WO2019026209A1 - 可撓性表示装置及び可撓性表示装置の製造方法 - Google Patents

可撓性表示装置及び可撓性表示装置の製造方法 Download PDF

Info

Publication number
WO2019026209A1
WO2019026209A1 PCT/JP2017/028079 JP2017028079W WO2019026209A1 WO 2019026209 A1 WO2019026209 A1 WO 2019026209A1 JP 2017028079 W JP2017028079 W JP 2017028079W WO 2019026209 A1 WO2019026209 A1 WO 2019026209A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
polyimide resin
display device
forming
flexible display
Prior art date
Application number
PCT/JP2017/028079
Other languages
English (en)
French (fr)
Inventor
有希 安田
哲憲 田中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2017/028079 priority Critical patent/WO2019026209A1/ja
Priority to US16/468,330 priority patent/US20190333425A1/en
Publication of WO2019026209A1 publication Critical patent/WO2019026209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3405Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flexible display device and a method of manufacturing the flexible display device.
  • organic EL Electro Luminescence
  • OLED Organic Light Emitting Diodes
  • inorganic EL displays provided with inorganic light emitting diodes.
  • the flexible display device can be made so that it can be freely bent. Demand for is high.
  • a process of forming an active element which is a high temperature process included as an essential process in a manufacturing process of the flexible display device
  • a method is generally used which is carried out on a high heat resistant and non-flexible substrate, for example, a glass substrate, and thereafter the glass substrate is peeled off to ensure flexibility.
  • Patent Documents 1 to 4 two resin layers made of polyimide resin or the like are laminated on a highly heat resistant and non-flexible substrate, and the resin of the upper layer is not irradiated with laser light after the above-described high temperature process. It is described about peeling off the lower resin layer containing a non-flexible substrate from a layer.
  • Japan Published Patent Gazette “Special Table 2015-530283" Gazette (October 15, 2015 published) International Publication Gazette “WO2014 / 050933” Gazette (released on April 03, 2014) Japanese Patent Publication "Japanese Patent Application Laid-Open No. 2016-120630" (July 07, 2016 published) Japanese Published Patent Publication "Japanese Patent Application Laid-Open No. 2016-120629” Publication (July 07, 2016 published)
  • Patent Documents 1 to 4 have the merit of not requiring the irradiation of a laser beam, but because peeling is performed between the resin layer made of polyimide resin and the like and the resin layer, peeling is caused. A large amount of unnecessary resin layers is formed on the non-flexible substrate.
  • Patent Documents 1 to 4 are not preferable methods from the viewpoint of efficient use of the polyimide material forming the resin layer and the viewpoint of environment-friendly steps.
  • FIG. 5 is a view for explaining a Laser Lift Off step (also referred to as an LLO step) required to manufacture a highly reliable flexible organic EL display device.
  • a Laser Lift Off step also referred to as an LLO step
  • a PI layer 102 (base layer) made of, for example, a polyimide resin Are stacked (first step), the moisture-proof layer 103 is stacked on the PI layer 102, and the TFT array layer 104 composed of a thin film transistor element (TFT element) and an insulating film is formed on the moisture-proof layer 103.
  • the first electrode (not shown) was patterned corresponding to each pixel using the metal film of the same layer, and the terminal portion (not shown) was formed.
  • any one of the red light emitting organic EL element 105R, the green light emitting organic EL element 105G and the blue light emitting organic EL element 105B is formed on the first electrode as a display element (second step), A sealing film 106 is formed to cover the light emitting organic EL element 105R, the green light emitting organic EL element 105G, and the blue light emitting organic EL element 105B.
  • Each of the red light emitting organic EL element 105R, the green light emitting organic EL element 105G, and the blue light emitting organic EL element 105B is not illustrated, for example, but a hole injection layer, a hole transport layer, a light emitting layer of each color, an electron It is a laminate of a transport layer, an electron injection layer and a second electrode.
  • a laminate of a moisture-proof layer 103, a TFT array layer 104, a red light emitting organic EL element 105R, a green light emitting organic EL element 105G and a blue light emitting organic EL element 105B, and a sealing film 106 is laminated. Let the body 107 be.
  • the back film 111 is formed of PI through the adhesive layer (not shown) provided on the surface 111 a on one side of the back film 111 which is a flexible substrate. It affixed on the layer 102 (base layer), and completed the flexible organic electroluminescence display (4th process).
  • the PI layer 110 (base layer) made of polyimide resin is used as a large glass substrate 101 ′ ( In the case of coating using a slit coater on a non-flexible substrate), the following problems occur.
  • FIG. 6 is a figure for demonstrating the problem which arises when the PI layer 110 which consists of polyimide resins is apply
  • the portion A in the figure which is near the start position of application of the slit coater is the other
  • the film thickness of the portion B which is formed thicker than that of the portion of the figure, which is near the stop position of application of the slit coater, is formed thinner than the other portions.
  • the laser beam irradiation amount in the above-described LLO step is set based on the average film thickness.
  • the portion where the film thickness is formed to be thicker than a certain other portion is a portion where the irradiation amount of the laser light is insufficient and a peeling failure occurs.
  • the portion where the film thickness is formed thinner than the other portion which is the portion B in the above figure the rigidity of the film itself is lost, and therefore it becomes a portion where peeling defects occur regardless of the irradiation amount of laser light. I will.
  • a deposition mask is brought into contact with a PI substrate 110 (base layer) formation surface side of a non-flexible substrate (for example, a glass substrate) to form a deposition film.
  • a non-flexible substrate for example, a glass substrate
  • the present invention has been made in view of the above problems, and can secure a gap (Gap) between a deposition mask used in a later step and a non-flexible substrate at a constant distance, and a large amount of unnecessary Method of manufacturing a flexible display device in which generation of a transparent resin layer and occurrence of peeling defects between the resin layer and the substrate are suppressed, and a flexible display device having high productivity. Intended to be provided.
  • a first step of forming a base layer on a surface on one side of a non-flexible substrate, and a display element on the base layer A second step of forming a second layer, a third step of peeling the non-flexible substrate from the base layer by irradiating laser light from the non-flexible substrate side, and the non-flexibility in the base layer
  • a fourth step of bonding the flexible substrate to the surface from which the substrate has been peeled wherein the step of forming the base layer in the first step is a first resin layer.
  • the first resin material is applied while spreading in a first direction, and the second resin layer is formed.
  • the second resin material is in the direction opposite to the first direction. It is characterized by applying while expanding in two directions.
  • the first resin material is applied while spreading in the first direction
  • the second resin material is added
  • the coating is performed while spreading in the second direction, which is the direction opposite to the first direction, and therefore, in each of the step of forming the first resin layer and the step of forming the second resin layer, the film thickness variation that occurs is utilized.
  • the thickness of the base layer is made uniform.
  • the inflexible substrate is peeled off from the above base layer, the inflexible substrate is peeled off as in the method described in the prior art (the above-mentioned Patent Documents 1 to 4). And a large amount of unnecessary resin layer does not remain.
  • the gap (Gap) between the deposition mask and the non-flexible substrate can be secured at a constant distance.
  • the step of forming the base layer includes the step of forming the first resin layer and the step of forming the second resin layer, the foreign matter is formed when the first resin layer is formed.
  • the second resin layer can bury the foreign matter even if
  • the base layer can be formed of the first resin layer and the second resin layer. Because it is formed of two resin layers, it can be relatively thickened.
  • the flexible display device is provided on a flexible substrate, a base layer provided on one surface of the flexible substrate, and the base layer in order to solve the problems described above.
  • the base layer includes the first polyimide resin layer and the second polyimide resin layer provided on the first polyimide resin layer so as to be in contact with the first polyimide resin layer.
  • the setting of the irradiation amount of the laser beam to the base layer is easy, and the peeling failure occurring when peeling the non-flexible substrate from the base layer can be suppressed, so that the productivity display is high.
  • the device can be realized.
  • the flexible display device is provided on a flexible substrate, a base layer provided on one surface of the flexible substrate, and the base layer in order to solve the problems described above.
  • a flexible display device including a display element, wherein the base layer is a first polyimide resin layer, and an inorganic film provided on the first polyimide resin layer to be in contact with the first polyimide resin layer And a second polyimide resin layer provided on the inorganic film so as to be in contact with the inorganic film.
  • the base layer includes the first polyimide resin layer, an inorganic film provided on the first polyimide resin layer to be in contact with the first polyimide resin layer, and the inorganic film on the inorganic film. Since the second polyimide resin layer provided so as to be in contact with the film, setting of the irradiation amount of the laser light to the base layer is easy, and when the non-flexible substrate is peeled from the base layer Since the peeling defect which arises can be suppressed, the flexible display apparatus with high productivity is realizable.
  • the inorganic layer is provided in the base layer, the moisture resistance is high, and the flexibility in which the adhesion between the first polyimide resin layer and the second polyimide resin layer is improved is achieved.
  • a display device can be realized.
  • a gap (Gap) between the deposition mask used in the subsequent step and the non-flexible substrate can be secured at a constant distance, and a large amount of unnecessary resin layers can be generated. It is possible to provide a method for manufacturing a flexible display device in which the occurrence of peeling defects between the resin layer and the substrate is suppressed, and a flexible display device with high productivity.
  • a flexible organic EL display device including a red light emitting organic EL element 105R, a green light emitting organic EL element 105G and a blue light emitting organic EL element 105B as display elements will be described as an example.
  • the display device may be, for example, a flexible display device provided with a reflective liquid crystal display device.
  • Embodiment 1 A first embodiment of the present invention will be described based on FIGS. 1 and 2.
  • the method of manufacturing the flexible organic EL display device described above based on (a) of FIG. 5 and FIG. 6 is a surface on one side of a large glass substrate 101 ⁇ 101 ′ (non-flexible substrate).
  • the method of forming the PI layers 102 and 110 made of polyimide resin and the configuration of the film are different from the above, and the other configurations are as described based on FIG. 5A and FIG.
  • FIG. 1 is a view for explaining a method of forming a base layer 3 composed of a first polyimide resin layer 1 and a second polyimide resin layer 2 on a large glass substrate 101.
  • the PI layer 102 in FIG. 5A which is the base layer and the PI layer 110 in FIG. 6 which is the base layer have a single base layer in each case, whereas the PI layer 102 in FIG.
  • the base layer 3 is composed of the first polyimide resin layer 1 and the second polyimide resin layer 2, and a step of forming the base layer 3 Includes a process of forming the first polyimide resin layer 1 (process of forming the first resin layer) and a process of forming the second polyimide resin layer 2 (process of forming the second resin layer).
  • a slit coater (not illustrated) is used. It was.
  • the first polyimide resin layer 1 is formed by moving the slit coater from the start position of application of the slit coater in the drawing to the stop position of application of the slit coater in the right direction (first direction) in the drawing.
  • a polyimide resin material can be applied while spreading in the right direction in the figure.
  • the first coating of the slit coater is closer to the start position.
  • a portion 1L (first portion) having a thicker film thickness than the other portion is formed in the polyimide resin layer 1, and the film of the first polyimide resin layer 1 is closer to the film than the other portion near the stop position of the slit coater application.
  • a thin portion 1R (third portion) is formed.
  • the first polyimide resin layer 1 Since the slit coater is long in the depth direction in the figure, on the glass substrate 101, the first polyimide resin layer 1 has a portion 1L thicker than the other portions and the first polyimide resin layer 1 has a larger thickness than the other portions.
  • the portion 1R having a thin film thickness is formed in a linear shape in the depth direction in the drawing.
  • the film thickness of the thickest portion in the portion 1L having a thicker film thickness than the other portions is about 1.3 to 2.0 times the average film thickness of the entire first polyimide resin layer 1
  • the film thickness variation of the first polyimide resin layer in the surface of the glass substrate 101 is relatively large.
  • a step of forming the second polyimide resin layer 2 In the step of forming the second resin layer, a slit coater (not shown) was used.
  • the second polyimide resin material forming the layer 2 can be applied while spreading in the left direction in the drawing.
  • the second coating of the slit coater is performed.
  • a portion 2R (fourth portion) thicker than the other portions is formed near the start position of the second polyimide resin layer 2, and near the stop position of the second application of the slit coater.
  • a portion 2L (second portion) having a thickness smaller than that of the other portion is formed.
  • the second polyimide resin layer 2 Since the slit coater is long in the depth direction in the figure, on the glass substrate 101, the second polyimide resin layer 2 has a portion 2R thicker than the other portions and the second polyimide resin layer 2 has a larger thickness than the other portions.
  • the portion 2L having a thin film thickness is formed in a linear shape in the depth direction in the drawing.
  • the first polyimide resin layer 1 and the second polyimide resin layer 2 are provided in contact with each other, and the film thickness of the first polyimide resin layer 1 is larger than that of other portions.
  • the thick portion 1L (first portion) and the portion 2L (second portion) having a thinner film thickness than the other portions in the second polyimide resin layer 2 overlap in plan view, and in the first polyimide resin layer 1
  • the portion 1R (third portion) thinner than the other portion and the portion 2R (fourth portion) thicker than the other portion in the second polyimide resin layer 2 overlap in a plan view.
  • the steps of forming the first polyimide resin layer 1 and the steps of forming the second polyimide resin layer 2 are performed using the film thickness variation that occurs.
  • the setting of the irradiation amount of the laser beam to the base layer 3 is easy, and it is possible to suppress the peeling failure that occurs when peeling the glass substrate 101 from the base layer 3.
  • the first polyimide resin layer 1 and the second polyimide resin layer 2 finally remain on the flexible organic EL display side, so a large amount of unnecessary resin is required. Layers are never created.
  • the base layer 3 configured of the first polyimide resin layer 1 and the second polyimide resin layer 2 is used, sufficient moisture resistance can be secured.
  • the first polyimide resin material forming the first polyimide resin layer 1 and the second polyimide resin forming the second polyimide resin layer 1 The same material was used as the material, and the scanning speed of the slit coater at the first application and the scanning speed of the slit coater at the second application were the same. If the film thickness variation of the polyimide resin layer 1 can be alleviated, the same material may not be used, and the scanning speed of the slit coater at the first application and the scanning speed of the slit coater at the second application are It may be different.
  • the base layer 3 was comprised with the 1st polyimide resin layer 1 and the 2nd polyimide resin layer 2 was mentioned as an example and demonstrated, it is not limited to this, A glass substrate By irradiating a laser beam from the 101 side, ablation occurs at the interface between the base layer 3 and the glass substrate 101, and if the glass substrate 101 can be peeled off from the base layer 3, using a resin material other than the polyimide resin material It is also good.
  • the second polyimide resin layer 2 illustrated in (b) of FIG. 1 is formed.
  • the first polyimide resin layer 1 was heat-treated before the step of forming, but the invention is not limited thereto.
  • the first polyimide resin layer is formed.
  • the first and second polyimide resin layers 2 may be heat treated.
  • the second polyimide resin is formed by heat treating (post-baking) the first polyimide resin layer 1 Before the step of forming the layer 2, the shape of the first polyimide resin layer 1 can be substantially fixed.
  • the second polyimide resin layer 2 can be formed in consideration of the shape of the first polyimide resin layer 1 substantially fixed in this manner, the film thickness of the base layer 3 can be uniformed more accurately.
  • the adhesion between the first polyimide resin layer 1 and the second polyimide resin layer 2 is taken into consideration, it is preferable that at least the surface of the first polyimide resin layer 1 be subjected to a hydrophilization treatment.
  • FIG. 2 is a view showing a case where at least the surface 1a of the first polyimide resin layer 1 formed on the glass substrate 101 is plasma-treated as an example of the hydrophilization treatment.
  • At least the surface 1a of the first polyimide resin layer 1 formed on the glass substrate 101 is subjected to plasma treatment to make the adhesion between the first polyimide resin layer 1 and the second polyimide resin layer 2 Can be improved.
  • the plasma treatment has been described as an example of the hydrophilization treatment of at least the surface of the first polyimide resin layer 1, but the present invention is not limited to this and physical or chemical hydrophilization treatment It can be performed.
  • the step of hydrophilizing at least the surface of the first polyimide resin layer 1 is a step of heat treating (post-baking) the first polyimide resin layer 1 and forming the second polyimide resin layer 2 Preferably before.
  • the slit coater in the present embodiment is a coating apparatus having a long nozzle for discharging the coating liquid in the direction orthogonal to the moving direction of the slit coater, and when forming a coating film with high productivity on a large mother substrate.
  • a coating apparatus having a long nozzle for discharging the coating liquid in the direction orthogonal to the moving direction of the slit coater, and when forming a coating film with high productivity on a large mother substrate.
  • Embodiment 2 of the present invention will be described based on FIG.
  • a silicon oxide film 4 provided so that the base layer 5 is in contact with the first polyimide resin layer 1 and the first polyimide resin layer 1 on the first polyimide resin layer 1, and a silicon oxide film 4
  • the second embodiment differs from the first embodiment in that the second polyimide resin layer 2 is provided on the upper side so as to be in contact with the silicon oxide film 4, and the other points are as described in the first embodiment.
  • members having the same functions as the members shown in the drawings of Embodiment 1 are given the same reference numerals, and descriptions thereof will be omitted.
  • FIG. 3 is a view for explaining a method of forming the base layer 5 composed of the first polyimide resin layer 1, the silicon oxide film 4 and the second polyimide resin layer 2 on the glass substrate 101.
  • a silicon oxide film 4 was formed using a CVD method so as to at least cover the first polyimide resin layer 1 formed on the glass substrate 101.
  • the silicon oxide film 4 is provided in consideration of the improvement of the adhesion between the first polyimide resin layer 1 and the second polyimide resin layer 2 and the improvement of the moisture resistance.
  • the silicon oxide film 4 is used, and the silicon oxide film 4 is provided for improving the adhesion with the second polyimide resin layer 2 and for improving the moisture resistance.
  • the silicon oxide film 4 is Preferably, the film thickness is about 100 nm or more and 1000 nm or less.
  • an inorganic film other than the silicon oxide film 4 may be used, and for example, a silicon nitride film may be used.
  • these inorganic films may be formed by methods other than the CVD method as long as the effects of improving the adhesion and the effects of improving the moisture resistance can be obtained.
  • the silicon oxide film 4 is considered in consideration of the improvement of the adhesion between the first polyimide resin layer 1 and the second polyimide resin layer 2 and the improvement of the moisture resistance. It is preferable to be provided so that the whole surface of the 1st polyimide resin layer 1 may be covered.
  • the second application of the slit coater is performed in the second polyimide resin layer 2 formed using the slit coater.
  • a portion 2R (fourth portion) thicker than the other portions is formed near the start position of the second polyimide resin layer 2, and near the stop position of the second application of the slit coater.
  • a portion 2L (second portion) having a thickness smaller than that of the other portion is formed in the second polyimide resin layer 2.
  • the first polyimide resin layer 1 and the second polyimide resin layer 2 are provided in contact with each other via the silicon oxide film 4.
  • the first polyimide resin layer 1 has a portion 1L (first portion) thicker than the other portions, and the second polyimide resin layer 2 has a portion 2L (second portion) thinner than the other portions.
  • the first polyimide resin layer 1 has a portion 1R (third portion) thinner than the other portions, and the second polyimide resin layer 2 has a portion 2R thicker than the other portions.
  • the fourth portion is overlapped in plan view.
  • the glass substrate 101 in the step of peeling the glass substrate 101 from the base layer 3a, the glass substrate 101 is first peeled from the base layer 3a at both ends of the glass substrate 101 in the direction orthogonal to the moving direction of the slit coater.
  • the second embodiment differs from the first and second embodiments in that the glass substrate 101 is peeled off from the base layer 3a at both ends in the moving direction of the slit coater in the glass substrate 101, and the other is as described in the first and second embodiments.
  • members having the same functions as the members shown in the drawings of Embodiments 1 and 2 are given the same reference numerals, and descriptions thereof will be omitted.
  • FIG. 4 is a view for explaining the process of peeling the glass substrate 101 from the base layer 3a.
  • a base layer 3 composed of the first polyimide resin layer 1 and the second polyimide resin layer 2, a moisture proof layer 103, and a laminate 107. And are equipped.
  • the blade is first inserted at both ends in the direction orthogonal to the moving direction (first direction or second direction) of the slit coater, and the glass substrate 101 is used as a base layer.
  • a blade is inserted at both ends of the slit coater in the moving direction (first direction or second direction) to base the glass substrate 101.
  • the film thickness of both ends of the base layer 3a on the glass substrate 101 in the direction orthogonal to the moving direction (first direction or second direction) of the slit coater is relatively uniform. Since peeling can be easily performed, the peeling process can be performed more efficiently by inserting a blade into this portion first and peeling.
  • a blade is first inserted at both ends in a direction orthogonal to the moving direction of the slit coater, and the glass substrate 101 is partially peeled off from the base layer 3a, and then at both ends in the moving direction of the slit coater.
  • the method for inserting the blade and peeling the glass substrate 101 from the base layer 3a has been described as an example, the present invention is not limited thereto.
  • four corners of the base layer 3a on the glass substrate 101 specifically The blade may be inserted from the four corners of the first polyimide resin layer 1 on the glass substrate 101.
  • the peeling problem can be suppressed even if the blade is inserted from the four corners of the base layer 3a of the glass substrate 101, because the base layer 3 has a uniform film thickness at portions corresponding to the four corners of the glass substrate 101. Because it is
  • the flexible display according to the present embodiment is not particularly limited as long as it is a display panel having a flexible and bendable electro-optical element.
  • the electro-optical element is an electro-optical element whose luminance and transmittance are controlled by a current, and an organic EL (Electro Luminescence) including an OLED (Organic Light Emitting Diode) as a current-controlled electro-optical element.
  • EL display such as inorganic EL display provided with inorganic light emitting diode, and QLED display provided with QLED (Quantum dot Light Emitting Diode).
  • the step of forming the first resin layer including the step of forming the first resin layer and the step of forming the second resin layer, the first resin material is applied while spreading in the first direction, and
  • the second resin material is opposite to the first direction. Is characterized by applying while expanding in the second direction is a direction.
  • the first resin material is applied while spreading in the first direction
  • the second resin material is added
  • the coating is performed while spreading in the second direction, which is the direction opposite to the first direction, and therefore, in each of the step of forming the first resin layer and the step of forming the second resin layer, the film thickness variation that occurs is utilized.
  • the thickness of the base layer is made uniform.
  • the inflexible substrate is peeled off from the above base layer, the inflexible substrate is peeled off as in the method described in the prior art (the above-mentioned Patent Documents 1 to 4). And a large amount of unnecessary resin layer does not remain.
  • the gap (Gap) between the deposition mask and the non-flexible substrate can be secured at a constant distance.
  • the step of forming the base layer includes the step of forming the first resin layer and the step of forming the second resin layer, the foreign matter is formed when the first resin layer is formed.
  • the second resin layer can bury the foreign matter even if
  • the base layer can be formed of the first resin layer and the second resin layer. Because it is formed of two resin layers, it can be relatively thickened.
  • the first resin material and the second resin material are preferably the same material.
  • the first resin material and the second resin material may be polyimide resin.
  • slits Application may be performed using a coater.
  • the film thickness of the base layer can be made uniform by using a slit coater.
  • the second resin layer is formed. Before the step, a step of heat-treating the first resin layer may be included.
  • the method of manufacturing a flexible display device according to aspect 6 of the present invention forms the second resin layer after the step of forming the first resin layer in any of the above aspects 1 to 4. Before the step, at least the surface of the first resin layer may be subjected to a hydrophilization treatment.
  • the adhesion between the first resin layer and the second resin layer can be improved.
  • At least the surface of the first resin layer may be subjected to a hydrophilization treatment.
  • the adhesion between the first resin layer and the second resin layer can be improved.
  • the hydrophilization treatment may be plasma processing.
  • the adhesion between the first resin layer and the second resin layer can be improved.
  • the method of manufacturing a flexible display device according to aspect 9 of the present invention forms the second resin layer after the step of forming the first resin layer in any of the above aspects 1 to 5. Before the step, a step of forming an inorganic film covering the entire surface of the first resin layer may be included.
  • the adhesion between the first resin layer and the second resin layer can be improved.
  • the inorganic film may be a silicon oxide film.
  • the adhesion between the first resin layer and the second resin layer can be improved.
  • the inflexible substrate may be exfoliated from the base layer at both ends in the first direction and the second direction after the inflexible substrate is exfoliated from the base layer.
  • a peeling process can be performed more efficiently.
  • the above-mentioned non-permanence can be made A blade is inserted along the interface between the flexible substrate and the first resin layer, and the non-flexible substrate is peeled off from the base layer at both ends in the first direction and the direction orthogonal to the second direction. You may
  • a peeling process can be performed more efficiently.
  • the non-flexible substrate is provided at four corners of the first resin layer.
  • the blade may be inserted along the interface with the first resin layer, and the non-flexible substrate may be peeled off from the base layer.
  • a blade is inserted along the interface between the inflexible substrate and the first resin layer at the four corners of the first resin layer, and the inflexible substrate is removed from the base layer. It can be peeled off.
  • the display element may be an EL display element.
  • the display element may be a reflective liquid crystal display element.
  • a flexible display device comprises a flexible substrate, a base layer provided on one surface of the flexible substrate, and the base layer, in order to solve the problems described above.
  • a flexible display device including a display element provided thereon, wherein the base layer is provided so as to be in contact with the first polyimide resin layer and the first polyimide resin layer on the first polyimide resin layer. And the second polyimide resin layer.
  • the base layer includes the first polyimide resin layer and the second polyimide resin layer provided on the first polyimide resin layer so as to be in contact with the first polyimide resin layer.
  • the setting of the irradiation amount of the laser beam to the base layer is easy, and the peeling failure occurring when peeling the non-flexible substrate from the base layer can be suppressed, so that the productivity display is high.
  • the device can be realized.
  • a flexible display device is a flexible substrate, a base layer provided on one surface of the flexible substrate, and the base layer, in order to solve the problems described above.
  • the base layer includes the first polyimide resin layer, an inorganic film provided on the first polyimide resin layer to be in contact with the first polyimide resin layer, and the inorganic film on the inorganic film. Since the second polyimide resin layer provided so as to be in contact with the film, setting of the irradiation amount of the laser light to the base layer is easy, and when the non-flexible substrate is peeled from the base layer Since the peeling defect which arises can be suppressed, the flexible display apparatus with high productivity is realizable.
  • the inorganic layer is provided in the base layer, the moisture resistance is high, and the flexibility in which the adhesion between the first polyimide resin layer and the second polyimide resin layer is improved is achieved.
  • a display device can be realized.
  • the first polyimide resin layer includes a first portion thicker than the other portions
  • the second polyimide resin layer is It is preferable that the second portion includes a second portion thinner than the other portions, and the first portion and the second portion overlap in a plan view.
  • the film thickness of the base layer can be made uniform.
  • the first polyimide resin layer includes a third portion thinner than the other portions, and the second polyimide
  • the resin layer preferably includes a fourth portion that is thicker than the other portions, and the third portion and the fourth portion preferably overlap in a plan view.
  • the film thickness of the base layer can be made uniform.
  • the first polyimide resin layer and the second polyimide resin layer are provided inside the end of the inorganic film,
  • the first polyimide resin layer includes a first portion thicker than the other portions, and the second polyimide resin layer includes a second portion thinner than the other portions, and the first portion The second portion may overlap in plan view and be in contact with each other via the inorganic film.
  • the inorganic film is present between the first portion and the second portion, the moisture resistance is high, and the adhesion between the first portion and the second portion can be reduced.
  • An improved flexible display device can be realized.
  • the first polyimide resin layer and the second polyimide resin layer are provided inside the end of the inorganic film,
  • the first polyimide resin layer includes a third portion thinner than the other portions, and the second polyimide resin layer includes a fourth portion thicker than the other portions, and the third portion
  • the fourth portion may overlap in plan view and be in contact with each other via the inorganic film.
  • the inorganic film is present between the third portion and the fourth portion, the moisture resistance is high, and adhesion between the third portion and the fourth portion can be obtained.
  • An improved flexible display device can be realized.
  • the display element may be an EL display element.
  • the display element may be a reflective liquid crystal display element.
  • the present invention can be applied to a flexible display device and a method of manufacturing the flexible display device.
  • 1 1st polyimide resin layer (1st resin layer) 1L The first polyimide resin layer with a thicker film than other parts (first part) 1R Part of the first polyimide resin layer thinner than other parts (third part) 1a Plasma treated first polyimide resin layer 2 second polyimide resin layer (second resin layer) 2L Second polyimide resin layer thinner than other parts (second part) 2R Second polyimide resin layer thicker than other parts (fourth part) 3 Base Layer 3a Base Layer Irradiated with Laser Light 4 Silicon Oxide Film (Inorganic Film) 5 Base Layer 101 Glass Substrate (Non-Flexible Substrate) 105R red light emitting organic EL element (display element) 105G green light emitting organic EL element (display element) 105B Blue light emitting organic EL element (display element) 111 Back film (flexible substrate)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

ガラス基板(101)の一方側の面にベース層(3)を形成する工程は、第1ポリイミド樹脂層(1)を形成する工程と、第2ポリイミド樹脂層(2)を形成する工程とを含み、第1ポリイミド樹脂層(1)を形成する工程においては、第1ポリイミド樹脂材料を第1方向に拡げながら塗布し、第2ポリイミド樹脂層(2)を形成する工程においては、第2ポリイミド樹脂材料を上記第1方向と反対方向である第2方向に拡げながら塗布する。

Description

可撓性表示装置及び可撓性表示装置の製造方法
 本発明は、可撓性表示装置及び可撓性表示装置の製造方法に関するものである。
 近年、さまざまなフラットパネルディスプレイが開発されており、特に、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)表示装置及び無機発光ダイオードを備えた無機EL表示装置等のEL表示装置等は、高画質化及び低消費電力化を実現できることから高い注目を浴びている。
 そして、このようなEL表示装置や反射型の液晶表示素子を備えた表示装置などのように、バックライトを備える必要がない表示装置については、自由に曲げることができるように、フレキシブル表示装置化への要求が高い。
 信頼性の高いフレキシブル表示装置(可撓性表示装置)を実現するためには、フレキシブル表示装置の製造工程において必須工程として含まれる高温工程である、アクティブ素子(例えば、TFT素子)の形成工程などは、高耐熱性及び非可撓性基板である例えば、ガラス基板上で行い、その後、このガラス基板を剥離し、可撓性を確保する方法が一般的に用いられている。
 特許文献1から4においては、高耐熱性及び非可撓性基板上に、ポリイミド樹脂などからなる樹脂層を2層積層し、上述した高温工程後に、レーザー光を照射することなく、上層の樹脂層から非可撓性基板を含む下層の樹脂層を剥離することについて記載されている。
日本国公表特許公報「特表2015‐530283号」公報(2015年10月15日公開) 国際公開公報「WO2014/050933」公報(2014年04月03日公開) 日本国公開特許公報「特開2016‐120630号」公報(2016年07月07日公開) 日本国公開特許公報「特開2016‐120629号」公報(2016年07月07日公開)
 しかしながら、特許文献1から4に記載されている方法の場合、レーザー光の照射を必要としないというメリットはあるが、ポリイミド樹脂などからなる樹脂層と樹脂層との間を剥離するので、剥離された非可撓性基板には、大量の不要な樹脂層が形成された状態となる。
 したがって、特許文献1から4に記載されている方法は、樹脂層を形成するポリイミド材料の効率的な利用という観点と、親環境的な工程という観点からすると、好ましい方法ではない。
 そこで、下記図5に図示するような方法を用いることが考えられる。
 図5は、信頼性の高いフレキシブル有機EL表示装置を製造するために必要なLaser Lift Off工程(LLO工程ともいう)を説明するための図である。
 図5の(a)に図示されているように、先ず、大型のガラス基板101(非可撓性基板)の一方側の面101a上に、例えば、ポリイミド樹脂からなるPI層102(ベース層)を積層し(第1工程)、PI層102上に防湿層103を積層し、防湿層103上に薄膜トランジスタ素子(TFT素子)及び絶縁膜からなるTFTアレイ層104を形成し、TFTアレイ層104上には、同一層の金属膜を用いて、第1電極(図示せず)を個々の画素に対応してパターン形成するとともに、端子部(図示せず)を形成した。そして、上記第1電極の上には、表示素子として、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bの何れかが形成されており(第2工程)、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bを覆うように封止膜106が形成されている。
 なお、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bの各々は、例えば、図示してないが、正孔注入層、正孔輸送層、各色の発光層、電子輸送層、電子注入層及び第2の電極の積層体である。
 図示されているように、防湿層103と、TFTアレイ層104と、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bと、封止膜106との積層体を積層体107とする。
 その後、ガラス基板101側からレーザー光を照射することで、PI層102(ベース層)とガラス基板101との界面でアブレーションを起こし、図5の(b)に図示されているように、ガラス基板101をPI層102(ベース層)から剥離した(第3工程)。
 続いて、図5の(c)に図示されているように、フレキシブル基板である裏面フィルム111の一方側の面111aに設けられえた接着層(図示せず)を介して、裏面フィルム111をPI層102(ベース層)に貼り付けて、フレキシブル有機EL表示装置を完成した(第4工程)。
 以上のように、LLO工程を用いることで、特許文献1から4に記載されている方法と比較すると、PI層(ベース層)を形成するポリイミド材料のより効率的な利用と、より親環境的な工程を実現できる。
 しかしながら、図5に図示したフレキシブル有機EL表示装置の製造方法において、フレキシブル有機EL表示装置の生産性を向上させるため、ポリイミド樹脂からなるPI層110(ベース層)を、大型のガラス基板101’(非可撓性基板)に対して、スリットコータを用いて塗布する場合、以下のような問題が生じる。
 図6は、ポリイミド樹脂からなるPI層110を、大型のガラス基板101’に対して、スリットコータを用いて塗布した場合に生じる問題点を説明するための図である。
 図示されているように、スリットコータを用いて、ガラス基板101’上に形成したPI層110(ベース層)においては、スリットコータの塗布のスタート位置の近方である図中A部分は、他の部分よりその膜厚が厚く形成され、スリットコータの塗布のストップ位置の近方である図中B部分は、他の部分よりその膜厚が薄く形成される。
 このように、PI層110(ベース層)において、膜厚の面内ばらつきが大きい場合、上述したLLO工程におけるレーザー光の照射量を、平均膜厚を基準に設定すると、上記図中A部分である他の部分よりその膜厚が厚く形成された部分は、レーザー光の照射量が不足し、剥離不具合が生じる部分となってしまう。一方、上記図中B部分である他の部分よりその膜厚が薄く形成された部分においては、膜自体の剛性がなくなるので、レーザー光の照射量に関係なく、剥離不具合が生じる部分となってしまう。
 さらに、下地膜であるPI層110(ベース層)に、他の部分よりその膜厚が厚く形成された部分または、他の部分よりその膜厚が薄く形成された部分が存在すると、後工程である表示素子の形成工程や封止膜の形成工程において、蒸着マスクを非可撓性基板(例えば、ガラス基板)のPI層110(ベース層)形成面側とコンタクトさせて、蒸着膜を形成する際に、蒸着マスクと非可撓性基板との間の間隔(Gap)を一定間隔で確保するのが困難であるという問題も生じる。
 本発明は、上記の問題点に鑑みてなされたものであり、後工程で用いられる蒸着マスクと、非可撓性基板との間の間隔(Gap)を一定間隔で確保できるとともに、大量の不要な樹脂層が生成されることと、樹脂層と基板との間において剥離不具合が生じることとを抑制させた可撓性表示装置の製造方法と、生産性が高い可撓性表示装置と、を提供することを目的とする。
 本発明の可撓性表示装置の製造方法は、上記の課題を解決するために、非可撓性基板の一方側の面にベース層を形成する第1工程と、上記ベース層上に表示素子を形成する第2工程と、上記非可撓性基板側からレーザー光を照射して、上記ベース層から上記非可撓性基板を剥離する第3工程と、上記ベース層における上記非可撓性基板を剥離した面に可撓性基板を貼り付ける第4工程と、を含む可撓性表示装置の製造方法であって、上記第1工程における上記ベース層を形成する工程は、第1樹脂層を形成する工程と、第2樹脂層を形成する工程とを含み、上記第1樹脂層を形成する工程においては、第1樹脂材料を第1方向に拡げながら塗布し、上記第2樹脂層を形成する工程においては、第2樹脂材料を上記第1方向と反対方向である第2方向に拡げながら塗布することを特徴としている。
 上記方法によれば、上記第1樹脂層を形成する工程においては、第1樹脂材料を第1方向に拡げながら塗布し、上記第2樹脂層を形成する工程においては、第2樹脂材料を上記第1方向と反対方向である第2方向に拡げながら塗布するので、上記第1樹脂層を形成する工程及び上記第2樹脂層を形成する工程の各々において、生じる膜厚ばらつきを利用して、上記ベース層の膜厚均一化を行っている。
 したがって、上記ベース層へのレーザー光の照射量の設定が容易であり、上記ベース層から上記非可撓性基板を剥離する際に生じる剥離不具合を抑制できる。
 上記方法によれば、上記ベース層から上記非可撓性基板を剥離するので、従来技術(上記特許文献1~4)に記載されている方法のように、剥離された非可撓性基板に、大量の不要な樹脂層が残ることはない。
 上記方法によれば、上記ベース層の膜厚均一化が行われているので、蒸着マスクと非可撓性基板との間の間隔(Gap)を一定間隔で確保できる。
 また、上記方法によれば、上記ベース層を形成する工程は、第1樹脂層を形成する工程と、第2樹脂層を形成する工程とを含むので、第1樹脂層を形成する際に異物が混入しても、この異物を第2樹脂層が埋めることができる。
 さらに、上記方法によれば、上記ベース層を構成する第1樹脂層及び第2樹脂層の各々を薄膜でしか形成できない場合であっても、上記ベース層は、上記第1樹脂層及び上記第2樹脂層で形成されているので、比較的厚膜化することができる。
 本発明の可撓性表示装置は、上記の課題を解決するために、可撓性基板と、上記可撓性基板の一方側の面に備えられえたベース層と、上記ベース層上に備えらえた表示素子とを含む可撓性表示装置であって、上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた第2ポリイミド樹脂層とからなることを特徴としている。
 上記構成によれば、上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた第2ポリイミド樹脂層とからなる。
 したがって、上記ベース層へのレーザー光の照射量の設定が容易であり、上記ベース層から上記非可撓性基板を剥離する際に生じる剥離不具合を抑制できるので、生産性が高い可撓性表示装置を実現できる。
 本発明の可撓性表示装置は、上記の課題を解決するために、可撓性基板と、上記可撓性基板の一方側の面に備えられえたベース層と、上記ベース層上に備えらえた表示素子とを含む可撓性表示装置であって、上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた無機膜と、上記無機膜上において上記無機膜と接するように設けられた第2ポリイミド樹脂層とからなることを特徴としている。
 上記構成によれば、上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた無機膜と、上記無機膜上において上記無機膜と接するように設けられた第2ポリイミド樹脂層とからなるので、上記ベース層へのレーザー光の照射量の設定が容易であり、上記ベース層から上記非可撓性基板を剥離する際に生じる剥離不具合を抑制できるので、生産性が高い可撓性表示装置を実現できる。
 また、上記構成によれば、上記ベース層に無機膜が備えられているので、防湿性が高く、上記第1ポリイミド樹脂層と上記第2ポリイミド樹脂層との密着性を向上させた可撓性表示装置を実現できる。
 本発明の一態様によれば、後工程で用いられる蒸着マスクと、非可撓性基板との間の間隔(Gap)を一定間隔で確保できるとともに、大量の不要な樹脂層が生成されることと、樹脂層と基板との間において剥離不具合が生じることとを抑制させた可撓性表示装置の製造方法と、生産性が高い可撓性表示装置と、を提供できる。
ガラス基板上に、第1ポリイミド樹脂層と第2ポリイミド樹脂層とからなるベース層を形成する方法を説明するための図である。 図1に図示した第1ポリイミド樹脂層の少なくとも表面を、プラズマ処理する場合を示す図である。 ガラス基板上に、第1ポリイミド樹脂層と酸化シリコン膜と第2ポリイミド樹脂層とからなるベース層を形成する方法を説明するための図である。 ガラス基板をベース層から剥離する工程を説明するための図である。 信頼性の高いフレキシブル有機EL表示装置を製造するために必要なLaser Lift Off工程を説明するための図である。 ポリイミド樹脂からなるPI層を、大型のガラス基板に対して、スリットコータを用いて塗布した場合に生じる問題点を説明するための図である。
 本発明の実施の形態について図1から図4に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
 なお、以下の各実施形態においては、表示素子として、赤色発光有機EL素子105R、緑色発光有機EL素子105G及び青色発光有機EL素子105Bを備えたフレキシブル有機EL表示装置を一例に挙げて説明するが、これに限定されることはなく、上記表示素子として、例えば、反射型の液晶表示素子が備えらえたフレキシブル表示装置などであってもよい。
 〔実施形態1〕
 図1及び図2に基づき、本発明の実施形態1について説明する。
 本実施形態は、図5の(a)及び図6に基づいて上述したフレキシブル有機EL表示装置の製造方法とは、大型のガラス基板101・101’(非可撓性基板)の一方側の面上に形成した、ポリイミド樹脂からなるPI層102・110の形成方法及びその膜の構成が異なり、その他については図5の(a)及び図6に基づいて説明したとおりである。
 図1は、大型のガラス基板101上に、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とからなるベース層3を形成する方法を説明するための図である。
 ベース層である図5の(a)におけるPI層102と、ベース層である図6におけるPI層110とは、何れの場合もベース層が単層で構成されているのに対し、図1の(a)及び図1の(b)に図示されているように、ベース層3は、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とで構成されており、ベース層3を形成する工程は、第1ポリイミド樹脂層1を形成する工程(第1樹脂層を形成する工程)と、第2ポリイミド樹脂層2を形成する工程(第2樹脂層を形成する工程)とを含む。
 図1の(a)に図示されている、大型のガラス基板101上に第1ポリイミド樹脂層1を形成する工程(第1樹脂層を形成する工程)においては、図示していないスリットコータを用いた。
 スリットコータを、図中におけるスリットコータの塗布のスタート位置からスリットコータの塗布のストップ位置まで、図中の右方向(第1方向)に移動させることで、第1ポリイミド樹脂層1を形成する第1ポリイミド樹脂材料を、図中の右方向に拡げながら塗布することができる。
 図1の(a)に図示されているように、スリットコータを用いて、ガラス基板101上に形成した第1ポリイミド樹脂層1においては、スリットコータの塗布のスタート位置の近方には、第1ポリイミド樹脂層1において他の部分より膜厚が厚い部分1L(第1部分)が形成され、スリットコータの塗布のストップ位置の近方には、第1ポリイミド樹脂層1において他の部分より膜厚が薄い部分1R(第3部分)が形成される。
 なお、スリットコータは図中の奥行方向に長いため、ガラス基板101上においては、第1ポリイミド樹脂層1において他の部分より膜厚が厚い部分1L及び第1ポリイミド樹脂層1において他の部分より膜厚が薄い部分1Rは、図中の奥行方向に直線形状で形成されることとなる。
 第1ポリイミド樹脂層1において他の部分より膜厚が厚い部分1Lにおける最も膜厚が厚い部分の膜厚は、第1ポリイミド樹脂層1全体の平均膜厚の約1.3~2.0倍となり、ガラス基板101の面内における第1ポリイミド樹脂層の膜厚ばらつきは比較的大きい。
 その後、図1の(b)に図示されているように、上述したガラス基板101の面内における第1ポリイミド樹脂層1の膜厚ばらつきを緩和させるため、第2ポリイミド樹脂層2を形成する工程(第2樹脂層を形成する工程)においても、図示していないスリットコータを用いた。
 スリットコータを、図中におけるスリットコータの2回目の塗布のスタート位置からスリットコータの2回目の塗布のストップ位置まで、図中の左方向(第2方向)に移動させることで、第2ポリイミド樹脂層2を形成する第2ポリイミド樹脂材料を、図中の左方向に拡げながら塗布することができる。
 図1の(b)に図示されているように、スリットコータを用いて、形成した第2ポリイミド樹脂層2においては、第1ポリイミド樹脂層1の場合と同様に、スリットコータの2回目の塗布のスタート位置の近方には、第2ポリイミド樹脂層2において他の部分より膜厚が厚い部分2R(第4部分)が形成され、スリットコータの2回目の塗布のストップ位置の近方には、第2ポリイミド樹脂層2において他の部分より膜厚が薄い部分2L(第2部分)が形成される。
 なお、スリットコータは図中の奥行方向に長いため、ガラス基板101上においては、第2ポリイミド樹脂層2において他の部分より膜厚が厚い部分2R及び第2ポリイミド樹脂層2において他の部分より膜厚が薄い部分2Lは、図中の奥行方向に直線形状で形成されることとなる。
 図1の(b)に図示されているように、第1ポリイミド樹脂層1と、第2ポリイミド樹脂層2とは接するように設けられ、第1ポリイミド樹脂層1において他の部分より膜厚が厚い部分1L(第1部分)と、第2ポリイミド樹脂層2において他の部分より膜厚が薄い部分2L(第2部分)とは、平面視において、重なっており、第1ポリイミド樹脂層1において他の部分より膜厚が薄い部分1R(第3部分)と、第2ポリイミド樹脂層2において他の部分より膜厚が厚い部分2R(第4部分)とは、平面視において、重なっている。
 以上のように、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とで構成されるベース層3においては、第1ポリイミド樹脂層1を形成する工程及び第2ポリイミド樹脂層2を形成する工程の各々において、生じる膜厚ばらつきを利用して、ベース層3の膜厚均一化を行っている。
 したがって、ベース層3へのレーザー光の照射量の設定が容易であり、ベース層3からガラス基板101を剥離する際に生じる剥離不具合を抑制できる。
 また、ベース層3からガラス基板101を剥離するので、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とはフレキシブル有機EL表示装置側に最終的に残ることとなるので、大量の不要な樹脂層が生成されることはない。
 また、本実施形態のフレキシブル有機EL表示装置においては、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とで構成されるベース層3を用いているので、十分な防湿性を確保できる。
 本実施形態においては、ベース層3の膜厚均一化をより精度高く行うため、第1ポリイミド樹脂層1を形成する第1ポリイミド樹脂材料と、第2ポリイミド樹脂層1を形成する第2ポリイミド樹脂材料とは、同一材料を用いるとともに、1回目の塗布時のスリットコータの走査速度と、2回目の塗布時のスリットコータの走査速度とを同じにしたが、ガラス基板101の面内における第1ポリイミド樹脂層1の膜厚ばらつきを緩和できるのであれば、同一材料を用いなくてもよく、1回目の塗布時のスリットコータの走査速度と、2回目の塗布時のスリットコータの走査速度とが異なっていてもよい。
 また、本実施形態においては、ベース層3を第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とで構成した場合を一例に挙げて説明したが、これに限定されることはなく、ガラス基板101側からレーザー光を照射することで、ベース層3とガラス基板101との界面でアブレーションを起こし、ガラス基板101をベース層3から剥離できるのであれば、ポリイミド樹脂材料以外の樹脂材料を用いてもよい。
 また、本実施形態においては、スリットコータを用いて、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とを塗布する場合を一例に挙げて説明したが、塗布材料を一方向に拡げながら塗布するとともに、塗布のスタート位置と、塗布のストップ位置とにおいて、塗布された膜の膜厚ばらつきが生じるタイプの塗布装置であれば、特に限定されることはない。
 また、本実施形態においては、図1の(a)に図示する第1ポリイミド樹脂層1を形成する工程の後であって、図1の(b)に図示する第2ポリイミド樹脂層2を形成する工程の前に、第1ポリイミド樹脂層1を熱処理したが、これに限定されることはなく、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とを形成した後に、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とを熱処理してもよい。
 第1ポリイミド樹脂層1を形成する工程の後であって、第2ポリイミド樹脂層2を形成する工程の前に、第1ポリイミド樹脂層1を熱処理(ポストベーク)することによって、第2ポリイミド樹脂層2を形成する工程の前に、第1ポリイミド樹脂層1の形状をほぼ固定することができる。
 このようにほぼ固定された第1ポリイミド樹脂層1の形状を考慮した上で、第2ポリイミド樹脂層2を形成できるので、ベース層3の膜厚均一化をより精度高く行うことができる。
 なお、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2との密着性を考慮した場合、第1ポリイミド樹脂層1の少なくとも表面は、親水化処理されることが好ましい。
 図2は、ガラス基板101上に形成された第1ポリイミド樹脂層1の少なくとも表面1aを、親水化処理の一例であるプラズマ処理する場合を示す図である。
 図示されているように、ガラス基板101上に形成された第1ポリイミド樹脂層1の少なくとも表面1aを、プラズマ処理することによって、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2との密着性を向上させることができる。
 本実施形態においては、第1ポリイミド樹脂層1の少なくとも表面の親水化処理の一例として、プラズマ処理を挙げて説明したが、これに限定されることはなく、物理的または化学的な親水化処理を行うことができる。
 また、第1ポリイミド樹脂層1の少なくとも表面の親水化処理を行う工程は、第1ポリイミド樹脂層1を熱処理(ポストベーク)する工程の後であって、第2ポリイミド樹脂層2を形成する工程の前に行うことが好ましい。
 これは、第1ポリイミド樹脂層1の少なくとも表面の親水化処理を、第1ポリイミド樹脂層1を熱処理(ポストベーク)する工程の前に行った場合、熱処理によって、親水化処理の効果が弱くなることが考えられるからである。
 なお、本実施形態におけるスリットコータは、スリットコータの移動方向と直交する方向において、塗布液を出す長いノズルを有する塗布装置であり、大型の母基板に、生産性高く、塗布膜を形成する際に一般的に用いられる装置である。
 〔実施形態2〕
 次に、図3に基づき、本発明の実施形態2について説明する。本実施形態においては、ベース層5が、第1ポリイミド樹脂層1と、第1ポリイミド樹脂層1上において第1ポリイミド樹脂層1と接するように設けられた酸化シリコン膜4と、酸化シリコン膜4上において酸化シリコン膜4と接するように設けられた第2ポリイミド樹脂層2とからなる点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図3は、ガラス基板101上に、第1ポリイミド樹脂層1と酸化シリコン膜4と第2ポリイミド樹脂層2とからなるベース層5を形成する方法を説明するための図である。
 図3の(a)については、上述した実施形態1において、既に説明したので、ここではその説明を省略する。
 図3の(b)に図示されているように、ガラス基板101上に形成された第1ポリイミド樹脂層1を、少なくとも覆うように、CVD法を用いて酸化シリコン膜4を形成した。
 本実施形態においては、酸化シリコン膜4を、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2との密着性の向上及び防湿性の向上を考慮して設けている。
 第1ポリイミド樹脂層1と第2ポリイミド樹脂層2との密着性より、酸化シリコン膜4と第2ポリイミド樹脂層2との密着性が高いからである。
 本実施形態においては、酸化シリコン膜4を用いており、酸化シリコン膜4は、第2ポリイミド樹脂層2との密着性の向上と、防湿性の向上のために設けているので、その膜厚は、密着性向上の効果及び防湿性向上の効果を得られる範囲であれば、特に限定されないが、酸化シリコン膜4を用いてより高い防湿性向上の効果を得るためには、酸化シリコン膜4を100nm以上1000nm以下程度の膜厚で形成することが好ましい。
 また、酸化シリコン膜4以外の無機膜を用いてもよく、例えば、窒化シリコン膜を用いてもよい。また、密着性向上の効果及び防湿性向上の効果を得られるのであれば、これらの無機膜は、CVD法以外の方法で形成されてもよい。
 なお、図4の(b)に図示されているように、酸化シリコン膜4は、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2との密着性の向上及び防湿性の向上を考慮すると、第1ポリイミド樹脂層1の全面を覆うように設けられていることが好ましい。
 図3の(c)に図示されているように、スリットコータを用いて、形成した第2ポリイミド樹脂層2においては、第1ポリイミド樹脂層1の場合と同様に、スリットコータの2回目の塗布のスタート位置の近方には、第2ポリイミド樹脂層2において他の部分より膜厚が厚い部分2R(第4部分)が形成され、スリットコータの2回目の塗布のストップ位置の近方には、第2ポリイミド樹脂層2において他の部分より膜厚が薄い部分2L(第2部分)が形成される。
 図3の(a)及び図3の(c)に図示されているように、第1ポリイミド樹脂層1と、第2ポリイミド樹脂層2とは、酸化シリコン膜4を介して接するように設けられ、第1ポリイミド樹脂層1において他の部分より膜厚が厚い部分1L(第1部分)と、第2ポリイミド樹脂層2において他の部分より膜厚が薄い部分2L(第2部分)とは、平面視において、重なっており、第1ポリイミド樹脂層1において他の部分より膜厚が薄い部分1R(第3部分)と、第2ポリイミド樹脂層2において他の部分より膜厚が厚い部分2R(第4部分)とは、平面視において、重なっている。
 〔実施形態3〕
 次に、図4に基づき、本発明の実施形態3について説明する。本実施形態においては、ガラス基板101をベース層3aから剥離する工程において、ガラス基板101におけるスリットコータの移動方向と直交する方向の両端において、先ず、ガラス基板101をベース層3aから剥離した後に、ガラス基板101におけるスリットコータの移動方向の両端において、ガラス基板101をベース層3aから剥離する点において、実施形態1及び2とは異なり、その他については実施形態1及び2において説明したとおりである。説明の便宜上、実施形態1及び2の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図4は、ガラス基板101をベース層3aから剥離する工程を説明するための図である。
 図4の(a)に図示されているように、ガラス基板101上には、第1ポリイミド樹脂層1と第2ポリイミド樹脂層2とからなるベース層3と、防湿層103と、積層体107とが備えられている。
 図4の(b)に図示されているように、ガラス基板101側からレーザー光を照射することで、レーザー光が照射されたベース層3aとガラス基板101との界面でアブレーションが起こる。
 そして、図4の(c)に図示されているように、スリットコータの移動方向(第1方向または第2方向)と直交する方向の両端において、最初に刃を入れ、ガラス基板101をベース層3aから部分的に剥離した後に、図4の(d)に図示されているように、スリットコータの移動方向(第1方向または第2方向)の両端において、刃を入れ、ガラス基板101をベース層3aから剥離することで、ガラス基板101をベース層3aから完全に剥離することができる。
 ガラス基板101上のベース層3aにおけるスリットコータの移動方向(第1方向または第2方向)と直交する方向の両端の膜厚は、比較的均一であるため、ガラス基板101をベース層3aからより容易に剥離することができるので、この部分に最初に刃を入れて、剥離を行うことで、剥離工程をより効率良く行うことができる。
 なお、本実施形態においては、スリットコータの移動方向と直交する方向の両端において、最初に刃を入れ、ガラス基板101をベース層3aから部分的に剥離した後に、スリットコータの移動方向の両端において、刃を入れ、ガラス基板101をベース層3aから剥離する方法を一例に挙げて説明したが、これに限定されることはなく、例えば、ガラス基板101上のベース層3aの四隅(具体的には、ガラス基板101上の第1ポリイミド樹脂層1の四隅)から刃を入れてもよい。
 ガラス基板101のベース層3aの四隅から刃を入れても剥離不具合を抑制できるのは、上述したように、ベース層3は、ガラス基板101の四隅に対応する箇所において、膜厚均一化が行われているからである。
 本実施形態にかかる可撓性表示体は、柔軟性を有し、屈曲可能な電気光学素子を備えた表示パネルであれば、特に限定されるものではない。上記電気光学素子は、電流によって輝度や透過率が制御される電気光学素子であり、電流制御の電気光学素子としては、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイ、又は無機発光ダイオードを備えた無機ELディスプレイ等のELディスプレイ、QLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等がある。
 〔まとめ〕
 本発明の態様1に係る可撓性表示装置の製造方法は、上記の課題を解決するために、非可撓性基板の一方側の面にベース層を形成する第1工程と、上記ベース層上に表示素子を形成する第2工程と、上記非可撓性基板側からレーザー光を照射して、上記ベース層から上記非可撓性基板を剥離する第3工程と、上記ベース層における上記非可撓性基板を剥離した面に可撓性基板を貼り付ける第4工程と、を含む可撓性表示装置の製造方法であって、上記第1工程における上記ベース層を形成する工程は、第1樹脂層を形成する工程と、第2樹脂層を形成する工程とを含み、上記第1樹脂層を形成する工程においては、第1樹脂材料を第1方向に拡げながら塗布し、上記第2樹脂層を形成する工程においては、第2樹脂材料を上記第1方向と反対方向である第2方向に拡げながら塗布することを特徴としている。
 上記方法によれば、上記第1樹脂層を形成する工程においては、第1樹脂材料を第1方向に拡げながら塗布し、上記第2樹脂層を形成する工程においては、第2樹脂材料を上記第1方向と反対方向である第2方向に拡げながら塗布するので、上記第1樹脂層を形成する工程及び上記第2樹脂層を形成する工程の各々において、生じる膜厚ばらつきを利用して、上記ベース層の膜厚均一化を行っている。
 したがって、上記ベース層へのレーザー光の照射量の設定が容易であり、上記ベース層から上記非可撓性基板を剥離する際に生じる剥離不具合を抑制できる。
 上記方法によれば、上記ベース層から上記非可撓性基板を剥離するので、従来技術(上記特許文献1~4)に記載されている方法のように、剥離された非可撓性基板に、大量の不要な樹脂層が残ることはない。
 上記方法によれば、上記ベース層の膜厚均一化が行われているので、蒸着マスクと非可撓性基板との間の間隔(Gap)を一定間隔で確保できる。
 また、上記方法によれば、上記ベース層を形成する工程は、第1樹脂層を形成する工程と、第2樹脂層を形成する工程とを含むので、第1樹脂層を形成する際に異物が混入しても、この異物を第2樹脂層が埋めることができる。
 さらに、上記方法によれば、上記ベース層を構成する第1樹脂層及び第2樹脂層の各々を薄膜でしか形成できない場合であっても、上記ベース層は、上記第1樹脂層及び上記第2樹脂層で形成されているので、比較的厚膜化することができる。
 本発明の態様2に係る可撓性表示装置の製造方法は、上記態様1において、上記第1樹脂材料と、上記第2樹脂材料とは、同一材料であることが好ましい。
 上記方法によれば、上記ベース層の膜厚均一化をより精度高く行うことができる。
 本発明の態様3に係る可撓性表示装置の製造方法は、上記態様1または2において、上記第1樹脂材料と、上記第2樹脂材料とは、ポリイミド樹脂であってもよい。
 上記方法によれば、より高い防湿性を確保できる。
 本発明の態様4に係る可撓性表示装置の製造方法は、上記態様1から3の何れかにおいて、上記第1樹脂層を形成する工程及び上記第2樹脂層を形成する工程においては、スリットコータを用いて塗布が行われてもよい。
 上記方法によれば、スリットコータを用いて、上記ベース層の膜厚均一化を行うことができる。
 本発明の態様5に係る可撓性表示装置の製造方法は、上記態様1から4の何れかにおいて、上記第1樹脂層を形成する工程の後であって、上記第2樹脂層を形成する工程の前には、上記第1樹脂層を熱処理する工程が含まれていてもよい。
 上記方法によれば、ベース層の膜厚均一化をより精度高く行うことができる。
 本発明の態様6に係る可撓性表示装置の製造方法は、上記態様1から4の何れかにおいて、上記第1樹脂層を形成する工程の後であって、上記第2樹脂層を形成する工程の前には、上記第1樹脂層の少なくとも表面を親水化処理してもよい。
 上記方法によれば、上記第1樹脂層と上記第2樹脂層との密着性を向上できる。
 本発明の態様7に係る可撓性表示装置の製造方法は、上記態様5において、上記第1樹脂層を熱処理する工程の後であって、上記第2樹脂層を形成する工程の前には、上記第1樹脂層の少なくとも表面を親水化処理してもよい。
 上記方法によれば、上記第1樹脂層と上記第2樹脂層との密着性を向上できる。
 本発明の態様8に係る可撓性表示装置の製造方法は、上記態様6または7において、上記親水化処理は、プラズマ処理であってもよい。
 上記方法によれば、上記第1樹脂層と上記第2樹脂層との密着性を向上できる。
 本発明の態様9に係る可撓性表示装置の製造方法は、上記態様1から5の何れかにおいて、上記第1樹脂層を形成する工程の後であって、上記第2樹脂層を形成する工程の前には、上記第1樹脂層の全面を覆う無機膜を形成する工程が含まれていてもよい。
 上記方法によれば、上記第1樹脂層と上記第2樹脂層との密着性を向上できる。
 本発明の態様10に係る可撓性表示装置の製造方法は、上記態様9において、上記無機膜は、酸化シリコン膜であってもよい。
 上記方法によれば、上記第1樹脂層と上記第2樹脂層との密着性を向上できる。
 本発明の態様11に係る可撓性表示装置の製造方法は、上記態様1から10の何れかにおいて、上記第3工程においては、上記第1方向及び上記第2方向と直交する方向の両端において、上記非可撓性基板を上記ベース層から剥離した後に、上記第1方向及び上記第2方向の両端において、上記非可撓性基板を上記ベース層から剥離してもよい。
 上記方法によれば、剥離工程をより効率良く行うことができる。
 本発明の態様12に係る可撓性表示装置の製造方法は、上記態様11において、上記第3工程においては、上記第1樹脂層の上記第1方向に平行な辺の中央において、上記非可撓性基板と、上記第1樹脂層との界面に沿って刃を挿入し、上記第1方向及び上記第2方向と直交する方向の両端において、上記非可撓性基板を上記ベース層から剥離してもよい。
 上記方法によれば、剥離工程をより効率良く行うことができる。
 本発明の態様13に係る可撓性表示装置の製造方法は、上記態様1から10の何れかにおいて、上記第3工程においては、上記第1樹脂層の四隅において、上記非可撓性基板と、上記第1樹脂層との界面に沿って刃を挿入し、上記ベース層から上記非可撓性基板を剥離してもよい。
 上記方法によれば、上記第1樹脂層の四隅において、上記非可撓性基板と、上記第1樹脂層との界面に沿って刃を挿入し、上記ベース層から上記非可撓性基板を剥離することができる。
 本発明の態様14に係る可撓性表示装置の製造方法は、上記態様1から13の何れかにおいて、上記表示素子は、EL表示素子であってもよい。
 上記方法によれば、EL表示素子を備えた可撓性表示装置を実現できる。
 本発明の態様15に係る可撓性表示装置の製造方法は、上記態様1から13の何れかにおいて、上記表示素子は、反射型の液晶表示素子であってもよい。
 上記方法によれば、反射型の液晶表示素子を備えた可撓性表示装置を実現できる。
 本発明の態様16に係る可撓性表示装置は、上記の課題を解決するために、可撓性基板と、上記可撓性基板の一方側の面に備えられえたベース層と、上記ベース層上に備えらえた表示素子とを含む可撓性表示装置であって、上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた第2ポリイミド樹脂層とからなることを特徴としている。
 上記構成によれば、上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた第2ポリイミド樹脂層とからなる。
 したがって、上記ベース層へのレーザー光の照射量の設定が容易であり、上記ベース層から上記非可撓性基板を剥離する際に生じる剥離不具合を抑制できるので、生産性が高い可撓性表示装置を実現できる。
 本発明の態様17に係る可撓性表示装置は、上記の課題を解決するために、可撓性基板と、上記可撓性基板の一方側の面に備えられえたベース層と、上記ベース層上に備えらえた表示素子とを含む可撓性表示装置であって、上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた無機膜と、上記無機膜上において上記無機膜と接するように設けられた第2ポリイミド樹脂層とからなることを特徴としている。
 上記構成によれば、上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた無機膜と、上記無機膜上において上記無機膜と接するように設けられた第2ポリイミド樹脂層とからなるので、上記ベース層へのレーザー光の照射量の設定が容易であり、上記ベース層から上記非可撓性基板を剥離する際に生じる剥離不具合を抑制できるので、生産性が高い可撓性表示装置を実現できる。
 また、上記構成によれば、上記ベース層に無機膜が備えられているので、防湿性が高く、上記第1ポリイミド樹脂層と上記第2ポリイミド樹脂層との密着性を向上させた可撓性表示装置を実現できる。
 本発明の態様18に係る可撓性表示装置は、上記態様16または17において、上記第1ポリイミド樹脂層は、他の部分より膜厚が厚い第1部分を含み、上記第2ポリイミド樹脂層は、他の部分より膜厚が薄い第2部分を含み、上記第1部分と、上記第2部分とは、平面視において、重なっていることが好ましい。
 上記構成によれば、上記ベース層の膜厚均一化を実現できる。
 本発明の態様19に係る可撓性表示装置は、上記態様16から18の何れかにおいて、上記第1ポリイミド樹脂層は、他の部分より膜厚が薄い第3部分を含み、上記第2ポリイミド樹脂層は、他の部分より膜厚が厚い第4部分を含み、上記第3部分と、上記第4部分とは、平面視において、重なっていることが好ましい。
 上記構成によれば、上記ベース層の膜厚均一化を実現できる。
 本発明の態様20に係る可撓性表示装置は、上記態様17において、上記第1ポリイミド樹脂層と上記第2ポリイミド樹脂層とは、上記無機膜の端部より内側に設けられており、上記第1ポリイミド樹脂層は、他の部分より膜厚が厚い第1部分を含み、上記第2ポリイミド樹脂層は、他の部分より膜厚が薄い第2部分を含み、上記第1部分と、上記第2部分とは、平面視において、重なっているとともに、上記無機膜を介して接している構成であってもよい。
 上記構成によれば、上記第1部分と、上記第2部分との間には、上記無機膜が存在するので、防湿性が高く、上記第1部分と、上記第2部分との密着性を向上させた可撓性表示装置を実現できる。
 本発明の態様21に係る可撓性表示装置は、上記態様17において、上記第1ポリイミド樹脂層と上記第2ポリイミド樹脂層とは、上記無機膜の端部より内側に設けられており、上記第1ポリイミド樹脂層は、他の部分より膜厚が薄い第3部分を含み、上記第2ポリイミド樹脂層は、他の部分より膜厚が厚い第4部分を含み、上記第3部分と、上記第4部分とは、平面視において、重なっているとともに、上記無機膜を介して接している構成であってもよい。
 上記構成によれば、上記第3部分と、上記第4部分との間には、上記無機膜が存在するので、防湿性が高く、上記第3部分と、上記第4部分との密着性を向上させた可撓性表示装置を実現できる。
 本発明の態様22に係る可撓性表示装置は、上記態様16から21の何れかにおいて、上記表示素子は、EL表示素子であってもよい。
 上記構成によれば、EL表示素子を備えた可撓性表示装置を実現できる。
 本発明の態様23に係る可撓性表示装置は、上記態様16から21の何れかにおいて、上記表示素子は、反射型の液晶表示素子であってもよい。
 上記構成によれば、反射型の液晶表示素子を備えた可撓性表示装置を実現できる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、可撓性表示装置及び可撓性表示装置の製造方法に利用することができる。
 1     第1ポリイミド樹脂層(第1樹脂層)
 1L    第1ポリイミド樹脂層において他の部分より膜厚が厚い部分(第1部分)
 1R    第1ポリイミド樹脂層において他の部分より膜厚が薄い部分(第3部分)
 1a    プラズマ処理された第1ポリイミド樹脂層
 2     第2ポリイミド樹脂層(第2樹脂層)
 2L    第2ポリイミド樹脂層において他の部分より膜厚が薄い部分(第2部分)
 2R    第2ポリイミド樹脂層において他の部分より膜厚が厚い部分(第4部分)
 3     ベース層
 3a    レーザー光が照射されたベース層
 4     酸化シリコン膜(無機膜)
 5     ベース層
 101   ガラス基板(非可撓性基板)
 105R  赤色発光有機EL素子(表示素子)
 105G  緑色発光有機EL素子(表示素子)
 105B  青色発光有機EL素子(表示素子)
 111   裏面フィルム(可撓性基板)

Claims (23)

  1.  非可撓性基板の一方側の面にベース層を形成する第1工程と、
     上記ベース層上に表示素子を形成する第2工程と、
     上記非可撓性基板側からレーザー光を照射して、上記ベース層から上記非可撓性基板を剥離する第3工程と、
     上記ベース層における上記非可撓性基板を剥離した面に可撓性基板を貼り付ける第4工程と、を含む可撓性表示装置の製造方法であって、
     上記第1工程における上記ベース層を形成する工程は、第1樹脂層を形成する工程と、第2樹脂層を形成する工程とを含み、
     上記第1樹脂層を形成する工程においては、第1樹脂材料を第1方向に拡げながら塗布し、
     上記第2樹脂層を形成する工程においては、第2樹脂材料を上記第1方向と反対方向である第2方向に拡げながら塗布することを特徴とする可撓性表示装置の製造方法。
  2.  上記第1樹脂材料と、上記第2樹脂材料とは、同一材料であることを特徴とする請求項1に記載の可撓性表示装置の製造方法。
  3.  上記第1樹脂材料と、上記第2樹脂材料とは、ポリイミド樹脂であることを特徴とする請求項1または2に記載の可撓性表示装置の製造方法。
  4.  上記第1樹脂層を形成する工程及び上記第2樹脂層を形成する工程においては、スリットコータを用いて塗布が行われることを特徴とする請求項1から3の何れか1項に記載の可撓性表示装置の製造方法。
  5.  上記第1樹脂層を形成する工程の後であって、上記第2樹脂層を形成する工程の前には、上記第1樹脂層を熱処理する工程が含まれていることを特徴とする請求項1から4の何れか1項に記載の可撓性表示装置の製造方法。
  6.  上記第1樹脂層を形成する工程の後であって、上記第2樹脂層を形成する工程の前には、上記第1樹脂層の少なくとも表面を親水化処理することを特徴とする請求項1から4の何れか1項に記載の可撓性表示装置の製造方法。
  7.  上記第1樹脂層を熱処理する工程の後であって、上記第2樹脂層を形成する工程の前には、上記第1樹脂層の少なくとも表面を親水化処理することを特徴とする請求項5に記載の可撓性表示装置の製造方法。
  8.  上記親水化処理は、プラズマ処理であることを特徴とする請求項6または7に記載の可撓性表示装置の製造方法。
  9.  上記第1樹脂層を形成する工程の後であって、上記第2樹脂層を形成する工程の前には、上記第1樹脂層の全面を覆う無機膜を形成する工程が含まれていることを特徴とする請求項1から5の何れか1項に記載の可撓性表示装置の製造方法。
  10.  上記無機膜は、酸化シリコン膜であることを特徴とする請求項9に記載の可撓性表示装置の製造方法。
  11.  上記第3工程においては、上記第1方向及び上記第2方向と直交する方向の両端において、上記非可撓性基板を上記ベース層から剥離した後に、上記第1方向及び上記第2方向の両端において、上記非可撓性基板を上記ベース層から剥離することを特徴とする請求項1から10の何れか1項に記載の可撓性表示装置の製造方法。
  12.  上記第3工程においては、上記第1樹脂層の上記第1方向に平行な辺の中央において、上記非可撓性基板と、上記第1樹脂層との界面に沿って刃を挿入し、上記第1方向及び上記第2方向と直交する方向の両端において、上記非可撓性基板を上記ベース層から剥離することを特徴とする請求項11に記載の可撓性表示装置の製造方法。
  13.  上記第3工程においては、上記第1樹脂層の四隅において、上記非可撓性基板と、上記第1樹脂層との界面に沿って刃を挿入し、上記ベース層から上記非可撓性基板を剥離することを特徴とする請求項1から10の何れか1項に記載の可撓性表示装置の製造方法。
  14.  上記表示素子は、EL表示素子であることを特徴とする請求項1から13の何れか1項に記載の可撓性表示装置の製造方法。
  15.  上記表示素子は、反射型の液晶表示素子であることを特徴とする請求項1から13の何れか1項に記載の可撓性表示装置の製造方法。
  16.  可撓性基板と、上記可撓性基板の一方側の面に備えられえたベース層と、上記ベース層上に備えらえた表示素子とを含む可撓性表示装置であって、
     上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた第2ポリイミド樹脂層とからなることを特徴とする可撓性表示装置。
  17.  可撓性基板と、上記可撓性基板の一方側の面に備えられえたベース層と、上記ベース層上に備えらえた表示素子とを含む可撓性表示装置であって、
     上記ベース層は、第1ポリイミド樹脂層と、上記第1ポリイミド樹脂層上において上記第1ポリイミド樹脂層と接するように設けられた無機膜と、上記無機膜上において上記無機膜と接するように設けられた第2ポリイミド樹脂層とからなることを特徴とする可撓性表示装置。
  18.  上記第1ポリイミド樹脂層は、他の部分より膜厚が厚い第1部分を含み、
     上記第2ポリイミド樹脂層は、他の部分より膜厚が薄い第2部分を含み、
     上記第1部分と、上記第2部分とは、平面視において、重なっていることを特徴とする請求項16または17に記載の可撓性表示装置。
  19.  上記第1ポリイミド樹脂層は、他の部分より膜厚が薄い第3部分を含み、
     上記第2ポリイミド樹脂層は、他の部分より膜厚が厚い第4部分を含み、
     上記第3部分と、上記第4部分とは、平面視において、重なっていることを特徴とする請求項16から18の何れか1項に記載の可撓性表示装置。
  20.  上記第1ポリイミド樹脂層と上記第2ポリイミド樹脂層とは、上記無機膜の端部より内側に設けられており、
     上記第1ポリイミド樹脂層は、他の部分より膜厚が厚い第1部分を含み、
     上記第2ポリイミド樹脂層は、他の部分より膜厚が薄い第2部分を含み、
     上記第1部分と、上記第2部分とは、平面視において、重なっているとともに、上記無機膜を介して接していることを特徴とする請求項17に記載の可撓性表示装置。
  21.  上記第1ポリイミド樹脂層と上記第2ポリイミド樹脂層とは、上記無機膜の端部より内側に設けられており、
     上記第1ポリイミド樹脂層は、他の部分より膜厚が薄い第3部分を含み、
     上記第2ポリイミド樹脂層は、他の部分より膜厚が厚い第4部分を含み、
     上記第3部分と、上記第4部分とは、平面視において、重なっているとともに、上記無機膜を介して接していることを特徴とする請求項17に記載の可撓性表示装置。
  22.  上記表示素子は、EL表示素子であることを特徴とする請求項16から21の何れか1項に記載の可撓性表示装置。
  23.  上記表示素子は、反射型の液晶表示素子であることを特徴とする請求項16から21の何れか1項に記載の可撓性表示装置。
PCT/JP2017/028079 2017-08-02 2017-08-02 可撓性表示装置及び可撓性表示装置の製造方法 WO2019026209A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/028079 WO2019026209A1 (ja) 2017-08-02 2017-08-02 可撓性表示装置及び可撓性表示装置の製造方法
US16/468,330 US20190333425A1 (en) 2017-08-02 2017-08-02 Flexible display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028079 WO2019026209A1 (ja) 2017-08-02 2017-08-02 可撓性表示装置及び可撓性表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2019026209A1 true WO2019026209A1 (ja) 2019-02-07

Family

ID=65232439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028079 WO2019026209A1 (ja) 2017-08-02 2017-08-02 可撓性表示装置及び可撓性表示装置の製造方法

Country Status (2)

Country Link
US (1) US20190333425A1 (ja)
WO (1) WO2019026209A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102450111B1 (ko) * 2017-12-28 2022-10-05 삼성디스플레이 주식회사 표시 장치
US11784282B2 (en) * 2018-10-26 2023-10-10 Samsung Electronics Co., Ltd. Quantum dot display device
CN109830621B (zh) * 2019-02-19 2021-08-10 成都京东方光电科技有限公司 柔性基板及其制造方法、柔性显示基板及其制造方法
KR20200102620A (ko) * 2019-02-21 2020-09-01 삼성디스플레이 주식회사 감광성 수지 조성물, 이를 이용한 표시 장치 및 표시 장치의 제조 방법
KR102263329B1 (ko) * 2019-11-13 2021-06-11 주식회사 비에스피 유연 oled 모듈 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248072A (ja) * 2010-05-26 2011-12-08 Hitachi Displays Ltd 画像表示装置の製造方法
WO2014050933A1 (ja) * 2012-09-27 2014-04-03 新日鉄住金化学株式会社 表示装置の製造方法
JP2015530283A (ja) * 2013-04-09 2015-10-15 エルジー・ケム・リミテッド 積層体、積層体の製造方法、素子用基板の製造方法、素子用基板、素子の製造方法及び素子
JP2016120630A (ja) * 2014-12-24 2016-07-07 株式会社カネカ 剥離層の製造方法及びポリイミド積層体
WO2016152906A1 (ja) * 2015-03-26 2016-09-29 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193969A (ja) * 1998-12-28 2000-07-14 Fujitsu Ltd 反射型液晶表示装置
US20140242343A1 (en) * 2013-02-27 2014-08-28 3M Innovative Properties Company Lamination transfer films for forming embedded nanostructures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248072A (ja) * 2010-05-26 2011-12-08 Hitachi Displays Ltd 画像表示装置の製造方法
WO2014050933A1 (ja) * 2012-09-27 2014-04-03 新日鉄住金化学株式会社 表示装置の製造方法
JP2015530283A (ja) * 2013-04-09 2015-10-15 エルジー・ケム・リミテッド 積層体、積層体の製造方法、素子用基板の製造方法、素子用基板、素子の製造方法及び素子
JP2016120630A (ja) * 2014-12-24 2016-07-07 株式会社カネカ 剥離層の製造方法及びポリイミド積層体
WO2016152906A1 (ja) * 2015-03-26 2016-09-29 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。

Also Published As

Publication number Publication date
US20190333425A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
WO2019026209A1 (ja) 可撓性表示装置及び可撓性表示装置の製造方法
JP7203746B2 (ja) Oled表示マザーボード及びその製造方法、oled表示パネルの製造方法及びそのoled表示装置
US8519621B2 (en) Organic light emitting display and method for manufacturing the same
TWI674689B (zh) 顯示裝置及其製造方法
JP2018026344A (ja) マスク組立体、表示装置の製造装置、表示装置の製造方法、及び表示装置
WO2015081654A1 (zh) 柔性显示器的制造方法以及基板结构
CN107768413B (zh) 一种柔性显示基板、显示装置及其制作方法
WO2015127762A1 (zh) 柔性显示基板母板及柔性显示基板的制造方法
JP2019014974A (ja) 蒸着マスクおよび有機半導体素子の製造方法
JP6318665B2 (ja) 電気光学装置、電気光学装置の製造方法、電子機器
WO2019180846A1 (ja) 成膜用マスクおよびそれを用いた表示装置の製造方法
JP2016074938A (ja) 蒸着用マスク及びそれを用いた有機el表示装置の製造方法、並びに、蒸着用マスクの製造方法
US20170054104A1 (en) Display device and method of manufacturing the same
WO2017154235A1 (ja) 可撓性電子デバイスの製造方法
JP2016004112A (ja) 表示装置の製造方法
US20150243926A1 (en) Amoled panel and method of encapsulating the same
JP2019020509A (ja) 表示装置および表示装置の製造方法
WO2017115485A1 (ja) 樹脂フィルムの剥離方法、フレキシブル基板を有する電子デバイスの製造方法および有機el表示装置の製造方法ならびに樹脂フィルムの剥離装置
US20160276625A1 (en) Display device
US11515513B2 (en) Method for manufacturing display device including bonding first mother substrate and second mother substrate with buffer sheet
US9425437B2 (en) Method of manufacturing organic light-emitting diode (OLED) display
US11751419B2 (en) Flexible display device having non-flexible substrate having base layer including inorganic film between resin layers
US20190372032A1 (en) Non-flexible substrate including display element, and method of manufacturing flexible display device
JP2010244866A (ja) 有機el表示装置
KR101971556B1 (ko) 플렉서블 표시장치의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP