WO2019029033A1 - 结合超声波和芬顿法的废水处理工艺 - Google Patents

结合超声波和芬顿法的废水处理工艺 Download PDF

Info

Publication number
WO2019029033A1
WO2019029033A1 PCT/CN2017/110327 CN2017110327W WO2019029033A1 WO 2019029033 A1 WO2019029033 A1 WO 2019029033A1 CN 2017110327 W CN2017110327 W CN 2017110327W WO 2019029033 A1 WO2019029033 A1 WO 2019029033A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
treatment process
fenton
effluent
ultrasonic system
Prior art date
Application number
PCT/CN2017/110327
Other languages
English (en)
French (fr)
Inventor
姜广朋
许县明
李飞
Original Assignee
苏州久沛环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州久沛环保科技有限公司 filed Critical 苏州久沛环保科技有限公司
Publication of WO2019029033A1 publication Critical patent/WO2019029033A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Definitions

  • the present invention relates to a wastewater treatment process incorporating ultrasonic and Fenton processes.
  • the traditional Fenton method generally consists of a reactor, a flocculation sedimentation tank, a dosing system, adding sufficient oxidant, the reaction time is two hours, and the decomposition carbonization removal rate of the refractory organic matter is 40-65%, although the Fenton method is mostly Industrial wastewater has certain effects and can basically meet the process requirements, but there are still some problems to be solved in operation and subsequent treatment, such as large equipment size (for example, one ton); high operating cost, high concentration organic wastewater pollution component degradation 50-60 %, the cost of subsequent iron mud treatment, the cost should be 30 ⁇ 35 yuan / ton; the reaction time is long, generally 50 ⁇ 120min; the iron mud production is more, the drug is adjusted to Ph flocculation sedimentation dehydration of iron mud to be hazardous waste treatment, high processing costs Therefore, it is necessary to minimize the amount of iron mud produced.
  • the present invention provides a wastewater treatment process combining ultrasonic and Fenton methods, comprising the following steps:
  • the wastewater is then input into the ultrasonic system for preliminary degradation treatment;
  • the effluent of the ultrasonic system is input into the Fenton reactor, the Ph value is adjusted, and the oxidizing agent and the catalyst are added to carry out an oxidation reaction;
  • the effluent from the Fenton reactor is returned to the ultrasonic system, and the wastewater is circulated in the ultrasonic system and the Fenton reactor to further oxidize and degrade the organic matter;
  • the effluent of the Fenton reactor is fed into the flocculation sedimentation tank, the Ph value is adjusted, the medicine is added, and after the flocculation and sedimentation is completed, the effluent is sent to the subsequent treatment system.
  • the residence time of the wastewater in the ultrasonic system is 3 to 5 min.
  • the oxidizing agent is hydrogen peroxide at a concentration of 30%.
  • the catalyst is ferrous sulfate.
  • the oxidizing agent is added in 5 portions at a ratio of 1:31:51:51:51:15.
  • the ratio of the amount of the catalyst added to the amount of the first added oxidizing agent is 10:1.
  • the residence time of the wastewater in the Fenton reactor is 10 minutes.
  • the wastewater is circulated in the ultrasonic system, Fenton reactor for 30 minutes.
  • Improvement 1 The invention combines ultrasonic wave and traditional Fenton method, and the ultrasonic wave itself can be cavitation by instantaneous cavitation.
  • the oxidant (30% hydrogen peroxide) of the invention is added in 5 times, the ratio is 1:31:51:51:15, the time interval is 10 min, the addition amount of the catalyst (ferrous sulfate) and the first time
  • the proportion of oxidant added is 10:1, which can not only ensure the effect of catalytic oxidation, but also greatly improve the waste caused by the addition of oxidant and improve the utilization rate.
  • Improvement 3 The wastewater to be treated is circulated through the pump in the Fenton reactor and the ultrasonic system, and the time is allocated to 10 min and 5 min, and the two systems can be fully utilized to increase the mixing.
  • the treatment effect of the invention is 20-40% higher than the traditional method, and the refractory organic matter is also well removed, and the subsequent processing load is reduced.
  • the dosage of the oxidizing agent (30% hydrogen peroxide) of the invention is 2/3, and the amount of the catalyst (ferrous ferrous sulfate) is 1/3, and the dosage of the agent is obviously reduced.
  • the iron mud production of the invention is small, the ratio is reduced by 2/3 compared with the conventional method, the flocculant is saved, and the reaction time and volume of the flocculation sedimentation tank are reduced.
  • the investment operation cost of the invention is saved, the reaction time is 1/2, the treatment volume is 2 times, the dosage is reduced by 1/3 or more, the iron mud is reduced by 2/3, and the equipment size is also reduced accordingly, although the ultrasonic system is required.
  • a part of the investment is required, which is roughly equivalent to the cost reduction of the original system. Therefore, the investment is slightly improved, but the investment in the ton of water is much smaller than the original process due to the increase in the processing volume, which is reduced by more than 1/3.
  • the overall processing cost is 1 of the original process. /2 to 2/3.
  • a wastewater treatment process combining ultrasonic and Fenton methods comprising the following steps:
  • the wastewater is then input into the ultrasonic system for preliminary degradation treatment;
  • the effluent of the ultrasonic system is input into the Fenton reactor, the Ph value is adjusted, and the oxidizing agent and the catalyst are added to carry out an oxidation reaction;
  • the effluent from the Fenton reactor is returned to the ultrasonic system, and the wastewater is circulated in the ultrasonic system and the Fenton reactor to further oxidize and degrade the organic matter;
  • the effluent of the Fenton reactor is fed into the flocculation sedimentation tank, the Ph value is adjusted, the medicine is added, and after the flocculation and sedimentation is completed, the effluent is sent to the subsequent treatment system.
  • the residence time of the wastewater in the ultrasonic system is 3 to 5 minutes.
  • the oxidizing agent is hydrogen peroxide at a concentration of 30%.
  • the catalyst is ferrous sulfate.
  • the oxidant was added in 5 portions at a ratio of 1:31:51:51:51:15.
  • the ratio of the amount of the catalyst added to the amount of the first added oxidizing agent was 10:1.
  • the residence time of the wastewater in the Fenton reactor was 10 minutes.
  • the wastewater was circulated in the ultrasonic system, Fenton reactor for 30 minutes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种结合超声波和芬顿法的废水处理工艺,包括如下步骤:将原始废水进行预处理;再将废水输入超声波系统,进行初步降解处理;将超声波系统的出水输入芬顿反应器,调pH值,加氧化剂和催化剂,进行氧化反应;将芬顿反应器的出水回流至超声波系统,并使废水在超声波系统、芬顿反应器中循环,进一步氧化降解有机物;循环一定时间后,将芬顿反应器的出水输入絮凝沉淀池,调pH值,加药,絮凝沉淀完成后,出水输送至后续处理系统。该工艺处理效果好,对某些难降解有机物亦有很好的去除效果,减少后续工艺处理负荷,且药剂用量明显降低,铁泥产量少,整体处理成本低。

Description

结合超声波和芬顿法的废水处理工艺 技术领域
本发明涉及结合超声波和芬顿法的废水处理工艺。
背景技术
传统芬顿法一般由反应器、絮凝沉淀池、加药系统组成,添加足够的氧化剂,反应时间为两小时,难降解有机物的分解碳化去除率为40~65%,芬顿法虽然对大部分工业废水有一定效果,基本能满足工艺需求,但在运行和后续处理仍存在一些亟待解决的问题,例如设备尺寸大(例如一吨);运行成本高,高浓度有机废水污染成分降解50~60%,后续铁泥处理费用,成本要30~35元/吨;反应时间长,一般50~120min;铁泥产量多,加药调Ph絮凝沉降脱水的铁泥要做危废处理,处理费用高,因此需要尽量减少铁泥产生量。
发明内容
为克服现有技术中的缺陷,本发明提供一种结合超声波和芬顿法的废水处理工艺,包括如下步骤:
将原始废水进行预处理;
再将废水输入超声波系统,进行初步降解处理;
将超声波系统的出水输入芬顿反应器,调Ph值,加氧化剂和催化剂,进行氧化反应;
将芬顿反应器的出水回流至超声波系统,并使废水在超声波系统、芬顿反应器中循环,进一步氧化降解有机物;
循环一定时间后,将芬顿反应器的出水输入絮凝沉淀池,调Ph值,加药,絮凝沉淀完成后,出水输送至后续处理系统。
优选的,所述废水在超声波系统中的停留时间为3~5min。
优选的,所述氧化剂为浓度30%的双氧水。
优选的,所述催化剂为硫酸亚铁。
优选的,所述氧化剂分5次添加,比例分别为1:31:51:51:51:15。
优选的,所述催化剂的添加量与第一次投加氧化剂添加量的比例为10:1。
优选的,所述废水在芬顿反应器中的停留时间10分钟。
优选的,所述废水在超声波系统、芬顿反应器中循环的时间为30分钟。
针对传统芬顿法存在的问题,本发明在工艺上做了大胆尝试改进,取得了明显效果:改进1:本发明将超声波和传统芬顿法结合,超声波本身可通过瞬间空化稳态空化机械机制 热解和水离解等机制氧化降解有机物,尤其对某些芬顿试剂法难降解的小分子如甲醇乙酸等有较好去除效果,能大大提高芬顿体系中羟基自由的产生量和速率,提高氧化剂的氧化效果,添加在水体中的部分氧化剂在超声波作用下分解生产羟基自由基也对污染物有显著氧化效果,在多重作用下对难降解有机物进行氧化。
改进2:本发明氧化剂(30%双氧水)添加分为5次,比例分别为1:31:51:51:51:15,时间间隔为10min,催化剂(硫酸亚铁)的添加量和第一次投加氧化剂比例为10:1,这样既能保证催化氧化的效果,又极大改善氧化剂一次添加造成的浪费,提高利用率。
改进3:待处理废水在芬顿反应器和超声波系统通过泵循环,时间分配为10min和5min,可充分利用这两个系统,增加混合。
本发明具有如下特点:
1、本发明处理效果比传统方法提高20~40%,对某些难降解有机物亦有很好的去除效果,减少后续工艺处理负荷。
2、本发明氧化剂(30%双氧水)用量为原2/3,催化剂(硫酸亚铁)用量为原1/3,药剂用量明显降低。
3、本发明铁泥产量少,与传统法比减少2/3,节省絮凝剂,减小絮凝沉淀池反应时间和体积。
4、本发明投资运行费用省,反应时间为原1/2,处理量为原先2倍,药剂量减少1/3以上,铁泥减少2/3,设备尺寸亦有相应减少,虽然超声波系统要需一部分投资,与原系统尺寸减少节约的费用大体相当,故投资略有提高,但因处理量增加故吨水投资要远小于原工艺,减少1/3以上,整体处理成本为原工艺的1/2~2/3。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明具体实施的技术方案是:
一种结合超声波和芬顿法的废水处理工艺,包括如下步骤:
将原始废水进行预处理;
再将废水输入超声波系统,进行初步降解处理;
将超声波系统的出水输入芬顿反应器,调Ph值,加氧化剂和催化剂,进行氧化反应;
将芬顿反应器的出水回流至超声波系统,并使废水在超声波系统、芬顿反应器中循环,进一步氧化降解有机物;
循环一定时间后,将芬顿反应器的出水输入絮凝沉淀池,调Ph值,加药,絮凝沉淀完成后,出水输送至后续处理系统。
所述废水在超声波系统中的停留时间为3~5min。
所述氧化剂为浓度30%的双氧水。
所述催化剂为硫酸亚铁。
所述氧化剂分5次添加,比例分别为1:31:51:51:51:15。
所述催化剂的添加量与第一次投加氧化剂添加量的比例为10:1。
所述废水在芬顿反应器中的停留时间10分钟。
所述废水在超声波系统、芬顿反应器中循环的时间为30分钟。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

  1. 结合超声波和芬顿法的废水处理工艺,其特征在于,包括如下步骤:
    将原始废水进行预处理;
    再将废水输入超声波系统,进行初步降解处理;
    将超声波系统的出水输入芬顿反应器,调Ph值,加氧化剂和催化剂,进行氧化反应;
    将芬顿反应器的出水回流至超声波系统,并使废水在超声波系统、芬顿反应器中循环,进一步氧化降解有机物;
    循环一定时间后,将芬顿反应器的出水输入絮凝沉淀池,调Ph值,加药,絮凝沉淀完成后,出水输送至后续处理系统。
  2. 根据权利要求1所述的结合超声波和芬顿法的废水处理工艺,其特征在于,所述废水在超声波系统中的停留时间为3~5min。
  3. 根据权利要求2所述的结合超声波和芬顿法的废水处理工艺,其特征在于,所述氧化剂为浓度30%的双氧水。
  4. 根据权利要求3所述的结合超声波和芬顿法的废水处理工艺,其特征在于,所述催化剂为硫酸亚铁。
  5. 根据权利要求4所述的结合超声波和芬顿法的废水处理工艺,其特征在于,所述氧化剂分5次添加,比例分别为1:31:51:51:51:15。
  6. 根据权利要求5所述的结合超声波和芬顿法的废水处理工艺,其特征在于,所述催化剂的添加量与第一次投加氧化剂添加量的比例为10:1。
  7. 根据权利要求6所述的结合超声波和芬顿法的废水处理工艺,其特征在于,所述废水在芬顿反应器中的停留时间10分钟。
  8. 根据权利要求7所述的结合超声波和芬顿法的废水处理工艺,其特征在于,所述废水在超声波系统、芬顿反应器中循环的时间为30分钟。
PCT/CN2017/110327 2017-08-07 2017-11-10 结合超声波和芬顿法的废水处理工艺 WO2019029033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710665120.7 2017-08-07
CN201710665120.7A CN107253789B (zh) 2017-08-07 2017-08-07 结合超声波和芬顿法的废水处理工艺

Publications (1)

Publication Number Publication Date
WO2019029033A1 true WO2019029033A1 (zh) 2019-02-14

Family

ID=60026299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110327 WO2019029033A1 (zh) 2017-08-07 2017-11-10 结合超声波和芬顿法的废水处理工艺

Country Status (2)

Country Link
CN (1) CN107253789B (zh)
WO (1) WO2019029033A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110668603A (zh) * 2019-10-15 2020-01-10 山东海景天环保科技股份公司 一种制革生化尾水的处理工艺
CN114804408A (zh) * 2022-04-07 2022-07-29 广州珠江天然气发电有限公司 一种电厂燃机水洗废液的处理与回用方法及其装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107253789B (zh) * 2017-08-07 2020-12-18 苏州久沛环保科技有限公司 结合超声波和芬顿法的废水处理工艺
CN111268849A (zh) * 2018-12-05 2020-06-12 苏州苏讯环保科技有限公司 一种基于芬顿反应的高效废水处理工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1899986A (zh) * 2006-07-19 2007-01-24 重庆大学 高压空化射流结合芬顿试剂处理印染废水的方法
EP2319619A1 (en) * 2009-11-04 2011-05-11 Siemens Aktiengesellschaft Method and an apparatus for regeneration of an adsorbent
CN102372382A (zh) * 2010-08-24 2012-03-14 A.史策有限公司 增强的高级氧化方法
CN104944657A (zh) * 2015-07-03 2015-09-30 广东沃杰森环保科技有限公司 一种治理废水的声波电氧化工艺
CN105417899A (zh) * 2016-01-13 2016-03-23 樊利华 一种超声波电吸附电芬顿且脱盐脱色的水处理装置及方法
CN107253789A (zh) * 2017-08-07 2017-10-17 苏州久沛环保科技有限公司 结合超声波和芬顿法的废水处理工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786756B (zh) * 2010-02-09 2011-08-31 广西博世科环保科技股份有限公司 一种处理生化难降解有机废水的工艺方法
CN105366836A (zh) * 2014-09-02 2016-03-02 苏州久沛环保科技有限公司 一种环流多维催化高级氧化处理含油废水的工艺和装置
CN104386868A (zh) * 2014-10-24 2015-03-04 苏州富奇诺水治理设备有限公司 一种利用超声波催化的芬顿氧化治理废水的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1899986A (zh) * 2006-07-19 2007-01-24 重庆大学 高压空化射流结合芬顿试剂处理印染废水的方法
EP2319619A1 (en) * 2009-11-04 2011-05-11 Siemens Aktiengesellschaft Method and an apparatus for regeneration of an adsorbent
CN102372382A (zh) * 2010-08-24 2012-03-14 A.史策有限公司 增强的高级氧化方法
CN104944657A (zh) * 2015-07-03 2015-09-30 广东沃杰森环保科技有限公司 一种治理废水的声波电氧化工艺
CN105417899A (zh) * 2016-01-13 2016-03-23 樊利华 一种超声波电吸附电芬顿且脱盐脱色的水处理装置及方法
CN107253789A (zh) * 2017-08-07 2017-10-17 苏州久沛环保科技有限公司 结合超声波和芬顿法的废水处理工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110668603A (zh) * 2019-10-15 2020-01-10 山东海景天环保科技股份公司 一种制革生化尾水的处理工艺
CN114804408A (zh) * 2022-04-07 2022-07-29 广州珠江天然气发电有限公司 一种电厂燃机水洗废液的处理与回用方法及其装置

Also Published As

Publication number Publication date
CN107253789A (zh) 2017-10-17
CN107253789B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN106745961B (zh) 一种焦化废水深度处理脱碳脱色脱氰的方法及系统
WO2019029033A1 (zh) 结合超声波和芬顿法的废水处理工艺
CN109019945B (zh) 一种含氰废水的处理方法
CN103508593B (zh) 一种应用于抗生素废水治理的化学深度处理方法
CN109987750B (zh) 一种由钙和有机酸类络合物介导的促进芬顿氧化的方法
CN110642418A (zh) 一种芬顿工艺处理pcb生产中产生的高有机废水的方法
CN103663840A (zh) 一种丙烯腈及其聚合废水的处理方法
CN104445718A (zh) 一种黄金矿山氰化废渣淋溶液治理方法
JP2022517256A (ja) 制御可能な・ohフリーラジカルの相乗作用による多糖類ポリマー含有汚水の分解処理方法
CN113024000A (zh) 采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法
CN103496811B (zh) 一种前置氧化联合微波深度处理煤制气废水并回用的方法
CN205442755U (zh) 一种芬顿铁离子循环法处理有机废水的装置
CN202785740U (zh) 一种降低cod含量的废水处理系统
CN104230059A (zh) 一种含氰废水臭氧氧化综合处理方法
CN106242181A (zh) 一种经济高效的煤化工废水治理方法
CN213060470U (zh) 一种硫酸法钛白废水处理装置
CN111620467A (zh) 一种污水深度处理系统及方法
KR101044989B1 (ko) 유기성 슬러지의 생물학적 처리 방법 및 이에 사용되는 장치
CN111268849A (zh) 一种基于芬顿反应的高效废水处理工艺
CN207738604U (zh) 一种焦化废水深度处理系统
CN107935319A (zh) 一种焦化废水深度处理系统
CN104310665A (zh) 一种针对非离子表面活性剂废水的预处理方法
CN102874987B (zh) 一种酵母废水预处理方法
CN107879502A (zh) 一种甲醛废水的处理方法
CN107352735A (zh) 一种焦化废水深度处理的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921213

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04-08-2020)