基站的波束的信号质量,并上报给网络侧。若UE当前使用的波束的性能不佳,网络侧可以为UE选择另外一个波束用于继续发送高频信号,并通知UE。
本申请实施例中所述的波束包括发射波束,是指由基站的至少一个天线端口发射无线信号时,形成的空间具有一定方向和形状的无线电波,可见,波束具有一定的覆盖范围。构成波束的方法可以包括对至少一个天线端口所发射数据进行幅度和/或相位的加权来构成波束,也可以通过其他方法,例如调整天线单元的相关参数,来构成波束,本申请实施例对此不做特别限定。另外,本申请实施例中的波束包括水平面的波束和/或垂直面的波束。
图2是本申请实施例提供的一种波束确定方法的流程示意图,该波束确定方法可以适用于图1所示的通信系统中。
在本申请实施例中,UE与第一基站、UE与第二基站之间分别存在通信连接。具体地,UE可以通过DC或者CA方式同时接入第一基站和至少一个第二基站,本申请实施例对UE接入方式不做特别限定。此外,第一基站可以与所述至少第二基站分别进行通信,具体地,第一基站与每个第二基站之间存在独立的通信接口,具体可以参见图1所示通信系统的相关描述,在此不做赘述。
该方法包括如下步骤:
S201:UE向第一基站发送信道质量指示信息。
其中,信道质量指示信息具体可以是信道质量指示(channel quality indictor,CQI).
可选地,UE可以周期性或者非周期性上报所述信道质量指示信息,或者,UE可以基于事件触发上报所述信道质量指示信息,本申请实施例对此不做特别限定。
S202:第一基站将接收到的信道质量指示信息发送给第二基站。
S203:第二基站根据接收到的信道质量指示信息为UE选择第一波束。其中,所述第一波束属于第二基站,所述第一波束用于第二基站与UE间的通信。
所述第一波束用于第二基站与UE间的通信包括,第二基站可以使用第一波束向UE发送下行数据。本申请实施例中,第一波束属于第二基站,即第一波束由第二基站管理,或者说,第二基站发射第一波束。具体地,每个第二基站可以配置一个或多个波束,第二基站上配置的波束可以用于承载高频信号,所述高频信号可以用于传输发送给UE的下行数据。可选地,所述第一波束是窄波束。
可选地,若UE支持多波束通信(或称为多流通信),UE可以同时使用两个或两个以上波束接收数据,因此,第二基站可以根据UE支持的波束的个数的最大值,在属于第二基站的波束中选择相应个数的波束用于UE的下行数据传输。例如,UE支持4波束通信,则第二基站最多可以为UE选择4个属于第二基站的波束,即确定4个第一波束。
S204:第二基站将所述第一波束的标识信息发送给第一基站。
具体地,当第二基站确定了第一波束后,可以将该第一波束的标识信息发送给第一基站,由第一基站转发给UE。当第一基站是低频基站,第二基站是高频基站时,由第一基站向UE发送第一波束的标识信息,信令开销小,信息传输的效率高。
S205:第一基站将接收到的第一波束的标识信息发送给UE。
具体地,所述第一基站可以向所述UE发送下行控制信息(downlink control information,DCI),所述下行控制信息中包含所述第一波束的标识信息。UE根据接收到的DCI中的标识信息,确定第一波束,并在第一波束上和第二基站进行通信。
其中,所述第一波束的标识信息包括波束标识(beam identity,beam ID),和/或,所述第一波束的参考信号的信息。具体地,所述第一波束的参考信号的信息包括所述参考信号的标识信息和/或参考信号的偏移量。其中,参考信号的标识信息可以通过根序列表示,参考信号的偏移量即为根序列的偏移量。不同的根序列可以映射到不同的波束;或者,当根序列相同时,还可以通过每个根序列的偏移量映射到对应的波束。
可选地,作为本申请的一种实施方式,所述方法还包括如下步骤:
S200a:第一基站为所述UE确定至少一个候选波束。
S200b:第一基站向所述UE发送所述候选波束的配置信息。
其中,所述候选波束的配置信息包括所述候选波束的标识信息。
可选地,所述候选波束的标识信息包括候选波束的波束标识和/或候选波束的参考信号的信息。
S200c:UE根据接收到的候选波束的配置信息,对候选波束的参考信号进行测量,得到候选波束对应的信道质量指示信息。
具体地,UE获取上述候选波束的配置信息后,可以获取其中的候选波束的标识信息,进而检索到对应的候选波束,并对候选波束的参考信号的信号质量进行测量。
所述候选波束对应的信道质量指示信息即为S201中UE向第一基站发送的信道质量指示信息。
在该实施方式中,S203具体可以包括:第二基站根据UE上报的所述候选波束的信道质量信息,在候选波束中选择第一波束。
可选地,所述第一基站接收属于所述第二基站的至少一个波束的配置信息,并根据所述至少一个波束的配置信息确定上述候选波束。具体地,由于第二基站管理一个或多个波束,第二基站可以通过通信接口向第一基站发送其管理的一个或多个波束的标识信息,则第一基站可以根据接收到的属于第二基站的波束的配置信息确定所述候选波束,例如,第一基站将属于第二基站的波束均作为UE的候选波束,或者在属于第二基站的波束中选择一部分作为候选波束,并向UE发送候选波束的配置信息。
可以理解,当第一基站同时连接多个同类型的第二基站时,例如当一个低频基站同时连接多个高频基站,且UE同时接入低频基站以及多个高频基站,每个高频基站都可以向低频基站发送波束的标识信息,即低频基站接收到多个高频基站发送的多个波束的标识信息,并在属于所述多个高频基站的波束中选择候选波束,即候选波束中可以包含属于不同的高频基站的多个波束。进而,在UE已经接入所述多个高频基站中的某一个并采用该高频基站的波束传输数据的场景中,若UE当前使用的波束性能不佳,该高频基站(源高频基站)可以根据UE上报的信道质量指示信息确定需要切换到其他高频基站的波束上,该高频基站可以向目标高 频基站发送波束切换请求,若目标高频基站同意该波束切换请求,则会向源高频基站发送确认消息,进而,UE可以在不同高频基站的波束上进行切换。
可选地,由于同一个高频基站可以管理多个波束,高频基站也可以为UE选择属于该高频基站的其他波束用于传输数据,即UE也可以在同一个高频基站的不同波束上进行切换。本申请实施例对此不做特别限定。
另外,当UE支持多波束传输,即UE同时使用多个波束接收下行数据时,若所述多个波束中的部分或全部波束性能不佳,高频基站可以确定切换所述部分或全部波束。其中,当切换部分波束时,其余波束仍能被UE正常使用。可以理解,当有两个或两个以上波束需要被切换时,高频基站逐一对每个波束进行切换,不做赘述。
可选地,所述候选波束的配置信息中还包括所述候选波束的时隙信息,根据所述时隙信息,UE可以获知第二基站发射候选波束的周期,包括,第二基站在具体的哪个时刻上发送候选波束。
可选地,作为本申请的一个实施方式,候选波束的配置信息可以由第二基站发送给UE。具体地,第二基站可以将属于该第二基站的波束都作为候选波束,并在广播消息中包含候选波束的配置信息,则UE通过读取第二基站的广播消息,就能获取属于第二基站的波束的配置信息,从而对属于第二基站的波束的参考信号进行测量,无需由第一基站向UE发送候选波束的配置信息。
可以理解,本申请实施例对第一基站及第二基站的类型或者制式不做任何限定。例如,第一基站是LTE制式的低频基站,且第二基站是NR制式的高频基站;或者,第一基站是NR制式的低频基站,且第二基站是NR制式的高频基站;或者,第一基站是NR制式的高频基站,且第二基站是NR制式的高频基站。
可选地,本申请实施例提供的波束确定方法适用于UE从当前接入的波束切换至上述第一波束。例如,UE也可以在同一高频基站的不同波束间切换,或者UE从一个高频基站的波束切换到另一个高频基站的波束,不再作赘述。
可选地,本申请实施例提供的波束确定方法适用于UE初始接入波束的场景,例如,UE已经接入低频基站以及高频基站,但尚未开始与高频基站进行数据传输,则低频基站可以向UE下发所有由高频基站管理的波束的配置信息,由UE对这些波束的参考信号测量后向低频基站上报CQI,则高频基站或低频基站根据CQI在高频基站的波束中为UE选择合适的波束,则UE可以利用选择出的波束与高频基站进行数据传输。
图3是本申请实施例提供的一种波束确定方法的信令流程图。
可以理解,图3所示实施例是在图2所示实施例的基础上,对本申请实施例提供的波束确定方法的进一步解释与说明,对图2所示实施例中已经介绍的内容将不做赘述。
为了便于理解,图3所示实施例以第一基站为低频基站,第二基站为高频基站进行说明,其中,低频基站与高频基站之间存在通信接口,UE分别接入了低频基站以及高频基站。可以理解,实际组网场景中,一个低频基站可以与一个或多个高频基站通信,图3所示实施例中 的高频基站仅为举例,不构成对本申请实施例的任何限定。
所述方法包括如下步骤:
S301:低频基站为UE配置候选波束。
其中,所述候选波束可以包含属于高频基站的一个或多个波束。可选地,高频基站可以向低频基站发送波束的配置消息,由低频基站根据收到的波束配置信息,确定候选波束集合。
可选地,低频基站可以根据历史信息,在高频基站的波束中选择部分或全部波束组成候选波束集合,所述历史信息包括UE曾使用的波束的标识、以及UE在这些使用过的波束的信号传输质量等信息。低频基站可以将信号传输质量满足一定阈值,且被UE使用过的属于该高频基站的波束作为候选波束。
S302:低频基站向UE发送所述候选波束的配置信息。
S303:UE根据候选波束的配置信息,测量所述候选波束的参考信号。
具体地,UE测量所述候选波束的参考信号的信号质量,得到与候选波束对应的CQI,其中,CQI可以包括:UE根据测量得到的参考信号的信号质量向网络侧建议的调制编码方式(modulation and coding scheme,MCS)等信息。
S304:UE向低频基站发送候选波束对应的CQI。
可选地,UE还可以向低频基站上报预编码矩阵指示(precoding matrix indicator,PMI)和/或秩指示(rank indicator,RI),用于高频基站为UE选择波束。其中,基站根据RI可以获知UE最多支持几个波束同时通信,如果UE支持采用多波束通信,则高频基站可以选择多个波束用于向UE发送下行数据。
S305:低频基站将候选波束对应CQI发送给高频基站。
S306:高频基站根据CQI在候选波束中选择第一波束。
所述第一波束为适合向UE发送下行数据的波束。
例如,高频基站可以根据CQI,选择满足传输条件的波束作为第一波束。其中,所述传输条件可以包括:吞吐量满足一定阈值,或者信号质量满足一定阈值,或者可靠性最优等一个或多个条件,本申请实施例对传输条件的具体内容不作特别限定。
S307:高频基站向低频基站发送第一波束的标识信息。
S308:低频基站向UE发送DCI,所述DCI中包含所述第一波束的标识信息。
S309:UE获取第一波束的标识信息。
具体地,UE接收所述DCI信息,获取所述DCI中包含的第一波束的标识信息。
在上述波束确定过程完成后,高频基站可以采用第一波束与UE进行通信,例如采用第一波束为UE发送下行数据。
可选地,在本申请的另一个实施方式中,若UE分别连接了低频基站和多个高频基站,例如高频基站1与高频基站2,且UE当前使用的波束属于高频基站1,则UE测量的候选波束可 以包括高频基站1和高频基站2的波束,则UE上报的CQI包括属于不同高频基站的波束对应的CQI。假设高频基站1根据UE上报的CQI选择了高频基站2的波束作为第一波束,则高频基站1除了通知UE第一波束的标识信息之外,还向高频基站2发送切换请求消息,所述切换请求消息可以包含第一波束的标识信息,该消息用于请求将UE当前使用的波束切换至第一波束。若高频基站2确认可以使用第一波束与UE进行通信,则向高频基站1发送确认消息,随后由高频基站1与UE完成波束的切换过程,进而,高频基站2可以采用该第一波束向UE发送下行数据。可选地,若高频基站1和高频基站2之间存在直接通信连接,则高频基站1可以直接向或高频基站2发送切换请求消息,高频基站2可以直接向高频基站1发送确认消息;或者,高频基站1或高频基站2可以通过低频基站转发上述切换请求消息或者确认消息。
采用图2或图3所示实施例提供的波束确定方法,第一基站向第二基站发送来自于UE的信道质量指示信息,由第二基站根据所述信道质量指示信息在属于第二基站的波束中选择用于向UE发送下行数据的波束,并通过第一基站将选择出的波束的标识信息发送给UE。由于信道质量指示信息能够反映快速信道变化,因而,第二基站能够准确、及时地为UE选择合适的波束用于传输数据,增强了通信可靠性,在UE切换波束的场景中,能够提升通信连续性。
图4是本申请实施例提供的另一种波束确定方法的流程示意图,该波束确定方法可以适用于图1所示的通信系统中。
图4所示实施例与图2或图3所示实施例的区别在于,图4所示实施例中,由第一基站根据信道质量指示信息确定第一波束。为了描述简洁,与图2或图3所示实施例中介绍的内容相同的部分将不做赘述。
该方法包括如下步骤:
S401:UE向第一基站发送信道质量指示信息。
S402:第一基站根据信道质量指示信息为UE选择第一波束。
其中,第一波束属于第二基站,且第一波束可以用于UE与第二基站间的通信。关于第一波束的详细描述可以参照本申请其他实施例中的相关内容,在此不做赘述。
关于选择第一波束的具体方式可以参照本申请其他实施例中的相关内容,在此不做赘述。
S403:第一基站向所述UE发送所述第一波束的标识信息。
可选地,第一波束的标识信息包括波束ID和/或第一波束的参考信号的信息。
S404:第一基站向第二基站发送通知消息,所述通知消息用于指示所述第一波束。
S405:第二基站确定使用第一波束与UE进行通信。
可选地,第一基站为低频基站,第二基站为高频基站。
可以理解,第一基站在确定了第一波束后,就可以分别通知UE和第二基站该第一波束的相关信息,故,S403和S404没有执行顺序的区分,可以按照上述顺序执行,也可以先执行S404再执行S403,或者同时执行,本发明实施例对此不做任何限定。
所述通知消息中可以包括第一波束的标识信息,用于通知第二基站可以激活该波束,并为UE传输下行数据。可选地,所述通知消息中还可以包括标志位,用于通知第二基站UE当前使用的波束将被切换至第二基站的波束,例如标志位为“1”表示波束切换。
可选地,作为本申请的一个实施方式,第一基站为所述UE确定候选波束;并向UE发送所述候选波束的配置信息,则,UE可以根据所述候选波束的配置信息,测量所述候选波束的参考信号,得到候选波束对应的信道质量指示信息,并发送给第一基站。关于该实施方式的具体描述可以参照图2-图3实施例中的相关内容,在此不做赘述。
可选地,第一基站可以向UE发送下行控制信息,所述下行控制信息中包括第一波束的标识信息。
图5是本申请实施例提供的一种波束确定方法的信令流程示意图。
可以理解,图5所示实施例是在图3所示实施例的基础上,对本申请实施例提供的波束确定方法的进一步解释与说明,对本申请其他示实施例中已经介绍的内容将不做赘述。
为了便于理解,图5所示实施例以第一基站为低频基站,第二基站为高频基站进行说明,其中,低频基站与高频基站之间存在通信接口,UE分别接入了低频基站以及高频基站。
该方法包括如下步骤:
S501:低频基站为UE配置候选波束。
其中,候选波束可以低频基站从属于高频基站的波束中选取的,关于配置候选波束的具体方式可以参照本申请其他实施例的相关内容,不做赘述。
S502:低频基站向UE发送候选波束的配置信息。
关于候选波束的配置信息的具体内容可以参照本申请其他实施例的相关内容,不做赘述。
S503:UE根据候选波束的配置信息,测量所述候选波束的参考信号。
关于测量候选波束的具体描述可以参照本申请其他实施例的相关内容,不做赘述。
S504:UE将与候选波束相关的CQI上报给低频基站。
具体地,UE可以将CQI直接上报给低频基站;或者UE将CQI上报给高频基站,并由高频基站转发给低频基站。
可选地,UE还可以向低频基站上报PMI和/或RI,用于低频基站为UE选择波束,不做赘述。
S505:低频基站根据CQI在候选波束中选择第一波束。
所述第一波束为适合向UE发送下行数据的波束。
关于选择第一波束的具体方式可以参照本申请其他实施例的相关内容,不做赘述。
S506:低频基站向高频基站发送通知消息,所述通知消息用于指示第一波束。
S507:高频基站确定使用第一波束向UE发送下行数据。
S508:低频基站向UE发送DCI信息,所述DCI信息中包含所述第一波束的标识信息。
S509:UE获取第一波束的标识信息。
可以理解,S507-S508和S508-S509没有执行的先后顺序之分,可以先执行S507-S508,再执行S508-S509,也可以先执行S508-S509,再执行S507-S508,也可以同时执行,本申请实施例对此不做特别限定。
在上述波束确定过程完成后,高频基站可以采用第一波束与UE进行通信,例如采用第一波束为UE发送下行数据。
采用图4或图5所示实施例提供的波束确定方法,第一基站接收UE上报的信道质量指示信息,并根据所述信道质量指示信息在属于第二基站的波束中选择用于向UE发送下行数据的波束,并将选择出的波束的标识信息发送给UE。由于信道质量指示信息能够反映快速信道变化,因而,第一基站能够准确、及时地为UE选择合适的第二基站的波束用于传输数据,增强了通信可靠性,在UE切换波束的场景中,能够提升通信连续性。当第一基站为低频基站,且第二基站为高频基站时,由第一基站负责与UE间的信息传输,可以节约信令开销,提升传输效率。
图6是本申请实施例提供的一种基站600的结构示意图。
基站600可以执行图2或图3所示实施例中的第一基站的操作,关于基站600中各单元的功能的具体描述可以参照图2或图3所示实施例中的第一基站执行的相关操作的介绍。
基站600包括:
第一接收单元601:用于从UE接收信道质量指示信息。
第一发送单元602:用于将所述信道质量指示信息发送给第二基站,所述信道质量指示信息用于所述第二基站为所述UE确定第一波束,所述第一波束属于所述第二基站,所述第一波束用于所述第二基站与所述UE间的通信。
第二接收单元603:用于从所述第二基站接收所述第一波束的标识信息。
第二发送单元604:将所述第一波束的标识信息发送给所述UE。
可选地,第二发送单元604具体用于,向所述UE发送下行控制信息,所述下行控制信息中包含所述第一波束的标识信息。
所述第一波束的标识信息可以包括包括波束ID和/或第一波束的参考信号的信息,不做赘述。
可选地,作为本申请的一个实施方式,所述基站还包括处理单元605,用于为所述UE确定候选波束;可选地,第二发送单元604还用于,向所述UE发送所述候选波束的配置信息,所述配置信息中包括所述候选波束的标识信息,所述候选波束的配置信息用于所述UE测量所述候选波束的参考信号;在该实施方式中,第一接收单元601具体用于,接收所述UE测量所 述候选波束的参考信号得到的所述信道质量指示信息。
可选地,第二接收单元603还用于,从所述第二基站接收属于所述第二基站的至少一个波束的配置信息;则处理单元605可以用于,根据所述至少一个波束的配置信息确定所述候选波束。
关于确定候选波束以及在候选波束中选择第一波束的具体内容介绍可以参照本申请其他实施例的相关内容,不做赘述。
可选地,所述候选波束的配置信息中还包括所述候选波束的时隙信息。关于时隙信息的具体介绍可以参照本申请其他实施例的相关内容,不做赘述。
可选地,基站600为低频基站;且所述第二基站为高频基站。
如图6所示,基站600中的各单元之间可以通过通信总线的方式相互连接。图6中未示,该基站内的各单元也可以采用其他直接或间接连接方式连接,本发明实施例对此不做特别限定。
在本发明的另一个实施例中,在硬件实现上,可以由收发器执行第一接收单元601以及第二发送单元604的功能;可以由通信接口执行第一发送单元602以及第二接收单元603的功能;可以由处理器执行处理单元605的功能。其中,所述收发器用于基站600和用户设备间的通信,所述通信接口用于基站600和其他网络设备例如上述第二基站间的通信,所述处理器可以以硬件形式内嵌于或独立于基站的处理器中,也可以以软件形式存储于基站的存储器中,以便于处理器调用执行以上各个单元对应的操作。
采用本申请实施例提供的基站600,接收UE上报的信道质量指示信息,并发送给第二基站,以使得第二基站选择用于向UE发送下行数据的波束,再向UE发送第一波束的标识信息,由基站600负责与UE间的信息传输,当基站600为低频基站时,可以节约信令开销,提升传输效率。
图7是本申请实施例提供的一种基站700的结构示意图。
基站700可以执行图2或图3所示实施例中的第二基站的操作。关于基站700中各单元的功能的具体描述可以参照图2或图3所示实施例中的第二基站执行的相关操作的介绍。
基站700包括:
接收单元701:用于通过第一基站接收来自于UE的信道质量指示信息。
处理单元702:用于根据所述信道质量指示信息为所述UE确定第一波束,其中,所述第一波束属于基站700,所述第一波束用于基站700与UE间的通信。
关于确定第一波束的具体步骤描述可以参照本申请其他实施例的相关内容,不做赘述。
第一发送单元703:用于通知所述UE所述第一波束的标识信息。
可选地,作为本申请的一个实施方式,第一发送单元703还用于,向所述第一基站发送属于基站700的至少一个波束的配置信息,所述至少一个波束的配置信息用于所述第一基站 为所述UE确定候选波束,所述至少一个波束的配置信息中包括所述至少一个波束的标识信息;则接收单元701具体可以用于,从所述第一基站接收UE测量候选波束的参考信号得到的所述信道质量指示信息。
可选地,基站700还包括第二发送单元704,用于向所述UE发送候选波束的配置信息,所述候选波束的配置信息用于所述UE测量所述候选波束的信号以得到所述信道质量指示信息,所述候选波束的配置信息包括所述候选波束的标识信息,所述候选波束属于所述第二基站。
可选地,第一发送单元703具体用于,向所述第一基站发送所述第一波束的标识信息,由所述第一基站将所述第一波束的标识信息发送给所述UE。
如图7所示,基站700中的各单元之间可以通过通信总线的方式相互连接。图7中未示,该基站内的各单元也可以采用其他直接或间接连接方式连接,本发明实施例对此不做特别限定。
在本发明的另一个实施例中,在硬件实现上,可以由通信单元执行接收单元701以及第一发送单元703的功能;可以由收发器执行第二发送单元704的功能;可以由处理器执行处理单元702的功能。其中,所述收发器用于基站700和用户设备间的通信,所述通信接口用于基站700和其他网络设备例如上述第一基站间的通信,所述处理器可以以硬件形式内嵌于或独立于基站的处理器中,也可以以软件形式存储于基站的存储器中,以便于处理器调用执行以上各个单元对应的操作。
采用本申请实施例提供的基站700,根据UE发送的信道质量指示信息为UE选择发送下行数据的波束,由于信道质量指示信息能够反映快速信道变化,因而,基站700能够准确、及时地为UE选择合适的波束用于传输数据。
图8是本申请实施例提供的一种基站800的结构示意图。
基站800可以执行图4或图5所示实施例中的第一基站的操作。关于基站800中各单元的功能的具体描述可以参照图4或图5所示实施例中的第一基站执行的相关操作的介绍。
基站800包括:
第一接收单元801:用于接收从UE接收信道质量指示信息。
处理单元802:用于根据所述信道质量指示信息为所述UE确定第一波束,所述第一波束属于第二基站,所述第一波束用于所述第二基站和UE间的通信。
第一发送单元803:用于向所述UE发送所述第一波束的标识信息。
第二发送单元804:用于向第二基站发送通知消息,所述通知消息用于指示所述第一波束。
可选地,作为本申请的一个实施方式,处理单元802还用于:为所述UE确定候选波束;第一发送单元803还用于:向所述UE发送所述候选波束的配置信息,所述配置信息中包括所述候选波束的标识信息,所述候选波束的配置信息用于所述UE测量所述候选波束的参考信 号;则,第一接收单元801具体用于:接收所述UE测量所述候选波束的参考信号得到的所述信道质量指示信息。
可选地,基站800还包括第二接收单元805:用于从所述第二基站接收属于所述第二基站的至少一个波束的配置信息;则,处理单元802具体用于:根据所述第一基站根据所述至少一个波束的配置信息确定所述候选波束。
可选地,所述候选波束的配置信息还包括所述候选波束的时隙信息。
可选地,所述第一发送单元803具体用于,向所述UE发送下行控制信息,所述下行控制信息中包含所述第一波束的标识信息。
可选地,基站800为低频基站;且所述第二基站为高频基站。
如图8所示,基站800中的各单元之间可以通过通信总线的方式相互连接。图8中未示,该基站内的各单元也可以采用其他直接或间接连接方式连接,本发明实施例对此不做特别限定。
在本发明的另一个实施例中,在硬件实现上,可以由收发器执行第一接收单元801以及第一发送单元803的功能;可以由通信单元执行第二发送单元804以及第二接收单元805的功能;可以由处理器执行处理单元802的功能。其中,所述收发器用于基站800和用户设备间的通信,所述通信接口用于基站800和其他网络设备例如上述第二基站间的通信,所述处理器可以以硬件形式内嵌于或独立于基站的处理器中,也可以以软件形式存储于基站的存储器中,以便于处理器调用执行以上各个单元对应的操作。
采用本申请实施例提供的基站800,接收UE上报的信道质量指示信息,并根据所述信道质量指示信息在属于第二基站的波束中选择用于向UE发送下行数据的波束,并将选择出的波束的标识信息发送给UE。由于信道质量指示信息能够反映快速信道变化,因而,基站800能够准确、及时地为UE选择合适的第二基站的波束用于传输数据,增强了通信可靠性,在UE切换波束的场景中,能够提升通信连续性。
图9是本申请实施例提供的一种基站900的结构示意图。
基站900可以执行图4或图5所示实施例中的第二基站的操作。关于基站900中各单元的功能的具体描述可以参照图4或图5所示实施例中的第二基站执行的相关操作的介绍。
基站900包括:
接收单元901:用于第二基站从第一基站接收通知消息,所述通知消息用于指示由第一基站确定的第一波束,所述第一波束属于所述第二基站;
处理单元902:用于确定使用所述第一波束进行基站900与UE间的通信。
可选地,基站900还包括发送单元,用于向第一基站发送所述所述第二基站的至少一个波束的配置信息,所述至少一个波束的配置信息用于所述第一基站确定候选波束。
所述至少一个波束的配置信息包括所述至少一个波束的标识信息。
则,第一基站可以根据UE对候选波束的参考信号的测量结果,例如CQI,在候选波束中确定所述第一波束。关于确定第一波束的详细描述可以参照本申请其他实施例的相关内容,在此不做赘述。
如图9所示,基站900中的各单元之间可以通过通信总线的方式相互连接。图9中未示,该基站内的各单元也可以采用其他直接或间接连接方式连接,本发明实施例对此不做特别限定。
在本发明的另一个实施例中,在硬件实现上,可以由通信单元执行接收单元901以及发送单元902的功能;可以由处理器执行处理单元902的功能。其中,所述通信接口用于基站900和其他网络设备例如上述第一基站间的通信,所述处理器可以以硬件形式内嵌于或独立于基站的处理器中,也可以以软件形式存储于基站的存储器中,以便于处理器调用执行以上各个单元对应的操作。
采用本申请实施例提供的基站900,可以及时切换为UE传输下行数据所用的波束,增强了通信可靠性与通信连续性。
图10是本申请实施例提供的一种UE1000的结构示意图。
UE1000可以执行图2-图5任一实施例中的UE的操作。关于UE1000中各单元的功能的具体描述可以参照图2-图5任一所示实施例中的UE执行的相关操作的介绍。
UE1000包括:
处理单元1001:用于获取信道质量指示信息。
发送单元1002:用于向第一基站发送所述信道质量指示信息,所述信道质量指示信息用于确定第一波束,所述第一波束属于第二基站,所述第一波束用于所述UE与所述第二基站的通信。
其中,所述信道质量指示信息可以用于第一基站确定所述第一波束,具体可以参见图4或图5所示实施例中的第一基站执行的操作;或者,所述信道质量指示信息可以用于第二基站确定所述第一波束,具体可以参见图2或图3所示实施例中的第二基站执行的操作。
接收单元1003:用于从所述第一基站接收所述第一波束的标识信息。
可选地,接收单元1003还用于接收候选波束的配置信息,所述候选波束的配置信息包括所述候选波束的标识信息;则,处理单元1001具体用于:测量所述候选波束的参考信号得到所述信道质量指示信息。
可选地,接收单元1003具体用于:从所述第一基站接收所述候选波束的配置信息,所述候选波束是所述第一基站根据属于所述第二基站的至少一个波束的配置信息为所述UE确定的,所述至少一个波束的配置信息中包括所述至少一个波束的标识信息。
可选地,接收单元1003具体用于:从所述第二基站接收所述候选波束的配置信息,所述候选波束属于所述第二基站。
可选地,接收单元1003具体用于:从所述第一基站接收下行控制信息,所述下行控制信息中包括所述第一波束的标识信息。
如图10所示,基站1000中的各单元之间可以通过通信总线的方式相互连接。图10中未示,该基站内的各单元也可以采用其他直接或间接连接方式连接,本发明实施例对此不做特别限定。
在本发明的另一个实施例中,在硬件实现上,可以由处理器执行处理单元1001的功能;可以由收发器执行发送单元1002以及接收单元1003的功能。其中,所述收发器用于基站700和用户设备间的通信,可以包括发射机以及接收机;所述处理器可以以硬件形式内嵌于或独立于UE的处理器中,也可以以软件形式存储于基站的存储器中,以便于处理器调用执行以上各个单元对应的操作。
采用本申请实施例提供的UE,通过测量候选波束的参考信号,得到对应的信道质量指示信息,使得网络侧可以根据信道质量指示信息准确、及时地为UE选择适合传输下行数据的波束,增强了通信可靠性,在UE切换波束的场景中,能够提升通信连续性。
图11示出了上述实施例中涉及到的一种基站的一种可能的设计结构的简化示意图。
所述基站包括:处理器1101用于对基站的动作进行控制管理,执行各种功能来支持控制设备提供的通信服务。例如,处理器1101用于支持基站执行图2或图3所示实施例中第一基站执行的操作,或者处理器1101用于支持基站执行图4或图5所示实施例中第一基站执行的操作。
存储器1102用于存储用于所述基站进行本申请实施例提供的波束确定方法的程序代码和数据,该程序代码包括计算机操作指令。存储器1102中存储的程序代码可以由处理器1101执行。
发射器/接收器1104用于支持基站与UE通信。
通信模块1103用于支持基站与其他网络设备的通信,例如支持与其他基站设备的通信,所述通信模块1103可以包括基站与其他基站设备之间的通信接口。
可选地,该基站是低频基站。
图12示出了上述实施例中涉及到的一种基站的一种可能的设计结构的简化示意图。
所述基站包括:处理器1201用于对基站的动作进行控制管理,执行各种功能来支持控制设备提供的通信服务。例如,处理器1201用于支持基站执行图2或图3所示实施例中第二基站执行的操作,或者处理器1201用于支持基站执行图4或图5所示实施例中第二基站执行的操作。
存储器1202用于存储用于所述基站进行本申请实施例提供的波束确定方法的程序代码和数据,该程序代码包括计算机操作指令。存储器1202中存储的程序代码可以由处理器1201执行。
发射器/接收器1204用于支持基站与UE通信。通信模块1203用于支持基站与其他网络设备的通信,例如支持与其他基站设备的通信,所述通信模块1203可以包括基站与其他基站设备之间的通信接口。
可选地,该基站可以是高频基站。
可以理解的是,图11或图12仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信模块等,在此不做赘述。
图13示出了上述实施例中所涉及的UE的一种可能的设计结构的简化示意图。所述UE包括发射器1301,接收器1302,处理器1303,存储器1304和调制解调处理器1305。
发射器1301调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器1302调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1305中,编码器13013接收要在上行链路上发送的数据和信令消息,并对数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1307进一步处理(例如,符号映射和调制)编码后的数据和信令消息并提供输出采样。解调器1309处理(例如,解调)该输入采样并提供符号估计。解码器13013处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器13013、调制器1307、解调器1309和解码器13013可以由合成的调制解调处理器1305来实现。
处理器1303对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理,例如用于控制UE测量候选波束的参考信号和/或本申请实施例所描述的技术的其他过程,包括,图2-图5任一所示实施例中的UE执行的步骤。存储器1304用于存储用于UE的程序代码和数据。
图14是本申请实施例提供的一种通信系统1400的示意图。
通信系统1400包括第一基站1401,第二基站1402,以及UE1403。
如图14所示,第一基站1401与第二基站1402之间存在通信连接;且UE分别与第一基站1401、第一基站1402分别存在通信连接。第一基站1401与第二基站1402可以采用通信接口进行通信。
关于上述通信系统中的各设备的功能及执行的步骤的详细描述,可以参照本发明其他实施例的相关内容,例如,第一基站可以执行图2或图3所示实施例中第一基站或低频基站执行的步骤;且第二基站可以执行图2或图3所示实施例中第二基站或高频基站执行的步骤。又例如,第一基站可以执行图4或图5所示实施例中第一基站或低频基站执行的步骤;且第二基站可以执行图4或图5所示实施例中第二基站或高频基站执行的步骤,在此不做赘述。
采用本申请实施例提供的通信系统,网络侧(第一基站或者第二基站)根据信道质量指 示信息在属于第二基站的波束中选择用于向UE发送下行数据的波束,并通过第一基站将选择出的波束的标识信息发送给UE。由于信道质量指示信息能够反映快速信道变化,因而,网络侧能够准确、及时地为UE选择合适的波束用于传输数据,增强了通信可靠性,特别是在UE切换波束的场景中,能够提升通信连续性。当第一基站为低频基站,且第二基站为高频基站时,由第一基站负责与UE间的信息传输,可以节约信令开销,提升传输效率。
所属领域的技术人员可以清楚地了解到,本申请各实施例可以互相参照,例如,为描述的方便和简洁,上述描述的设备和设备中的单元或模块的具体工作过程,可以参考前述方法实施例中的对应过程描述。
可以理解,本申请实施例中所述的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
本申请实施例所述的总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线仅用一条双箭头线表示,但并不表示仅有一根总线或一种类型的总线。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现,也可以通过计算机程序产品实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网 络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述系统、设备和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (38)

  1. 一种波束确定方法,其特征在于,所述方法包括,
    第一基站从用户设备UE接收信道质量指示信息;
    所述第一基站将所述信道质量指示信息发送给第二基站,所述信道质量指示信息用于所述第二基站为所述UE确定第一波束,所述第一波束属于所述第二基站,所述第一波束用于所述第二基站与所述UE间的通信;
    所述第一基站从所述第二基站接收所述第一波束的标识信息;
    所述第一基站将所述第一波束的标识信息发送给所述UE。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括,
    所述第一基站为所述UE确定候选波束;
    所述第一基站向所述UE发送所述候选波束的配置信息,所述配置信息中包括所述候选波束的标识信息,所述候选波束的配置信息用于所述UE测量所述候选波束的参考信号;
    所述第一基站从所述UE接收信道质量指示信息包括:
    所述第一基站接收所述UE测量所述候选波束的参考信号得到的所述信道质量指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括,
    所述第一基站从所述第二基站接收属于所述第二基站的至少一个波束的配置信息;
    所述第一基站为所述UE确定候选波束包括,
    所述第一基站根据所述至少一个波束的配置信息确定所述候选波束。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述候选波束的配置信息中还包括所述候选波束的时隙信息。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述第一基站向所述UE发送所述第一波束的标识信息包括,
    所述第一基站向所述UE发送下行控制信息,所述下行控制信息中包含所述第一波束的标识信息。
  6. 根据权利要求1-5任一所述的方法,其特征在于,
    所述第一基站为低频基站;且所述第二基站为高频基站。
  7. 一种波束确定方法,其特征在于,所述方法包括,
    第二基站通过第一基站接收来自于用户设备UE的信道质量指示信息;
    所述第二基站根据所述信道质量指示信息为所述UE确定第一波束;
    所述第二基站通知所述UE所述第一波束的标识信息;
    其中,所述第一波束属于第二基站,所述第一波束用于所述第二基站与所述UE间的通信。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括,
    所述第二基站向所述第一基站发送属于所述第二基站的至少一个波束的配置信息,所述至少一个波束的配置信息用于所述第一基站为所述UE确定候选波束,所述至少一个波束的配置信息中包括所述至少一个波束的标识信息;
    所述第二基站通过第一基站接收来自于UE的信道质量指示信息包括:
    所述第二基站从所述第一基站接收UE测量候选波束的参考信号得到的所述信道质量指示信息。
  9. 根据权利要求7所述的方法,其特征在于,所述方法包括,
    所述第二基站向所述UE发送候选波束的配置信息,所述候选波束的配置信息用于所述UE测量所述候选波束的信号以得到所述信道质量指示信息,所述候选波束的配置信息包括所述候选波束的标识信息,所述候选波束属于所述第二基站。
  10. 根据权利要求7或8所述的方法,其特征在于,所述第二基站通知UE所述第一波束的标识信息包括,
    所述第二基站向所述第一基站发送所述第一波束的标识信息,由所述第一基站将所述第一波束的标识信息发送给所述UE。
  11. 根据权利要求7-10任一所述的方法,其特征在于,
    所述第一基站为低频基站;且所述第二基站为高频基站。
  12. 一种波束确定方法,其特征在于,包括,
    用户设备UE获取信道质量指示信息;
    所述UE向第一基站发送所述信道质量指示信息,所述信道质量指示信息用于确定第一波束,所述第一波束属于第二基站,所述第一波束用于所述UE与所述第二基站的通信;
    所述UE从所述第一基站接收所述第一波束的标识信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括,
    所述UE接收候选波束的配置信息,所述候选波束的配置信息包括所述候选波束的标识信息;
    所述UE获取信道质量指示信息包括:
    所述UE测量所述候选波束的参考信号,得到所述信道质量指示信息。
  14. 根据权利要求13所述的方法,其特征在于,所述UE接收候选波束的配置信息包括,
    所述UE从所述第一基站接收所述候选波束的配置信息,所述候选波束是所述第一基站根据属于所述第二基站的至少一个波束的配置信息为所述UE确定的,所述至少一个波束的配置信息中包括所述至少一个波束的标识信息。
  15. 根据权利要求13所述的方法,其特征在于,所述UE接收候选波束的配置信息包括,
    所述UE从所述第二基站接收所述候选波束的配置信息,所述候选波束属于所述第二基站。
  16. 根据权利要求12-15任一所述的方法,其特征在于,
    所述候选波束的配置信息中还包括所述候选波束的时隙信息。
  17. 根据权利要求10-16任一所述的方法,其特征在于,所述UE从所述第一基站接收所述第一波束的标识信息包括,
    所述UE从所述第一基站接收下行控制信息,所述下行控制信息中包括所述第一波束的标识信息。
  18. 一种基站,其特征在于,所述基站包括处理器与存储器,
    所述存储器用于存储指令;
    所述处理器用于调用存储器中存储的指令,以使得所述基站执行以下操作:
    从用户设备UE接收信道质量指示信息;
    将所述信道质量指示信息发送给第二基站,所述信道质量指示信息用于所述第二基站为所述UE确定第一波束,所述第一波束属于所述第二基站,所述第一波束用于所述第二基站与所述UE间的通信;
    从所述第二基站接收所述第一波束的标识信息;
    将所述第一波束的标识信息发送给所述UE。
  19. 根据权利要求18所述的基站,其特征在于,所述处理器还用于调用存储器中的指令,以使得所述基站执行以下操作:
    向所述UE发送所述候选波束的配置信息,所述配置信息中包括所述候选波束的标识信息,所述候选波束的配置信息用于所述UE测量所述候选波束的参考信号;
    接收所述UE测量所述候选波束的参考信号得到的所述信道质量指示信息。
  20. 根据权利要求19所述的基站,其特征在于,所述处理器还用于调用存储器中的指令,以使得所述基站执行以下操作:
    从所述第二基站接收属于所述第二基站的至少一个波束的配置信息;
    根据所述至少一个波束的配置信息确定所述候选波束。
  21. 根据权利要求19或20所述的基站,其特征在于,
    所述候选波束的配置信息中还包括所述候选波束的时隙信息。
  22. 根据权利要求18-21任一所述的基站,其特征在于,所述向所述UE发送所述第一波束的标识信息包括,
    向所述UE发送下行控制信息,所述下行控制信息中包含所述第一波束的标识信息。
  23. 一种基站,其特征在于,所述基站包括,处理器与存储器,
    所述存储器用于存储指令;
    所述处理器用于调用存储器中存储的指令,以使得所述基站执行以下操作:
    通过第一基站接收来自于用户设备UE的信道质量指示信息;
    根据所述信道质量指示信息为所述UE确定第一波束;
    通知所述UE所述第一波束的标识信息;
    其中,所述第一波束属于所述基站,所述第一波束用于所述基站与所述UE间的通信。
  24. 根据权利要求23所述的基站,其特征在于,所述处理器还用于调用存储器中的指令,以使得所述基站执行以下操作:
    向所述第一基站发送属于所述第二基站的至少一个波束的配置信息,所述至少一个波束的配置信息用于所述第一基站为所述UE确定候选波束,所述至少一个波束的配置信息中包括所述至少一个波束的标识信息;
    从所述第一基站接收UE测量候选波束的参考信号得到的所述信道质量指示信息。
  25. 根据权利要求24所述的基站,其特征在于,所述处理器还用于调用存储器中的指令,以使得所述基站执行以下操作:
    向所述UE发送候选波束的配置信息,所述候选波束的配置信息用于所述UE测量所述候选波束的信号以得到所述信道质量指示信息,所述候选波束的配置信息包括所述候选波束的标识信息,所述候选波束属于所述第二基站。
  26. 根据权利要求24或25所述的基站,其特征在于,所述通知所述UE所述第一波束的标识信息包括,
    所述第二基站向所述第一基站发送所述第一波束的标识信息,由所述第一基站将所述第一波束的标识信息发送给所述UE。
  27. 一种用户设备UE,其特征在于,所述UE包括,处理器与存储器,
    所述存储器用于存储指令;
    所述处理器用于调用存储器中存储的指令,以使得所述UE执行以下操作:
    获取信道质量指示信息;
    向第一基站发送所述信道质量指示信息,所述信道质量指示信息用于确定第一波束,所述第一波束属于第二基站,所述第一波束用于所述UE与所述第二基站的通信;
    从所述第一基站接收所述第一波束的标识信息。
  28. 根据权利要求27所述的UE,其特征在于,所述处理器还用于调用存储器中的指令,以使得所述基站执行以下操作:
    接收候选波束的配置信息,所述候选波束的配置信息包括所述候选波束的标识信息;
    测量所述候选波束的参考信号得到所述信道质量指示信息。
  29. 根据权利要求28所述的UE,其特征在于,所述接收候选波束的配置信息包括:
    从所述第一基站接收所述候选波束的配置信息,所述候选波束是所述第一基站根据属于所述第二基站的至少一个波束的配置信息为所述UE确定的,所述至少一个波束的配置信息中包括所述至少一个波束的标识信息。
  30. 根据权利要求27所述的UE,其特征在于,所述接收候选波束的配置信息包括:
    从所述第二基站接收所述候选波束的配置信息,所述候选波束属于所述第二基站。
  31. 根据权利要求27-30任一所述的UE,其特征在于,
    所述候选波束的配置信息中还包括所述候选波束的时隙信息。
  32. 根据权利要求27-31任一所述的UE,其特征在于,所述从所述第一基站接收所述第一波束的标识信息包括,
    从所述第一基站接收下行控制信息,所述下行控制信息中包含所述第一波束的标识信息。
  33. 一种计算机可读存储介质,用于储存计算机软件指令,包含用于执行权利要求1-6任意一项所述的波束确定方法所设计的程序。
  34. 一种计算机可读存储介质,用于储存计算机软件指令,包含用于执行权利要求7-11任意一项所述的波束确定方法所设计的程序。
  35. 一种计算机可读存储介质,用于储存计算机软件指令,包含用于执行权利要求12-17任意一项所述的波束确定方法所设计的程序。
  36. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-6任意一项所述的波束确定方法。
  37. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求7-11任意一项所述的波束确定方法。
  38. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求12-17任意一项所述的波束确定方法。
PCT/CN2017/118016 2016-12-30 2017-12-22 波束确定方法、基站及用户设备 WO2018121436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611265371.8 2016-12-30
CN201611265371.8A CN108271260B (zh) 2016-12-30 2016-12-30 波束确定方法、基站及用户设备

Publications (1)

Publication Number Publication Date
WO2018121436A1 true WO2018121436A1 (zh) 2018-07-05

Family

ID=62710147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118016 WO2018121436A1 (zh) 2016-12-30 2017-12-22 波束确定方法、基站及用户设备

Country Status (2)

Country Link
CN (1) CN108271260B (zh)
WO (1) WO2018121436A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465098A (zh) * 2019-01-21 2020-07-28 大唐移动通信设备有限公司 一种信息传输方法及装置
CN113727442A (zh) * 2020-05-26 2021-11-30 中国移动通信有限公司研究院 一种信息配置方法、装置、设备及可读存储介质
US20230094238A1 (en) * 2018-04-17 2023-03-30 Kyocera Corporation Robust relaying information transmitted to origination device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110602797B (zh) * 2019-09-02 2021-04-09 深圳职业技术学院 一种物联网中的接入方法
EP4128933A4 (en) * 2020-03-26 2024-01-17 Qualcomm Inc POWERFUL WAY TO OPERATE USER EQUIPMENT (UE) IN DUAL CONNECTIVITY WITH MULTIPLE RADIO ACCESS TECHNOLOGIES

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315865A (zh) * 2010-06-29 2012-01-11 中兴通讯股份有限公司 下一代广播电视网的波束成形方法及系统、交互基站
CN102938666A (zh) * 2012-11-13 2013-02-20 清华大学 一种下行多小区联合波束成形方法
WO2014042562A1 (en) * 2012-09-12 2014-03-20 Telefonaktiebolaget L M Ericsson (Publ) Method in a network node, method in a user equipment, a network node and a user equipment for selecting a beam candidate
CN103828257A (zh) * 2011-09-29 2014-05-28 三星电子株式会社 在使用波束成形的无线通信系统中用于短移交时延的方法和设备
US8867495B2 (en) * 2009-03-20 2014-10-21 Qualcomm Incorporated Feedback mechanisms for beamforming operation
CN105814809A (zh) * 2013-12-16 2016-07-27 华为技术有限公司 无线通信系统中调整波束宽度的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742788B2 (en) * 2002-10-01 2010-06-22 Motorola, Inc. Method and apparatus for using switched multibeam antennas in a multiple access communication system
CN101373998B (zh) * 2007-08-20 2012-07-25 上海贝尔阿尔卡特股份有限公司 低信息交互的多基站协作mimo及其调度方法和装置
EP2066141B1 (en) * 2007-11-30 2014-08-27 Alcatel Lucent Method for performing resource allocation in a wireless communication network, base station and wireless communication network
JP5385392B2 (ja) * 2008-08-26 2014-01-08 マーベル ワールド トレード リミテッド セクタスイーピングによるビーム形成
CN101902298B (zh) * 2010-07-22 2014-03-05 华为技术有限公司 信道质量指示补偿方法、系统及基站
US8971906B2 (en) * 2013-01-17 2015-03-03 Qualcomm Incorporated Hybrid interference alignment for mixed macro-FEMTO base station downlink
CN104469688B (zh) * 2013-09-22 2018-10-26 中国移动通信集团公司 一种预编码的方法、设备和系统
CN103619022B (zh) * 2013-12-06 2017-02-01 中国联合网络通信集团有限公司 一种异构网络中小区间干扰协调的方法及设备
EP2928235B1 (en) * 2014-03-31 2016-05-25 Alcatel Lucent Methods For Operating A First Base Station And A Second Base Station In A Radio Communication System, First Base Station And Second Base Station Thereof
US20160192336A1 (en) * 2014-12-30 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for transmitting downlink control information in mobile communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867495B2 (en) * 2009-03-20 2014-10-21 Qualcomm Incorporated Feedback mechanisms for beamforming operation
CN102315865A (zh) * 2010-06-29 2012-01-11 中兴通讯股份有限公司 下一代广播电视网的波束成形方法及系统、交互基站
CN103828257A (zh) * 2011-09-29 2014-05-28 三星电子株式会社 在使用波束成形的无线通信系统中用于短移交时延的方法和设备
WO2014042562A1 (en) * 2012-09-12 2014-03-20 Telefonaktiebolaget L M Ericsson (Publ) Method in a network node, method in a user equipment, a network node and a user equipment for selecting a beam candidate
CN102938666A (zh) * 2012-11-13 2013-02-20 清华大学 一种下行多小区联合波束成形方法
CN105814809A (zh) * 2013-12-16 2016-07-27 华为技术有限公司 无线通信系统中调整波束宽度的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230094238A1 (en) * 2018-04-17 2023-03-30 Kyocera Corporation Robust relaying information transmitted to origination device
CN111465098A (zh) * 2019-01-21 2020-07-28 大唐移动通信设备有限公司 一种信息传输方法及装置
CN113727442A (zh) * 2020-05-26 2021-11-30 中国移动通信有限公司研究院 一种信息配置方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN108271260A (zh) 2018-07-10
CN108271260B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
KR102308293B1 (ko) 통신 방법 및 통신 장치
WO2018121436A1 (zh) 波束确定方法、基站及用户设备
WO2019137509A1 (zh) 信号传输方法、相关设备及系统
US11336412B2 (en) Synchronization signal configuration method and apparatus
CN109392044B (zh) 小区切换的方法和装置
US11290199B2 (en) Link recovery method, terminal device, and network device
WO2018196529A1 (zh) 一种资源信息确定方法及终端设备、网络设备
CN111586858A (zh) 信号传输方法和通信装置
WO2018059343A1 (zh) 信号传输方法和装置
WO2020078318A1 (zh) 通信方法及装置
WO2018059448A1 (zh) 通信方法及网络设备
WO2019214333A1 (zh) 通信方法及装置
EP3759859A1 (en) Methods and apparatuses for signalling a frequency offset in a nb-iot tdd network
CN109219978A (zh) 接入方法、用户设备、控制设备及通信系统
WO2018223426A1 (zh) 波束失败报告发送方法、接收方法、用户设备和网络设备
EP3410813B1 (en) Communication method and communication apparatus
US20230354252A1 (en) Positioning information transmission method and apparatus
US11425729B2 (en) Reference signal transmission method and communications device
WO2022151494A1 (zh) 一种传输参数确定方法及装置
US20230403119A1 (en) Multi-slot reference signal triggering
US20230336234A1 (en) Fast beam switch
EP4118861A1 (en) Handling incompatible wireless devices
WO2023031190A1 (en) Channel state information reference signal enhancements for wireless devices
CN118160266A (zh) 无线装置的信道状态信息参考信号增强
WO2022240339A1 (en) Conditional tci state switch procedure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886684

Country of ref document: EP

Kind code of ref document: A1