WO2019029101A1 - 一种活性炭纤维的制备方法 - Google Patents

一种活性炭纤维的制备方法 Download PDF

Info

Publication number
WO2019029101A1
WO2019029101A1 PCT/CN2017/118925 CN2017118925W WO2019029101A1 WO 2019029101 A1 WO2019029101 A1 WO 2019029101A1 CN 2017118925 W CN2017118925 W CN 2017118925W WO 2019029101 A1 WO2019029101 A1 WO 2019029101A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
fiber
carbon fiber
composite
hemp
Prior art date
Application number
PCT/CN2017/118925
Other languages
English (en)
French (fr)
Inventor
黄展飞
Original Assignee
南通金康弘纺织品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通金康弘纺织品有限公司 filed Critical 南通金康弘纺织品有限公司
Publication of WO2019029101A1 publication Critical patent/WO2019029101A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/10Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
    • D06L4/13Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen using inorganic agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • D06M16/003Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • the invention relates to a textile fabric, in particular to a preparation method of activated carbon fiber.
  • Activated carbon fiber is the third generation activated carbon material after powdered activated carbon and granular activated carbon. It has the characteristics of large specific surface area, fast adsorption speed, developed microporous structure, reproducible and good safety performance.
  • a method for preparing a fibrous activated carbon disclosed in the patent publication CN102817112B comprising carbonizing a polyimide fiber under a nitrogen atmosphere to obtain a carbonized fiber; and subsequently activating the carbonized fiber in water vapor to obtain a fibrous activated carbon.
  • the activated carbon fiber generally includes two steps of carbonization and activation, thereby obtaining an activated carbon having a large specific surface area and a developed microporous structure.
  • the precursor fiber of the activated carbon fiber may be a plurality of fibers such as regenerated cellulose fiber, polyacrylonitrile fiber, lignin fiber, or polyvinyl alcohol fiber.
  • the polyacrylonitrile fiber can form a trapezoidal structure with high temperature and no melting after being pre-oxidized by air, so that it has better mechanical strength than other activated carbon fibers, but its specific surface area is smaller than that of cellulose-based activated carbon, which affects the adsorption of activated carbon. effect.
  • a first object of the present invention is to provide a method for preparing activated carbon fibers, which has a large specific surface area while ensuring mechanical strength.
  • a method for preparing activated carbon fiber comprises the following steps:
  • step (3) mixing the hemp fiber of step (1) and the polyacrylonitrile stock solution of step (2), and then obtaining a composite fiber by dry spinning;
  • the composite fiber obtained in the step (3) is placed in a reaction vessel under an air atmosphere, 10 to 20 minutes to 200 to 220 ° C, and then incubated for 2 to 3 hours to obtain a stabilized composite fiber;
  • the stabilized conjugate fiber obtained in the step (4) is heated to 400 to 450 ° C for 1 hour in an air atmosphere, and then filled with an inert gas to form an inert atmosphere in the reaction vessel, and then the temperature is raised to 600 to 700.
  • the composite carbonized fiber is obtained by incubating at °C for 10 minutes;
  • the composite carbonized fiber obtained in the step (5) is immersed in an activator for 2 hours, and the excess solution is removed by extrusion, and heated to 400 to 500 ° C for 2 hours under an inert gas atmosphere, and after cooling and washing, an activated carbon fiber is obtained.
  • the hemp fiber has a hollow cross section and a plurality of complicated irregular shapes, and the intermediate pores are relatively large, accounting for about 1/2 to 1/3 of the cross-sectional area.
  • the fiber cell wall has cracks and small holes to make the hemp fiber longitudinally straight, with transverse joints and many cracks, small holes and through the capillary channel to the middle cavity.
  • This structure allows Hemp fiber has more capillary channels, which can make the fiber itself have excellent moisture absorption and gas permeability; hemp fiber has higher breaking strength and elongation at break than ramie and linen, and can weave a lighter and softer knitted fabric; Nitrile fiber has good weather resistance, sun resistance and chemical resistance.
  • Hemp fiber can enhance the mechanical strength and hygroscopicity of polyacrylonitrile fiber, so that the fabric is not easy to break. At the same time, it can compensate for the defect of small specific surface area after activation of polyacrylonitrile fiber; while polyacrylonitrile fiber can make up the elasticity and softness of hemp fiber, so that the fabric has higher structural strength and improves the skin-friendly of fabric.
  • Sense dry spinning compared to wet spinning, the equipment has good sealing performance, less solvent volatility, simple solvent recovery, slow fiber formation and uniform structure.
  • the fiber has good physical and mechanical properties; by stabilizing the composite fiber under air atmosphere, the polyacrylonitrile can be oxidized to form a stepped polymer to improve the thermal stability of the material, and the temperature is controlled at 220 ° C.
  • the carbonization of the hemp fiber at this stage is prevented from affecting the subsequent process; after the polyacrylonitrile is stabilized, the carbonization and activation are carried out, so that the composite fiber eliminates the non-carbon element through the thermal decomposition reaction, and the carbon atom undergoes polycondensation rearrangement to form a large amount of
  • the amorphous carbon and the graphite-like crystallites form a large number of micropores on the surface of the carbonized fiber, and the activated carbon composite fiber with a larger specific surface area is obtained, and the pore structure is compared with the single polyacrylonitrile activated carbon due to the structure of the hemp itself.
  • the fiber is more complex and has a better adsorption effect.
  • the copolymerized polyacrylonitrile resin is composed of the following components, and the mass fraction thereof is 90 parts of acrylonitrile, 6 parts of methyl acrylate, 3 parts of itaconic acid, 1 part of potassium persulfate, and dodecyl group. 0.1 part of benzenesulfonic acid, 0.01 part of zinc phosphate, and 0.01 part of copper phosphate.
  • methyl acrylate reduces the force between macromolecules, thereby reducing the crystallinity of polyacrylonitrile, increasing the softness of the fiber, and making the fiber more elastic, through dodecylbenzene.
  • the solvent is a DMF solvent
  • the content of the DMF solvent in the polyacrylonitrile stock solution accounts for 25%.
  • DMF can dissolve the copolymerized polyacrylonitrile resin, and controlling the content of DMF to 25% can make the solvent volatilization more fully, and avoid the adhesion between the fibers during the fiber forming process.
  • the humidity in the air atmosphere of the step (4) is maintained at 60% RH.
  • the water vapor in the air under the air atmosphere can react with a small amount of metal ions in the polyacrylonitrile, a small amount of fibers are activated in advance, and the activated carbon fibers are formed in the early stage to form different pores between the activated carbon fibers, and the activated carbon fibers are further formed.
  • the pore structure is complicated, so that the activated carbon fiber can have a good adsorption effect on various gases.
  • the process of the hemp degumming is as follows: mechanical pretreatment - enzymatic treatment - alkali treatment - knocking hemp - bleaching pickling - oiling - fluffing - drying.
  • the degumming is to remove the sericin, wax grease and pigment wrapped in the outer layer, and the fibers are separated and loosened to obtain a spinnable fiber, which is suitable for textile requirements, and is physically pretreated by mechanical pretreatment.
  • the loose fiber is subjected to preliminary stripping, and then treated with an enzyme. After preliminary stripping, the contact area between the enzyme solution and the fiber can be increased, thereby improving the peeling effect, and then the alkali washing and the untreated portion are removed.
  • Glue improve the treatment rate, by knocking the linen, preliminary washing off the lye, further washing the lye with acid, after oiling, fluffing and drying, the treated hemp fiber can be obtained, compared with simple Enzyme treatment, which is more efficient in processing.
  • the activated carbon fibers are also loaded with chitosan and iodine.
  • chitosan and iodine can exert a bacteriostatic effect, and chitosan can function to complex iodine and activated carbon fibers, so that the load of iodine on the activated carbon fiber is stabilized.
  • the chitosan is a quaternary ammonium salt chitosan.
  • the quaternary ammonium salt can enhance the antibacterial effect of chitosan, and the quaternary ammonium salt itself can be complexed with iodine, thereby further improving the stability between chitosan and iodine, so that iodine is on the activated carbon fiber.
  • the load is more stable.
  • a second object of the present invention is to provide an activated carbon fiber fabric which provides a fabric with better skin-friendly properties.
  • the activated carbon used in the activated carbon fiber woven fabric is produced by the above-described method for producing activated carbon fibers.
  • the fabric made of activated carbon fiber has good hygroscopicity, skin-friendly property and gas permeability, and the surface is soft and tough, and at the same time can have a bactericidal effect.
  • the activated carbon fabric comprises a pillowcase, a bed sheet and a duvet cover.
  • the pillowcase, the bed sheet and the quilt cover are used as bed tools, and are manufactured by activated carbon fiber. Due to the gas permeability of the activated carbon fiber, the growth of the mites can be reduced, and the harm of the mites to human health can be reduced, when the person covers the quilt on the face. At the same time, it will not feel too stuffy; at the same time, through the loading of chitosan and iodine, it can play a bactericidal effect and ensure the safety of people's sleeping environment.
  • the present invention has the following beneficial effects:
  • the hemp-polyacrylonitrile composite activated carbon fiber prepared by the preparation method can form a complex and large amount of microporous structure of the activated carbon fiber at the same time of high mechanical strength, and improve the adsorption effect of the activated carbon fiber;
  • Polyacrylonitrile basically contains a certain amount of nitrogen atom groups, so it has strong adsorption capacity for sulfur-containing substances;
  • a small amount of composite fiber is activated in advance by air atmosphere, and the activated carbon fiber is completely activated by the activator atmosphere.
  • the pore structure of the activated carbon fiber is further complicated by two activations, and the formation of the previous activation can be formed in the secondary activation process.
  • the micropores act to ream the pores, thereby improving the adsorption effect;
  • loading quaternary ammonium chitosan and iodine can play a bacteriostatic effect, at the same time, through the complexation of quaternary ammonium chitosan and iodine, the load of iodine on activated carbon fiber can be more stable, reducing the loss of iodine;
  • Figure 1 is a flow chart of the preparation process of activated carbon fiber.
  • Enzyme treatment adding hydrogen peroxide and 50% dilute sulfuric acid in an aqueous solution, adjusting the pH to 4.0, and then adding pectinase, cellulase and catalase according to a mass ratio of 2:2:1, and uniformly mixing After heating to 50 ° C, adding hemp after the step (1) treatment, soaking for 3h, stirring for 5h;
  • Oiling water: oil according to the ratio of 14:15, the temperature is raised to 80 ° C, adding 1 kg of hydrogen peroxide; the hemp fiber of step (5) is placed, cooking for 45 min;
  • step (3) mixing the hemp fiber of step (1) and the polyacrylonitrile stock solution of step (2), and then obtaining a composite fiber by dry spinning;
  • the composite fiber obtained in the step (3) is placed in a reaction vessel under an air atmosphere, within 20 min to 220 ° C, and then kept for 3 h to obtain a stabilized composite fiber;
  • the stabilized composite fiber obtained in the step (4) is heated to 450 ° C for 1 hour in a humidity of 60% RH air atmosphere for 1 hour, and then filled with an inert gas to form an inert atmosphere in the reaction vessel, and then the temperature is raised to 700.
  • the composite carbonized fiber is obtained by incubating at °C for 10 minutes;
  • the composite carbonized fiber obtained in the step (5) is immersed in a ZnCl 2 solution for 2 hours, and the excess solution is removed by extrusion, heated to 400 ° C for 2 hours under an inert gas atmosphere, and after cooling and washing, an activated carbon fiber is obtained;
  • the quaternary ammonium salt chitosan and iodine were arranged into a quaternary ammonium chitosan-iodine composite antibacterial agent according to 2:1, and the activated carbon fiber was boiled in deionized water for 1 hour, and the activated carbon fiber was immersed in the quaternary ammonium salt shell.
  • the sugar-iodine composite antibacterial agent was placed on a shaker for 20 minutes, and was naturally air-dried after being taken out.
  • step (3) mixing the hemp fiber of step (1) and the polyacrylonitrile stock solution of step (2), and then obtaining a composite fiber by dry spinning;
  • the composite fiber obtained in the step (3) is placed in a reaction vessel under an air atmosphere, within 10 min to 220 ° C, and then kept for 2 h to obtain a stabilized composite fiber;
  • the stabilized composite fiber obtained in the step (4) is heated to 400 ° C for 10 hours in a humidity of 60% RH air atmosphere for 10 hours, and then filled with an inert gas to form an inert atmosphere in the reaction vessel, and then the temperature is raised to 700.
  • the composite carbonized fiber is obtained by incubating at °C for 10 minutes;
  • the composite carbonized fiber obtained in the step (5) is immersed in a ZnCO 3 solution for 2 hours, and the excess solution is removed by extrusion, heated to 500 ° C for 2 hours under an inert gas atmosphere, and after cooling and washing, an activated carbon fiber is obtained;
  • the quaternary ammonium salt chitosan and iodine were arranged into a quaternary ammonium chitosan-iodine composite antibacterial agent according to 2:1, and the activated carbon fiber was boiled in deionized water for 1 hour, and the activated carbon fiber was immersed in the quaternary ammonium salt shell.
  • the sugar-iodine composite antibacterial agent was placed on a shaker for 20 minutes, and was naturally air-dried after being taken out.
  • step (3) mixing the hemp fiber of step (1) and the polyacrylonitrile stock solution of step (2), and then obtaining a composite fiber by dry spinning;
  • the composite fiber obtained in the step (3) is placed in a reaction vessel under an air atmosphere, within 20 min to 200 ° C, and then kept for 2 h to obtain a stabilized composite fiber;
  • the stabilized composite fiber obtained in the step (4) is heated to 400 ° C for 1 hour in a humidity of 60% RH air atmosphere for 1 hour, and then filled with an inert gas to form an inert atmosphere in the reaction vessel, and then the temperature is raised to 600.
  • the composite carbonized fiber is obtained by incubating at °C for 10 minutes;
  • the composite carbonized fiber obtained in the step (5) is immersed in a K 2 CO 3 solution for 2 hours, and the excess solution is removed by extrusion, heated to 450 ° C for 2 hours under an inert gas atmosphere, and after cooling and washing, an activated carbon fiber is obtained;
  • the quaternary ammonium salt chitosan and iodine were arranged into a quaternary ammonium chitosan-iodine composite antibacterial agent according to 2:1, and the activated carbon fiber was boiled in deionized water for 1 hour, and the activated carbon fiber was immersed in the quaternary ammonium salt shell.
  • the sugar-iodine composite antibacterial agent was placed on a shaker for 20 minutes, and was naturally air-dried after being taken out.
  • step (3) mixing the hemp fiber of step (1) and the polyacrylonitrile stock solution of step (2), and then obtaining a composite fiber by dry spinning;
  • the composite fiber obtained in the step (3) is placed in a reaction vessel under an air atmosphere, within 15 min to 210 ° C, and then kept for 3 h to obtain a stabilized composite fiber;
  • the stabilized composite fiber obtained in the step (4) is heated to 450 ° C for 1 hour in a humidity of 60% RH air atmosphere for 1 hour, and then filled with an inert gas to form an inert atmosphere in the reaction vessel, and then the temperature is raised to 600.
  • the composite carbonized fiber is obtained by incubating at °C for 10 minutes;
  • the composite carbonized fiber obtained in the step (5) is immersed in a KOH solution for 2 hours, and the excess solution is removed by extrusion, and heated to 450 ° C for 2 hours under an inert gas atmosphere, and after cooling and washing, an activated carbon fiber is obtained;
  • the quaternary ammonium salt chitosan and iodine were arranged into a quaternary ammonium chitosan-iodine composite antibacterial agent according to 2:1, and the activated carbon fiber was boiled in deionized water for 1 hour, and the activated carbon fiber was immersed in the quaternary ammonium salt shell.
  • the sugar-iodine composite antibacterial agent was placed on a shaker for 20 minutes, and was naturally air-dried after being taken out.
  • the second embodiment is selected as the most preferred embodiment.
  • Comparative Example 1 is an activated carbon fiber without an antibacterial agent.
  • Comparative Example 2 is an activated carbon fiber loaded with iodine.
  • Comparative Example 3 is an activated carbon fiber loaded with a chitosan-iodine antibacterial agent.
  • Comparative Example 4 is an activated carbon fiber prepared by using a pure polyacrylonitrile stock solution as a raw material.
  • Comparative Example 5 is a commercially available polyacrylonitrile activated carbon fiber.
  • the activated carbon fiber prepared by the invention has higher mechanical strength than the commercially available polyacrylonitrile activated carbon fiber and the activated carbon fiber prepared without adding hemp fiber, and the specific surface area is much larger than the commercially available activated carbon. fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明公开了一种活性炭纤维的制备方法,解决了聚丙烯腈活性炭纤维比表面积较小的问题,其技术方案包括有如下步骤:将汉麻纤维和聚丙烯腈原液混合后,通过干法纺丝得到复合纤维;(所得复合纤维在置于空气气氛下的反应釜中,10~20min内至200~220℃,然后保温2~3h,得到稳定化复合纤维;所得稳定化复合纤维在空气氛围下10~20min内升温至400~450℃炭化1h后,充入惰性气体使反应釜内形成惰性氛围后,继续升温至600~700℃保温10min得到复合碳化纤维;所得复合碳化纤维加入到活化剂中浸渍2h,通过挤压除去多余溶液,在惰性气体氛围下加热至400~500℃活化2h,冷却洗涤之后,得到活性炭纤维,使聚丙烯腈活性炭纤维在保证机械强度的同时,具有较大的比表面积。

Description

一种活性炭纤维的制备方法 技术领域
本发明涉及纺织面料,特别涉及一种活性炭纤维的制备方法。
背景技术
随着人们生活水平的提高,面料作为决定植物质量的最基础最根本的构成,人们对面料的要求越来越高,市场的面料也是各种各样。所以作为21世纪最优秀的环保材料之一的活性炭纤维,在作为织物的面料中广泛应用。
活性炭纤维是继粉末活性炭、颗粒活性炭之后的第三代活性炭材料,具有比表面积大、吸附速度快、微孔结构发达、可再生、安全性能好等特点。
如授权公告号为CN102817112B的专利公开的一种纤维活性炭的制备方法,包括有将聚酰亚胺纤维在氮气气氛下碳化、得到碳化纤维;随后将碳化纤维在水蒸汽中活化,得到纤维活性炭。同上述活性炭纤维的制备方法,活性炭纤维一般包括有碳化以及活化两个步骤,从而得到比表面积大同时微孔结构发达的活性炭。活性炭纤维的前体纤维除了聚酰亚胺纤维以外,还可采用再生纤维素纤维、聚丙烯腈纤维、木质素纤维、聚乙烯醇纤维等多种纤维。其中聚丙烯腈纤维经过空气预氧化后能够形成高温不熔融的梯形结构,从而相较于其他活性炭纤维,具有较好的机械强度,但是其比表面积相对纤维素基活性炭要小,影响活性炭的吸附效果。
发明内容
本发明的第一个目的是提供一种活性炭纤维的制备方法,使聚丙烯腈活性炭纤维在保证机械强度的同时,具有较大的比表面积。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种活性炭纤维的制备方法,包括有如下步骤:
(1)将汉麻经脱胶后得到汉麻纤维;
(2)将共聚丙烯腈树脂经溶剂溶解后得到聚丙烯腈原液;
(3)将步骤(1)的汉麻纤维和步骤(2)的聚丙烯腈原液混合后,通过干法纺丝得到复合纤维;
(4)将步骤(3)所得复合纤维在置于空气气氛下的反应釜中,10~20min内至200~220℃,然后保温2~3h,得到稳定化复合纤维;
(5)将步骤(4)所得稳定化复合纤维在空气氛围下10~20min内升温至400~450℃炭化1h后,充入惰性气体使反应釜内形成惰性氛围后,继续升温至600~700℃保温10min得到复合碳化纤维;
(6)将步骤(5)所得复合碳化纤维加入到活化剂中浸渍2h,通过挤压除去多余溶液,在惰性气体氛围下加热至400~500℃活化2h,冷却洗涤之后,得到活性炭纤维。
通过采用上述技术方案,汉麻纤维的横截面呈中空状,且有多种复杂的不规则形状,中间孔隙较大,约占横截面积的1/2~1/3。比苎麻、亚麻以及棉的大;纤维胞壁具有裂纹与小孔使汉麻纤维的纵向较平直,具有横节和许多裂纹、小孔.并通过毛细管道与中腔连通.这种结构让汉麻纤维具有较多的毛细管道.使纤维本身能够具有卓越的吸湿透气性能;汉麻纤维断裂强度和断裂伸长率高于苎麻和亚麻,可以织造更为轻薄、柔软的针织面料;聚丙烯腈纤维具有较好的耐候性、耐日晒性和耐化学性,其与汉麻纤维组成的复合纤维,汉麻纤维能够增强聚丙烯腈纤维的机械强度以及吸湿性,使织物不易发生断裂,同时,能够弥补聚丙烯腈纤维活化后比表面积较小的缺陷;而聚丙烯腈纤维同时能够弥补汉麻纤维的弹力以及柔软度,使织物在具有较高结构强度的同时,提高织物的 亲肤感;干法纺丝相较于湿法纺丝,其设备密封性好,溶剂挥发性少,溶剂回收简单,纤维成型和缓,结构均匀,使纤维具有较好的物理机械性能;通过在空气氛围下使复合纤维稳定,能够使聚丙烯腈发生氧化,使其形成阶梯形聚合物,以提高材料的热稳定性,将温度控制在220℃以下,避免汉麻纤维在该阶段提前炭化影响后续工序;在聚丙烯腈稳定化后进行炭化和活化,使复合纤维通过热分解反应消除非碳元素,同时碳原子发生缩聚重排,形成大量的无定型碳与类石墨微晶,进而使炭化纤维表面形成大量微孔,得到比表面积较大的活性炭复合纤维,且由于汉麻本身的结构影响,其孔隙结构相较于单一的聚丙烯腈活性炭纤维更加复杂,具有更好的吸附效果。
作为优选,所述共聚丙烯腈树脂由以下组分组成,各组分及其质量分数为丙烯腈90份、丙烯酸甲酯6份、衣康酸3份、过硫酸钾1份、十二烷基苯磺酸0.1份、磷酸锌0.01份、磷酸铜0.01份。
通过采用上述技术方案,以丙烯腈作为原料,丙烯酸甲酯降低大分子间的作用力,以降低聚丙烯腈的结晶性,增加纤维的柔软度,使纤维更加富有弹性,通过十二烷基苯酸钠连接丙烯腈与硫酸锌、硫酸铜,磷酸锌、磷酸铜在体系中能够起到杀菌防腐作用;同时,少量的金属离子能够与本来无作用力的聚丙烯腈纤维大分子长链之间形成交联,使大分子链的整体运动和链间滑移更加困难,使纤维的断裂强度增加。
作为优选,所述溶剂为DMF溶剂,所述聚丙烯腈原液中DMF溶剂的含量占25%。
通过采用上述技术方案,DMF能够溶解共聚聚丙烯腈树脂,将DMF的含量控制在25%能够使溶剂挥发更加充分,避免纤维成型过程中纤维之间发生粘连。
作为优选,所述步骤(4)空气氛围下的湿度保持在60%RH。
通过采用上述技术方案,空气氛围下空气中的水蒸气能够与聚丙烯腈中的少量金属离子反应,提前活化少量纤维,形成前期活化碳纤维与使后期活化碳纤维之间形成不同孔隙,进而使活性炭纤维的孔隙结构复杂化,使活性炭纤维对多种气体都能有较好的吸附效果。
作为优选,所述汉麻脱胶的工艺流程如下:机械预处理——酶处理——碱处理——敲麻——漂酸洗——上油——抖松——烘干。
通过采用上述技术方案,脱胶是为了是去除包裹在其外层的丝胶、蜡脂、色素,使纤维分离、松散,制得可纺纤维,以适合纺织要求,通过机械预处理事先以物理式方式松散纤维,进行初步剥离,后以酶处理,经过初步的剥离后,能够提高酶液与纤维之间的接触面积,进而提高剥离效果,之后经过碱洗洗去处理液以及未处理部分的果胶,提高处理率,通过敲麻,初步洗去碱液,以酸进一步洗去碱液,通过上油、抖松以及烘干后,可得处理后的可纺汉麻纤维,相较于单纯的酶处理,该种方式的处理效率更高。
作为优选,所述酶处理中的酶处理液为包含纤维素酶、果胶酶和过氧化氢的水溶液,所述酶处理液通过稀硫酸调节至pH=4,所述酶处理温度为50℃。
通过采用上述技术方案,在pH=4,处理温度为50℃下,纤维素酶和果胶酶两者均具有较高的处理活性,进而提高了酶处理的速率。
作为优选,所述活性炭纤维还负载有壳聚糖以及碘。
通过采用上述技术方案,壳聚糖与碘能够起到抑菌效果,且壳聚糖能够起到络合碘与活性炭纤维的效果,使碘在活性炭纤维上的负载稳定。
作为优选,所述壳聚糖为季铵盐壳聚糖。
通过采用上述技术方案,季铵盐能够增强壳聚糖的抑菌效果,且季铵盐本 身能够与碘络合,进而进一步提高壳聚糖与碘之间的稳定性,使碘在活性炭纤维上的负载更加稳定。
本发明的第二个目的是提供一种活性炭纤维织物,使织物具有较好的亲肤性。
本发明的上述技术目的是通过以下技术方案得以实现的:
该活性炭纤维织物所使用的活性炭通过上述所述的活性炭纤维的制备方法制成。
通过采用上述技术方案,以活性炭纤维制得的织物,具有较好的吸湿性、亲肤性和透气性,表面柔软而富有韧性,同时能够起到杀菌效果。
作为优选,所述活性炭织物包括有枕套、床单和被套。
通过采用上述技术方案,枕套、床单和被套作为床上用具,通过活性炭纤维制造,由于活性炭纤维的透气性,能够减少螨虫的滋长,减少螨虫对人体健康的危害,当人将被子盖在脸上的时候,也不会感到太闷;同时,通过壳聚糖以及碘的负载,能够起到杀菌效果,保障了人们睡眠环境的安全性。
综上所述,本发明具有以下有益效果:
1、通过该制备方法制得的汉麻-聚丙烯腈复合活性炭纤维在机械强度较高的同时,能够使活性炭纤维形成复杂且大量的微孔结构,提高活性炭纤维的吸附效果;
2、聚丙烯腈基本身含有一定量氮原子基团,因此对于含硫物质有较强的吸附能力;
3、以空气氛围事先活化少量复合纤维、再以活化剂氛围使活性炭纤维完全活化,通过两次活化使活性炭纤维的孔隙结构更为复杂,二次活化过程中,能够对前次活化所形成的微孔起到扩孔作用,进而提高了吸附效果;
4、负载季铵盐壳聚糖和碘能够起到抑菌效果,同时,通过季铵盐壳聚糖与碘的络合,能够使碘在活性炭纤维上的负载更加稳定,减少碘的流失;
5、以活性炭纤维制得的枕套、床单和被套,由于活性炭纤维的透气性,降低被子内部的湿度,从而能够减少螨虫的滋长,当人将被子盖在脸上的时候,也不会感到太闷;同时,通过壳聚糖以及碘的负载,能够起到杀菌效果,保障了人们睡眠环境的安全。
说明书附图
图1为活性炭纤维制备工艺流程图。
具体实施方式
汉麻脱胶
(1)机械预处理:将粗汉麻放入原料桶内机械振捣30min,随后放入超声波处理器中超声处理30min;
(2)酶处理:在水溶液加入过氧化氢和50%的稀硫酸,调节pH至4.0,随后按照质量比为2:2:1加入果胶酶、纤维素酶和过氧化氢酶,混合均匀后升温至50℃,加入经过步骤(1)处理后的汉麻,浸泡3h后,搅拌5h;
(3)碱处理:结构经过步骤(2)处理的汉麻高压碱煮3h,湿闭3h,干闭12h;
(4)敲麻:对步骤(3)处理的汗麻进行机械的槌击和水的喷洗10min;
(5)漂酸洗:过pH为5的酸液槽,浸没30s;
(6)上油:水:油按照14:15配比,升温至80℃,加入1kg过氧化氢;将步骤(5)的汉麻纤维放入,蒸煮45min;
(7)抖松、烘干,即得汉麻纤维。
聚丙烯腈原液制取
(1)以DMF为溶剂,加入各组分及其质量分数如下:丙烯腈90份、丙烯 酸甲酯6份、衣康酸3份、过硫酸钾1份,在反应釜内聚合,反应温度设为78℃,溶剂含量为总量的25%;
(2)聚合后的浆液在两个脱单体塔内真空脱除未聚合的单体,把聚合物单体送入到脱泡桶中脱去起泡;
(3)再加入十二烷基苯磺酸0.1份、磷酸锌0.01份、磷酸铜0.01份混合,过滤,得到聚丙烯腈原液。
实施例一
参见图1
(1)将汉麻经脱胶后得到汉麻纤维;
(2)将共聚丙烯腈树脂经溶剂溶解后得到聚丙烯腈原液;
(3)将步骤(1)的汉麻纤维和步骤(2)的聚丙烯腈原液混合后,通过干法纺丝得到复合纤维;
(4)将步骤(3)所得复合纤维在置于空气气氛下的反应釜中,20min内至220℃,然后保温3h,得到稳定化复合纤维;
(5)将步骤(4)所得稳定化复合纤维在湿度始终在60%RH空气氛围下20min内升温至450℃炭化1h后,充入惰性气体使反应釜内形成惰性氛围后,继续升温至700℃保温10min得到复合碳化纤维;
(6)将步骤(5)所得复合碳化纤维加入到ZnCl 2溶液中浸渍2h,通过挤压除去多余溶液,在惰性气体氛围下加热至400℃活化2h,冷却洗涤之后,得到活性炭纤维;
(7)将季铵盐壳聚糖与碘按照2:1配置成季铵盐壳聚糖-碘复合抗菌剂,将活性炭纤维在去离子水中煮沸1h,将活性炭纤维浸渍在季铵盐壳聚糖-碘复合抗菌剂中放置在摇床上振荡20min,取出后自然风干。
实施例二
参见图1
(1)将汉麻经脱胶后得到汉麻纤维;
(2)将共聚丙烯腈树脂经溶剂溶解后得到聚丙烯腈原液;
(3)将步骤(1)的汉麻纤维和步骤(2)的聚丙烯腈原液混合后,通过干法纺丝得到复合纤维;
(4)将步骤(3)所得复合纤维在置于空气气氛下的反应釜中,10min内至220℃,然后保温2h,得到稳定化复合纤维;
(5)将步骤(4)所得稳定化复合纤维在湿度始终在60%RH空气氛围下10min内升温至400℃炭化1h后,充入惰性气体使反应釜内形成惰性氛围后,继续升温至700℃保温10min得到复合碳化纤维;
(6)将步骤(5)所得复合碳化纤维加入到ZnCO 3溶液中浸渍2h,通过挤压除去多余溶液,在惰性气体氛围下加热至500℃活化2h,冷却洗涤之后,得到活性炭纤维;
(7)将季铵盐壳聚糖与碘按照2:1配置成季铵盐壳聚糖-碘复合抗菌剂,将活性炭纤维在去离子水中煮沸1h,将活性炭纤维浸渍在季铵盐壳聚糖-碘复合抗菌剂中放置在摇床上振荡20min,取出后自然风干。
实施例三
参见图1
(1)将汉麻经脱胶后得到汉麻纤维;
(2)将共聚丙烯腈树脂经溶剂溶解后得到聚丙烯腈原液;
(3)将步骤(1)的汉麻纤维和步骤(2)的聚丙烯腈原液混合后,通过干法纺丝得到复合纤维;
(4)将步骤(3)所得复合纤维在置于空气气氛下的反应釜中,20min内至200℃,然后保温2h,得到稳定化复合纤维;
(5)将步骤(4)所得稳定化复合纤维在湿度始终在60%RH空气氛围下20min内升温至400℃炭化1h后,充入惰性气体使反应釜内形成惰性氛围后,继续升温至600℃保温10min得到复合碳化纤维;
(6)将步骤(5)所得复合碳化纤维加入到K 2CO 3溶液中浸渍2h,通过挤压除去多余溶液,在惰性气体氛围下加热至450℃活化2h,冷却洗涤之后,得到活性炭纤维;
(7)将季铵盐壳聚糖与碘按照2:1配置成季铵盐壳聚糖-碘复合抗菌剂,将活性炭纤维在去离子水中煮沸1h,将活性炭纤维浸渍在季铵盐壳聚糖-碘复合抗菌剂中放置在摇床上振荡20min,取出后自然风干。
实施例四
参见图1
(1)将汉麻经脱胶后得到汉麻纤维;
(2)将共聚丙烯腈树脂经溶剂溶解后得到聚丙烯腈原液;
(3)将步骤(1)的汉麻纤维和步骤(2)的聚丙烯腈原液混合后,通过干法纺丝得到复合纤维;
(4)将步骤(3)所得复合纤维在置于空气气氛下的反应釜中,15min内至210℃,然后保温3h,得到稳定化复合纤维;
(5)将步骤(4)所得稳定化复合纤维在湿度始终在60%RH空气氛围下20min内升温至450℃炭化1h后,充入惰性气体使反应釜内形成惰性氛围后,继续升温至600℃保温10min得到复合碳化纤维;
(6)将步骤(5)所得复合碳化纤维加入到KOH溶液中浸渍2h,通过挤 压除去多余溶液,在惰性气体氛围下加热至450℃活化2h,冷却洗涤之后,得到活性炭纤维;
(7)将季铵盐壳聚糖与碘按照2:1配置成季铵盐壳聚糖-碘复合抗菌剂,将活性炭纤维在去离子水中煮沸1h,将活性炭纤维浸渍在季铵盐壳聚糖-碘复合抗菌剂中放置在摇床上振荡20min,取出后自然风干。
将上述实施例所得活性炭纤维进行以下测试:
(1)比表面积(m 2/g):通过电子显微镜(SEM)测量活性炭纤维的比表面积;
(2)抑菌效果:配制若干琼脂固体培养基,按照每组5个进行分组,在培养基表面放置玻璃纸,并在玻璃纸上接种大肠杆菌作为对照组,随后将活性炭纤维制成厚度为0.1cm的圆片,放置在培养基表面,在活性炭圆片上接种大肠杆菌作为实验组,28℃培养48h,计算菌落数;同时以金黄色葡萄球菌替换大肠杆菌进行重复实验;
(3)壳聚糖-碘复合抗菌剂的负载稳定性(g):将活性炭纤维制成直径为10cm,厚度为1cm的圆片,烘干后称取质量记作m1,在圆片以1m 3/min的流速冲刷10分钟,烘干后称取质量记作m2,通过m2-m1计算抗菌剂的流失量;
(4)抗拉强度(N/cm 2):通过纤维强伸度仪测试每平方毫米粗细的纤维所能承受的拉力,记录其断裂时候纤维强伸度仪所示数据。
测试结果如下表:
Figure PCTCN2017118925-appb-000001
Figure PCTCN2017118925-appb-000002
综上,选择实施例二作为最有实施例。
对比例一
对比例一为未负载抗菌剂的活性炭纤维。
对比例二
对比例二为负载了碘的活性炭纤维。
对比例三
对比例三为负载了壳聚糖-碘抗菌剂的活性炭纤维。
对比例四
对比例四为以纯聚丙烯腈原液为原料制得的活性炭纤维。
对比例五
对比例五为市售聚丙烯腈活性炭纤维。
将上述对比例进行上述同样的测试,测试结果如下:
Figure PCTCN2017118925-appb-000003
综上,本发明所制得的活性炭纤维相较于市售聚丙烯腈活性炭纤维和不添加汉麻纤维所制得的活性炭纤维,具有较高的机械强度,且比表面积要远大于市售活性炭纤维。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的 修改,但只要在本发明的权利要求范围内都受到专利法的保护。。

Claims (10)

  1. 一种活性炭纤维的制备方法,其特征在于,包括有如下步骤:
    (1)将汉麻经脱胶后得到汉麻纤维;
    (2)将共聚丙烯腈树脂经溶剂溶解后得到聚丙烯腈原液;
    (3)将步骤(1)的汉麻纤维和步骤(2)的聚丙烯腈原液混合后,通过干法纺丝得到复合纤维;
    (4)将步骤(3)所得复合纤维在置于空气气氛下的反应釜中,10~20min内至200~220℃,然后保温2~3h,得到稳定化复合纤维;
    (5)将步骤(4)所得稳定化复合纤维在空气氛围下10~20min内升温至400~450℃炭化1h后,充入惰性气体使反应釜内形成惰性氛围后,继续升温至600~700℃保温10min得到复合碳化纤维;
    (6)将步骤(5)所得复合碳化纤维加入到活化剂中浸渍2h,通过挤压除去多余溶液,在惰性气体氛围下加热至400~500℃活化2h,冷却洗涤之后,得到活性炭纤维。
  2. 根据权利要求1所述的一种活性炭纤维的制备方法,其特征在于,所述共聚丙烯腈树脂由以下组分组成,各组分及其质量分数为丙烯腈90份、丙烯酸甲酯6份、衣康酸3份、过硫酸钾1份、十二烷基苯磺酸0.1份、磷酸锌0.01份、磷酸铜0.01份。
  3. 根据权利要求1所述的一种活性炭纤维的制备方法,其特征在于,所述溶剂为DMF溶剂,所述聚丙烯腈原液中DMF溶剂的含量占25%。
  4. 根据权利要求1所述的一种活性炭纤维的制备方法,其特征在于,所述步骤(4)空气氛围下的湿度保持在60%RH。
  5. 根据权利要求1所述的一种活性炭纤维的制备方法,其特征在于,所述汉麻脱胶的工艺流程如下:机械预处理——酶处理——碱处理——敲麻——漂酸洗——上油——抖松——烘干。
  6. 根据权利要求5所述的一种活性炭纤维的制备方法,其特征在于,所述酶处理中的酶处理液为包含纤维素酶、果胶酶和过氧化氢的水溶液,所述酶处理液通过稀硫酸调节至pH=4,所述酶处理温度为50℃。
  7. 根据权利要求1所述的一种活性炭纤维的制备方法,其特征在于,所述活性炭纤维还负载有壳聚糖以及碘。
  8. 根据权利要求1所述的一种活性炭纤维的制备方法,其特征在于,所述壳聚糖为季铵盐壳聚糖。
  9. 一种活性炭纤维织物,其特征在于,该活性炭纤维织物所使用的活性炭通过权利要求1-8任一项所述的活性炭纤维的制备方法制成。
  10. 根据权利要求9所述的一种活性炭纤维织物,其特征在于,所述活性炭织物包括有枕套、床单和被套。
PCT/CN2017/118925 2017-08-11 2017-12-27 一种活性炭纤维的制备方法 WO2019029101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710690113.2A CN107385559A (zh) 2017-08-11 2017-08-11 一种活性炭纤维的制备方法
CN201710690113.2 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019029101A1 true WO2019029101A1 (zh) 2019-02-14

Family

ID=60354861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118925 WO2019029101A1 (zh) 2017-08-11 2017-12-27 一种活性炭纤维的制备方法

Country Status (2)

Country Link
CN (1) CN107385559A (zh)
WO (1) WO2019029101A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270334A (zh) * 2020-03-27 2020-06-12 百事基材料(青岛)股份有限公司 一种海洋生物提取物改性锦纶纤维及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107385559A (zh) * 2017-08-11 2017-11-24 南通金康弘纺织品有限公司 一种活性炭纤维的制备方法
CN111003797B (zh) * 2019-12-27 2021-11-02 浙江永续环境工程有限公司 一种基于复合除油菌的两相流动生物床
CN111926415B (zh) * 2020-08-18 2021-05-04 常州市宏发纵横新材料科技股份有限公司 一种能够消除静电的碳纤维生产工艺
CN112216518B (zh) * 2020-09-15 2022-08-30 暨南大学 一种柔性锌离子混合电容器及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553354A (en) * 1978-06-22 1980-01-11 Takeda Chem Ind Ltd Production of activated carbon fiber
JPS5510472A (en) * 1978-07-10 1980-01-24 Takeda Chem Ind Ltd Production of activated carbon fiber
CN1760414A (zh) * 2005-10-14 2006-04-19 东华大学 具有中空形态结构的活性炭纤维和制备方法
CN101230502A (zh) * 2007-12-13 2008-07-30 中国人民解放军总后勤部军需装备研究所 一种麻活性炭纤维的制备方法
CN103748271A (zh) * 2011-05-18 2014-04-23 斯托拉恩索公司 制造含木质素的前体纤维和碳纤维的方法
CN104805535A (zh) * 2015-04-14 2015-07-29 华南理工大学 一种多孔碳纳米纤维的制备方法
US20160016345A1 (en) * 2013-11-08 2016-01-21 Georgia Tech Research Corporation Polyacrylonitrile/cellulose nano-structure fibers
CN105506784A (zh) * 2016-02-05 2016-04-20 扬州大学 一种高比表面的复合纳米碳纤维的制备方法
RU2621758C1 (ru) * 2016-06-21 2017-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет промышленных технологий и дизайна" (СПбГУПТД) Способ получения композитного волокна на основе гидролизного лигнина с полиакрилонитрилом
CN107385559A (zh) * 2017-08-11 2017-11-24 南通金康弘纺织品有限公司 一种活性炭纤维的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230494A (zh) * 2008-02-22 2008-07-30 东华大学 纤维素共混纤维的溶剂法制备和应用
CN101348952B (zh) * 2008-09-17 2010-12-01 天津工业大学 一种活性炭纤维及其制备方法
CN102505403B (zh) * 2011-09-29 2014-04-02 大连理工大学 一种具有分层次孔结构的活性炭纤维膜的制备方法
CN104389099B (zh) * 2014-11-18 2016-09-28 太仓市宏亿化纤有限公司 一种抗紫外线防静电纺织面料及其制备方法
CN105603584B (zh) * 2016-01-28 2017-12-22 东华大学 超级电容器电极用聚丙烯腈介孔活性碳纤维及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553354A (en) * 1978-06-22 1980-01-11 Takeda Chem Ind Ltd Production of activated carbon fiber
JPS5510472A (en) * 1978-07-10 1980-01-24 Takeda Chem Ind Ltd Production of activated carbon fiber
CN1760414A (zh) * 2005-10-14 2006-04-19 东华大学 具有中空形态结构的活性炭纤维和制备方法
CN101230502A (zh) * 2007-12-13 2008-07-30 中国人民解放军总后勤部军需装备研究所 一种麻活性炭纤维的制备方法
CN103748271A (zh) * 2011-05-18 2014-04-23 斯托拉恩索公司 制造含木质素的前体纤维和碳纤维的方法
US20160016345A1 (en) * 2013-11-08 2016-01-21 Georgia Tech Research Corporation Polyacrylonitrile/cellulose nano-structure fibers
CN104805535A (zh) * 2015-04-14 2015-07-29 华南理工大学 一种多孔碳纳米纤维的制备方法
CN105506784A (zh) * 2016-02-05 2016-04-20 扬州大学 一种高比表面的复合纳米碳纤维的制备方法
RU2621758C1 (ru) * 2016-06-21 2017-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет промышленных технологий и дизайна" (СПбГУПТД) Способ получения композитного волокна на основе гидролизного лигнина с полиакрилонитрилом
CN107385559A (zh) * 2017-08-11 2017-11-24 南通金康弘纺织品有限公司 一种活性炭纤维的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270334A (zh) * 2020-03-27 2020-06-12 百事基材料(青岛)股份有限公司 一种海洋生物提取物改性锦纶纤维及其制备方法

Also Published As

Publication number Publication date
CN107385559A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2019029101A1 (zh) 一种活性炭纤维的制备方法
KR101783951B1 (ko) 그래핀을 포함하는 비스코스섬유 및 이의 제조방법
CN109689951B (zh) 改性丙烯腈系纤维、该纤维的制造方法和含有该纤维的纤维结构体
CN104099688B (zh) 棉花活性碳纤维及其生产方法
JP6254449B2 (ja) 改質綿繊維及び機能性改質綿繊維の製造方法
KR101300162B1 (ko) 천연섬유 기반의 다공성 섬유상 탄소재 및 그 제조방법
CN101982584A (zh) 一种高中空率木棉纱线的加工方法
CA2701899A1 (en) Method of using composite enzyme for degumming jute (1)
JP4355343B2 (ja) 炭素化布帛の製造方法およびこれにより得られた炭素化布帛
CN115928237B (zh) 益生菌健康纤维及其制备方法
CA2700896A1 (en) Method of using composite enzyme for degumming jute (3)
KR20230002184A (ko) 셀룰로오스 섬유 또는 셀룰로오스 유도체 섬유를 이용한 탄소섬유 제조방법
CN112796109B (zh) 改性竹原纤维的制备方法、改性竹原纤维及抗菌防潮面料
CN105970594B (zh) 一种拒水棕榈纤维绒的制备方法
JP7177986B2 (ja) 収縮性吸湿アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP2017101350A (ja) キュプラ繊維材料を用いた炭素材料の製造方法
CN112076720A (zh) 一种活性炭纤维及其制备方法
CN113832561B (zh) 一种纯纺再生纤维素纤维生条的制备方法
JP4749325B2 (ja) 機能性繊維材料の製造方法
CN115404693B (zh) 抗菌丝绵的生产方法
Reddy et al. Bacterial Cellulose Fibers: Fibers from Biotechnology
JP2019085688A (ja) 吸湿性アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
KR20110076308A (ko) 방적성을 향상시키기 위한 케이폭섬유의 가공방법
JP7187911B2 (ja) 吸湿性アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
EP2194171A1 (en) Method of using composite enzyme for degumming jute (2)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920638

Country of ref document: EP

Kind code of ref document: A1