WO2019029035A1 - 一种磁体强制对流液冷方法及其冷却系统 - Google Patents

一种磁体强制对流液冷方法及其冷却系统 Download PDF

Info

Publication number
WO2019029035A1
WO2019029035A1 PCT/CN2017/110787 CN2017110787W WO2019029035A1 WO 2019029035 A1 WO2019029035 A1 WO 2019029035A1 CN 2017110787 W CN2017110787 W CN 2017110787W WO 2019029035 A1 WO2019029035 A1 WO 2019029035A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
constant
liquid
supply tank
cooling
Prior art date
Application number
PCT/CN2017/110787
Other languages
English (en)
French (fr)
Inventor
周天
蔡贵立
史忠山
唐磊
向军
Original Assignee
广东合一新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东合一新材料研究院有限公司 filed Critical 广东合一新材料研究院有限公司
Publication of WO2019029035A1 publication Critical patent/WO2019029035A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnet forced convection liquid cooling method, and to a cooling system using the magnet forced convection liquid cooling method.
  • the repetitive frequency magnet is a pulsed magnetic field generating device whose core structure is composed of a solenoid coil of a special structure.
  • a single energized loading can generate a strong magnetic field of more than 10T.
  • the existing repetitive magnets can reach a magnetic field strength of 45T.
  • Strong magnetic field repetitive magnets are used in a wide range of applications, including electromagnetic weapons in the military field, mass spectrometry in scientific research, nuclear magnetic imaging in the medical field, and proton therapy. The stronger the magnetic field of the repetitive magnet, the more beneficial it is to the application in the corresponding field.
  • the strong magnetic field of the electromagnetic coil requires strong current and dense winding, and the electromagnetic coil generates a strong magnetic field due to the existence of the electromagnetic coil resistance.
  • the strong magnetic field repetitive magnet shown in FIG. 1 is wound by an electromagnetic wire 9 with an insulating layer 91 between adjacent rings, and the electromagnetic wire 9 has a rectangular cross section, and the entire winding is immersed in an insulating low temperature working medium.
  • the liquid passage 92 is left between the inner coil layers, and relies on natural convection heat dissipation, which is one of the most effective cooling methods at present, which can shorten the coil loading interval to about 15 to 20 minutes, but based on the improvement of efficiency, The industry hopes that the cooling time will be within seconds. However, existing cooling structures cannot meet this requirement.
  • the electromagnetic coil of the strong magnetic field repetitive magnet can obtain good low resistance at low temperature, which is beneficial to load large current, generate strong magnetic field, reduce energy Joule heat loss, improve energy utilization efficiency and equipment running stability.
  • the electromagnetic coil is generally immersed in a low temperature working medium, for example, a low temperature working medium is liquid carbon dioxide, liquid nitrogen, liquid helium, liquid hydrogen, etc., and at the same time, the phase change volatilization of these liquids is used to maintain the constant temperature control of the environment.
  • These low temperature working fluids can also serve as a cooling medium while maintaining the cold environment, and the temperature of the heating electromagnetic coil is cooled to the ambient temperature, as shown in FIGS. 2 and 3, by opening the liquid cooling passage 93 at the center of the electromagnetic wire 9. , the cooling medium is injected into the liquid cooling passage 93 by the external force to the electromagnetic coil Cool down.
  • the electromagnetic coil cannot use a thicker wire, so the liquid cooling channel opened at the center of the wire has a smaller aperture, usually 0 to 2 mm, and the cross-sectional shape of the liquid cooling channel is not limited, the entire electromagnet It is made up of a wire. Since the liquid cooling channel is a small and slender liquid cooling channel, the pipe has a large resistance along the path. Since the cryogenic cooling medium is in a saturated state at atmospheric pressure, it is converted into a gaseous state by heating.
  • a first object of the present invention is to provide a magnet forced convection liquid cooling method which is simple in operation, low in cost, easy to implement, stable and reliable, and improved in cooling efficiency.
  • a magnet forced convection liquid cooling method characterized in that: the center of the wire of the electromagnetic coil of the magnet is provided with a liquid cooling passage extending longitudinally through the entire electromagnetic coil wire, soaking the magnet in the center In the cooling medium, the cooling medium is pressed into the liquid cooling passage from one end of the electromagnetic coil, the cooling medium flows along the liquid cooling passage, and flows out from the other end of the electromagnetic coil, and the liquid cooling passage is always at a high pressure and a constant pressure. The state is to maintain the cooling medium always in a liquid state.
  • the invention makes the liquid cooling passage be in a high pressure and constant pressure state, can suppress the endothermic phase change phenomenon of the cooling working medium in the electromagnetic coil, and keep the cooling working medium in the liquid cooling passage always flowing through the electromagnetic coil in a liquid form, so that the invention can be maintained at all times Forced convection heat transfer of liquid, fully exerting the advantage of liquid-cooled forced convection heat transfer. Since the thermal conductivity of liquid is much higher than the thermal conductivity of gas, it is possible to suppress the phase change in the electromagnetic coil and reduce the heat transfer resistance of the gas. The cooling speed of the electromagnetic coil can be effectively improved, the rapid cooling of the magnet can be realized, and the cooling efficiency can be improved, thereby increasing the loading frequency of the magnet and improving the use efficiency.
  • the invention is easier to realize, the resistance of the liquid cooling passage is low, the structural strength requirement of the device is low, and the cooling effect is better, and the second-stage cooling of the magnet can be realized, especially when the invention is applied.
  • the above cooling effect is particularly noticeable in the case of a strong magnetic field repetitive magnet.
  • the pressure in the liquid cooling passage is greater than or equal to 1 and less than or equal to 3.4 MPa.
  • an insulating interface communicating with the liquid cooling passage is disposed at each end of the electromagnetic coil, and the electromagnetic coil is respectively connected to a high-pressure constant-pressure supply tank and a low-pressure back through the insulating interface.
  • the pressure discharge liquid tank, the high pressure constant pressure supply tank is equipped with cooling working medium, the high pressure constant pressure supply tank and the low pressure back pressure liquid discharge tank are respectively boosted to constant, and the gas pressure in the high pressure constant pressure supply tank is stronger than the low pressure back pressure drain tank.
  • the internal gas pressure, the cooling medium is pressed into the liquid cooling passage of the electromagnetic coil, and the heat-absorbing cooling medium is discharged into the low-pressure back pressure drain tank, and the internal pressure is maintained constant by the pressure relief of the low-pressure back pressure drain tank.
  • the cooling medium is discharged into the cooling medium for immersing the electromagnetic coil or in the storage tank for storing the cooling medium.
  • a standby high-pressure constant-pressure supply tank equipped with a cooling medium is disposed, and a standby high-pressure constant-pressure supply tank is connected to a pipeline between the high-pressure constant-pressure supply tank and the electromagnetic coil, and the high-pressure constant pressure is applied.
  • the cooling medium in the supply tank is used up, and the cooling medium is supplied from the standby high-pressure constant-pressure supply tank and pressed into the liquid cooling passage of the electromagnetic coil.
  • the high-pressure constant-pressure supply tank is released, the high-pressure constant pressure is supplied.
  • the cooling medium is replenished in the tank and pressurized to a constant value, so that the cooling medium is supplied from the high-pressure constant-pressure supply tank after the cooling medium in the standby high-pressure constant-pressure supply tank is used up, so that the high-pressure constant-pressure supply tank and the standby high-pressure constant
  • the pressure supply tanks are used alternately to achieve uninterrupted cooling, further improving cooling efficiency.
  • a second object of the present invention is to provide a cooling system using the above-described magnet forced convection liquid cooling method.
  • the above object of the present invention can be achieved by a cooling system using the above-described magnet forced convection liquid cooling method, which comprises an electric control device, a high pressure constant pressure supply tank, a low pressure back pressure drain tank, and a mounting device.
  • a liquid cooling channel for immersing the cooling medium of the electromagnetic coil wherein the electromagnetic coil wire has a liquid cooling passage extending longitudinally through the entire electromagnetic coil wire, and an insulating interface communicating with the liquid cooling channel is disposed at both ends of the electromagnetic coil.
  • the high pressure constant pressure supply tank and the low pressure back pressure discharge tank respectively have an inlet port and a liquid outlet, and the outlet of the high pressure constant pressure supply tank is connected to an insulation interface of the electromagnetic coil, and the low pressure back pressure row
  • the liquid inlet of the liquid tank is connected to another insulating interface of the electromagnetic coil, and the electronic control device controls the cooling medium to flow from the liquid inlet of the high pressure and constant pressure supply tank, and then controls the high pressure constant pressure supply tank and the low pressure back pressure row
  • the pressure inside the liquid tank is raised to a constant value so that the liquid cooling passage is in a high pressure and constant pressure state, and the gas pressure in the high pressure and constant pressure supply tank is stronger than that in the low pressure back pressure drain tank.
  • the strong cooling medium is pressed into the liquid cooling passage of the electromagnetic coil from the liquid outlet of the high pressure constant pressure supply tank, and the cooling working medium after the heat absorption is discharged into the liquid inlet of the low pressure back pressure drain tank through the low pressure.
  • the back pressure drain tank is pressure-relieved to maintain its internal pressure constant, and when the liquid level of the cooling medium in the low-pressure back pressure drain tank reaches the set liquid level, the cooling medium is discharged from the liquid outlet port of the low-pressure back pressure drain tank.
  • the cooling system further includes a standby high pressure constant pressure supply tank having a liquid inlet and a liquid outlet, and a liquid outlet of the standby high pressure constant pressure supply tank Connection
  • a standby high pressure constant pressure supply tank having a liquid inlet and a liquid outlet, and a liquid outlet of the standby high pressure constant pressure supply tank Connection
  • the high pressure and constant pressure supply tank of the invention is provided with an exhaust pressure relief electromagnetic valve, a high pressure constant pressure gas source inlet and a constant pressure safety valve, and the liquid inlet of the high pressure constant pressure supply tank is connected with the coolant supply pump, and a solenoid valve is disposed on the connecting pipeline, and a solenoid valve is respectively disposed at a liquid outlet of the high pressure constant pressure supply tank and a high pressure constant pressure gas source inlet, and a first liquid level sensor is disposed in the high pressure constant pressure supply tank.
  • the electric control device is respectively connected to each of the first liquid level sensor and the high pressure constant pressure supply tank.
  • the standby high-pressure constant-pressure supply tank of the present invention is provided with an exhaust pressure relief electromagnetic valve, a high-pressure constant-pressure gas source inlet and a constant-pressure safety valve, and a liquid inlet and a liquid outlet of the standby high-pressure constant-pressure supply tank
  • a solenoid valve is respectively provided at the inlet of the high-pressure constant-pressure gas source, and a coolant supply pump is shared between the standby high-pressure constant-pressure supply tank and the high-pressure constant-pressure supply tank, and the coolant supply pump is refilled by switching the solenoid valve on the inlet port, or is reserved.
  • the high pressure constant pressure supply tank is independently connected to a rehydration pump for rehydration, and the second high level constant pressure supply tank is provided with a second liquid level sensor, the electric control device and the second liquid level sensor and the standby high pressure constant pressure supply tank respectively The upper valves are connected.
  • the low pressure constant pressure gas source inlet and the low pressure constant pressure safety valve are disposed on the low pressure back pressure drain tank, and a third liquid level sensor is disposed in the low pressure back pressure drain tank, the low pressure back pressure
  • the liquid outlet of the drain tank and the inlet of the low pressure constant pressure gas source are respectively provided with electromagnetic valves, and the electronic control devices are respectively connected with the valves of the third liquid level sensor and the low pressure back pressure drain tank.
  • the cooling working medium of the invention is liquid carbon dioxide, liquid nitrogen, liquid helium or liquid hydrogen, etc., and other insulating low temperature working materials can also be used.
  • the present invention has the following remarkable effects:
  • the invention keeps the liquid cooling passage in a high pressure and constant pressure state, can suppress the endothermic phase change phenomenon of the cooling working medium in the electromagnetic coil, and keep the cooling working medium in the liquid cooling passage always flowing through the electromagnetic coil in a liquid form, giving full play to
  • the advantage of liquid cooling forced convection heat transfer effectively increases the cooling speed of the electromagnetic coil, realizes rapid cooling of the magnet, improves the cooling efficiency, thereby increasing the loading frequency of the magnet and improving the use efficiency.
  • the present invention is easier to implement than the phase change liquid cooling method, the resistance of the liquid cooling passage is low, the structural strength of the device is low, and the cooling effect is better, and the second-stage cooling of the magnet can be achieved.
  • the cooling system of the invention has the advantages of simple structure, low cost, simple operation, easy realization, stable and reliable operation, and is suitable for wide application and application.
  • 1 is a schematic structural view of a conventional repetitive frequency magnet
  • FIG. 2 is a schematic structural view of an existing electromagnetic coil having a liquid cooling passage in its center
  • Figure 3 is a partial enlarged view of A of Figure 2;
  • Figure 4 is a schematic view showing the structure of the cooling system of the present invention.
  • the magnet is a strong magnetic field repetitive frequency magnet, which can generate a strong magnetic field of 10T or more after a single energization, and some repetitive magnets can reach 45T. Magnetic field strength.
  • the center of the wire of the electromagnetic coil 1 of the repetitive magnet is provided with a liquid cooling passage extending longitudinally through the entire electromagnetic coil wire.
  • the outer diameter of the electromagnetic coil 1 is 130 to 260 mm and the height is 140 to 280 mm.
  • the liquid cooling passage of the electromagnetic coil 1 has a length of 8 to 15 m and a diameter of 2 mm.
  • the repetitive frequency magnet is immersed in the cooling medium 27.
  • the cooling medium 27 is made of liquid nitrogen.
  • the cooling medium may also be liquid carbon dioxide, liquid helium or liquid hydrogen.
  • the cooling medium 27 is pressed into the liquid cooling passage from one end of the electromagnetic coil 1, and the cooling medium 27 flows along the liquid cooling passage and flows out from the other end of the electromagnetic coil 1.
  • the liquid cooling passage is always in a high pressure and constant pressure state. In order to maintain the cooling medium 27 is always in a liquid state.
  • the internal pressure of the liquid cooling passage is greater than or equal to 1 and less than or equal to 3.4 MPa.
  • An insulating interface 2 and 3 communicating with the liquid cooling passage are disposed at both ends of the electromagnetic coil 1.
  • the electromagnetic coil 1 is respectively connected to a high pressure constant pressure supply tank 4 and a low pressure back pressure drain tank 5 through the insulating interfaces 2, 3.
  • the high-pressure constant-pressure supply tank 4 is provided with a cooling medium, and the high-pressure constant-pressure supply tank 4 and the low-pressure back pressure discharge tank 5 are separately pressurized to be constant, and the gas pressure in the high-pressure constant-pressure supply tank 4 is stronger than the low-pressure back-pressure discharge tank 5
  • the internal gas pressure, the cooling medium 27 is pressed into the liquid cooling passage of the electromagnetic coil 1, and the heat-dissipating cooling medium 27 is discharged into the low-pressure back pressure drain tank 5, and is maintained by the low-pressure back pressure drain tank 5
  • the internal pressure is constant, and when the liquid level of the cooling medium 27 reaches the set liquid level in the low pressure back pressure drain tank 5, the cooling medium 27 is discharged to the cooling medium 27 for immersing the
  • a standby high-pressure constant-pressure supply tank 6 equipped with a cooling medium 27 is disposed, and the standby high-pressure constant-pressure supply tank 6 is connected to the line between the high-pressure constant-pressure supply tank 4 and the electromagnetic coil 1, when the high-pressure constant-pressure supply tank
  • the cooling medium 27 in 4 is used up, and the cooling medium 27 is supplied from the standby high pressure constant pressure supply tank 6 and pressed into the liquid cooling passage of the electromagnetic coil 1, and at the same time, after the high pressure constant pressure supply tank 4 is released,
  • the high-pressure constant-pressure supply tank 4 is supplemented with a cooling medium 27 and is boosted to a constant internal pressure so as to be high in standby
  • the cooling medium 27 is supplied from the high pressure constant pressure supply tank, so that the high pressure constant pressure supply tank 4 and the standby high pressure constant pressure supply tank 6 are alternately used, thereby achieving uninterrupted use. cool down.
  • a cooling system using the above forced convection liquid cooling method comprising an electric control device, a high pressure constant pressure supply tank 4, a low pressure back pressure drain tank 5, a standby high pressure constant pressure supply tank 6, and a cooling device for immersing the electromagnetic coil 1 a coolant tank 7 of the working fluid, the center of the coil of the electromagnetic coil 1 is provided with a liquid cooling passage extending longitudinally through the entire electromagnetic coil wire, and an insulating interface communicating with the liquid cooling passage is provided at both ends of the electromagnetic coil 1, high pressure and constant pressure
  • the supply tank 4, the standby high pressure constant pressure supply tank 6 and the low pressure back pressure drain tank 5 respectively have a liquid inlet port and a liquid outlet, and the liquid outlet of the high pressure constant pressure supply tank 4 is connected to an insulating interface 2 of the electromagnetic coil 1.
  • the liquid outlet of the standby high pressure constant pressure supply tank 6 is connected to the pipeline connected to the high voltage constant pressure supply tank 4 and the electromagnetic coil 1, and the liquid inlet of the low pressure back pressure drain tank 5 is connected to another insulated interface 3 of the electromagnetic coil 1. .
  • the electric control device controls the cooling medium to flow from the liquid inlet of the high pressure constant pressure supply tank 4, and then controls the pressures in the high pressure constant pressure supply tank 4 and the low pressure back pressure discharge tank 5 to rise to a constant value so that the liquid cooling passage is high pressure.
  • the gas pressure in the high pressure constant pressure supply tank 4 is stronger than the gas pressure in the low pressure back pressure drain tank 5, and the cooling medium is pressed into the liquid cooling passage of the electromagnetic coil 1 from the liquid outlet of the high pressure constant pressure supply tank 4.
  • the heat-absorbing working medium is discharged from the liquid inlet of the low-pressure back pressure drain tank 5, and the internal pressure is maintained by the low-pressure back pressure drain tank 5 to relieve the pressure, and the low-pressure back pressure drain tank 5
  • the cooling medium is discharged from the liquid outlet of the low pressure back pressure drain tank 5 into the coolant tank 7 or the external liquid nitrogen storage tank, when the high pressure and constant pressure
  • the cooling medium in the supply tank 4 is used up, and the cooling medium is supplied from the standby high-pressure constant-pressure supply tank 6 to the electromagnetic coil 1, so that the high-pressure constant-pressure supply tank 4 and the standby high-pressure constant-pressure supply tank 6 are alternately used, thereby achieving uninterrupted use. cool down.
  • the high pressure constant pressure supply tank 4 is provided with an exhaust pressure relief solenoid valve 8, a high pressure constant pressure gas source inlet and a constant pressure relief valve 10, and a liquid inlet and a coolant of the high pressure constant pressure supply tank 4.
  • the replenishing pump 11 is connected, and a solenoid valve 12 is arranged on the connecting line, and electromagnetic valves 13 and 14 are respectively arranged at the liquid outlet of the high-pressure constant-pressure supply tank 4 and the high-pressure constant-pressure gas source inlet, and the high-pressure constant-pressure supply tank is provided.
  • 4 is provided with a first liquid level sensor 15 which is connected to each of the first level sensor 15 and the high pressure constant pressure supply tank 4.
  • the standby high pressure constant pressure supply tank 6 is provided with an exhaust pressure relief solenoid valve 16, a high pressure constant pressure gas source inlet and a constant pressure relief valve 18, at the inlet of the standby high pressure constant pressure supply tank 6,
  • the liquid outlet and the high pressure constant pressure gas source inlet are respectively provided with solenoid valves 17, 19 and 20, and the standby high pressure constant pressure supply tank 6 and the high pressure constant pressure supply tank 4 share a coolant supply pump through the solenoid valve 17 on the inlet port Switching to use the coolant replenishing pump to replenish the liquid, or the standby high-pressure constant-pressure supply tank 6 is independently connected to a rehydration pump for rehydration, and the second high-level constant pressure supply tank 6 is provided with a second liquid level sensor 21, and the electric control device respectively and the second Level sensor 21 and standby The valves on the high pressure constant pressure supply tank 6 are connected.
  • a low-pressure constant-pressure gas source inlet and a low-pressure constant-pressure safety valve 23 are disposed on the low-pressure back pressure drain tank 5, and a third liquid level sensor 24 is disposed in the low-pressure back pressure drain tank 5, and the low pressure is provided.
  • the liquid outlet of the back pressure drain tank 5 and the inlet of the low pressure constant pressure gas source are respectively provided with electromagnetic valves 25 and 26, and the electric control device is respectively connected with the valves of the third liquid level sensor 24 and the low pressure back pressure drain tank 5 .
  • the valve 12 opens the electromagnetic valve 14, and the pressure of the high-pressure constant-pressure supply tank 4 reaches 10 MPa (1-30 MPaA and is greater than the pressure of the low-pressure back pressure drain tank), thereby achieving the working state, and the standby high-pressure constant-pressure supply tank 6 is also According to the above steps, prepare to reach the working state (to reach the same pressure as the high pressure and constant pressure supply tank); close the solenoid valve 25 on the outlet of the low pressure back pressure drain tank 5, and open the solenoid valve 26 on the inlet of the low pressure constant pressure gas source. The pressure, that is, reaches 2 MPa (0-3.4 MPa), and reaches the working state. At this time, the cooling system is ready to work.
  • the standby high-pressure constant-pressure supply tank 6 starts to work.
  • the electromagnetic valve 14 on the inlet of the high-pressure constant-pressure gas source is closed, and the exhaust pressure-reducing electromagnetic valve 8 is opened to restore the high-pressure constant-pressure supply tank 4 to normal pressure, and the coolant
  • the replenishing pump 11 works to replenish the high-pressure constant-pressure supply tank 4 with liquid nitrogen.
  • the exhaust pressure relief solenoid valve 8 is closed, and the electromagnetic valve 14 on the high-pressure constant-pressure gas source inlet is opened to complete the high-pressure constant-pressure supply tank 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种磁体强制对流液冷方法及其冷却系统,磁体的电磁线圈(1)的导线中心开设有纵向贯穿整条电磁线圈导线的液体冷却通道,将磁体浸泡在冷却工质(27)中,从电磁线圈的一端向液体冷却通道内压入冷却工质(27),冷却工质(27)沿着液体冷却通道流动,并从电磁线圈(1)的另一端流出,该液体冷却通道内一直处于高压恒压状态以维持冷却工质(27)始终为液态。液体冷却通道内处于高压恒压状态,可抑制电磁线圈(1)内冷却工质(27)的吸热相变现象,保持液体冷却通道内冷却工质(27)始终以液态形式流经电磁线圈(1),充分发挥液冷强制对流换热的优势,可一次抑制电磁线圈(1)内出现相变,减小气体换热热阻,有效提高电磁线圈(1)的冷却速度,实现磁体的快速冷却,提高磁体加载频率,提高使用效率。

Description

一种磁体强制对流液冷方法及其冷却系统 技术领域
本发明涉及一种磁体强制对流液冷方法,还涉及使用该磁体强制对流液冷方法的冷却系统。
背景技术
如图1所示,重频磁体是一种脉冲式磁场产生装置,其核心结构由特殊结构的电磁线圈构成。单次通电加载,可产生10T以上的强磁场,目前已有的重频磁体可达到45T磁场强度。强磁场重频磁体应用领域广泛,包括军事领域电磁武器、科研领域质谱分析、医疗领域核磁成像和质子医疗等等。重频磁体的磁场越强,对相应领域的应用越有益处,但是,电磁线圈产生强磁场需要强大的电流和密集的绕线,而由于电磁线圈电阻的存在,使得电磁线圈在产生强磁场的同时也会产生大量的焦耳热,如果这些热量不能及时排出,将会使线圈的温度升高,增加线圈的电阻,导致在下一次加载时产生更多热量,从而降低磁场强度,因此,电磁线圈产生强磁场时所生成的热量必须排出。然而,热量排出的速度会影响磁体的使用频率,而在本领域中,磁体使用频率越高越好,以提高使用效率,降低使用时间成本,因此,就需要高效的散热手段,将磁体内产生的焦耳热快速排出磁体,以便为下次加载做好准备。
如图1所示的强磁场重频磁体,由电磁导线9绕制而成,相邻圈之间具有绝缘层91,电磁导线9横截面呈矩形,整个绕线浸泡在绝缘低温工质里,内侧线圈层间留出液体通道92,依靠自然对流散热,这是目前最有效的冷却方式之一,这种方式可以使线圈加载间隔缩短为15~20分钟左右,但是,基于提高效率的考虑,业界希望冷却时间为秒级以内。但是现有的冷却结构无法达到此要求。
强磁场重频磁体的电磁线圈在低温下可获得良好的低电阻,有利于加载大电流,产生强磁场,降低能量焦耳热损耗,提高能量利用效率和设备运行稳定性。为了获得这种低温环境,一般是依靠低温工质浸泡电磁线圈,例如低温工质为液态二氧化碳、液氮、液氦、液氢等,同时依靠这些液体的相变挥发实现维持环境的恒温控制。这些低温工质在维持冷环境的同时,也可以作为冷却工质,将发热电磁线圈的温度冷却至环境温度,如图2和3所示,通过在电磁导线9中心开设液体冷却通道93的方式,将冷却工质依靠外力注入液体冷却通道93对电磁线圈 进行冷却。
但是,受限于电磁线圈的体积,电磁线圈不能采用较粗的导线,因此导线中心开设的液体冷却通道的孔径较小,通常为0至2mm,液体冷却通道的截面形状不限,整个电磁体是由一根导线缠绕而成,由于液体冷却通道是一个孔径小且细长的液冷通道,因此,管道沿程阻力大。由于低温冷却工质在大气压下处于饱和状态,受热即相变为气态,如果在导线一端使用增压装置将液体低温工质注入其内,而导线的另一端与大气相通,那么,液体低温工质在线圈中吸热后,很容易发生相变产生蒸汽,从而导致线圈内液体低温工质的体积急剧膨胀,压力上升,进而阻碍液体低温工质流动,降低电磁线圈的冷却速度。
发明内容
本发明的第一个目的是提供一种操作简单、成本低、容易实现、稳定可靠、提高冷却效率的磁体强制对流液冷却方法。
本发明的上述目的可以通过以下措施来实现,一种磁体强制对流液冷方法,其特征在于:磁体的电磁线圈的导线中心开设有纵向贯穿整条电磁线圈导线的液体冷却通道,将磁体浸泡在冷却工质中,从电磁线圈的一端向液体冷却通道内压入冷却工质,冷却工质沿着液体冷却通道流动,并从电磁线圈的另一端流出,该液体冷却通道内一直处于高压恒压状态以维持冷却工质始终为液态。
本发明使液体冷却通道内处于高压恒压状态,可抑制电磁线圈内冷却工质的吸热相变现象,保持液体冷却通道内的冷却工质始终以液态形式流经电磁线圈,因此可一直保持液体强制对流换热,充分发挥液冷强制对流换热的优势,由于液体的导热系数远高于气体的导热系数,所以,一次抑制电磁线圈内出现相变,减小气体换热热阻,就可以有效提高电磁线圈的冷却速度,实现磁体的快速冷却,提高冷却效率,从而提高磁体加载频率,提高使用效率。本发明相对于相变液冷方式,实现更为容易,液体冷却通道的阻力低,对设备结构强度要求低,而且冷却效果更好,可以实现磁体的秒级冷却,特别是当本发明应用于强磁场重频磁体时,上述冷却效果尤为明显。
作为本发明的一种优选实施方式,液体冷却通道内压强是大于或等于1且小于或等于3.4MPa。
作为本发明的一种实施方式,在电磁线圈的两端各设置一个与液体冷却通道相通的绝缘接口,电磁线圈通过绝缘接口分别连接一高压恒压供给罐和一低压背 压排液罐,高压恒压供给罐装有冷却工质,高压恒压供给罐和低压背压排液罐内分别升压至恒定,高压恒压供给罐内气体压强大于低压背压排液罐内气体压强,冷却工质被压入电磁线圈的液体冷却通道中,吸热后的冷却工质排入低压背压排液罐内,通过低压背压排液罐泄压维持其内部压强恒定,并在低压背压排液罐中冷却工质的液位达到设定液位时,将冷却工质排至用于浸泡电磁线圈的冷却工质中或者用于储存冷却工质的存贮罐中。
作为本发明的一种改进,设置一装有冷却工质的备用高压恒压供给罐,将备用高压恒压供给罐连接在高压恒压供给罐和电磁线圈之间的管路上,当高压恒压供给罐中的冷却工质用尽,由备用高压恒压供给罐提供冷却工质并将其压入电磁线圈的液体冷却通道中,同时,高压恒压供给罐泄压后,向高压恒压供给罐内补充冷却工质并升压至恒定,以便在备用高压恒压供给罐内的冷却工质用尽后由高压恒压供给罐提供冷却工质,如此,高压恒压供给罐和备用高压恒压供给罐交替使用,从而实现不间断冷却,进一步提高冷却效率。
本发明的第二个目的是提供一种使用上述磁体强制对流液冷方法的冷却系统。
本发明的上述目的可以通过以下措施来实现,一种使用上述磁体强制对流液冷方法的冷却系统,其特征在于:它包括电控装置、高压恒压供给罐、低压背压排液罐和装有用于浸泡电磁线圈的冷却工质的冷却液槽,该电磁线圈导线中心开设有纵向贯穿整条电磁线圈导线的液体冷却通道,且在电磁线圈的两端设有与液体冷却通道相通的绝缘接口,所述高压恒压供给罐和低压背压排液罐分别具有进液口和出液口,所述高压恒压供给罐的出液口与电磁线圈的一绝缘接口连接,所述低压背压排液罐的进液口与电磁线圈的另一绝缘接口连接,所述电控装置控制冷却工质从高压恒压供给罐的进液口流入其中,再控制高压恒压供给罐和低压背压排液罐内压强分别升至恒定使得液体冷却通道内为高压恒压状态,且高压恒压供给罐内气体压强大于低压背压排液罐内气体压强,冷却工质从高压恒压供给罐的出液口被压入电磁线圈的液体冷却通道中,吸热后的冷却工质从低压背压排液罐的进液口排入其中,通过低压背压排液罐泄压维持其内部压强恒定,并在低压背压排液罐中冷却工质的液位达到设定液位时,冷却工质从低压背压排液罐的出液口排至冷却液槽中或者用于储存冷却工质的存贮罐中。
作为本发明的一种改进,所述冷却系统还包括备用高压恒压供给罐,所述备用高压恒压供给罐具有进液口和出液口,所述备用高压恒压供给罐的出液口连接 在高压恒压供给罐和电磁线圈相连的管路上,当高压恒压供给罐中的冷却工质用尽,由备用高压恒压供给罐向电磁线圈提供冷却工质,使高压恒压供给罐和备用高压恒压供给罐交替使用,从而实现不间断冷却。
本发明在所述高压恒压供给罐上设有排气泄压电磁阀、高压恒压气源入口和恒压安全阀,高压恒压供给罐的进液口与冷却液补给泵相连,并在连接管路上设有电磁阀,且在高压恒压供给罐的出液口和高压恒压气源入口分别设有电磁阀,在所述高压恒压供给罐内设有第一液位传感器,所述电控装置分别与第一液位传感器和高压恒压供给罐上的各阀门相连。
本发明的所述备用高压恒压供给罐上设有排气泄压电磁阀、高压恒压气源入口和恒压安全阀,在所述备用高压恒压供给罐的进液口、出液口和高压恒压气源入口分别设有电磁阀,备用高压恒压供给罐与高压恒压供给罐共用一个冷却液补给泵,通过进液口上电磁阀的切换使用该冷却液补给泵补液,或者备用高压恒压供给罐独立连接一个补液泵进行补液,在所述备用高压恒压供给罐内设有第二液位传感器,所述电控装置分别与第二液位传感器和备用高压恒压供给罐上的各阀门相连。
本发明在所述低压背压排液罐上设有低压恒压气源入口和低压恒压安全阀,在所述低压背压排液罐内设有第三液位传感器,所述低压背压排液罐的出液口和低压恒压气源入口分别设有电磁阀,所述电控装置分别与第三液位传感器和低压背压排液罐上的各阀门相连。
本发明所述冷却工质为液态二氧化碳、液氮、液氦或液氢等等,也可以选用其它的绝缘低温工质。
与现有技术相比,本发明具有如下显著的效果:
⑴本发明使液体冷却通道内一直处于高压恒压状态,可抑制电磁线圈内冷却工质的吸热相变现象,保持液体冷却通道内的冷却工质始终以液态形式流经电磁线圈,充分发挥液冷强制对流换热的优势,有效提高电磁线圈的冷却速度,实现磁体的快速冷却,提高冷却效率,从而提高磁体加载频率,提高使用效率。
⑵本发明相对于相变液冷方式,实现更为容易,液体冷却通道的阻力低,对设备结构强度要求低,而且冷却效果更好,可以实现磁体的秒级冷却。
⑶当本发明应用于强磁场重频磁体时,冷却效果尤为明显。
⑷本发明冷却系统结构简单、成本低、操作简便、容易实现、运行稳定可靠,适于广泛推广和应用。
附图说明
下面结合附图和具体实施例对发明作进一步的详细说明。
图1是现有重频磁体的结构示意图;
图2是现有其中心开有液体冷却通道的电磁线圈的结构示意图;
图3是图2中A局部放大示意图;
图4是本发明冷却系统的结构示意图。
具体实施方式
一种磁体强制对流液冷却方法,如图4所示,在本实施例中,磁体为强磁场重频磁体,单次通电加载,可产生10T以上的强磁场,有的重频磁体可达到45T磁场强度。重频磁体的电磁线圈1的导线中心开设有纵向贯穿整条电磁线圈导线的液体冷却通道,在本实施例中,电磁线圈1的外径是130~260mm,高度是140~280mm。电磁线圈1液体冷却通道的长度为8~15m,直径为2mm。将重频磁体浸泡在冷却工质27中,在本实施例中,冷却工质27采用液氮,在其它实施例中,冷却工质还可以采用液态二氧化碳、液氦或液氢等等。从电磁线圈1的一端向液体冷却通道内压入冷却工质27,冷却工质27沿着液体冷却通道流动,并从电磁线圈1的另一端流出,该液体冷却通道内一直处于高压恒压状态以维持冷却工质27始终为液态。液体冷却通道内压强大于或等于1且小于或等于3.4MPa。
在电磁线圈1的两端各设置一个与液体冷却通道相通的绝缘接口2、3,电磁线圈1通过绝缘接口2、3分别连接一高压恒压供给罐4和一低压背压排液罐5,高压恒压供给罐4内装有冷却工质,高压恒压供给罐4和低压背压排液罐5内分别升压至恒定,高压恒压供给罐4内气体压强大于低压背压排液罐5内气体压强,冷却工质27被压入电磁线圈1的液体冷却通道中,吸热后的冷却工质27排入低压背压排液罐5内,通过低压背压排液罐5泄压维持其内部压强恒定,并在低压背压排液罐5中冷却工质27的液位达到设定液位时,将冷却工质27排至用于浸泡电磁线圈1的冷却工质27中,在其它实施例中,冷却工质27还可以排至用于储存冷却工质的存贮罐中。还设置一装有冷却工质27的备用高压恒压供给罐6,将备用高压恒压供给罐6连接在高压恒压供给罐4和电磁线圈1之间的管路上,当高压恒压供给罐4中的冷却工质27用尽,由备用高压恒压供给罐6提供冷却工质27并将其压入电磁线圈1的液体冷却通道中,同时,高压恒压供给罐4泄压后,向高压恒压供给罐4内补充冷却工质27并升压至其内部压强恒定,以便在备用高 压恒压供给罐6内的冷却工质27用尽后由高压恒压供给罐提供冷却工质27,如此,高压恒压供给罐4和备用高压恒压供给罐6交替使用,从而实现不间断冷却。
一种使用上述强制对流液冷却方法的冷却系统,它包括电控装置、高压恒压供给罐4、低压背压排液罐5、备用高压恒压供给罐6和装有用于浸泡电磁线圈1的冷却工质的冷却液槽7,该电磁线圈1导线中心开设有纵向贯穿整条电磁线圈导线的液体冷却通道,且在电磁线圈1的两端设有与液体冷却通道相通的绝缘接口,高压恒压供给罐4、备用高压恒压供给罐6和低压背压排液罐5分别具有进液口和出液口,高压恒压供给罐4的出液口与电磁线圈1的一绝缘接口2连接,备用高压恒压供给罐6的出液口连接在高压恒压供给罐4和电磁线圈1相连的管路上,低压背压排液罐5的进液口与电磁线圈1的另一绝缘接口3连接。电控装置控制冷却工质从高压恒压供给罐4的进液口流入其中,再控制高压恒压供给罐4和低压背压排液罐5内压强分别升至恒定使得液体冷却通道内为高压恒压状态,且高压恒压供给罐4内气体压强大于低压背压排液罐5内气体压强,冷却工质从高压恒压供给罐4的出液口被压入电磁线圈1的液体冷却通道中,吸热后的冷却工质从低压背压排液罐5的进液口排入其中,通过低压背压排液罐5泄压维持其内部压强恒定,并在低压背压排液罐5中冷却工质的液位达到设定液位时,冷却工质从低压背压排液罐5的出液口排至冷却液槽7中或是外部液氮存贮罐内,当高压恒压供给罐4中的冷却工质用尽,由备用高压恒压供给罐6向电磁线圈1提供冷却工质,使高压恒压供给罐4和备用高压恒压供给罐6交替使用,从而实现不间断冷却。
在本实施例中,在高压恒压供给罐4上设有排气泄压电磁阀8、高压恒压气源入口和恒压安全阀10,高压恒压供给罐4的进液口与冷却液补给泵11相连,并在连接管路上设有电磁阀12,且在高压恒压供给罐4的出液口和高压恒压气源入口分别设有电磁阀13、14,在高压恒压供给罐4内设有第一液位传感器15,电控装置分别与第一液位传感器15和高压恒压供给罐4上的各阀门相连。
在本实施例中,备用高压恒压供给罐6上设有排气泄压电磁阀16、高压恒压气源入口和恒压安全阀18,在备用高压恒压供给罐6的进液口、出液口和高压恒压气源入口分别设有电磁阀17、19和20,备用高压恒压供给罐6与高压恒压供给罐4共用一个冷却液补给泵,通过进液口上电磁阀17的切换使用该冷却液补给泵补液,或者备用高压恒压供给罐6独立连接一个补液泵进行补液,在备用高压恒压供给罐6内设有第二液位传感器21,电控装置分别与第二液位传感器21和备用 高压恒压供给罐6上的各阀门相连。
在本实施例中,在低压背压排液罐5上设有低压恒压气源入口和低压恒压安全阀23,在低压背压排液罐5内设有第三液位传感器24,低压背压排液罐5的出液口和低压恒压气源入口分别设有电磁阀25、26,电控装置分别与第三液位传感器24和低压背压排液罐5上的各阀门相连。
本发明冷却系统工作的具体过程是:
⑴工作准备:初始态,关闭电磁阀13,开启电磁阀12,冷却液补液泵11给高压恒压供给罐4泵入液氮,到达设定液位后,冷却液补液泵11关闭,关闭电磁阀12,打开电磁阀14,高压恒压供给罐4蓄压达到10MPa(1-30MpaA且大于低压背压排液罐的压强即可),从而达到工作状态,同时备用高压恒压供给罐6也按照前面上面步骤准备达到工作状态(达到与高压恒压供给罐同样的压强);关闭低压背压排液罐5出液口上的电磁阀25,打开低压恒压气源入口上的电磁阀26蓄压,即达到2MPa(0-3.4MPa即可),达到工作状态,此时,完成冷却系统工作准备。
⑵冷却系统运行:打开电磁阀13,液氮在气压作用下,压入电磁线圈1,对电磁线圈1进行冷却,吸热后的液氮排入低压背压排液罐5,当液氮进入低压背压排液罐5中,低压背压排液罐5中压力升高,打开低压恒压安全阀23泄压,维持低压背压排液罐5中压力恒定,当低压背压排液罐5中液氮液位高到设定允许值时,打开出液口上的电磁阀25,将液氮排入冷却槽7;当高压恒压供给罐4中的液氮用完后,关闭电磁阀13,备用高压恒压供给罐6开始工作,此时,关闭高压恒压气源入口上的电磁阀14,打开排气泄压电磁阀8,使高压恒压供给罐4恢复常压,冷却液补给泵11工作,给高压恒压供给罐4补充液氮,补充完后,关闭排气泄压电磁阀8,打开高压恒压气源入口上的电磁阀14,使高压恒压供给罐4完成工作准备,当备用高压恒压供给罐6中液氮用完后,切换到高压恒压供给罐4工作,如此,高压恒压供给罐4和备用高压恒压供给罐6交替工作,实现冷却系统不间断工作。可实现重频磁体的秒级冷却。
本发明的实施方式不限于此,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,本发明还可以做出其它多种形式的修改、替换或变更,均落在本发明保护范围之内。

Claims (10)

  1. 一种磁体强制对流液冷却方法,其特征在于:磁体的电磁线圈的导线中心开设有纵向贯穿整条电磁线圈导线的液体冷却通道,将磁体浸泡在冷却工质中,从电磁线圈的一端向液体冷却通道内压入冷却工质,冷却工质沿着液体冷却通道流动,并从电磁线圈的另一端流出,该液体冷却通道内一直处于高压恒压状态以维持冷却工质始终为液态。
  2. 根据权利要求1所述的磁体强制对流液冷却方法,其特征在于:液体冷却通道内压强是1~3.4MPa。
  3. 根据权利要求1所述的磁体强制对流液冷却方法,其特征在于:在电磁线圈的两端各设置一个与液体冷却通道相通的绝缘接口,电磁线圈通过绝缘接口分别连接一高压恒压供给罐和一低压背压排液罐,高压恒压供给罐装有冷却工质,高压恒压供给罐和低压背压排液罐内分别升压至恒定,高压恒压供给罐内气体压强大于低压背压排液罐内气体压强,冷却工质被压入电磁线圈的液体冷却通道中,吸热后的冷却工质排入低压背压排液罐内,通过低压背压排液罐泄压维持其内部压强恒定,并在低压背压排液罐中冷却工质的液位达到设定液位时,将冷却工质排至用于浸泡电磁线圈的冷却工质中或用于储存冷却工质的存贮罐中。
  4. 根据权利要求3所述的磁体强制对流液冷却方法,其特征在于:设置一装有冷却工质的备用高压恒压供给罐,将备用高压恒压供给罐连接在高压恒压供给罐和电磁线圈之间的管路上,当高压恒压供给罐中的冷却工质用尽,由备用高压恒压供给罐提供冷却工质并将其压入电磁线圈的液体冷却通道中,同时,高压恒压供给罐泄压后,向高压恒压供给罐内补充冷却工质并升压至其内部压强恒定,以便在备用高压恒压供给罐内的冷却工质用尽后由高压恒压供给罐提供冷却工质,如此,高压恒压供给罐和备用高压恒压供给罐交替使用,从而实现不间断冷却。
  5. 一种使用权利要求1所述磁体强制对流液冷却方法的冷却系统,其特征在 于:它包括电控装置、高压恒压供给罐、低压背压排液罐和装有用于浸泡电磁线圈的冷却工质的冷却液槽,该电磁线圈导线中心开设有纵向贯穿整条电磁线圈导线的液体冷却通道,且在电磁线圈的两端设有与液体冷却通道相通的绝缘接口,所述高压恒压供给罐和低压背压排液罐分别具有进液口和出液口,所述高压恒压供给罐的出液口与电磁线圈的一绝缘接口连接,所述低压背压排液罐的进液口与电磁线圈的另一绝缘接口连接,所述电控装置控制冷却工质从高压恒压供给罐的进液口流入其中,再控制高压恒压供给罐和低压背压排液罐内压强分别升至恒定使得液体冷却通道内为高压恒压状态,且高压恒压供给罐内气体压强大于低压背压排液罐内气体压强,冷却工质从高压恒压供给罐的出液口被压入电磁线圈的液体冷却通道中,吸热后的冷却工质从低压背压排液罐的进液口排入其中,通过低压背压排液罐泄压维持其内部压强恒定,并在低压背压排液罐中冷却工质的液位达到设定液位时,冷却工质从低压背压排液罐的出液口排至冷却液槽中或者用于储存冷却工质的存贮罐中。
  6. 根据权利要求5所述的冷却系统,其特征在于:所述冷却系统还包括备用高压恒压供给罐,所述备用高压恒压供给罐具有进液口和出液口,所述备用高压恒压供给罐的出液口连接在高压恒压供给罐和电磁线圈相连的管路上,当高压恒压供给罐中的冷却工质用尽,由备用高压恒压供给罐向电磁线圈提供冷却工质,使高压恒压供给罐和备用高压恒压供给罐交替使用,从而实现不间断冷却。
  7. 根据权利要求5所述的冷却系统,其特征在于:在所述高压恒压供给罐上设有排气泄压电磁阀、高压恒压气源入口和恒压安全阀,高压恒压供给罐的进液口与冷却液补给泵相连,并在连接管路上设有电磁阀,且在高压恒压供给罐的出液口和高压恒压气源入口分别设有电磁阀,在所述高压恒压供给罐内设有第一液位传感器,所述电控装置分别与第一液位传感器和高压恒压供给罐上的各阀门相连。
  8. 根据权利要求7所述的冷却系统,其特征在于:所述备用高压恒压供给罐上设有排气泄压电磁阀、高压恒压气源入口和恒压安全阀,在所述备用高压恒压供给罐的进液口、出液口和高压恒压气源入口分别设有电磁阀,备用高压恒压供给罐与高压恒压供给罐共用一个冷却液补给泵,通过进液口上电磁阀的切换使用 该冷却液补给泵补液,或者备用高压恒压供给罐独立连接一个补液泵进行补液,在所述备用高压恒压供给罐内设有第二液位传感器,所述电控装置分别与第二液位传感器和备用高压恒压供给罐上的各阀门相连。
  9. 根据权利要求8所述的冷却系统,其特征在于:在所述低压背压排液罐上设有低压恒压气源入口和低压恒压安全阀,在所述低压背压排液罐内设有第三液位传感器,所述低压背压排液罐的出液口和低压恒压气源入口分别设有电磁阀,所述电控装置分别与第三液位传感器和低压背压排液罐上的各阀门相连。
  10. 根据权利要求9所述的冷却系统,其特征在于:所述冷却工质为液态二氧化碳、液氮、液氦或液氢。
PCT/CN2017/110787 2017-08-08 2017-11-14 一种磁体强制对流液冷方法及其冷却系统 WO2019029035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710671459.8A CN107527703B (zh) 2017-08-08 2017-08-08 一种磁体强制对流液冷方法及其冷却系统
CN201710671459.8 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019029035A1 true WO2019029035A1 (zh) 2019-02-14

Family

ID=60680813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110787 WO2019029035A1 (zh) 2017-08-08 2017-11-14 一种磁体强制对流液冷方法及其冷却系统

Country Status (2)

Country Link
CN (1) CN107527703B (zh)
WO (1) WO2019029035A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109559866A (zh) * 2018-12-28 2019-04-02 中国工程物理研究院流体物理研究所 用于提高脉冲磁体重复频率的绕组、脉冲磁体及冷却方法
CN117956674A (zh) * 2024-03-26 2024-04-30 合肥中科离子医学技术装备有限公司 磁铁系统和具有它的回旋加速器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362308A (ja) * 1986-09-03 1988-03-18 Mitsubishi Electric Corp 超電導マグネツト
JPS63276207A (ja) * 1987-05-08 1988-11-14 Hitachi Ltd 交流用超電導巻線の冷却方式
JPH10132433A (ja) * 1996-10-30 1998-05-22 Railway Technical Res Inst 冷媒の循環方法及び冷却装置
CN2788101Y (zh) * 2005-01-28 2006-06-14 中国科学院理化技术研究所 一种用于低温液体循环系统的增压装置
CN106455178A (zh) * 2016-10-21 2017-02-22 广东合新材料研究院有限公司 一种封闭式液氮自循环快速冷却系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3176087B2 (ja) * 1991-07-05 2001-06-11 アイシン精機株式会社 極低温冷凍装置
JP2964055B2 (ja) * 1991-11-20 1999-10-18 日本酸素株式会社 超臨界ヘリウム発生装置
EP1134753A1 (en) * 2000-03-17 2001-09-19 Non-Equilibring Materials and Processing (NEMP) Superconductor cooling process
JP3720701B2 (ja) * 2000-11-24 2005-11-30 三菱電機株式会社 ジュールトムソン冷却装置
US7656258B1 (en) * 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
FR2904054B1 (fr) * 2006-07-21 2013-04-19 Guy Joseph Jules Negre Moteur cryogenique a energie thermique ambiante et pression constante et ses cycles thermodynamiques
JP5665443B2 (ja) * 2010-09-08 2015-02-04 三菱電機株式会社 冷凍サイクル装置
CN104795198B (zh) * 2014-01-21 2018-02-13 西门子(深圳)磁共振有限公司 一种磁共振成像系统的冷却装置、方法和磁共振成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362308A (ja) * 1986-09-03 1988-03-18 Mitsubishi Electric Corp 超電導マグネツト
JPS63276207A (ja) * 1987-05-08 1988-11-14 Hitachi Ltd 交流用超電導巻線の冷却方式
JPH10132433A (ja) * 1996-10-30 1998-05-22 Railway Technical Res Inst 冷媒の循環方法及び冷却装置
CN2788101Y (zh) * 2005-01-28 2006-06-14 中国科学院理化技术研究所 一种用于低温液体循环系统的增压装置
CN106455178A (zh) * 2016-10-21 2017-02-22 广东合新材料研究院有限公司 一种封闭式液氮自循环快速冷却系统

Also Published As

Publication number Publication date
CN107527703B (zh) 2023-06-02
CN107527703A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
JP2564338B2 (ja) 超電導コイルの冷却方法、及び超電導装置
WO2019029035A1 (zh) 一种磁体强制对流液冷方法及其冷却系统
KR102355858B1 (ko) 초전도 기기의 냉각 시스템
JP4814630B2 (ja) 超電導電磁石装置
JPS6238393A (ja) 非常用炉心冷却方法及び装置
US11309110B2 (en) Systems and methods for cooling a superconducting switch using dual cooling paths
US20160365182A1 (en) Superconducting magnetic energy storage
Park et al. Development and parametric study of the convection-type stationary adiabatic demagnetization refrigerator (ADR) for hydrogen re-condensation
CN204558225U (zh) 一种超导干式变压器
JPS6154842A (ja) 回転電機の冷却装置
JP5175595B2 (ja) 冷却装置及び超電導装置
US3819299A (en) Magnetocaloric pump
CN207021068U (zh) 一种磁体强制对流液冷的冷却系统
JP3908975B2 (ja) 冷却装置及び冷却方法
US20220068530A1 (en) Apparatus and System to Maximize Heat Capacity in Cryogenic Devices
JPS59194089A (ja) 液化ガス圧送方法およびそれに使用する液化ガスポンプ
CN204558224U (zh) 一种超导干式变压器
JP2020513977A (ja) 超電導磁石用のサーマルバス熱交換器
WO2023223462A1 (ja) 磁気冷凍装置
JP2000269022A (ja) 超電導磁石装置
JPH1154318A (ja) 超電導マグネットの冷却装置
KR102110437B1 (ko) 유체 순환장치
TWI289646B (en) Cyclic cooling system for extremely-low temperature cable
Yoshida et al. 1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer
WO2019010905A1 (zh) 一种电磁线圈散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920698

Country of ref document: EP

Kind code of ref document: A1