CN113024000A - 采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法 - Google Patents

采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法 Download PDF

Info

Publication number
CN113024000A
CN113024000A CN202110261735.XA CN202110261735A CN113024000A CN 113024000 A CN113024000 A CN 113024000A CN 202110261735 A CN202110261735 A CN 202110261735A CN 113024000 A CN113024000 A CN 113024000A
Authority
CN
China
Prior art keywords
electron beam
beam irradiation
industrial wastewater
pretreating
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110261735.XA
Other languages
English (en)
Inventor
王建龙
王诗宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110261735.XA priority Critical patent/CN113024000A/zh
Publication of CN113024000A publication Critical patent/CN113024000A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/305Treatment of water, waste water, or sewage by irradiation with electrons
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明提出一种采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法,利用电子束辐照分解水产生的水合电子,促进Fe3+向Fe2+的转化,可以显著降低双氧水和二价铁的投加量及铁泥产量的同时,增强电子束辐照的氧化能力。

Description

采用电子束辐照耦合Fenton技术预处理或深度处理工业废水 的方法
技术领域
本发明涉及工业废水处理技术领域,具体涉及一种电子束辐照耦合Fenton技术处理难降解工业废水的方法。
背景技术
随着工业的快速发展,工业废水的种类和数量不断增加。工业废水直接排放会对生态环境和人类健康造成严重而危害。由于工业废水中有机污染物浓度高、毒性强,导致常规的水处理工艺不能有效处理印染废水。需要在前端增加预处理工艺或者在后端增加深度处理工艺。预处理工艺通常用来改善废水的可生化性。而深度处理工艺用来强化去除效果。常用作预处理或深度处理的工艺具有一定的局限性,限制了其推广应用。例如常用的处理工业废水的Fenton工艺需要调整pH为酸性,Fenton氧化是在酸性条件下,利用Fe2+催化分解H2O2生成的羟基自由基氧化污染物,处理效果好,但反应过程会产生大量的铁泥。而导致该问题的本质原因是Fe2+催化分解H2O2后产生的Fe3+很难再次转化为Fe2+(转化速率~10-7Lmol-1s-1),最终形成Fe(OH)3沉淀。且处理工程中会产生大量的铁泥。而采用臭氧工艺处理工业废水,设备和运行成本较高。采用电催化工艺则耗能和成本较高。随着我国和地方对印染废水的排放标准越发严格,迫切需要开发能经济有效处理工业废水的工艺。
电子束辐照是一种新型的水处理技术,被国际原子能机构(IAEA)列为21世纪原子能和平利用的主要研究方向之一。其主要原理为水分子在接受辐照的瞬间产生羟基自由基和水合电子等活性粒子,这些活性粒子与水中的污染物作用,达到最终去除污染物的目的。电子束辐照已经被用于实际印染废水的处理。在实际运用中,我们发现工业废水的水质和水量随生产品种及市场需求的变化波动较大,对电子束辐照的处理效果造成了冲击。提高辐照剂量能提高电子束辐照的氧化能力,但同时会显著增加运行成本。如何经济有效提高电子束辐照的氧化能力,对于处理水质和水量变化大的工业废水,具有重要的理论和现实意义。
发明内容
本发明克服现有Fenton工艺处理工业废水会产生大量铁泥,pH适用范围窄,电子束辐照对于处理水质和水量变化大的工业废水所需辐照剂量高,运营成本高的缺陷,提供一种电子束耦合Fenton技术处理难降解工业废水的方法,利用电子束辐照和Fenton工艺的协同作用,降低铁泥的产生量,提高pH适用范围,降低辐照剂量的同时,提高对废水的氧化能力。
本发明提供一种采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法,包括:
第一步,调整工业废水的pH值;
第二步,向工业废水中加入定量的二价铁和双氧水;
第三步,进行电子束辐照;
第四步,加入絮凝剂沉淀出水。
其中,所述第一步中,pH调整的范围为3~11。
其中,所述第二步中,双氧水的添加量与工业废水COD的比值为1:200~2:1。
其中,所述第二步中,二价铁投加量与双氧水投加量的摩尔比为1:60~1:2。
其中,所述第三步中,辐照剂量为1~5kGy。
其中,所述第四步中,絮凝剂优选为聚合硫酸铁、聚合硫酸铝、聚合氯化铁、聚合氯化铝、聚合硫酸铝铁,絮凝剂的投加量为50~300mg/L。
本发明的有益效果
本发明方法中,采用电子束和Fenton耦合工艺,利用电子束辐照分解水产生的水合电子,促进Fe3+向Fe2+的转化,可以显著降低双氧水和二价铁的投加量及铁泥产量的同时,增强电子束辐照的氧化能力。
电子束-Fenton耦合工艺,与现有的Fenton、臭氧和电催化工艺比较,具有广泛的pH适用范围,运行费用低、处理效果好。而且电子束-Fenton耦合工艺可以通过控制pH、辐照剂量及双氧水投加量,调控该组合工艺的氧化能力,在处理工业废水方面具有广泛的应用前景。
附图说明
图1不同处理条件下废水的出水的BOD5/COD比值和COD值比较。
具体实施方式
采用电子束辐照耦合Fenton工艺,能促进Fe3+向Fe2+的转化,可以降低Fe2+的投加量,进而降低铁泥的产量。电子束辐照过程中会产生高还原活性的水合电子。水合电子能将Fe3+还原为Fe2+,促进Fe3+向Fe2+的转化,降低Fe2+投加量的同时,提高电子束辐照的氧化能力。与先前添加无机和有机物质促进Fe3+向Fe2+的转化比较,采用电子束辐照无需添加外源物质,不会产生二次污染。
基于上述原理,本发明提供一种采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法包括:
第一步,调整工业废水的pH值;
第二步,向工业废水中加入定量的二价铁和双氧水;
第三步,进行电子束辐照;
第四步,加入絮凝剂沉淀出水。
所述第一步中,pH调整的范围为3~11。
所述第二步中,双氧水的添加量与工业废水COD的比值为1:200~2:1。
所述第二步中,二价铁投加量与双氧水投加量的摩尔比为1:60~1:2。
所述第三步中,辐照剂量为1~5kGy。
所述第四步中,絮凝剂优选为聚合硫酸铁、聚合硫酸铝、聚合氯化铁、聚合氯化铝、聚合硫酸铝铁,絮凝剂的投加量为50~300mg/L。
以下采用实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。
实施例1
待处理的化工废水的COD为20000mg/L,初始pH为9.0,向该化工废水中加入双氧水,使其浓度为1000mg/L;加入二价铁,使其浓度164.8mg/L,迅速进行电子束辐照,辐照剂量2kGy。辐照后出水加入100mg/L聚合硫酸铁进行絮凝沉淀。
比较例1
待处理的化工废水的COD为20000mg/L,初始pH为9.0,将该化工废水直接进行电子束辐照,辐照剂量为2kGy,辐照后出水加入100mg/L聚合硫酸铁进行絮凝沉淀。
比较例2
待处理的化工废水的COD为20000mg/L,初始pH为9.0,向该废水中加入双氧水1000mg/L,加入二价铁164.8mg/L,反应30min,辐照后出水加入100mg/L聚合硫酸铁进行絮凝沉淀。
上述反应结束后,测试废水的出水的BOD5/COD比值,结果如附图1所示。实施例1的电子束-Fenton耦合工艺处理后废水的可生化性显著提高(BOD5/COD比值由0.08增加至0.21),COD降低到17200mg/L。作为对比,采用单独电子束辐照预处理化工废水的比较例1和Fenton工艺处理的比较例2,COD降低幅度及废水可生化性BOD5/COD比值的变化不明显。证明了电子束-Fenton耦合工艺处理效果要优于单独电子束辐照和Fenton工艺。
实施例2
取经前端工艺处理后的印染废水,出水COD为525mg/L,pH 8.2,向该印染废水中加入双氧水,使其浓度为100mg/L;加入二价铁,使其浓度16.5mg/L,迅速进行电子束辐照,辐照剂量1kGy。辐照后出水加入100mg/L聚合氯化铝铁进行絮凝沉淀。经过处理后,出水色度降低90%,COD小于50mg/L。
比较例3
取经前端工艺处理后的印染废水,出水COD为525mg/L,pH 8.2,向该印染废水中直接进行电子束辐照,辐照剂量为1kGy,辐照后出水加入100mg/L聚合氯化铝进行絮凝沉淀。经过处理,出水色度降低30%,出水COD介于300-410mg/L。
比较例4
取经前端工艺处理后的印染废水,出水COD为525mg/L,pH 8.2,向该印染废水中加入双氧水100mg/L,加入二价铁16.5mg/L,反应30min,辐照后出水加入100mg/L聚合硫酸铁进行絮凝沉淀。经过处理,出水色度降低50%,COD介于250-350mg/L。
通过对比可以看出,电子束-Fenton耦合工艺的处理效果远优于单独电子束辐照和单独Fenton工艺。
实施例3
取经生化处理后的焦化废水,COD为380mg/L,pH 7.8,向焦化废水中加入定量的双氧水,使其初始浓度为100mg/L;加入定量的二价铁,使其浓度为16.5mg/L。迅速采用电子束辐照,辐照剂量2kGy。辐照后出水加入100mg/L聚合硫酸铁絮凝后,出水色度降低90%,COD小于90mg/L。
比较例5
取经生化处理后的焦化废水,COD为380mg/L,pH 7.8,将该焦化废水直接进行电子束辐照,辐照剂量为1kGy,辐照后出水加入100mg/L聚合氯化铝进行絮凝沉淀。经处理,出水色度降低40%,出水COD介于160-220mg/L。
比较例6
取经生化处理后的焦化废水,COD为380mg/L,pH 7.8,向焦化废水中加入双氧水100mg/L,加入二价铁16.5mg/L,反应60min,辐照后出水加入100mg/L聚合硫酸铁进行絮凝沉淀。经处理,出水色度降低40%,COD介于150-220mg/L。
通过对比可以看出,电子束-Fenton耦合工艺的处理效果远优于单独电子束辐照和单独Fenton工艺。对于单独Fenton工艺,要使COD降到90mg/L以下,需要双氧水浓度达到400mg/L,铁离子浓度大于200mg/L。由此可得,与单独Fenton工艺比较,电子束-Fenton耦合工艺可以显著降低双氧水和铁离子投加量,减少铁泥的产生量。
实施例4
取经生化处理后的制药废水,初始COD为484mg/L,pH 8.3,向制药废水中加入定量的双氧水,使其初始浓度为150mg/L;加入定量的二价铁,使其浓度为24.8mg/L。迅速采用电子束辐照,辐照剂量3kGy。辐照后出水加入100mg/L的聚合硫酸铝铁絮凝后,出水COD小于90mg/L。
比较例7
取经生化处理后的制药废水,初始COD为484mg/L,pH 8.3,将该制药废水直接进行电子束辐照,辐照剂量为3kGy,辐照后出水加入100mg/L聚合氯化铝进行絮凝沉淀。经单独辐照处理后,出水COD介于300-380mg/L。
比较例8
取经生化处理后的制药废水,初始COD为484mg/L,pH 8.3,向焦化废水中加入双氧水150mg/L,加入二价铁24.8mg/L,反应60min,辐照后出水加入100mg/L聚合硫酸铁进行絮凝沉淀。经单独Fenton工艺处理后,COD介于300-400mg/L。
通过对比可以看出,电子束-Fenton耦合工艺的处理效果远优于单独的电子束辐照和单独的Fenton工艺。
所有上述的首要实施这一知识产权,并没有设定限制其他形式的实施这种新产品和/或新方法。本领域技术人员将利用这一重要信息,上述内容修改,以实现类似的执行情况。但是,所有修改或改造基于本发明新产品属于保留的权利。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (6)

1.一种采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法,其特征在于,包括:
第一步,调整工业废水的pH值;
第二步,向工业废水中加入定量的二价铁和双氧水;
第三步,进行电子束辐照;
第四步,加入絮凝剂沉淀出水。
2.如权利要求1所述的采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法,其特征在于:所述第一步中,pH调整的范围为3~11。
3.如权利要求1所述的采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法,其特征在于:所述第二步中,双氧水的添加量与工业废水COD的比值为1:200~2:1。
4.如权利要求1所述的采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法,其特征在于:所述第二步中,二价铁投加量与双氧水投加量的摩尔比为1:60~1:2。
5.如权利要求1所述的采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法,其特征在于:所述第三步中,辐照剂量为1~5kGy。
6.如权利要求1所述的采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法,其特征在于:所述第四步中,絮凝剂为聚合硫酸铁、聚合硫酸铝、聚合氯化铁、聚合氯化铝、聚合硫酸铝铁,絮凝剂的投加量为50~300mg/L。
CN202110261735.XA 2021-03-10 2021-03-10 采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法 Pending CN113024000A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110261735.XA CN113024000A (zh) 2021-03-10 2021-03-10 采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110261735.XA CN113024000A (zh) 2021-03-10 2021-03-10 采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法

Publications (1)

Publication Number Publication Date
CN113024000A true CN113024000A (zh) 2021-06-25

Family

ID=76469839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110261735.XA Pending CN113024000A (zh) 2021-03-10 2021-03-10 采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法

Country Status (1)

Country Link
CN (1) CN113024000A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772886A (zh) * 2021-09-10 2021-12-10 中广核达胜科技有限公司 垃圾渗滤液的全量化处理方法
CN113830941A (zh) * 2021-09-13 2021-12-24 江苏瑞祥化工有限公司 一种微通道协同氯水及电子束深度处理有机废水的方法
CN114132987A (zh) * 2021-11-23 2022-03-04 清华大学 高能电子束去除油田污水中硫化物的方法
CN116002845A (zh) * 2023-02-22 2023-04-25 清华大学 一种焦化废水的预处理方法以及整体处理工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457269A (en) * 1992-09-08 1995-10-10 Zapit Technology, Inc. Oxidizing enhancement electron beam process and apparatus for contaminant treatment
WO2007006968A2 (fr) * 2005-07-12 2007-01-18 Centre National De La Recherche Scientifique Procede de depollution de milieux aqueux contenant des polluants organiques
US20070119785A1 (en) * 2003-10-29 2007-05-31 University Of Miami Metal mediated aeration for water and wastewater purification
CN105366899A (zh) * 2015-12-10 2016-03-02 东华大学 一种臭氧-厌氧铁还原联用污泥减量的芬顿氧化工艺
CN105668759A (zh) * 2016-04-01 2016-06-15 浙江奇彩环境科技股份有限公司 一种循环利用Fenton铁泥的方法
CN106348381A (zh) * 2016-08-30 2017-01-25 中广核达胜加速器技术有限公司 一种新型抗生素废水电子束处理工艺
CN106892497A (zh) * 2017-04-14 2017-06-27 上海电气集团股份有限公司 Fenton铁泥再生回用装置、Fenton法污水处理系统及其方法
CN107082482A (zh) * 2017-04-18 2017-08-22 东南大学 一种Fenton体系的增效与减排方法
CN107417035A (zh) * 2017-05-18 2017-12-01 大连理工大学 一种基于铁循环利用的Fenton‑厌氧处理设备与工艺
CN109095734A (zh) * 2018-09-06 2018-12-28 昆山绿威环保科技有限公司 超声波-铁还原菌联用的芬顿氧化污泥减量工艺
CN112357999A (zh) * 2020-10-20 2021-02-12 中核第四研究设计工程有限公司 一种电子束辐照深度处理制药废水中难降解有机物的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457269A (en) * 1992-09-08 1995-10-10 Zapit Technology, Inc. Oxidizing enhancement electron beam process and apparatus for contaminant treatment
US20070119785A1 (en) * 2003-10-29 2007-05-31 University Of Miami Metal mediated aeration for water and wastewater purification
WO2007006968A2 (fr) * 2005-07-12 2007-01-18 Centre National De La Recherche Scientifique Procede de depollution de milieux aqueux contenant des polluants organiques
CN105366899A (zh) * 2015-12-10 2016-03-02 东华大学 一种臭氧-厌氧铁还原联用污泥减量的芬顿氧化工艺
CN105668759A (zh) * 2016-04-01 2016-06-15 浙江奇彩环境科技股份有限公司 一种循环利用Fenton铁泥的方法
CN106348381A (zh) * 2016-08-30 2017-01-25 中广核达胜加速器技术有限公司 一种新型抗生素废水电子束处理工艺
CN106892497A (zh) * 2017-04-14 2017-06-27 上海电气集团股份有限公司 Fenton铁泥再生回用装置、Fenton法污水处理系统及其方法
CN107082482A (zh) * 2017-04-18 2017-08-22 东南大学 一种Fenton体系的增效与减排方法
CN107417035A (zh) * 2017-05-18 2017-12-01 大连理工大学 一种基于铁循环利用的Fenton‑厌氧处理设备与工艺
CN109095734A (zh) * 2018-09-06 2018-12-28 昆山绿威环保科技有限公司 超声波-铁还原菌联用的芬顿氧化污泥减量工艺
CN112357999A (zh) * 2020-10-20 2021-02-12 中核第四研究设计工程有限公司 一种电子束辐照深度处理制药废水中难降解有机物的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772886A (zh) * 2021-09-10 2021-12-10 中广核达胜科技有限公司 垃圾渗滤液的全量化处理方法
CN113830941A (zh) * 2021-09-13 2021-12-24 江苏瑞祥化工有限公司 一种微通道协同氯水及电子束深度处理有机废水的方法
CN114132987A (zh) * 2021-11-23 2022-03-04 清华大学 高能电子束去除油田污水中硫化物的方法
CN116002845A (zh) * 2023-02-22 2023-04-25 清华大学 一种焦化废水的预处理方法以及整体处理工艺

Similar Documents

Publication Publication Date Title
CN113024000A (zh) 采用电子束辐照耦合Fenton技术预处理或深度处理工业废水的方法
Wu et al. A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment
CN101525190B (zh) 一种基于芬顿反应的高效废水处理工艺
CN105461135B (zh) 一种高浓度难降解有机石化废水预处理工艺
CN108793540A (zh) 一种难降解有机废水深度处理的方法
CN102897960B (zh) 工业污水处理器
CN112851041A (zh) 一种生物处理耦合辐照处理印染废水的工艺
CN105174411A (zh) 基于芬顿反应改进的工业有机废水处理方法
CN105016573A (zh) UV协同络合/Fenton体系处理含染料及PVA中性废水的方法
CN111003791A (zh) 一种利用非均相芬顿体系降解有机染料的方法
CN114180753A (zh) 一种含氰化物和草酸盐废水的处理方法
WO2019029033A1 (zh) 结合超声波和芬顿法的废水处理工艺
CN113233643B (zh) 一种剩余污泥铁循环式芬顿氧化降解方法
CN105330088A (zh) 一种乙烯废碱液的处理方法
CN103570165A (zh) 一种组合法处理印染废水工艺
CN117263310A (zh) 一种新型抗生素废水处理方法
CN111268849A (zh) 一种基于芬顿反应的高效废水处理工艺
CN114656026A (zh) 一种无定形硼辅助活化过氧乙酸处理有机废水的方法
CN211620247U (zh) 射频芬顿氧化水处理装置
CN112645428A (zh) 一种芬顿反应强化剂及其应用
KR100208956B1 (ko) Ph조정후전자선조사에의한폐수처리방법
CN113856683B (zh) 一种碳载铁离子的类芬顿催化剂及其制备方法和应用
CN109987692B (zh) 基于乙醛酸构建的类芬顿体系增强处理有机废水的方法
CN117023861A (zh) 一种同步氧化低价磷酸盐和络合态重金属的光芬顿氧化装置系统及方法
CN115010239A (zh) 一种臭氧-高级氧化处理废水的方法及处理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination