WO2019024588A1 - 一种可降解防污热塑性微气囊聚合物弹性体材料及其制备 - Google Patents

一种可降解防污热塑性微气囊聚合物弹性体材料及其制备 Download PDF

Info

Publication number
WO2019024588A1
WO2019024588A1 PCT/CN2018/088920 CN2018088920W WO2019024588A1 WO 2019024588 A1 WO2019024588 A1 WO 2019024588A1 CN 2018088920 W CN2018088920 W CN 2018088920W WO 2019024588 A1 WO2019024588 A1 WO 2019024588A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
polymer
process water
thermoplastic
molecular weight
Prior art date
Application number
PCT/CN2018/088920
Other languages
English (en)
French (fr)
Inventor
陈乔健
郭杨龙
Original Assignee
南通德亿新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通德亿新材料有限公司 filed Critical 南通德亿新材料有限公司
Publication of WO2019024588A1 publication Critical patent/WO2019024588A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/102Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids

Definitions

  • the invention relates to the field of preparation of polymer materials, in particular to a degradable antifouling thermoplastic micro-balloon polymer elastomer material and preparation thereof.
  • Thermoplastic polymer elastic materials are widely used in the manufacture and use of facilities, equipment, tools and consumables. With the development of society, environmental protection, energy saving, and consumption reduction, the demand for lightweight materials has become more and more urgent.
  • Thermoplastic polymer elastomers have also begun to be lightweight and experimental and validated and continue to be applied.
  • the conductivity of the thermoplastic foamed polymer is generally greater than 10 and the power of 11 and above is liable to generate static electricity and electrostatic adsorption, so that the material is very It is difficult to solve the problem that the outer surface of the material is dry and dirty.
  • foamed polyurethane elastomer particles for the sole after a period of use by the consumer, the surface of the sole is contaminated with a large amount of dust, and the surface becomes dirty and hard to clean over time. Since the lightweighting of domestic materials has just begun, antifouling modification of foamed thermoplastic polymer elastomers has not yet been reported, patents and reports.
  • thermoplastic polymer elastic material After the foaming and puffing of the thermoplastic polymer elastic material, it is still necessary to maintain good physical properties. In addition to designing the material structure and material cells after puffing, it is also required to design on antistatic and antifouling functions. However, due to the structural properties and processing technology of the material itself, the understanding of the foaming principle and the understanding of the material's susceptibility to dirt and soiling conditions, the materials of the expanded thermoplastic polymer elastomer in China have not been effectively controlled and considered.
  • One of the objects of the present invention is to provide a degradable antifouling thermoplastic micro-balloon polymer elastomer material comprising the following components by weight: 88-98% of polymer raw material, 0.05-0.5% of nucleating agent, hair
  • the foaming agent is 0.4 to 2%
  • the environmentally-friendly degradable organic perfluoro material is 0.1 to 10%.
  • the support matrix polymer material is a high molecular weight, high hardness, high crystalline or high polarity polymer material, and the pressure resistant slow rebound polymer material is in contact with the support matrix polymer material.
  • the support matrix polymer material is a high molecular weight, high hardness, high crystalline or high polarity polymer material
  • the pressure resistant slow rebound polymer material is in contact with the support matrix polymer material.
  • the support skeleton polymer material is a high molecular weight polyurethane
  • the corresponding pressure-resistant slow rebound polymer material is a low molecular weight polyurethane
  • the support skeleton polymer material is a high-hardness thermoplastic polymer elastomer (which may be selected according to actual conditions such as TPU, TPE or rubber, etc.), and the corresponding pressure-resistant slow-rebound polymer material is low-hardness thermoplastic polymer elasticity. body;
  • the support skeleton polymer material is polyamide or polyester, and the corresponding pressure-resistant slow rebound polymer material is thermoplastic polyurethane.
  • the high molecular weight polyurethane has a molecular weight Mw of from 8 ⁇ 10 4 to 5 ⁇ 10 5 and a molecular weight M w of the low molecular weight polyurethane of from 2 ⁇ 10 4 to 2.5 ⁇ 10 5 . ;
  • the high hardness thermoplastic polymer elastomer has a Shore hardness of 80A to 75D, and the low hardness thermoplastic polymer elastomer has a Shore hardness of 30 to 85A;
  • the polyester or polyamide is a modified low melting point polyester or a modified low melting point polyamide, respectively, and controls the difference in melting point between the support skeleton polymer material and the pressure resistant rebound polymer material at 20 °C.
  • the modified low melting point polyester may be selected such as modified PET, PTT, PBT, etc.
  • the modified low melting point polyamide may be modified as low melting point PA6, PA6I, PA11, PA12, PA9 and the like.
  • the environmentally-friendly degradable organic perfluoro material is a PM-870 functional masterbatch selected from 3M Company.
  • the nucleating agent is at least one selected from the group consisting of carbon nanotubes, silica, talc, modified calcium carbonate, carbon black or tetrafluoroethylene powder;
  • the blowing agent is at least one selected from the group consisting of CO 2 , N 2 , n-butane, n-pentane or isopentane.
  • One of the above objects is to degrade the antifouling thermoplastic micro-balloon polymer elastomer material by foaming in a conventional foaming process
  • the second object of the present invention is to provide the degradable antifouling thermoplastic micro-balloon polymer of the above purpose.
  • the method for preparing the elastomer material may preferably include the following steps:
  • the temperature of the twin-screw extruder in step (1) is 160-300 ° C, and the length-to-diameter ratio of the twin-screw extruder is 32-56;
  • the temperature in the static mixer is set to 120-260 ° C
  • the inlet pressure of the melt pump is 50-200 bar
  • the difference between the hot melt pressure extruded through the die and the pressure of the process water in the underwater pelletizing chamber is controlled. 70-120 bar.
  • the process water temperature in the underwater pelletizing chamber in step (2) is 10-90 ° C, the pressure is 4-20 bar;
  • the multi-stage pressure-releasing expansion process water pipeline is gradually reduced by pressure.
  • the multi-stage pressure release expansion process water line in the step (2) is a four-stage process water line, wherein the water pressure of the first stage process water line is maintained and enters the underwater pelletizing chamber.
  • the process water pressure is consistent.
  • the multi-stage pressure release expansion process water line in the step (2) is a four-stage process water line, wherein the water pressure of the first stage process water line is 4-20 bar, and the water pressure of the second stage process water line For 3-10 bar, the water pressure of the third-stage process water line is 2-6 bar, and the water pressure of the fourth-stage process water line is 1-4 bar.
  • the twin-screw extruder drives the twin-screw extruder at a speed of 50 to 900 rpm under the driving of the motor, and the setting temperature of the extruder of the extruder is 160 to 300 ° C to ensure thermoplastic polymerization.
  • the material can be fully melted, and the polymer raw material, nucleating agent and environmentally-friendly degradable organic perfluoro material are fed from the front screw feeding port, and the foaming agent is fed from the screw feeding port of the middle section. After mixing, under the heating of the extruder and the shearing force of the screw, the materials are hot melted and mixed into the static mixer after the screw is fully mixed.
  • the melt is further homogenized and cooled in the static mixer to ensure the melt temperature. Between 120 and 260 ° C, it can be controlled according to the physical properties of the finished product.
  • the inlet pressure of the melt pump is set to be between 50 and 200 bar to control the melt pressure in the screw of the extruder, and the hot melt of the mixed foaming agent and the nucleating agent is obtained.
  • the mixture is thoroughly mixed and homogenized in a controlled high pressure environment.
  • the high pressure hot melt is stably pushed into the extruder die by the melt pump pressure control and quantitative transfer function.
  • the die is a porous orifice structure with a uniform heating inside to ensure that the hot melt can stably pass through the die.
  • the hot melt sent by the high pressure of the melt pump is cut into the granules of the beans by the high-speed rotating dicing knife in the underwater granulation chamber through the respective holes of the die, and the dicing knife of the underwater dicing chamber is actually cutting the heat under water.
  • the process water of 10 to 90 ° C generates a pressure of 6 to 20 bar under the action of the process water pump, and enters the underwater pelletizing chamber through the process water inlet pipe of the pelletizing water chamber, so that the high pressure hot melt is rapidly cooled and cut in the high pressure process water.
  • the knives are cut into granules.
  • the water pressure of 4-20 bar is still maintained in the first-stage process water line, at which time the granular melt partially cools and pre-expands in the presence of pressure difference. .
  • the water pressure is reduced to 3 to 10 bar by increasing and shortening the diameter of the pipeline, and at this time, the granular melt is further cooled, and the strength of the outer surface is increased but the pressure difference is increased to re-expand.
  • the water pressure is reduced to 2-6 bar by reducing the pipe diameter and shortening the pipe resistance.
  • the granular melt is cooled again, and the outer surface strength continues to rise but the pressure difference becomes large and then expands again.
  • the expansion rate is lowered to a very low level.
  • the pipe diameter and length are adjusted to reduce the pipe resistance to reduce the water pressure to 1-4 bar.
  • the granular melt continues to cool, and the outer surface strength further rises but the pressure difference is still increasing. It will also swell but because the cooling time is sufficient for the outer skin of the granules to be very strong and the particles are also substantially crystallized to stabilize the outer diameter of the granules.
  • the granulated and expanded polymer enters the centrifugal separator together with water, where the water and the expanded particles are separated, and the expanded particles enter the vibrating screen and enter the post-treatment system, and the process water flows out of the centrifugal separator into the process water tank. This is repeated so that the process continues.
  • High molecular weight polymers and low molecular weight polymers, high hardness polymers and low hardness polymers, high crystalline polymers and low crystalline to amorphous polymers, highly polar polymers and low or non-polar High molecular weight and low molecular weight in a combination of polymers and the like are distinguished by comparing two polymer materials having different physical properties, that is, two polymer raw materials having different physical properties, and a high molecular weight is defined as a high molecular weight polymer. The lower molecular weight is defined as a low molecular weight polymer.
  • high hardness and low hardness are also defined analogously. More preferably, the molecular weight of the high molecular weight polymer is at least twice as high as that of the low molecular weight polymer; the hardness of the high hardness polymer should be more than 10 A worse than the low hardness polymer.
  • the rebound-resisting pressure-resisting polymer material should be selected from an elastomer-based polymer material such as TPU, rubber, TPE, etc.
  • the supporting support skeleton polymer material may be an elastomer-based polymer material.
  • Non-elastomeric materials such as PET, PTT, etc. can also be selected.
  • thermoplastic polyurethanes can be prepared by themselves using commercially available products or according to known process techniques. More preferably, the thermoplastic polyurethane may be selected such as a polyether thermoplastic polyurethane or a polyester thermoplastic polyurethane depending on the product requirements.
  • the size, size and density of the internal micro-balloons of the expanded particles, as well as the form, size and density of the interior and skin open cells of the expanded particles are designed and controlled by optimizing the raw material selection and ratio, and at the same time, through the heat
  • the pressure of the molten polymer melt in the screw of the twin-screw extruder and the pressure of the extruder to control the expansion of the bubble core and finally, by the method of the difference between the melt pressure and the process water pressure and the process water release pressure
  • the body is solidified and shaped.
  • the present invention designs high molecular weight polymers and low molecular weight polymers, high hardness polymers and low hardness polymers, high crystalline polymers and low crystalline to amorphous polymers, highly polar polymers and low grades or
  • the non-polar polymers are separately combined, and then blended with hot melt to add a foaming agent, followed by a foaming agent in different physical polymer raw materials under a puffing process (preferably the controlled puffing process of the present invention)
  • a foaming agent in different physical polymer raw materials under a puffing process (preferably the controlled puffing process of the present invention)
  • the extremely closed airbag structure supporting component and the open foam component together form a wound mesh-like interpenetrating airway structure composite puffing material.
  • a number of tiny closed airbags of 0.01 to 20 micrometers formed by a high molecular weight or high hardness or high crystalline or highly polar polymer material and a foaming agent under the action of a nucleating agent are used in the expanded material.
  • Used as a support component and low molecular or low hardness or low crystal or low polarity / non-polar polymer forms very fine open cells (non-closed pores) with the foaming agent, and combined with partial expansion to become a low pressure withstand
  • the projectile assembly in the open cells, forms an air passage around the expanded material in the expanded material, and the air passages partially communicate with each other and extend to the surface of the expanded material particles.
  • the micro-closed air bag hole in the support assembly is squeezed to support the effect, and the air in the open cell in the slow-resistance rebound assembly is quickly squeezed out to give the puffed material.
  • the present invention can also utilize the difference in permeability of different blowing agents in different polymer materials during the preparation process, the difference in melt strength between different materials in different pressure differences and the crystallization rate of the melt, different polymerizations.
  • the difference in physical properties and physical property retention after puffing thereby controlling the size and number of micro-balloons in the puffed material, as well as the size, shape and shape of the open cells to adjust the physical properties of the material to meet the requirements of different downstream uses and customer requirements.
  • the inlet pressure of the melt boosting pump is increased at a constant process water temperature, thereby indirectly increasing the inlet pressure of the die and passing the process water. Pressure accelerates pressure release.
  • the inlet pressure of the melt boosting pump is reduced at a constant process water temperature, the inlet pressure of the die is indirectly reduced, and the pressure is relieved by the process water pressure.
  • the present invention has the following advantages:
  • the invention designs the raw material formula of the thermoplastic polymer elastic material to make the surface polarity of the material having high conductivity to be small, thereby improving the oil-proof, anti-fouling and waterproof performance of the material, and at the same time, making the touch rise.
  • the modified environmentally-friendly degradable perfluoro material is selected to be dispersed during the synthesis of the polymer material, so that the environmentally-friendly degradable perfluoro material can be sufficiently dispersed in the material system and passed through the phase separation in the subsequent process. To achieve a reduction in conductivity and uniform distribution of polarity.
  • the environmentally-friendly degradable perfluoro material can form ions to reduce the electrical conductivity and surface polarity, thereby improving the antifouling, oil-proof, waterproof and tactile sensation of the surface of the expanded thermoplastic polymer material.
  • thermoplastic polymer material produced by the present invention can be widely used in the fields of shoe materials and food packaging.
  • the present invention uses two different physical polymers to form a polymer raw material, so that it has a suitable formation during the expansion foaming process.
  • the micro-balloon structure and moderate open cells form a entangled network air passage interpenetrating structure, so that the micro-balloon structure can provide good physical properties such as strength, elastic modulus and resilience, while the open cell structure is It can improve the energy absorption, contact and comfort of the material.
  • the structure, opening form, density, size, etc. of the micro-airbags and open cells can be effectively adjusted by adjusting the formula and adjusting the process conditions, and the volume of the micro-balloons in the material can be effectively controlled by about 20 to 99.5%.
  • the open cells account for about 0.5 to 80% of the volume of the material.
  • the back pressure of the hot melt in the twin-screw extruder and the back pressure of the underwater pelletizing chamber can be controlled to stabilize the speed and rate of the pressure expansion, thereby achieving precise control of the material expansion ratio.
  • the multi-stage step-by-step pressure release process can flexibly control the requirements of the foam breaking rate in the expansion process of different polymers to achieve the production of suitable composite expanded structural materials.
  • the polymer elastomer material prepared by the invention is suitable for the application fields of foam materials such as shoe products, packaging, shock absorption, heat preservation, seats, runways, solid tires and the like.
  • Figure 1 is a process flow diagram of the present invention
  • Example 2 is a SEM photograph of the inside of a material obtained in Example 1 of the present invention.
  • Figure 3 is a SEM photograph of the surface of the material obtained in Example 1 of the present invention.
  • compositions, step, method, article or device comprising the listed elements is not necessarily limited to those elements, but may include other elements not specifically listed or inherent to such compositions, steps, methods, articles or devices. Elements.
  • Approximating terms used in the specification and claims are used to modify the quantity, and the invention is not limited to the specific number, and includes a portion that is close to the quantity that is acceptable without causing a change in the relevant basic function.
  • a numerical value is modified by "about”, “about” or the like, meaning that the invention is not limited to the precise value. In some instances, the approximation may correspond to the accuracy of the instrument that measures the value.
  • the scope of the invention may be combined and/or interchanged, and if not stated otherwise, the scope includes all subranges.
  • Polymer means a polymeric compound prepared by polymerizing monomers of the same or different types.
  • the generic term “polymer” encompasses the terms “homopolymer,” “copolymer,” “terpolymer,” and “interpolymer.”
  • a degradable antifouling thermoplastic micro-balloon polymer elastomer material comprising the following components by weight percentage: 88-98% of polymer raw material, 0.05-0.5% of nucleating agent, 0.4 ⁇ 2% of foaming agent, environmental protection Degradation of organic perfluoromaterials by 0.1 to 10%.
  • the polymer raw material is composed of a support skeleton polymer material (60-95%) and a pressure-resistant slow rebound polymer material (3-38%), wherein
  • the support skeleton polymer material is a high molecular weight, high hardness, high crystalline or high polarity polymer material
  • the pressure resistant slow rebound polymer material is low molecular weight, low hardness and low corresponding to the support skeleton polymer material. Crystallization to amorphous, low polarity/non-polar polymer materials.
  • the support skeleton polymer material is a high molecular weight polyurethane
  • the corresponding pressure-resistant slow rebound polymer material is a low molecular weight polyurethane
  • the support skeleton polymer material is a high-hardness thermoplastic polymer elastomer (which may be selected according to actual conditions such as TPU, TPE or rubber, etc.), and the corresponding pressure-resistant slow-rebound polymer material is low-hardness thermoplastic polymer elasticity. body;
  • the support skeleton polymer material is polyamide or polyester, and the corresponding pressure-resistant slow rebound polymer material is thermoplastic polyurethane.
  • the high molecular weight polyurethane has a molecular weight Mw of from 8 ⁇ 10 4 to 5 ⁇ 10 5 and a molecular weight M w of the low molecular weight polyurethane of from 2 ⁇ 10 4 to 2.5 ⁇ 10 5 . ;
  • the high hardness thermoplastic polymer elastomer has a Shore hardness of 80A to 75D, and the low hardness thermoplastic polymer elastomer has a Shore hardness of 30 to 85A;
  • the polyester or polyamide is a modified low melting point polyester or a modified low melting point polyamide, respectively, and controls the difference in melting point between the support skeleton polymer material and the pressure resistant rebound polymer material at 20 °C.
  • the modified low melting point polyester may be selected such as modified PET, PTT, PBT, etc.
  • the modified low melting point polyamide may be modified as low melting point PA6, PA6I, PA11, PA12, PA9 and the like.
  • the environmentally-friendly degradable organic perfluoro material is selected from the PM-870 functional masterbatch of 3M Company.
  • the nucleating agent is at least one selected from the group consisting of carbon nanotubes, silica, talc, modified calcium carbonate, carbon black or tetrafluoroethylene powder;
  • the blowing agent is at least one selected from the group consisting of CO 2 , N 2 , n-butane, n-pentane or isopentane.
  • the preparation method of the degradable antifouling thermoplastic micro-balloon polymer elastomer material may preferably include the following steps:
  • the temperature of the twin-screw extruder in step (1) is 160-300 ° C, and the length-to-diameter ratio of the twin-screw extruder is 32-56;
  • the temperature in the static mixer is set to 120-260 ° C, and the inlet pressure of the melt pump is such that the difference between the hot melt pressure extruded through the die and the pressure of the process water in the underwater pelletizing chamber is 70-120 bar.
  • the process water temperature in the underwater pelletizing chamber in step (2) is 10-90 ° C, the pressure is 4-20 bar;
  • the multi-stage pressure-releasing expansion process water pipeline is gradually reduced by pressure.
  • the multi-stage pressure release expansion process water line in the step (2) is a four-stage process water line, wherein the water pressure of the first stage process water line is 4-20 bar, the second stage The water pressure of the process water line is 3-10 bar, the water pressure of the third stage process water line is 2-6 bar, and the water pressure of the fourth stage process water line is 1-4 bar.
  • the twin-screw extruder 2 is driven by the motor 1 at a speed of 50-900 rpm, and the screw setting temperature of the twin-screw extruder 2 is 160-300 ° C.
  • the polymer feedstock and nucleating agent are fed from the feed port 3 at the front end and the blowing agent is fed from the feed port 2 of the middle section.
  • each raw material After mixing, under heating and shearing force of the screw, each raw material is hot melted and after the screw is fully mixed, it enters the static mixer 5, and the melt is further homogenized and cooled in the static mixer 5 to ensure the melt temperature is Between 120 and 280 ° C, the specific can be controlled according to the physical properties of the finished product.
  • the inlet pressure of the melt pump 6 is set to be between 50 and 200 bar, and the melt pressure in the screw of the twin-screw extruder 2 is controlled to be stable.
  • the mixed foaming agent and the nucleating agent are thoroughly mixed and homogenized in a hot melt in a controlled high pressure environment.
  • the high pressure hot melt is stably pushed into the die 7 of the extruder by the pressure control and quantitative transfer function of the melt pump 6, and the die 7 is a porous orifice plate structure, and the inside thereof is uniformly heated to ensure the stability of the hot melt. Pass the die 7.
  • the hot melt sent out by the high pressure of the melt pump 6 is cut into the granules of the beans by the dicing knife which is rotated by the high speed in the underwater dicing chamber 8 through the respective holes of the die 7, and the dicing knife of the underwater dicing chamber 8 is actually in the water.
  • the hot melt is cut down.
  • the process water of 10 to 90 ° C generates a pressure of 4 to 15 bar under the action of the process water pump assembly 16 (including a water pump and a water tank, etc.), and enters the underwater pelletizing chamber 8 through the process water inlet pipe 9.
  • the high pressure hot melt thus extruded from the die 7 is rapidly cooled under high pressure process water and cut into pellets by a pelletizing knife. Since there is a pressure difference between the high pressure hot melt and the high pressure process water, and the pressure difference can be adjusted by the inlet pressure of the melt pump 6 and the delivery pressure of the process water pump assembly 16, the polymerization is cut into pellets throughout the process.
  • the initial expansion rate and rate of the material are controllable and stable.
  • a multi-stage pressure-release expansion process water line (here preferably four stages) is specially designed in the process, and the granular polymerization is utilized.
  • the water pressure of 4-15 bar is maintained in the first-stage process water line (ie, the process water primary pressure release pipe 10).
  • the granular melt partially cools and preliminarily expands in the presence of a pressure difference.
  • the water pressure is reduced to 3 to 10 bar by the diameter of the pipeline becoming shorter and shorter, and the granular melt is further cooled, and the outer surface strength is increased but the pressure difference is When it becomes bigger, it will expand again.
  • the third-stage process water line ie, the process water third-stage pressure release pipe 12
  • the water pressure is reduced to 2-6 bar by reducing the pipe diameter and shortening the pipe resistance. At this time, the granular melt is cooled again, and the outer surface strength is It continues to rise but the pressure difference becomes larger and then expands again. However, since the crystallization of the particles is almost completed, the expansion rate is lowered to a very low level.
  • the pipe diameter and length adjustment are used to reduce the pipe resistance to reduce the water pressure to 1-4 bar, at which time the granular melt continues to cool, and the outer surface strength Further rise, but the pressure difference will still expand after it becomes larger, but because the cooling time is sufficient, the outer skin strength of the particles is already high and the particles are also substantially crystallized to stabilize the outer diameter of the particles.
  • the granulated and expanded polymer enters the centrifugal separator 14 together with water, where the water and the expanded product are separated, and the expanded particles enter the vibrating screen 15 and enter the post-treatment system to produce a puffed product output, and the process water is centrifuged.
  • the separator 14 flows out into the process water pump assembly 16. This is repeated so that the process continues.
  • the polyether thermoplastic polyurethane used is from Bayer, Huntsman, etc.
  • the polyester thermoplastic polyurethane used is from Bayer, Huntsman, etc.
  • the low melting point polyester PET is derived from Jinshan Petrochemical, etc.
  • the modified low melting point polyamide used is from DuPont, Evonik and other companies
  • the PBT used is from Jinshan Petrochemical Company.
  • thermoplastic micro-balloon polymer elastomer material of the present invention is prepared according to the following process recipe of Figure 1 according to the following raw material formulations and process conditions:
  • the polyether thermoplastic polyurethane having a molecular weight M w of from 150 K to 300 K (where K represents a unit of one thousand) is added to a polyether thermoplastic polyurethane having a ratio of 75% by weight (the same hereinafter) and a molecular weight M w of from 50 K to 100 K.
  • the addition ratio is 20%
  • the environmentally-friendly degradable organic perfluoro material is added in an amount of 2.5%
  • the blowing agent is CO 2
  • the addition amount is 2%
  • the nucleating agent is calcium carbonate
  • the addition amount is 0.5%.
  • Twin screw extruder long diameter ratio L / D 40, screw heating temperature 160-220 ° C, static mixer temperature 140-180 ° C, melt pump inlet pressure 100-150 bar, process water pressure about 12 bar, just entered the underwater cut
  • the process water temperature in the chamber is 30 ° C, and the pressure difference (ie, the pressure difference between the high pressure hot melt at the outlet of the die and the process water in the underwater pellet chamber) is controlled to be 100-150 bar.
  • the water pressure in the first-stage process water line is controlled to be about 12 bar
  • the water pressure in the second-stage process water line is controlled to about 8 bar
  • the water pressure in the third-stage process water line is The pressure of the water in the fourth-stage process water line is about 2 bar.
  • the SEM pictures of the product particles are shown in Fig. 2 and Fig. 3. It can be known that there are obvious micro-balloon structures inside the material particles and the entangled network air passage interpenetrating structure formed by the open cells, and some air passage interpenetrating structures are also extended. To the surface of the material particles. At the same time, after the product was tested by dripping, the waterproof and oil proof tests reached level 5, and the sprinkling test was 90 points (Japanese Industrial Standard JIS).
  • thermoplastic micro-balloon polymer elastomer material of the present invention is prepared according to the following process recipe of Figure 1 according to the following raw material formulations and process conditions:
  • a polyether thermoplastic polyurethane having a molecular weight M w of 300K to 500K is added to a polyether thermoplastic polyurethane having a ratio of 70% by weight and the molecular weight M w of 150K to 250K, and the ratio is 18.1%, and the organic degradable organic compound is added.
  • the perfluoro material was added in an amount of 10%
  • the blowing agent was N 2
  • the amount of addition was 1.4%
  • the nucleating agent was carbon black in an amount of 0.5%.
  • Twin-screw extruder long-distance ratio L/D 56, screw heating temperature 160-220°C, static mixer temperature 140-180°C, melt pump inlet pressure 100-150bar, process water pressure about 6bar, just entering underwater cutting
  • the process water temperature of the chamber is controlled to 60 ° C, and the pressure difference of the pressure release (ie, the pressure difference between the high pressure hot melt at the outlet of the die and the process water in the underwater pelletizing chamber) is 90-150 bar.
  • the water pressure in the first stage process water line is controlled to about 6 bar
  • the water pressure in the second stage process water line is controlled to about 5 bar
  • the water pressure in the third stage process water line is It is about 3 bar
  • the water pressure in the fourth-stage process water line is about 1 bar.
  • thermoplastic micro-balloon polymer elastomer material of the present invention is prepared according to the following process recipe of Figure 1 according to the following raw material formulations and process conditions:
  • the polyether thermoplastic polyurethane having a molecular weight M w of 80K to 120K is added to a polyether thermoplastic polyurethane having a ratio of 90% (weight percent, the same below) and a molecular weight M w of 20K to 50K, and is added in an amount of 9%, and is environmentally degradable organic.
  • the perfluoro material was added in an amount of 0.1%
  • the blowing agent was N 2
  • the amount of addition was 0.4%.
  • the nucleating agent was a mixture of talc and modified calcium carbonate in a mass ratio of 1:1, and the amount added was 0.5%.
  • Twin-screw extruder long-distance ratio L/D 38, screw heating temperature 160-220°C, static mixer temperature 130-170°C, melt pump inlet pressure 100-150bar, process water pressure 15bar or so, just entering the underwater cut
  • the process water temperature of the granular chamber is about 40 ° C
  • the pressure difference of the pressure release (that is, the pressure difference between the high pressure hot melt at the outlet of the die and the process water in the underwater pelletizing chamber) is controlled by 90-140 bar.
  • the water pressure in the first-stage process water line is controlled to be about 15 bar
  • the water pressure in the second-stage process water line is controlled to be about 10 bar
  • the water pressure in the third-stage process water line is It is about 6 bar
  • the water pressure in the fourth-stage process water line is controlled to about 4 bar.
  • thermoplastic micro-balloon polymer elastomer material of the present invention is prepared according to the following process recipe of Figure 1 according to the following raw material formulations and process conditions:
  • a polyether thermoplastic polyurethane having a molecular weight M w of 80K to 120K is added to a polyether thermoplastic polyurethane having a ratio of 65% by weight, the same molecular weight Mw of 20K to 50K, and a ratio of 25%, environmentally friendly and degradable organic
  • the perfluoro material was added in an amount of 8%
  • the blowing agent was N 2
  • the amount of addition was 1.8%
  • the nucleating agent was carbon nanotubes
  • the process water temperature of the granular chamber is about 30 ° C, and the pressure difference of the pressure release (that is, the pressure difference between the high pressure hot melt at the outlet of the die and the process water in the underwater pelletizing chamber) is controlled by 90-150 bar.
  • the water pressure in the first-stage process water pipeline is controlled to be about 10 bar
  • the water pressure in the second-stage process water pipeline is controlled to be about 7 bar
  • the water pressure in the third-stage process water pipeline is It is about 4 bar
  • the water pressure in the fourth-stage process water line is controlled to be about 2 bar.
  • thermoplastic micro-balloon polymer elastomer material of the present invention is prepared according to the following process recipe of Figure 1 according to the following raw material formulations and process conditions:
  • a polyether thermoplastic polyurethane having a molecular weight M w of from 120 K to 180 K (where K represents a unit of 1,000, which is confirmed) is added to a polyether having a ratio of 95% by weight (the same applies hereinafter) and a molecular weight M w of from 20 K to 50 K.
  • Thermoplastic polyurethane, adding 3%, environmentally friendly degradable organic perfluoro material is added in an amount of 1%
  • foaming agent is 1:1 added CO 2 and N 2 in a volume ratio of 0.8%
  • the nucleating agent is calcium carbonate.
  • the mixture with tetrafluoroethylene powder in a mass ratio of 1:1 was added in an amount of 0.2%.
  • Twin screw extruder long diameter ratio L / D 40, screw heating temperature 180-20 ° C, static mixer temperature 160-200 ° C, melt pump inlet pressure 100-150 bar, process water pressure 10 bar or so, just entering the underwater cut
  • the temperature of the chamber is about 50 ° C
  • the pressure difference of the pressure release ie, the pressure difference between the high pressure hot melt at the outlet of the die and the process water in the underwater pelletizing chamber
  • the water pressure control 4 in the first-stage process water pipeline is about 10 bar
  • the water pressure control in the second-stage process water pipeline is about 7 bar
  • the water in the third-stage process water pipeline is The pressure is about 4 bar
  • the water pressure in the fourth-stage process water line is about 2 bar.
  • thermoplastic micro-balloon polymer elastomer material of the present invention is prepared according to the following process recipe of Figure 1 according to the following raw material formulations and process conditions:
  • the polyester-type thermoplastic polyurethane with a Shore A hardness of 80A is added in an amount of 80% (weight percent, the same below), and the polyester-type thermoplastic polyurethane having a Shore hardness of 30 A is added in an amount of 19.2%, and the amount of the environmentally-degradable organic perfluoro material is added. 0.2%, the blowing agent is selected from CO 2 and N 2 in a weight ratio of 1:1, the total addition amount is 0.4%, and the nucleating agent is selected from the mixture of carbon nanotubes, talc and calcium carbonate. 0.2%.
  • Twin screw extruder length to diameter ratio L / D 40, screw heating temperature 220 ° C, static mixer temperature 180 ° C, melt pump inlet pressure 100 bar, process water pressure about 15 bar, process water temperature just entering the underwater pelletizing chamber At about 60 ° C, the pressure difference of the pressure release (ie, the pressure difference between the high pressure hot melt at the outlet of the die and the process water in the underwater pelletizing chamber) was 95 bar.
  • the water pressure in the first-stage process water pipeline is controlled to be about 15 bar
  • the water pressure in the second-stage process water pipeline is controlled to be about 7 bar
  • the water pressure in the third-stage process water pipeline is It is about 4 bar
  • the water pressure in the fourth-stage process water line is controlled to be about 2 bar.
  • Polyester type thermoplastic polyurethane with Shore hardness of 85D is added in an amount of 60% (weight percent, the same below), polyester thermoplastic polyurethane with a Shore hardness of 85A is added in an amount of 25%, and the amount of environmentally-friendly degradable organic perfluoro material is added.
  • the foaming agent is selected from CO 2 and N 2 in a weight ratio of 1:1, the total amount of addition is 1%, and the nucleating agent is selected from the mixture of carbon nanotubes, talc and calcium carbonate. 9%.
  • thermoplastic micro-balloon polymer elastomer material of the present invention is prepared according to the following process recipe of Figure 1 according to the following raw material formulations and process conditions:
  • the modified low-melting polyester PET is added in a proportion of 60% (weight percent, the same below), the polyester polyurethane is added in a proportion of 37%, the environmentally-degradable organic perfluoro material is added in an amount of 2%, and the nucleating agent is carbon black.
  • the amount of the foaming agent was 0.4%, and the foaming agent was a mixture of CO 2 and N 2 in an amount of 0.6%.
  • Twin-screw extruder long-distance ratio L/D 40, screw heating temperature 220-280°C, static mixer temperature 180-250°C, melt pump inlet pressure 100-150bar, process water pressure 20bar or so, just entering underwater cutting
  • the process water temperature of the granular chamber is about 90 ° C
  • the pressure difference of the pressure release ie, the pressure difference between the high pressure hot melt at the outlet of the die and the process water in the underwater pelletizing chamber
  • the water pressure in the first-stage process water line is controlled to be about 20 bar
  • the water pressure in the second-stage process water line is controlled to be about 12 bar
  • the water pressure in the third-stage process water line is It is about 8 bar
  • the water pressure in the fourth-stage process water line is about 4 bar.
  • Example 10 Compared with Example 10, except that the screw heating temperature was 260 ° C and the static mixer temperature was 240 ° C, the others were the same.
  • Example 10 Compared with Example 10, the same was true except that the modified low melting point polyester PET was replaced with a modified low melting point polyamide (PA).
  • PA modified low melting point polyamide
  • Example 12 Compared with Example 12, except that the screw heating temperature was 300 ° C and the static mixer temperature was 260 ° C, the others were the same.
  • Example 12 Compared with Example 12, except that the screw heating temperature was 240 ° C and the static mixer temperature was 230 ° C, the others were the same.
  • Example 2 Compared with Example 1, the same was true except that the blowing agent was changed to n-butane.
  • Example 2 Compared with Example 1, except that the blowing agent was changed to n-pentane, the others were the same.
  • Example 2 Compared with Example 1, the same was true except that the blowing agent was changed to isopentane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本发明涉及一种可降解防污热塑性微气囊聚合物弹性体材料,包括以下重量百分比含量的组分:聚合物原料88~98%,成核剂0.05~0.5%,发泡剂0.4~2%,环保可降解有机全氟材料0.1~10%;其制备方法具体为:(1)将聚合物原料、成核剂和环保可降解有机全氟材料从双螺杆挤塑机前端加料口喂入,发泡剂从双螺杆挤塑机中段加料口喂入,使各原料热熔混合充分后,再进入静态混合器进一步均质化,接着再经熔体泵控压和定量输送;(2)被熔体泵送出的热熔体通过模头进入水下切粒室切粒,并由工艺水带出分离,所得颗粒筛选干燥后即形成目的产品。与现有技术相比,本发明可有效实现材料的防污,耐脏,抗油,抗沾染,美观,良好的触感等性能,特别适用于在鞋材和食品包装等领域的应用。

Description

一种可降解防污热塑性微气囊聚合物弹性体材料及其制备 技术领域
本发明涉及高分子材料制备领域,尤其是涉及一种可降解防污热塑性微气囊聚合物弹性体材料及其制备。
背景技术
热塑性聚合物弹性材料广泛制造生产和生活所用设施,设备,工具和消耗品,随着社会的发展对环保,节能,降耗等方面的要求,材料轻量化的需求也变得越来越紧迫。热塑性聚合物弹性材料也大量开始轻量化的实验和验证并持续推广应用。但热塑性发泡聚合物弹性体直接应用于直接消费品时,未经过改性和特制时,热塑性发泡聚合物导电率普遍大于10的11次方及以上导致易产生静电和静电吸附,使材料很难解决材料外表面干涩,易脏等问题。例如用于鞋底的发泡聚氨酯弹性体颗粒,在消费者使用一段时间后,鞋底表面会沾染大量灰尘,表面也会随着时间延长变脏而且不易清洗。由于国内的材料轻量化刚开始,所以对发泡热塑性聚合物弹性体的防污改性尚未见研究报告和专利及报道。
热塑性聚合物弹性材料的发泡和膨化后仍然需保有良好的物性,除了要求对膨化后材料结构和材料泡孔等进行设计外还需要在抗静电,防污功能上进行设计。但受制于材料本身结构性质和加工工艺,发泡原理的理解以及发生材料易脏,易污条件的认识,导致国内对膨化的热塑性聚合物弹性材料的材料暂时未进行有效控制与考虑。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可降解防污热塑性微气囊聚合物弹性体材料及其制备。
本发明的目的可以通过以下技术方案来实现:
本发明的目的之一在于提出了一种可降解防污热塑性微气囊聚合物弹性体材料,包括以下重量百分比含量的组分:聚合物原料88-98%,成核剂0.05~0.5%,发泡剂0.4~2%,环保可降解有机全氟材料0.1~10%。
作为优选的实施方案,所述的支撑骨架聚合物材料为高分子量、高硬度、高结 晶或高极性聚合物材料,所述的耐压慢回弹聚合物材料为与支撑骨架聚合物材料相对应的低分子量、低硬度、低结晶至无定形态、低极性至无极性聚合物材料。
作为上述优选的实施方案的更优选,所述的支撑骨架聚合物材料为高分子量聚氨酯,其对应的耐压慢回弹聚合物材料为低分子量聚氨酯;
或所述的支撑骨架聚合物材料为高硬度热塑性聚合物弹性体(可以根据实际情况选择如TPU、TPE或橡胶等),其对应的耐压慢回弹聚合物材料为低硬度热塑性聚合物弹性体;
或所述的支撑骨架聚合物材料为聚酰胺或聚酯,其对应的耐压慢回弹聚合物材料为热塑性聚氨酯。
作为上述更优选的实施方案的更进一步优选,所述的高分子量聚氨酯的分子量M w为8×10 4~5×10 5,低分子量聚氨酯的分子量M w为2×10 4~2.5×10 5
高硬度热塑性聚合物弹性体的邵氏硬度为80A~75D低硬度热塑性聚合物弹性体的邵氏硬度为30~85A;
聚酯或聚酰胺分别为改性低熔点聚酯或改性低熔点聚酰胺,并控制支撑骨架聚合物材料和耐压回弹聚合物材料的熔点差在20℃内。更优选的,改性低熔点聚酯可以选择如改性PET、PTT、PBT等,改性低熔点聚酰胺可以如低熔点改性的PA6、PA6I、PA11、PA12、PA9等。
作为优选的技术方案,所述的环保可降解有机全氟材料为选自3M公司的PM-870功能性母粒。
作为优选的技术方案,所述的成核剂选自碳纳米管、二氧化硅、滑石粉、改性碳酸钙、炭黑或四氟乙烯粉剂中的至少一种;
所述的发泡剂选自CO 2、N 2、正丁烷、正戊烷或异戊烷中的至少一种。
上述目的之一降解防污热塑性微气囊聚合物弹性体材料可以采用常规的发泡工艺发泡制得,本发明的目的之二还在于提供了上述目的一的可降解防污热塑性微气囊聚合物弹性体材料的制备方法,可优选包括以下步骤:
(1)将聚合物原料、成核剂和环保可降解有机全氟材料从双螺杆挤塑机前端加料口喂入,发泡剂从双螺杆挤塑机中段加料口喂入,使各原料热熔混合充分后,再进入静态混合器进一步均质化,接着再经熔体泵控压和定量输送;
(2)被熔体泵送出的热熔体通过模头进入水下切粒室切粒,并由工艺水带出分离,所得颗粒筛选干燥后即形成目的产品。
作为上述优选的技术方案的更优选,步骤(1)中双螺杆挤塑机的温度为160~300℃,双螺杆挤出机长径比为32-56;
静态混合器内的温度设定为120-260℃,熔体泵的入口压力为50-200bar,并控制经模头挤出的热熔体压力与水下切粒室中工艺水的压力之差为70-120bar。
作为上述优选的技术方案的更优选,步骤(2)中水下切粒室中的工艺水温度为10-90℃,压力为4-20bar;
切粒被工艺水带出时,经过压力逐级降低的多级释压膨胀工艺水管线输送。
作为上述更优选的实施方案的进一步优选,步骤(2)中多级释压膨胀工艺水管线为四级工艺水管线,其中,第一级工艺水管线的水压力保持与进入水下切粒室的工艺水压力一致。更进一步优选的,步骤(2)中多级释压膨胀工艺水管线为四级工艺水管线,其中,第一级工艺水管线的水压为4-20bar,第二级工艺水管线的水压为3-10bar,第三级工艺水管线的水压为2-6bar,第四级工艺水管线的水压为1-4bar。
上述更进一步优选的,上述制备过程中,双螺杆挤塑机在电机的驱动下使双螺杆挤塑机在50~900rpm转速运行,挤塑机的螺筒设定温度160~300℃确保热塑性聚合物能充分热熔,聚合物原料、成核剂和环保可降解有机全氟材料从前端螺杆加料口喂入,发泡剂从中段的螺杆加料口喂入。混合后在挤塑机加热以及螺杆的剪切力下,各材料被热融并在螺杆混合充分后进入静态混合器,熔体在静态混合器中进行深一步均质化和冷却确保熔体温度在120~260℃之间,可依照成品物性要求可控。通过熔体泵的控压和定量输送作用,设定熔体泵的入口压力在50~200bar之间控制挤塑机螺膛内熔体压力稳定,使混合发泡剂和成核剂的热熔体中在可控的高压环境中充分混合和均化。通过熔体泵控压和定量输送功能将高压热熔体稳定的推入挤塑机模头,模头为多孔的孔板结构,其内部含均匀加热设施确保热熔体能稳定通过模头。被熔体泵高压送出的热熔体通过模头的各个孔在水下切粒室被高速旋转的切粒刀切成豆粒状颗粒,水下切粒室的切粒刀实际是在水下分切热熔体。10~90℃的工艺水在工艺水泵的作用下产生6~20bar的压力通过切粒水室的工艺水进水管进入水下切粒室这样高压热熔体在高压工艺水下被快速冷却并被切粒刀切成粒状。由于高压热熔体与高压工艺水之间存在压差,而且这种压差可以通过熔体泵的进口压力和变频工艺水泵压力来调整,使得整个工艺中被切成粒状的聚合物初始膨胀速率和倍率可控和稳定。因为刚切下的粒状聚合物的冷却时间短和不同配方中 材料结晶速度的差异很大,在本工艺中特别设计了多级释压膨胀工艺水管线,利用粒状聚合物的外表皮在工艺水中停留时间越长强度越高,承压条件越高的原理,在第一级工艺水管线中仍然维持4-20bar的水压,此时粒状熔体部分冷却并在压差存在的条件下初步膨胀。在第二级工艺水管线中通过管线直径的变大和变短将水压降至3~10bar,此时粒状熔体进一步冷却外表面强度上升但压差变大后也会再膨胀。在第三级工艺水管线中通过管线直径的变大和变短降低管阻将水压降至2~6bar,此时粒状熔体再次冷却,外表面强度继续上升但压差变大后也再次膨胀但由于颗粒结晶快要完成所以膨胀速率降至很低。在第四级工艺水管线中还是通过管线直径和长度调整来降低管阻将水压降至1~4bar,此时粒状熔体继续冷却,外表面强度进一步上升但压差仍在变大后也还会膨胀但因为冷却时间足够颗粒外表皮强度已很高并且粒子也基本结晶完成使颗粒外径定型稳固。粒状膨化后的聚合物与水共同进入离心式分离机中,在这里水和膨化的粒子分离,膨胀后的粒子进入振动筛进入后处理系统,工艺水从离心式分离机中流出进入工艺水箱。如此反复,使工艺连续进行。
本发明中所涉及的高分子量聚合物与低分子量聚合物、高硬度聚合物与低硬度聚合物、高结晶聚合物与低结晶至无定形态聚合物、高极性聚合物与低级性或无极性聚合物等组合中的高分子量与低分子量等是由物性不同的两种聚合物材料对比来进行区分的,即不同物性的两种聚合物原料,分子量较高的即定义为高分子量聚合物,分子量较低的则定义为低分子量聚合物,同理,高硬度和低硬度等也是类比定义的。更优选的,高分子量聚合物的分子量比低分子量聚合物至少大一倍以上;高硬度聚合物的硬度应比低硬度聚合物的差10A以上。
优选的,起回弹作用的耐压回弹聚合物材料应选择弹性体类聚合物材料,如TPU、橡胶、TPE等,起支撑作用的支撑骨架聚合物材料可以为弹性体类聚合物材料,也可以选择非弹性体材料,如PET、PTT等。
本发明中若无特别说明,各原料以及涉及的工艺步骤可以采用任何本领域技术人员已知的原料或工艺技术。如热塑性聚氨酯可以采用由直接采用市售产品或根据已知的工艺技术自己制备。更优选的,热塑性聚氨酯可以根据产品需要选择如聚醚型热塑性聚氨酯或聚酯型热塑性聚氨酯。
本发明在制备时,通过对原料选择与配比优化来设计和控制膨化颗粒的内部微气囊大小、尺寸、密度,以及膨化颗粒内部和表皮开泡孔的形式、尺寸和密度,同 时,通过热熔融聚合物熔体在双螺杆挤塑机螺膛内的压力和出挤塑机的压力来控制气泡核膨胀,最后,通过熔体压力与工艺水压力差和工艺水缓释压力的方法来控制泡体固化定型。
本发明在原料上通过设计高分子量聚合物与低分子量聚合物、高硬度聚合物与低硬度聚合物、高结晶聚合物与低结晶至无定形态聚合物、高极性聚合物与低级性或无极性聚合物分别组合,然后共混热熔后加入发泡剂,接着在膨化工艺(优选本发明的可控的膨化工艺)下,利用发泡剂在不同物性聚合物原料中的发泡能力的差别,得到极微密闭气囊结构支撑组件与开口泡沫组件共同组成缠绕网状互穿气道结构复合膨化材料。其中,通过高分子量或高硬度或高结晶或高极性聚合物材料与发泡剂在成核剂的作用下形成的无数0.01~20微米的微小密闭气囊,并由这些微小密闭气囊在膨化材料中充当支撑组件,而低分子或低硬度或低结晶或低极性/无极性聚合物则与发泡剂形成极细微开口泡孔(非密闭孔),并与部分膨化组合成为耐压慢回弹组件,这些开口泡孔中在膨化材料中形成缠绕密闭微气囊的气道,且气道之间部分连通并延伸至膨化材料颗粒表面。这样,当膨化材料受到挤压时,支撑组件中的微小密闭气囊孔受挤压起到支撑效果,耐压慢回弹组件中的开口泡孔中的空气则迅速被挤压出去,赋予膨化材料良好的挤压柔软感,以及更好的支撑稳定性;而当挤压力消失时,微小密闭气囊则支撑膨化材料复位,外界空气随之被吸入开口泡孔中。整个材料整体能获得更好的缓冲回馈。
此外,本发明在制备过程中还可以利用不同的发泡剂在不同的聚合物材料中的渗透率差异,不同材料在不同压差中和熔体结晶速度导致的熔体强度的差异,不同聚合物膨化后物性变化以及物性保留的差异,从而控制膨化后的材料中微气囊大小与多少,以及开口泡孔大小,形状和多少来调整材料的物性达到满足不同下游用途和客户要求的目的。
本发明在制备过程中,当需要得到大开孔或开孔泡孔比例不足时,在恒定工艺水温度下,增加熔体增压泵入口压力,从而间接增加模头入口压力,并通过工艺水压力加速释压。当需要缩小开孔或开孔泡孔比例时,在恒定工艺水温度下,减小熔体增压泵入口压力,间接减小模头入口压力,并通过工艺水压力减缓释压。
与现有技术相比,本发明具有以下优点:
(1)本发明通过对热塑性聚合物弹性材料的原料配方进行设计,使本身具备高导电率的材料表面极性变小,进而提高材料的身防油、防污、防水性能,同时, 使得触感上升。本发明中,选择将改性的环保可降解型全氟材料在聚合物材料合成时分散加入,使该环保可降解型全氟材料可以充分分散在材料体系中,并在后续工艺中通过相分离来实现降低导电率和极性均匀分布。通过后续处理和膨化工艺使环保可降解型全氟材料能够形成离子趋向降低导电率和表面极性,从而改善膨化热塑性聚合物材料表面的防污,防油,防水和触感。
(2)本发明制得的热塑性聚合物材料可以广泛应用在鞋材和食品包装等领域。
(3)相比于一般的采用单物性聚合物原材料制成的密闭微孔的膨化材料,本发明采用两种不同物性聚合物组成聚合物原料,使其在膨化发泡过程中形成具有合适的微气囊结构和适度的开口泡孔形成缠绕网络气道互穿结构,这样,微气囊结构可以为材料提供很好的物理性能,如强度、弹性模量和回弹力等,而开口泡孔结构则可以提高材料的吸能储能性、接触感和舒适感。
(4)通过对配方的调整和工艺条件调整可以有效调节微气囊和开口泡孔的结构、开口形式以及密度、大小等,并可有效控制材料中的微气囊占体积的20~99.5%左右,开口泡孔占材料体积的0.5~80%左右。
(5)本发明的制备过程中可以通过控制双螺杆挤塑机中的热熔体的背压和水下切粒室的背压来稳定释压膨化的速度和倍率,达到精准控制材料膨胀倍率的要求。
(6)采用多级逐步释压的过程,可以灵活控制不同聚合物膨胀过程中破泡率的要求从而达到制造合适的复合膨化结构材料。
(7)本发明所制备的聚合物弹性体材料适用于鞋制品、包装、减震、保温、座椅、跑道、实心轮胎等发泡材料应用领域。
附图说明
图1为本发明的工艺流程图;
图2为本发明实施例1制得的材料内部的SEM照片;
图3为本发明实施例1制得的材料表面的SEM照片;
图中,1-电机,2-双螺杆挤塑机,3-喂料口一,4-喂料口二,5-静态混合器,6-熔体泵,7-模头,8-水下切粒室,9-工艺水进口管,10-工艺水一级释压管,11-工艺水二级释压管,12-工艺水三级释压管,13-工艺水四级释压管,14-离心式分离 机,15-振动筛,16-工艺水泵组件。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
有必要在此指出的是,以下实施方式与实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,该领域的专业技术人员根据上述本发明的内容做出的一些非本质的改进和调整,仍属于本发明的保护范围。
另外,如果没有其它说明,所用原料都是市售的。
参选以下本发明的优选实施方法的详述以及包括的实施例可更容易地理解本发明的内容。除非另有限定,本文使用的所有技术以及科学术语具有与本发明所属领域普通技术人员通常理解的相同的含义。当存在矛盾时,以本说明书中的定义为准。
如本文所用术语“由…制备”与“包含”同义。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1至5”时,所描述的范围应被解释为包括范围“1至4”、“1至3”、“1至2”、“1至2和4至5”、“1至3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
说明书和权利要求书中的近似用语用来修饰数量,表示本发明并不限定于该具体数量,还包括与该数量接近的可接受的而不会导致相关基本功能的改变的修正的部分。相应的,用“大约”、“约”等修饰一个数值,意为本发明不限于该精确数值。在某些例子中,近似用语可能对应于测量数值的仪器的精度。在本申请说明书和权利要求书中,范围限定可以组合和/或互换,如果没有另外说明这些范围包括其间所含有的所有子范围。
此外,本发明要素或组分前的不定冠词“一种”和“一个”对要素或组分的数量要求(即出现次数)无限制性。因此“一个”或“一种”应被解读为包括一个或至少一个, 并且单数形式的要素或组分也包括复数形式,除非所述数量明显旨指单数形式。
“聚合物”意指通过聚合相同或不同类型的单体所制备的聚合化合物。通用术语“聚合物”包含术语“均聚物”、“共聚物”、“三元共聚物”与“共聚体”。
一种可降解防污热塑性微气囊聚合物弹性体材料,包括以下重量百分比含量的组分:聚合物原料88-98%,成核剂0.05~0.5%,发泡剂0.4~2%,环保可降解有机全氟材料0.1~10%。
作为一种优选的技术方案,所述的聚合物原料由支撑骨架聚合物材料(60-95%)与耐压慢回弹聚合物材料(3-38%)组合而成,其中,所述的支撑骨架聚合物材料为高分子量、高硬度、高结晶或高极性聚合物材料,所述的耐压慢回弹聚合物材料为与支撑骨架聚合物材料相对应的低分子量、低硬度、低结晶至无定形态、低极性/无极性聚合物材料。
作为上述优选的实施方案的更优选,所述的支撑骨架聚合物材料为高分子量聚氨酯,其对应的耐压慢回弹聚合物材料为低分子量聚氨酯;
或所述的支撑骨架聚合物材料为高硬度热塑性聚合物弹性体(可以根据实际情况选择如TPU、TPE或橡胶等),其对应的耐压慢回弹聚合物材料为低硬度热塑性聚合物弹性体;
或所述的支撑骨架聚合物材料为聚酰胺或聚酯,其对应的耐压慢回弹聚合物材料为热塑性聚氨酯。
作为上述更优选的实施方案的更进一步优选,所述的高分子量聚氨酯的分子量M w为8×10 4~5×10 5,低分子量聚氨酯的分子量M w为2×10 4~2.5×10 5
高硬度热塑性聚合物弹性体的邵氏硬度为80A~75D低硬度热塑性聚合物弹性体的邵氏硬度为30~85A;
聚酯或聚酰胺分别为改性低熔点聚酯或改性低熔点聚酰胺,并控制支撑骨架聚合物材料和耐压回弹聚合物材料的熔点差在20℃内。更优选的,改性低熔点聚酯可以选择如改性PET、PTT、PBT等,改性低熔点聚酰胺可以如低熔点改性的PA6、PA6I、PA11、PA12、PA9等。
作为优选的技术方案,所述的环保可降解有机全氟材料选自3M公司的PM-870功能性母粒。
作为优选的技术方案,所述的成核剂选自碳纳米管、二氧化硅、滑石粉、改性碳酸钙、炭黑或四氟乙烯粉剂中的至少一种;
所述的发泡剂选自CO 2、N 2、正丁烷、正戊烷或异戊烷中的至少一种。
可降解防污热塑性微气囊聚合物弹性体材料的制备方法,可优选包括以下步骤:
(1)将聚合物原料、成核剂和环保可降解有机全氟材料从双螺杆挤塑机前端加料口喂入,发泡剂从双螺杆挤塑机中段加料口喂入,使各原料热熔混合充分后,再进入静态混合器进一步均质化,接着再经熔体泵控压和定量输送;
(2)被熔体泵送出的热熔体通过模头进入水下切粒室切粒,并由工艺水带出分离,所得颗粒筛选干燥后即形成目的产品。
作为上述优选的技术方案的更优选,步骤(1)中双螺杆挤塑机的温度为160~300℃,双螺杆挤出机长径比为32-56;
静态混合器内的温度设定为120-260℃,熔体泵的入口压力满足:经模头挤出的热熔体压力与水下切粒室中工艺水的压力之差为70-120bar。
作为上述优选的技术方案的更优选,步骤(2)中水下切粒室中的工艺水温度为10-90℃,压力为4-20bar;
切粒被工艺水带出时,经过压力逐级降低的多级释压膨胀工艺水管线输送。
作为上述更优选的技术方案的进一步优选,步骤(2)中多级释压膨胀工艺水管线为四级工艺水管线,其中,第一级工艺水管线的水压为4-20bar,第二级工艺水管线的水压为3-10bar,第三级工艺水管线的水压为2-6bar,第四级工艺水管线的水压为1-4bar。
更优选的,上述制备过程的详细说明可见附图1,双螺杆挤塑机2在电机1的驱动下以50~900rpm转速运行,双螺杆挤塑机2的螺筒设定温度160~300℃确保热塑性聚合物能充分热熔,聚合物原料和成核剂从前端的喂料口一3喂入,发泡剂从中段的喂料口二4喂入。混合后在加热以及螺杆的剪切力下,各原料被热融并在螺杆混合充分后进入静态混合器5,熔体在静态混合器5中进行深一步均质化和冷却确保熔体温度在120~280℃之间,具体可依照成品物性要求可控。通过熔体泵6(可采用齿轮泵等)的控压和定量输送作用,设定熔体泵6的入口压力在50~200bar之间,控制双螺杆挤塑机2螺膛内熔体压力稳定,使混合发泡剂和成核剂的热熔体中在可控的高压环境中充分混合和均化。通过熔体泵6控压和定量输送功能将高压热熔体稳定的推入挤塑机的模头7,模头7为多孔的孔板结构,其内部含均匀加热设施确保热熔体能稳定通过模头7。被熔体泵6高压送出的热熔体通过模头 7的各个孔在水下切粒室8被高速旋转的切粒刀切成豆粒状颗粒,水下切粒室8的切粒刀实际是在水下分切热熔体。10~90℃的工艺水在工艺水泵组件16(包含水泵和水箱等)的作用下产生4~15bar的压力,并通过工艺水进水管9进入水下切粒室8。这样从模头7处挤出的高压热熔体在高压的工艺水下被快速冷却并被切粒刀切成粒状。由于高压热熔体与高压工艺水之间存在压差,而且这种压差可以通过熔体泵6的进口压力和工艺水泵组件16的输送压力来调整,使得整个工艺中被切成粒状的聚合物初始膨胀速率和倍率可控和稳定。因为刚切下的粒状聚合物的冷却时间短和不同配方中材料结晶速度的差异很大,在本工艺中特别设计了多级释压膨胀工艺水管线(此处优选四级),利用粒状聚合物的外表皮在工艺水中停留时间越长强度越高,承压条件越高的原理,在第一级工艺水管线(即工艺水一级释压管10)中仍然维持4~15bar的水压,此时粒状熔体部分冷却并在压差存在的条件下初步膨胀。在第二级工艺水管线(即工艺水二级释压管11)中通过管线直径的变大和变短将水压降至3~10bar,此时粒状熔体进一步冷却外表面强度上升但压差变大后也会再膨胀。在第三级工艺水管线(即工艺水三级释压管12)中通过管线直径的变大和变短降低管阻将水压降至2~6bar,此时粒状熔体再次冷却,外表面强度继续上升但压差变大后也再次膨胀但由于颗粒结晶快要完成所以膨胀速率降至很低。在第四级工艺水管线(即工艺水四级释压管13)中还是通过管线直径和长度调整来降低管阻将水压降至1~4bar,此时粒状熔体继续冷却,外表面强度进一步上升但压差仍在变大后也还会膨胀但因为冷却时间足够颗粒外表皮强度已很高并且粒子也基本结晶完成使颗粒外径定型稳固。粒状膨化后的聚合物与水共同进入离心式分离机14中,在这里水和膨化后粒子产品分离,膨胀后的粒子进入振动筛15进入后处理系统并生成膨化成品输出,工艺水从离心式分离机14中流出进入工艺水泵组件16。如此反复,使工艺连续进行。
此外,需要指出的,上述公开的仅是本发明的一个基础配方,在本发明公开的基础配方的基础上,本领域技术人员可以根据实际需要往其中添加其余常规的助剂,如添加抗氧化剂和抗老化剂等提高产品的抗老化性能。
下述各实施例中,所采用的聚醚型热塑性聚氨酯来源于拜尔、亨斯迈等厂家;所采用的聚酯型热塑性聚氨酯来源于拜尔、亨斯迈等厂家;所采用的改性低熔点聚酯PET来源于金山石化等;所采用的改性低熔点聚酰胺来源于杜邦、赢创等公司;所采用的PBT来源于金山石化等公司。
实施例1
根据上述如图1的工艺流程按照以下原料配方与工艺条件来制备本发明的热塑性微气囊聚合物弹性体材料:
其中,分子量M w在150K~300K(此处的K表示单位千)的聚醚型热塑性聚氨酯,加入比例75%(重量百分数,下同),分子量M w在50K~100K的聚醚热塑性聚氨酯,加入比例20%,环保可降解有机全氟材料的加入量为2.5%,发泡剂为CO 2,加入量2%,成核剂为碳酸钙,加入量为0.5%。双螺杆挤塑机长径比L/D=40,螺杆加热温度160-220℃,静态混合器温度140-180℃,熔体泵入口压力100-150bar,工艺水压力12bar左右,刚进入水下切粒室中的工艺水温度为30℃,控制释压压差(即模头出口的高压热熔体与水下切粒室中的工艺水的压力差)100-150bar。多级释压膨胀工艺水管线中,第一级工艺水管线中的水压控制为12bar左右,第二级工艺水管线中的水压控制为8bar左右,第三级工艺水管线中的水压为5bar左右,第四级工艺水管线中的水压控制为2bar左右。
产品颗粒的SEM图片如图2和图3所示,可以知道,材料颗粒内部有很明显的微气囊结构和开口泡孔形成的缠绕网络气道互穿结构,且部分气道互穿结构还延伸至材料颗粒表面。同时,产品经滴水测试后,防水防油测试均达到5级,洒水测试为90分(日本工业标准JIS)。
实施例2
根据上述如图1的工艺流程按照以下原料配方与工艺条件来制备本发明的热塑性微气囊聚合物弹性体材料:
其中,分子量M w在300K~500K的聚醚型热塑性聚氨酯,加入比例70%(重量百分数,下同),分子量M w在150K~250K的聚醚热塑性聚氨酯,加入比例18.1%,环保可降解有机全氟材料的加入量为10%,发泡剂为N 2,加入量1.4%,成核剂为炭黑,加入量为0.5%。双螺杆挤塑机长径比L/D=56,螺杆加热温度160-220℃,静态混合器温度140-180℃,熔体泵入口压力100-150bar,工艺水压力6bar左右,刚进入水下切粒室的工艺水温度控制为60℃,控制释压压差(即模头出口的高压热熔体与水下切粒室中的工艺水的压力差)90-150bar。多级释压膨胀工艺水管线中,第一级工艺水管线中的水压控制为6bar左右,第二级工艺水管线中的水压控制为5bar左右,第三级工艺水管线中的水压为3bar左右,第四级工艺水管线中的 水压控制为1bar左右。
产品经滴水测试后,防水防油测试均达到5级,洒水测试为90分(日本工业标准JIS)。
实施例3
根据上述如图1的工艺流程按照以下原料配方与工艺条件来制备本发明的热塑性微气囊聚合物弹性体材料:
其中,分子量M w在80K~120K的聚醚型热塑性聚氨酯,加入比例90%(重量百分数,下同),分子量M w在20K~50K的聚醚热塑性聚氨酯,加入比例9%,环保可降解有机全氟材料的加入量为0.1%,发泡剂为N 2,加入量0.4%,成核剂为滑石粉与改性碳酸钙按质量比1:1的混合物,加入量为0.5%。双螺杆挤塑机长径比L/D=38,螺杆加热温度160-220℃,静态混合器温度130-170℃,熔体泵入口压力100-150bar,工艺水压力15bar左右,刚进入水下切粒室的工艺水温度为40℃左右,控制释压压差(即模头出口的高压热熔体与水下切粒室中的工艺水的压力差)90-140bar。多级释压膨胀工艺水管线中,第一级工艺水管线中的水压控制为15bar左右,第二级工艺水管线中的水压控制为10bar左右,第三级工艺水管线中的水压为6bar左右,第四级工艺水管线中的水压控制为4bar左右。
产品经滴水测试后,防水防油测试均达到5级,洒水测试为90分(日本工业标准JIS)。
实施例4
根据上述如图1的工艺流程按照以下原料配方与工艺条件来制备本发明的热塑性微气囊聚合物弹性体材料:
其中,分子量M w在80K~120K的聚醚型热塑性聚氨酯,加入比例65%(重量百分数,下同),分子量M w在20K~50K的聚醚热塑性聚氨酯,加入比例25%,环保可降解有机全氟材料的加入量为8%,发泡剂为N 2,加入量1.8%,成核剂为碳纳米管,加入量为0.2%。双螺杆挤塑机长径比L/D=52,螺杆加热温度160-220℃,静态混合器温度140-180℃,熔体泵入口压力100-150bar,工艺水压力10bar左右,刚进入水下切粒室的工艺水温度为30℃左右,控制释压压差(即模头出口的高压热熔体与水下切粒室中的工艺水的压力差)90-150bar。多级释压膨胀工艺水管线 中,第一级工艺水管线中的水压控制为10bar左右,第二级工艺水管线中的水压控制为7bar左右,第三级工艺水管线中的水压为4bar左右,第四级工艺水管线中的水压控制为2bar左右。
产品经滴水测试后,防水防油测试均达到5级,洒水测试为90分(日本工业标准JIS)。
实施例5
根据上述如图1的工艺流程按照以下原料配方与工艺条件来制备本发明的热塑性微气囊聚合物弹性体材料:
其中,分子量M w在120K~180K(此处的K表示单位千,请确认)的聚醚型热塑性聚氨酯,加入比例95%(重量百分数,下同),分子量M w在20K~50K的聚醚热塑性聚氨酯,加入比例3%,环保可降解有机全氟材料的加入量为1%,发泡剂为体积比1:1加入的CO 2与N 2,加入量0.8%,成核剂为碳酸钙与四氟乙烯粉剂按质量比1:1的混合物,加入量为0.2%。双螺杆挤塑机长径比L/D=40,螺杆加热温度180-20℃,静态混合器温度160-200℃,熔体泵入口压力100-150bar,工艺水压力10bar左右,刚进入水下切粒室的温度为50℃左右,控制释压压差(即模头出口的高压热熔体与水下切粒室中的工艺水的压力差)100-150bar。多级释压膨胀工艺水管线中,第一级工艺水管线中的水压控制4为10bar左右,第二级工艺水管线中的水压控制为7bar左右,第三级工艺水管线中的水压为4bar左右,第四级工艺水管线中的水压控制为2bar左右。
产品经滴水测试后,防水防油测试均达到5级,洒水测试为90分(日本工业标准JIS)。
实施例6
与实施例1相比,绝大部分都相同,除了原材料配方替换为:
分子量M w在200K~300K(此处的K表示单位千,请确认)的聚酯型热塑性聚氨酯,加入比例80%(重量百分数,下同),分子量M w在50K~100K的聚酯型热塑性聚氨酯,加入比例15.9%,环保可降解有机全氟材料的加入量为3%,发泡剂为体积比1:1加入的CO 2与N 2,加入量0.8%,成核剂为碳酸钙与四氟乙烯粉剂按质量比1:1的混合物,加入量为0.3%。
实施例7
根据上述如图1的工艺流程按照以下原料配方与工艺条件来制备本发明的热塑性微气囊聚合物弹性体材料:
邵氏硬度80A的聚酯型热塑性聚氨酯加入量为80%(重量百分数,下同),邵氏硬度为30A的聚酯型热塑性聚氨酯加入量为19.2%,环保可降解有机全氟材料的加入量为0.2%,发泡剂选用CO 2与N 2按重量比1:1的混合,其总加入量为0.4%,成核剂选用碳纳米管、滑石粉和碳酸钙的混合,总加入量为0.2%。
双螺杆挤塑机长径比L/D=40,螺杆加热温度220℃,静态混合器温度180℃,熔体泵入口压力100bar,工艺水压力15bar左右,刚进入水下切粒室的工艺水温度为60℃左右,控制释压压差(即模头出口的高压热熔体与水下切粒室中的工艺水的压力差)95bar。多级释压膨胀工艺水管线中,第一级工艺水管线中的水压控制为15bar左右,第二级工艺水管线中的水压控制为7bar左右,第三级工艺水管线中的水压为4bar左右,第四级工艺水管线中的水压控制为2bar左右。
实施例8
与实施例7相比,绝大部分都相同,除了原材料配方替换为:
邵氏硬度85D的聚酯型热塑性聚氨酯加入量为60%(重量百分数,下同),邵氏硬度为85A的聚酯型热塑性聚氨酯加入量为25%,环保可降解有机全氟材料的加入量为5%,发泡剂选用CO 2与N 2按重量比1:1的混合,其总加入量为1%,成核剂选用碳纳米管、滑石粉和碳酸钙的混合,总加入量为9%。
实施例9
与实施例7相比,绝大部分都相同,除了原材料配方中高硬度聚酯型热塑性聚氨酯的邵氏硬度替换为90A,低硬度聚酯型热塑性聚氨酯的邵氏硬度替换为50A。
实施例10
根据上述如图1的工艺流程按照以下原料配方与工艺条件来制备本发明的热塑性微气囊聚合物弹性体材料:
其中,改性低熔点聚酯PET加入比例60%(重量百分数,下同),聚酯型聚氨 酯加入比例37%,环保可降解有机全氟材料的加入量为2%,成核剂为炭黑,加入量为0.4%,发泡剂为CO 2与N 2的混合,其加入量为0.6%。
双螺杆挤塑机长径比L/D=40,螺杆加热温度220-280℃,静态混合器温度180-250℃,熔体泵入口压力100-150bar,工艺水压力20bar左右,刚进入水下切粒室的工艺水温度为90℃左右,控制释压压差(即模头出口的高压热熔体与水下切粒室中的工艺水的压力差)150-180bar。多级释压膨胀工艺水管线中,第一级工艺水管线中的水压控制为20bar左右,第二级工艺水管线中的水压控制为12bar左右,第三级工艺水管线中的水压为8bar左右,第四级工艺水管线中的水压控制为4bar左右。
实施例11
与实施例10相比,除了螺杆加热温度260℃,静态混合器温度240℃外,其余均一样。
实施例12
与实施例10相比,除了将改性低熔点聚酯PET替换为改性低熔点聚酰胺(PA)外,其余均一样。
实施例13
与实施例12相比,除了螺杆加热温度300℃,静态混合器温度260℃外,其余均一样。
实施例14
与实施例12相比,除了螺杆加热温度240℃,静态混合器温度230℃外,其余均一样。
实施例15
与实施例1相比,除了将发泡剂改为正丁烷外,其余均一样。
实施例16
与实施例1相比,除了将发泡剂改为正戊烷外,其余均一样。
实施例17
与实施例1相比,除了将发泡剂改为异戊烷外,其余均一样。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种可降解防污热塑性微气囊聚合物弹性体材料,其特征在于,包括以下重量百分比含量的组分:聚合物原料88~98%,成核剂0.05~0.5%,发泡剂0.4~2%,环保可降解有机全氟材料0.1~10%。
  2. 根据权利要求1所述的一种可降解防污热塑性微气囊聚合物弹性体材料,其特征在于,所述的聚合物原料由支撑骨架聚合物材料与耐压慢回弹聚合物材料组合而成,其中,支撑骨架聚合物材料为高分子量、高硬度、高结晶或高极性聚合物材料,耐压慢回弹聚合物材料为与支撑骨架聚合物材料相对应的低分子量、低硬度、低结晶至无定形态、低极性至无极性聚合物材料。
  3. 根据权利要求2所述的一种可降解防污热塑性微气囊聚合物弹性体材料,其特征在于,所述的支撑骨架聚合物材料为高分子量热塑性聚氨酯,其对应的耐压回弹聚合物材料为低分子量热塑性聚氨酯;
    或所述的支撑骨架聚合物材料为高硬度热塑性聚合物弹性体,其对应的耐压慢回弹聚合物材料为低硬度热塑性聚合物弹性体;
    或所述的支撑骨架聚合物材料为聚酰胺或聚酯,其对应的耐压慢回弹聚合物材料为热塑性聚氨酯。
  4. 根据权利要求3所述的一种可降解防污热塑性微气囊聚合物弹性体材料,其特征在于,所述的高分子量聚氨酯的分子量M w为8×10 4~5×10 5,低分子量聚氨酯的分子量M w为2×10 4~2.5×10 5
    高硬度热塑性聚合物弹性体的邵氏硬度为80A~75D,低硬度热塑性聚合物弹性体的邵氏硬度为30~85A;
    聚酯或聚酰胺分别为改性低熔点聚酯或改性低熔点聚酰胺,并控制支撑骨架聚合物材料和耐压回弹聚合物材料的熔点差在20℃内。
  5. 根据权利要求1所述的一种可降解防污热塑性微气囊聚合物弹性体材料,其特征在于,所述的环保可降解有机全氟材料选自3M公司的PM-870功能性母粒。
  6. 根据权利要求1所述的一种可降解防污热塑性微气囊聚合物弹性体材料,其特征在于,所述的成核剂选自碳纳米管、二氧化硅、滑石粉、改性碳酸钙、炭黑或四氟乙烯粉剂中的至少一种;
    所述的发泡剂选自CO 2、N 2、正丁烷、正戊烷或异戊烷中的至少一种。
  7. 如权利要求1-6任一所述的可降解防污热塑性微气囊聚合物弹性体材料的制备方法,其特征在于,包括以下步骤:
    (1)将聚合物原料、成核剂和环保可降解有机全氟材料从双螺杆挤塑机前端加料口喂入,发泡剂从双螺杆挤塑机中段加料口喂入,使各原料热熔混合充分后,再进入静态混合器进一步均质化,接着再经熔体泵控压和定量输送;
    (2)被熔体泵送出的热熔体通过模头进入水下切粒室切粒,并由工艺水带出分离,所得颗粒筛选干燥后即形成目的产品。
  8. 根据权利要求7所述的一种热塑性微气囊聚合物弹性体材料的制备方法,其特征在于,步骤(1)中双螺杆挤塑机的温度为160~300℃,双螺杆挤出机长径比为32-56;
    静态混合器内的温度设定为120-260℃,熔体泵的入口压力50-200bar,并同时控制经模头挤出的热熔体压力与水下切粒室中工艺水的压力之差为70-120bar。
  9. 根据权利要求7所述的一种热塑性微气囊聚合物弹性体材料的制备方法,其特征在于,步骤(2)中水下切粒室中的工艺水温度为10-90℃,压力为4-20bar;
    切粒被工艺水带出时,经过压力逐级降低的多级释压膨胀工艺水管线输送。
  10. 根据权利要求9所述的一种热塑性微气囊聚合物弹性体材料的制备方法,其特征在于,步骤(2)中多级释压膨胀工艺水管线为多级工艺水管线,其中,第一级工艺水管线的水压力保持与进入水下切粒室的工艺水压力一致。
PCT/CN2018/088920 2017-08-04 2018-05-30 一种可降解防污热塑性微气囊聚合物弹性体材料及其制备 WO2019024588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710660143.9A CN107446343B (zh) 2017-08-04 2017-08-04 一种可降解防污热塑性微气囊聚合物弹性体材料及其制备
CN201710660143.9 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024588A1 true WO2019024588A1 (zh) 2019-02-07

Family

ID=60489973

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/088920 WO2019024588A1 (zh) 2017-08-04 2018-05-30 一种可降解防污热塑性微气囊聚合物弹性体材料及其制备
PCT/CN2018/098027 WO2019024869A1 (zh) 2017-08-04 2018-08-01 可降解防污热塑性微气囊聚合物弹性体材料及其制备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098027 WO2019024869A1 (zh) 2017-08-04 2018-08-01 可降解防污热塑性微气囊聚合物弹性体材料及其制备

Country Status (2)

Country Link
CN (2) CN107446343B (zh)
WO (2) WO2019024588A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109438969B (zh) * 2017-08-04 2021-06-08 南通德亿新材料有限公司 微粒径热塑性微气囊聚氨酯弹性体材料及其制备方法
CN107446343B (zh) * 2017-08-04 2019-03-08 南通德亿新材料有限公司 一种可降解防污热塑性微气囊聚合物弹性体材料及其制备
CN109354861B (zh) * 2017-08-04 2021-06-08 南通德亿新材料有限公司 热塑性微气囊聚合物弹性体材料及其制备方法
CN107746570A (zh) * 2017-09-26 2018-03-02 上海德亿化工有限公司 一种聚酰胺发泡材料其制备方法
CN107722602A (zh) * 2017-09-26 2018-02-23 上海德亿化工有限公司 记忆性多点正向反馈回弹材料的发泡型材及其制备方法
CN108864662B (zh) * 2018-07-25 2020-10-13 南通德亿新材料有限公司 一种热塑性聚醚酯弹性体发泡材料及其制备方法
CN109228003B (zh) * 2018-09-19 2021-03-16 福建鑫瑞新材料科技有限公司 一种利用超临界混合流体挤出发泡制备低密度聚合物泡沫珠粒的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138621A1 (en) * 1998-12-24 2003-07-24 Heinrich Bollmann Composite elements comprising (i) thermoplastic polyurethanes and (ii) microcellular polyurethane elastomers
CN102276785A (zh) * 2011-07-12 2011-12-14 山东奥邦聚氨酯有限公司 低密度发泡热塑性聚氨酯弹性体及其制备工艺
CN103709726A (zh) * 2013-12-17 2014-04-09 烟台开发区新龙华包装材料有限公司 挤出发泡热塑性聚氨酯弹性体珠粒及其制备方法
CN103804890A (zh) * 2014-02-18 2014-05-21 山东美瑞新材料有限公司 一种挤出发泡热塑性聚氨酯弹性体粒子及其制备方法
CN103804889A (zh) * 2014-02-18 2014-05-21 山东美瑞新材料有限公司 一种发泡热塑性聚氨酯粒子及其制备方法和应用
CN104364304A (zh) * 2012-04-13 2015-02-18 巴斯夫欧洲公司 膨化颗粒的制备
CN107446343A (zh) * 2017-08-04 2017-12-08 南通德亿新材料有限公司 一种可降解防污热塑性微气囊聚合物弹性体材料及其制备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823626B4 (de) * 1998-05-27 2007-01-11 Dupont Dow Elastomers L.L.C., Wilmington Teilvernetzter, thermoplastischer Polymerwerkstoff
CA2699932A1 (en) * 2007-09-19 2009-03-26 Delphine Leclerc Highly damping expandable material and devices
CN101245159A (zh) * 2008-03-28 2008-08-20 天津市润达塑料包装有限公司 一种聚烯烃发泡颗粒料的制造方法
CN102056967B (zh) * 2008-06-12 2014-02-05 3A科技和管理有限公司 发泡的聚酯及其制备方法
BR112015031074B8 (pt) * 2013-06-13 2021-02-23 Basf Se processo para produzir péletes expandidos
EP3033208A4 (en) * 2013-08-16 2017-07-05 Berry Plastics Corp. Polymeric material for an insulated container
CN104231592B (zh) * 2014-09-12 2017-02-15 美瑞新材料股份有限公司 一种发泡型热塑性聚氨酯粒子及其制备方法
CN104974370B (zh) * 2015-01-19 2017-05-31 常州市顺祥新材料科技有限公司 一种热塑性聚氨酯珠粒的制备方法及该珠粒成型工艺
CN104877335B (zh) * 2015-05-06 2018-06-19 丁钰 一种热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN105218851A (zh) * 2015-09-08 2016-01-06 宁波大学 一种制备聚合物开孔发泡材料的方法
CN106084447B (zh) * 2016-05-13 2018-08-14 宁波大学 一种热塑性高分子组合物发泡开孔材料及其制备方法
CN106084448B (zh) * 2016-05-13 2018-08-17 宁波大学 一种热塑性高分子组合物互穿网络结构及其制备方法
CN106541508B (zh) * 2016-08-19 2018-09-25 浙江佳阳塑胶新材料有限公司 一种吸热型发泡剂结合超临界氮气制备发泡珠粒的方法
CN109354861B (zh) * 2017-08-04 2021-06-08 南通德亿新材料有限公司 热塑性微气囊聚合物弹性体材料及其制备方法
CN109438969B (zh) * 2017-08-04 2021-06-08 南通德亿新材料有限公司 微粒径热塑性微气囊聚氨酯弹性体材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030138621A1 (en) * 1998-12-24 2003-07-24 Heinrich Bollmann Composite elements comprising (i) thermoplastic polyurethanes and (ii) microcellular polyurethane elastomers
CN102276785A (zh) * 2011-07-12 2011-12-14 山东奥邦聚氨酯有限公司 低密度发泡热塑性聚氨酯弹性体及其制备工艺
CN104364304A (zh) * 2012-04-13 2015-02-18 巴斯夫欧洲公司 膨化颗粒的制备
CN103709726A (zh) * 2013-12-17 2014-04-09 烟台开发区新龙华包装材料有限公司 挤出发泡热塑性聚氨酯弹性体珠粒及其制备方法
CN103804890A (zh) * 2014-02-18 2014-05-21 山东美瑞新材料有限公司 一种挤出发泡热塑性聚氨酯弹性体粒子及其制备方法
CN103804889A (zh) * 2014-02-18 2014-05-21 山东美瑞新材料有限公司 一种发泡热塑性聚氨酯粒子及其制备方法和应用
CN107446343A (zh) * 2017-08-04 2017-12-08 南通德亿新材料有限公司 一种可降解防污热塑性微气囊聚合物弹性体材料及其制备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, J. ET. AL.: "Development and Application of Healthy Textile", 30 November 2005 (2005-11-30), pages 246 *

Also Published As

Publication number Publication date
CN107446343B (zh) 2019-03-08
CN109320951B (zh) 2021-06-08
WO2019024869A1 (zh) 2019-02-07
CN107446343A (zh) 2017-12-08
CN109320951A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2019024588A1 (zh) 一种可降解防污热塑性微气囊聚合物弹性体材料及其制备
WO2019024587A1 (zh) 一种热塑性微气囊聚合物弹性体材料及其制备方法
WO2019024870A1 (zh) 微粒径热塑性微气囊聚氨酯弹性体材料及其制备
WO2019024589A1 (zh) 一种热塑性聚氨酯微气囊弹性体材料的制备方法
Zhai et al. A review on physical foaming of thermoplastic and vulcanized elastomers
CN111253677B (zh) 一种低密度聚丙烯珠粒泡沫、其制备方法及应用
WO2019105159A1 (zh) 体温/室温下塑形的热塑弹性形状记忆材料
US8779017B2 (en) Foam and production method of the same
CN104877335A (zh) 一种热塑性聚氨酯弹性体发泡珠粒及其制备方法
JP2005528494A5 (zh)
CN106883490A (zh) 微发泡母粒及其制备方法以及冰箱发泡板
CN111844677A (zh) 一种多层发泡再生塑料及其制备方法
CN104877162B (zh) 原位微纤化聚丙烯系树脂复合发泡颗粒及其应用
JPH0890556A (ja) オレフィン系樹脂粒子及び予備発泡粒子の製造方法
CN104072880A (zh) 一种tpo发泡微球的制备方法以及应用
CN109912978B (zh) 橡胶发泡珠粒与橡胶泡沫制品的制备方法
CN107383636A (zh) 一种低导热系数发泡粒子及其制备方法
JP2002302567A (ja) 生分解性を有するポリエステル系樹脂予備発泡粒子の連続製造方法
CN112552603A (zh) 一种持续香味型聚丙烯复合材料及其制备方法和应用
CN104163982A (zh) 一种环保发泡聚丙烯材料及其制备方法
CN114350051A (zh) 一种发泡料粒、其制备方法、应用、冰箱门封条及冰箱
JPH06136176A (ja) 発泡性熱可塑性樹脂粒子の製造法
JPH06298983A (ja) 発泡性熱可塑性樹脂粒子の製造法
CN113845736B (zh) 一种tpv发泡料及高发泡倍率、高形状自由度的超轻质tpv发泡制品
CN112745682B (zh) 热塑性弹性体组合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841311

Country of ref document: EP

Kind code of ref document: A1