WO2019024211A1 - 投影系统 - Google Patents

投影系统 Download PDF

Info

Publication number
WO2019024211A1
WO2019024211A1 PCT/CN2017/103656 CN2017103656W WO2019024211A1 WO 2019024211 A1 WO2019024211 A1 WO 2019024211A1 CN 2017103656 W CN2017103656 W CN 2017103656W WO 2019024211 A1 WO2019024211 A1 WO 2019024211A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
primary color
homogenizing
modulator
Prior art date
Application number
PCT/CN2017/103656
Other languages
English (en)
French (fr)
Inventor
陈红运
张宝英
郭祖强
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710661535.7A external-priority patent/CN109388004B/zh
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2019024211A1 publication Critical patent/WO2019024211A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a projection system.
  • Projection systems are widely used in theaters, education, television, etc.
  • Projection systems can be classified into DMDs according to the type of optical modulators they use (Digital Micromirror) Device), LCOS (Liquid Crystal on Silicon), LCD (Liquid Crystal Display, etc., can be divided into single-chip, two-piece and three-piece systems according to the number of light modulators.
  • the light intensity of the light emitted by the light source of the current projection system generally remains unchanged.
  • the projection system modulates the light source with a light modulator to produce image light as well as non-image light and project the image light to obtain an image to be displayed.
  • the loss of non-image light results in lower utilization of light energy.
  • the present invention provides a projection system capable of recovering non-image light, which can realize recycling of non-image light to improve light utilization efficiency.
  • Embodiments of the present invention provide a projection system, where the projection system includes:
  • a light source device comprising: a first light source for emitting light of a first primary color, a second light source for emitting light of a second primary color, and a third light source for emitting light of a third primary color;
  • a homogenizing system for homogenizing and emitting the first primary color light, the second primary color light, and the third primary color light
  • a light modulation system for modulating the uniformized light emitted from the light homogenizing system according to image data of an image to be displayed, and forming image light for displaying an image and non-image light not for displaying an image;
  • a light recovery system for guiding the non-image light to the homogenizing system, and the non-image light is homogenized and emitted through the homogenizing system.
  • the projection system further includes a control device, configured to control, according to the image data, a luminous flux of the non-image light emitted from the light modulation system to the homogenizing system, according to the The light flux of the non-image light is used to adjust the light intensity of the primary color light emitted by the light source device, such that the light flux of the primary color light emitted by the light source device reaches the light homogenizing system and the luminous flux of the non-image light reaching the homogenizing system The sum of the sum remains roughly the same.
  • the image data of the image to be displayed includes image data of three primary colors
  • the light modulation system is configured to modulate first primary color light emitted from the homogenizing system according to subframe image data of a first primary color in a frame modulation period to generate image light and non-image light of a first primary color, according to The sub-frame image data of the two primary colors modulate the second primary color light emitted from the homogenizing system to generate image light and non-image light of the second primary color, and the sub-frame image data according to the third primary color is modulated from the homogenizing system The emitted third primary color light is used to generate image light and non-image light of the third primary color.
  • the light modulation system includes a first light modulator, a second light modulator, and a third light modulator, the first light modulator for sub-frames according to the first primary color in a frame modulation period
  • the image data modulates a first primary color light emitted from the homogenizing system
  • the second optical modulator is configured to modulate emission from the homogenizing system according to the sub-frame image data of the second primary color in a frame modulation period a second primary color light
  • the third optical modulator is configured to modulate a third primary color light emitted from the homogenizing system according to the subframe image data of the third primary color in a frame modulation period.
  • control device is further configured to generate a light source control signal and a modulation control signal, where the light source control signal is used to control timings of the first light source, the second light source, and the third light source to emit light;
  • the light modulation system includes a light modulator, and the modulation control signal is configured to control the light modulator to emit time from the uniform light system according to sub-frame image data of a corresponding primary color in a frame modulation period. a primary color light, a second primary color light, and a third primary color light.
  • the modulation control signal is specifically configured to control the light modulator to modulate the first primary color light emitted from the light homogenizing system according to the subframe image data of the first primary color in a first period of a frame modulation period. And modulating, according to the second frame color of the second primary color, the second primary color light emitted from the light homogenizing system according to the second time period of the one-frame modulation period, and the third time period according to the third time period of one frame modulation period The sub-frame image data of the primary color modulates the third primary color light emitted from the homogenizing system.
  • the light recovery system includes three light recovery modules, and the three light recovery modules are in one-to-one correspondence with the first light modulator, the second light modulator, and the third light modulator, and the light is recovered.
  • a module is operative to direct non-image light produced by the corresponding modulation of the light modulator to the homogenizing system.
  • the light recycling system includes a light recycling module for directing non-image light generated by the light modulator modulation to the light homogenizing system.
  • the light recycling module includes a mirror group composed of a plurality of mirrors for converting the non-image light into incidence and incidence before being incident on a light incident surface of the light homogenizing system Light that is parallel to the primary color of the homogenizing system; or
  • the mirror group is configured to control an incident angle of the non-image light on a light incident surface of the light homogenizing system such that the non-image light and primary color light incident on the light homogenizing system are in the light homogenizing system
  • the incident angle of the light incident surface is continuously distributed.
  • the image light is light having a first polarization state
  • the non-image light is light having a second polarization state
  • the first polarization state and the second polarization state are two polarization directions different a polarization state
  • the primary color light incident on the light modulator is light in a third polarization state, the third polarization state being the same as the first polarization state or the second polarization state;
  • the light modulator is a transmissive liquid crystal light valve comprising a liquid crystal layer for adjusting a polarization state of light incident on the light modulator, and opposite incident and exit surfaces, light incident on the light modulator Incident along a direction perpendicular to an incident surface of the light modulator, the image light and the non-image light being modulated by the light modulator; the image light and the non-image light being modulated from the light
  • the exit surface of the device exits in the same direction.
  • the projection system further includes a light guiding device including a polarization beam splitting element for transmitting light of a polarization state of one of the first polarization state and the second polarization state, and reflecting The light of another polarization state; the polarization beam splitting element directs the image light and the non-image light emitted by the light modulator to different directions.
  • a light guiding device including a polarization beam splitting element for transmitting light of a polarization state of one of the first polarization state and the second polarization state, and reflecting The light of another polarization state; the polarization beam splitting element directs the image light and the non-image light emitted by the light modulator to different directions.
  • the light modulator is a digital micromirror device comprising a plurality of micromirror units, and the micromirror unit of the digital micromirror device in an open state reflects at least part of light incident on the digital micromirror device
  • the image light, the micromirror unit of the digital micromirror device in an off state reflects at least part of the light incident on the digital micromirror device to form the non-image light, the image light and the non-image light Exiting from the digital micromirror device in different directions.
  • the projection system further includes a light guiding device, the light guiding device including a light combining device, the light combining device for using the first light modulator, the second light modulator, and the third light modulator
  • the image produced by the modulation is combined into a beam of light and then emitted.
  • the projection system further includes a light guiding device, the light guiding device includes a light combining device, and the light combining device is configured to guide the light emitted by the first light source, the second light source and the third light source to the The homogenizing system.
  • the light combining device includes a first light combining element and a second light combining element, wherein the first light combining element is configured to use two of the first light source, the second light source, and the third light source The emitted light is directed to the first optical path to be incident on the second light combining element along the first optical path; the second light combining element is configured to use the first light source, the second light source, and the third light source The light emitted by the other of the light sources and the light incident from the first optical path are directed to the second optical path such that they are incident on the homogenizing system along the second optical path.
  • the light homogenizing system includes at least a light homogenizing device, and the light homogenizing device includes a light incident surface for receiving the first primary color light, the second primary color light, the third primary color light, and the non-image light, And homogenize it to homogenize it.
  • the light homogenizing system includes three of the light homogenizing devices, and the three light homogenizing devices are in one-to-one correspondence with the first light source, the second light source, and the third light source, and the light homogenizing device is configured to receive The primary light emitted by the corresponding light source and the non-image light of the corresponding primary color, and the received light is homogenized.
  • the invention uses the light recovery system to redirect the non-image light emitted by the light modulation system to the light incident surface of the homogenizing system, and homogenizes it with the primary color light emitted by the light source, and then enters the light modulation system again, effectively
  • the realization of non-image light recycling, improved light utilization, and improved brightness and contrast of the displayed image is a very important property of the light modulation system.
  • Figure 1 is a block diagram showing the structure of a projection system of the present invention.
  • FIG. 2 is a schematic structural view of a projection system according to a first embodiment of the present invention.
  • FIG 3 is a schematic structural view of a projection system according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a projection system according to a third embodiment of the present invention.
  • Fig. 5 is a schematic structural view of a projection system according to a fourth embodiment of the present invention.
  • Fig. 6 is a schematic structural view of a projection system according to a fifth embodiment of the present invention.
  • Fig. 7 is a schematic structural view of a projection system according to a sixth embodiment of the present invention.
  • Figure 8 is a flow chart showing a projection method of the present invention.
  • Projection system 10 100, 200, 300, 400, 500, 600 Control device 11, 110, 210, 311, 411, 511, 611
  • Light source device 12 First light source 101R, 201R, 301R, 401R, 501R, 601R Second light source 101G, 201G, 301G, 401G, 501G, 601G Third light source 101B, 201B, 301B, 401B, 501B, 601B Homogenizing system 13 Homogenizer 102, 202, 305, 405, 505, 605 Relay lens 103, 203, 306, 404, 406, 504, 506, 604, 606
  • Light modulation system 14 First light modulator 104R, 205R Second light modulator 104G, 205G Third light modulator 104B, 205B
  • Light recovery system 16 Reflector 106, 204, 206, 309, 407, 409
  • FIG. 1 is a block diagram of a projection system 10 of the present invention.
  • the projection system 10 includes a light source device 12, a homogenizing system 13, a light modulation system 14, a light recovery system 16, and a projection lens 18.
  • the light emitted by the light source device 12 is homogenized by the homogenizing system 13 and then emitted.
  • the light modulation system 14 is configured to modulate the uniformized light emitted from the light homogenizing system 13 in accordance with image data of an image to be displayed, and form image light for displaying an image and non-image light not for displaying an image.
  • the image light enters a subsequent optical path, such as a projection lens 18 or the like.
  • the projection lens 18 is disposed on an outgoing light path of the image light for projecting the image light to a predetermined area, thereby generating the image to be displayed.
  • the light recovery system 16 is configured to direct the non-image light to the light homogenizing system 13 to homogenize the non-image light and output through the light homogenizing system 13 and emit the same with the light source device 12
  • the new light enters the light modulation system 14 again and is modulated again.
  • the non-image light is distributed to the output channel of the image light in a proportional manner according to the image data, thereby enhancing the brightness of the image light.
  • the light source device 12 includes a first light source for emitting light of a first primary color, a second light source for emitting light of a second primary color, and a third light source for emitting light of a third primary color.
  • the homogenizing system 13 is configured to homogenize and emit the first primary color light, the second primary color light, and the third primary color light.
  • the projection system 10 further includes a control device 11 for controlling the non-image light emitted from the light modulation system 14 to reach the light homogenizing system 13 according to the image data.
  • a control device 11 for controlling the non-image light emitted from the light modulation system 14 to reach the light homogenizing system 13 according to the image data.
  • Light flux, and adjusting the light intensity of the primary color light emitted by the light source device 12 according to the luminous flux of the non-image light so that the primary light emitted by the light source device 12 reaches the light flux of the homogenizing system 13 and the non-
  • the sum of the luminous flux of the image light reaching the homogenizing system 13 remains substantially unchanged.
  • the image data of the image to be displayed includes image data of three primary colors.
  • the light modulation system 14 is configured to modulate the first primary color light emitted from the homogenizing system 13 according to the subframe image data of the first primary color in a frame modulation period to generate image light and non-image light of the first primary color, Modulating the second primary color light emitted from the homogenizing system 13 according to the sub-frame image data of the second primary color to generate image light and non-image light of the second primary color, and modulating the sub-frame image data according to the third primary color from the
  • the third primary color light emitted by the homogenizing system 13 produces image light of a third primary color and non-image light.
  • light modulators are mainly divided into two categories, one is a light modulator represented by DMD (digital micromirror device) that does not limit the polarization state of incident light, and the other is LCD (liquid crystal light valve).
  • LCD liquid crystal light valve
  • LCOS Reflective Liquid Crystal Light Valve
  • the technical solution corresponding to the digital micromirror device reflects the image light and the non-image light in different directions by utilizing different characteristics of the open state of the micromirror and the deflecting direction of the off state, respectively, and then the optical recovery system 16
  • the non-image light is guided to the light incident surface of the homogenizing system 13, thereby realizing the recycling of non-image light.
  • the technical solutions corresponding to the liquid crystal light valve and the reflective liquid crystal light valve utilize the polarization characteristics of light to separate the image light and the non-image light emitted from the light modulation system 14 into two different polarization states, and utilize the light guiding device. Directing the image light and the non-image light to different directions, and redirecting the non-image light therein to the incident end of the homogenizing system 13 has a distinct advantage over other solutions - the polarization state can be easily utilized The image light is distinguished from the non-image light (eg, using a polarizing beam splitter).
  • the deflection angle of the micromirror is only ⁇ 12°, that is, the image light corresponding to the open state and the non-image light corresponding to the off state have an angle of at most 24°, which is difficult to be short. Separate the distance of the propagation. Therefore, with respect to the solution represented by the digital micromirror device of the present invention, the technical solution utilizing the different characteristics of the polarization states of the image light and the non-image light is more practical and suitable for more application environments.
  • the light source referred to in the present invention includes a case where the light source is a separate light-emitting element (such as a semiconductor light-emitting element, a semiconductor light-emitting element array, a bulb light source, etc.), and a light-emitting module in which the light source is a combination of the light-emitting element and other optical elements.
  • a light-emitting module in which a light-emitting element is combined with a lens a light-emitting module of a light-emitting element and a polarization conversion element.
  • the light source of the present invention can be viewed as a "black box" that emits primary light, and any type of optical element can be included in the "black box.”
  • the image light referred to in the present invention refers to light corresponding to a display image of the projection system, and corresponds to light entering the display screen in a general projection system; non-image light refers to light used for recycling in the present invention, which is equivalent to a general Light that is filtered out of the projection system and does not enter the display screen.
  • FIG. 2 is a schematic structural diagram of a projection system 100 according to a first embodiment of the present invention.
  • the projection system 100 includes a control device 110, a light source device, a light homogenizing system, a light modulation system, a light recovery system, and a light guiding device.
  • the light source device comprises a first light source 101R for emitting first primary light (for example, a red laser), a second light source 101G for emitting a second primary light (for example, a green laser), and for emitting a third primary light.
  • a third light source 101B (for example, a blue laser).
  • the first light source 101R, the second light source 101G, and the third light source 101B are all laser light sources, such as a laser diode light source, a laser diode array light source, or a laser light source.
  • the light source has a small amount of optical expansion such that the light it emits has a smaller spot and a smaller angle of light divergence when entering the homogenizing system, and maintains the light as it enters the light modulation system through a series of optical elements.
  • the small amount of optical expansion prevents a large amount of light from being used due to the large divergence angle, which improves the light utilization efficiency. If other light sources, such as bulb light source and LED light source, are used, the optical expansion is much larger than the optical expansion of the laser source.
  • the divergence angle of the light will be enlarged.
  • a large amount of light is rendered unusable by the light modulation system and absorbed and converted into heat outside the effective optical surface of the light modulation system.
  • the light emitted by the light source is combined with the non-image light to form a beam of light by geometrically combining light, thereby increasing the cross-sectional area of the homogenizing system, so that the optical expansion amount is expanded if optical is used.
  • a light source with a large amount of expansion will further reduce the light utilization rate.
  • the first embodiment uses a small optical expansion amount of the laser light source, even if the recycled non-image light is combined with the light emitted by the light source, the light incident on the light modulation system can be ensured to have a small optical expansion. .
  • a light bulb or an LED light source can also be used as a light source of the projection system.
  • a light source Even with such a light source, it is possible to have higher light utilization efficiency than the technical solution not using the present invention.
  • the light homogenizing system includes at least a light homogenizing device 102, and the light homogenizing device 102 includes a light incident surface for receiving the first primary color light, the second primary color light, the third primary color light, and the non-image light, and It is homogenized and homogenized to enter the light modulation system in accordance with a spot of a predetermined shape.
  • the dodging system includes three of the light homogenizing devices 102, and the three light homogenizing devices 102 are combined with the first light source 101R, the second light source 101G, and the third light source 101B.
  • the light homogenizing device 102 is configured to receive the primary color light emitted by the corresponding light source and the non-image light of the corresponding primary color, and to homogenize the received light.
  • the light homogenizing device 102 may select a pair of fly-eye lenses, the incident surface of the pair of fly-eye lenses includes a first region and a second region that do not overlap each other, and the primary color light emitted by the light source is from the first region. Incident is incident into the fly-eye lens pair, while non-image light is incident from the second region into the fly-eye lens pair. Since the first region and the second region do not overlap each other, the technical solution can be applied to a case where the primary light emitted by the light source has the same wavelength and the same polarization state as the non-image light. This is because the primary light and the non-image light emitted by the light source in the first embodiment have the same wavelength and the same polarization state, and cannot be combined by wavelength combining or polarized light.
  • the geometrical combination method can also be applied to the case where the polarization states of the primary and the non-image light emitted by the light source are different, and even the case where the primary light and the non-image light emitted by the light source are unpolarized, as long as It is ensured that the combined light becomes a single polarization state before it is incident on the light modulator.
  • a polarization conversion element can be disposed on the optical path between the light homogenizing device 102 and the light modulation system, and the polarization conversion element is used to convert the light emitted from the light homogenizing device 102 into an optical modulation system before being converted into Light of the third polarization state.
  • the first region and the second region are arranged side by side on the light incident surface of the light homogenizing device 102.
  • the first region and the second region may also be in accordance with other arrangements.
  • the second area is disposed around the first area, and the first area and the second area are distributed in a "back" shape such that the first area is located at the center of the light homogenizing device 102, and the distribution manner can avoid the primary color emitted by the light source.
  • the reflective sheet of the intermediate through-hole (such as a retro-reflective sheet, the middle opening is a through-hole) can be used to reflect non-image light to the second region, and at the same time, the primary light emitted by the light source can be transmitted;
  • the non-image light is split into two beams of the same wavelength and polarization state by using a transflective beam splitter, and guided to the second regions on the upper and lower sides of the first region, respectively.
  • the first area and the second area may also be arranged in a "mesh" shape such that the first area is located in the center of the second area, and the second area is divided into two parts located above and below (or left and right) of the first area.
  • the area ratio of the first region to the second region is 1:1 to 1:5.
  • the area of the first area being smaller than the area of the second area enables the projection system to have a higher light utilization efficiency. This is because the first region and the second region are in principle optically expanding the combined light.
  • the larger the area of the second region the smaller the divergence angle corresponding to the non-image light, and the smaller the area of the second region.
  • the divergence angle corresponding to the non-image light is larger, and the light having an excessive divergence angle cannot be utilized. Therefore, the proportion of the second region determines the efficiency of light recycling.
  • the volume of the light homogenizing device 102 cannot be too large, so the size of the first region also satisfies the optical expansion requirement of the light emitted by the light source, and the first region cannot be infinitely reduced, otherwise the light source emits The divergence angle of the primary light also expands to reduce the utilization of the primary color light emitted by the light source.
  • the light homogenizing device 102 can also use a homogenizing rod or an integrator rod.
  • the light homogenizing system further includes at least a relay lens 103, and the relay lens 103 is disposed on an optical path between the light homogenizing device 102 and the light modulation system, and is used for The exiting light of the light homogenizing device 102 is focused, homogenized, or shaped prior to being incident on the light modulation system.
  • the technical solution protected by the present invention is not limited to the number or kind of relay lenses in the first embodiment, and the relay lens 103 may be a convex lens or a concave lens.
  • the light modulation system includes a first light modulator 104R, a second light modulator 104G, and a third light modulator 104B, the first light modulator 104R being configured to be based on the first primary color within a frame modulation period
  • the sub-frame image data modulates the first primary color light emitted from the homogenizing system
  • the second optical modulator 104G is configured to modulate the sub-frame image data according to the second primary color from the uniformity in a frame modulation period.
  • a second primary color light emitted by the optical system the third optical modulator 104B configured to modulate the third primary color light emitted from the homogenizing system according to the subframe image data of the third primary color in a frame modulation period.
  • the first light modulator 104R, the second light modulator 104G, and the third light modulator 104B are respectively transmissive liquid crystal light valves, including for adjusting incidence to the light modulator.
  • the liquid crystal layer of the polarization state of the light, and the opposite incident and exit surfaces, the light incident on the light modulator is incident in a direction perpendicular to the incident surface of the light modulator, modulated by the light modulator
  • the image light and the non-image light are generated.
  • the image light and the non-image light are emitted in the same direction from an exit surface of the light modulator.
  • the image light is light having a first polarization state (such as P light, but is not limited thereto), and the non-image light is light having a second polarization state (such as S light,
  • the first polarization state and the second polarization state are two polarization states different in polarization direction.
  • the image light and the non-image light emitted by the light modulator are respectively guided to different directions.
  • the polarization states of the image light and the non-image light are different, so that the two are easy to split, more practical, and suitable for more application environments.
  • the primary color light incident on the light modulator is light of a third polarization state in a single polarization state. Since the light modulator acts on the polarization state of the incident light, if the light incident on the light modulator has a plurality of polarization states, it is impossible to distinguish the image light as an image component from the polarization state of the emitted light.
  • the technical solution avoids the additional addition of other polarization conversion devices, so that the light and non-image light emitted by the light source device can be directly utilized by the light modulator after being homogenized by the homogenizing system, simplifying the structure.
  • the third polarization state is the same as the second polarization state, that is, the light whose polarization state is changed becomes the image light of the first polarization state, and the light of the remaining portion that does not change the polarization state becomes Non-image light of the second polarization state.
  • the modulation method can be implemented by changing the voltage applied to the light modulators 104R, 104G, and 104B to change the alignment direction of the liquid crystal molecules in the liquid crystal layer.
  • the operation principle of the LCD can be referred to, and details are not described herein again.
  • the third polarization state may also be the same as the first polarization state, that is, the light of the changed polarization state is used as the non-image light of the second polarization state, and the light of the polarization state is not changed as the image.
  • This technical solution can be realized by converting an image signal into an inverted image signal and inputting it to the light modulator on the basis of the first embodiment; also by light modulation on the basis of the first embodiment It is also possible to add a half wave plate to the device; it can also be realized by using other kinds of transmissive liquid crystal light valves, which will not be described in detail here.
  • the third polarization state may also be different from the first polarization state and the second polarization state, for example, the third polarization state is elliptically polarized light.
  • the light guiding device includes a polarization beam splitting element 105 for transmitting light of a polarization state of one of a first polarization state and a second polarization state, and reflecting the other Polarized light.
  • the polarization beam splitting element 105 directs the image light and the non-image light emitted from the light modulator to different directions.
  • the light guiding device further includes a light combining device 107 disposed on an outgoing light path of the light modulation system for using the first light modulator 104R, the second light modulator 104G, and the first
  • the image light produced by the three-light modulator 104B is combined into a beam of light and then emitted, for example, to the projection lens 108.
  • the light recovery system includes three light recovery modules, three of the light recovery modules and the first light modulator 104R, the second light modulator 104G, and the third light modulator.
  • the light recycling module is configured to guide non-image light generated by the corresponding light modulator modulation to the light homogenizing system.
  • each of the light recycling modules includes a mirror group composed of a plurality of mirrors 106 for injecting the non-image light into the light homogenizing system
  • the light incident surface is converted into light parallel to the primary color light incident on the homogenizing system.
  • the mirror group is configured to control an incident angle of the non-image light on a light incident surface of the light homogenizing system, so that the non-image light and the primary color light incident on the light homogenizing system are in the uniformity
  • the incident angle distribution of the light incident surface of the optical system is continuous.
  • the mirror 106 can be a planar mirror or a curved mirror.
  • FIG. 3 is a schematic structural diagram of a projection system 200 according to a second embodiment of the present invention.
  • the main difference between the projection system 200 of the second embodiment and the projection system 100 of the first embodiment is that the first light modulator 205R, the second light modulator 205G, and the third light modulator 205B in the second embodiment are respectively a digital micromirror device comprising a plurality of micromirror units, the micromirror unit of the digital micromirror device being in an open state reflecting at least a portion of the light incident on the digital micromirror device to form the image Light, the micromirror unit of the digital micromirror device in an off state reflects at least a portion of the light incident on the digital micromirror device to form the non-image light, the image light and the non-image light from the The digital micromirror device emits in different directions.
  • the digital micromirror device reflects the image light and the non-image light in different directions by utilizing different characteristics of the open state of the micromirror and the deflecting direction of the off state, and therefore, it is not required to be used in the second embodiment.
  • the polarization beam splitting element directs the image light and the non-image light emitted from the light modulator to different directions.
  • FIG. 4 is a schematic structural diagram of a projection system 300 according to a third embodiment of the present invention.
  • the main difference between the projection system 300 of the third embodiment and the projection system 100 of the first embodiment is that the light-emitting method of the light source device and the light combining mode of the three primary colors are different, so that the uniform light system, the light modulation system, and the corresponding The structure of the light recovery system also varies in number.
  • the light combining device is disposed on an optical path between the light source device and the light homogenizing system, and the light combining device is configured to use the first light source 301R, the second light source 301G, and the third light source Light emitted by 301B is directed to the homogenizing system.
  • the light combining device includes a first light combining element 302 and a second light combining element 303, and the first light combining element 302 is configured to use the first light source 301R and the second light source.
  • Light emitted by two of the 301G and third light sources 301B is directed to the first optical path such that it is incident on the second light combining element 303 along the first optical path.
  • the second light combining element 303 is configured to guide light emitted by the other of the first light source 301R, the second light source 301G, and the third light source 301B and light incident from the first light path to the second light path Having it incident on the homogenizing system along the second optical path.
  • the light emitted by two of the first light source 301R, the second light source 301G, and the third light source 301B are incident on the first light combining element 302 from different directions, the first light source 301R, Light emitted from the other of the two light sources 301G and 301B and light incident from the first light path are incident on the second light combining element 303 from different directions, respectively.
  • the light guiding device further includes a relay lens 304, and the relay lens 304 is disposed on an optical path between the light combining device and the light homogenizing system for The exiting light of the light device is focused, homogenized or shaped prior to being incident on the homogenizing system.
  • the homogenizing system includes a light homogenizing device 305
  • the light modulation system includes a light modulator 307
  • the light recycling system includes a light recycling module, and the light recycling module The non-image light generated by the modulation by the light modulator 307 is directed to the light homogenizing device 305.
  • control device 311 is configured to generate a light source control signal for controlling the timing of the first light source 301R, the second light source 301G, and the third light source 301B to emit light, and a modulation control signal. .
  • the modulation control signal is used to control the light modulator 307 to time-modulate the first primary color light, the second primary color light, and the first light emitted from the uniform light system according to the sub-frame image data of the corresponding primary color in a frame modulation period.
  • Three primary colors of light are used to control the light modulator 307 to time-modulate the first primary color light, the second primary color light, and the first light emitted from the uniform light system according to the sub-frame image data of the corresponding primary color in a frame modulation period.
  • the modulation control signal is configured to control the optical modulator to modulate the first primary color light emitted from the homogenizing system according to the subframe image data of the first primary color in a first period of a frame modulation period, Modulating a second primary color light emitted from the homogenizing system according to the subframe image data of the second primary color in a second period of one frame modulation period, and according to the third primary color in a third period of a frame modulation period
  • the sub-frame image data modulates the third primary color light emitted from the homogenizing system.
  • FIG. 5 is a schematic structural diagram of a projection system 400 according to a fourth embodiment of the present invention.
  • the main difference between the projection system 400 of the fourth embodiment and the projection system 300 of the third embodiment is that the light modulator 408 in the fourth embodiment is a digital micromirror device, and the digital micromirror device includes a plurality of micromirror units.
  • the micromirror unit of the digital micromirror device in an open state reflects at least part of the light incident on the digital micromirror device to form the image light, and the micromirror unit of the digital micromirror device in an off state will Light reflected at least partially into the digital micromirror device forms the non-image light, the image light and the non-image light emerging from the digital micromirror device in different directions.
  • the digital micromirror device reflects the image light and the non-image light in different directions by utilizing the characteristics of the open state of the micromirror and the deflecting direction of the off state, respectively, and therefore, it is not required to be used in the fourth embodiment.
  • the polarization beam splitting element directs the image light and the non-image light emitted by the light modulator 408 to different directions.
  • FIG. 6 is a schematic structural diagram of a projection system 500 according to a fifth embodiment of the present invention.
  • the main difference between the projection system 500 of the fifth embodiment and the projection system 300 of the third embodiment is the difference of the light combining device.
  • the light combining device includes a light combining element, a first light source 501R, and a second light source 501G. Light emitted from the third light source 501B is incident to the light combining element from different directions, respectively.
  • FIG. 7 is a schematic structural diagram of a projection system 600 according to a sixth embodiment of the present invention.
  • the main difference between the projection system 600 of the sixth embodiment and the projection system 400 of the fourth embodiment is the difference of the light combining device.
  • the light combining device includes a light combining element, the first light source 601R and the second light source 601G. Light emitted from the third light source 601B is incident to the light combining element from different directions, respectively.
  • the projection system may be any device that projects or displays a monochrome or multi-color image such as a television device, a projector device, a wall-mounting device, a stage computer lamp device, an image projector device, or the like.
  • the present invention re-allocates non-image-modulated light into a display image corresponding to image light, the brightness of the display image of the present invention is improved as compared with the aspect in which the present invention is not employed.
  • the invention uses the light recovery system to redirect the non-image light emitted by the light modulation system to the light incident surface of the homogenizing system, and homogenizes it with the primary color light emitted by the light source, and then enters the light modulation system again, effectively The realization of non-image light recycling, improved light utilization, and improved brightness and contrast of the displayed image.
  • the invention utilizes the characteristics of the large optical expansion amount of the homogenizing device itself, in addition to satisfying the small optical expansion amount emitted by the light source, and leaving sufficient optical expansion margin for non-image light recycling, so that the light The recycling efficiency is greatly improved.
  • the present invention also provides a projection method applied to the above projection system 10, 100, 200, 300, 400, 500 or 600, the projection method comprising the following steps:
  • Step 801 controlling the light source device to emit the first primary color light, the second primary color light, and the third primary color light.
  • Step 802 homogenizing and emitting the first primary color light, the second primary color light, and the third primary color light by using a homogenizing system.
  • Step 803 modulating the uniformized light emitted from the homogenizing system according to the image data of the image to be displayed by using the light modulation system, and forming image light for displaying an image and non-image light not for displaying the image.
  • the image data of the image to be displayed includes image data of three primary colors.
  • the step 803 specifically includes:
  • Step 804 The non-image light is guided to the homogenizing system by using a light recovery system, and the non-image light is homogenized and emitted through the homogenizing system.
  • Step 805 projecting the image light to a predetermined area to generate the image to be displayed.
  • the projection method further includes: controlling a luminous flux of the non-image light to the homogenizing system according to the image data, and adjusting a primary color emitted by the light source device according to a luminous flux of the non-image light.
  • the light intensity of the light is such that the sum of the luminous flux of the primary color light emitted by the light source device reaching the homogenizing system and the luminous flux of the non-image light reaching the homogenizing system remains substantially unchanged.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

一种投影系统(10),投影系统(10)包括光源装置(12)、匀光系统(13)、光调制系统(14)以及光回收系统(16)。光源装置(12)用于发射第一、第二和第三基色光。匀光系统(13)将第一、第二和第三基色光进行均匀化并出射。光调制系统(14)依据待显示图像的图像数据调制自匀光系统(13)出射的均匀化的光,并形成用于显示图像的图像光和不用于显示图像的非图像光。光回收系统(16)将非图像光引导至匀光系统(13),使非图像光经由匀光系统(13)进行均匀化后出射。利用光回收系统(16)将非图像光重新引导至匀光系统(13)的光入射面,使其与光源装置(12)发出的基色光一同经匀光系统(13)的均匀化后再次进入光调制系统(14),有效提高了光利用率以及显示图像的亮度和对比度。

Description

投影系统 技术领域
本发明涉及投影技术领域,尤其涉及一种投影系统。
背景技术
现有投影系统被广泛地应用在影院、教育、电视等领域,投影系统按照其采用光调制器的种类可以分为DMD(Digital Micromirror Device)、LCOS(Liquid Crystal on Silicon)、LCD(Liquid Crystal Display)等,按照光调制器的数量可分为单片式、双片式和三片式系统。
技术问题
为了保证投影得到的图像的各像素点的亮度与图像数据中包含的各像素点的灰度值是成比例的,目前的投影系统的光源发射光的光强度一般保持不变。在投影过程中,投影系统利用光调制器调制光源而产生图像光以及非图像光,并将图像光投影以得到待显示的图像。然而,非图像光的损耗导致光能利用率较低。
技术解决方案
鉴于此,本发明提供一种可回收非图像光的投影系统,能够实现非图像光的回收利用,以提高光利用率。
本发明实施例提供一种投影系统,所述投影系统包括:
光源装置,包括用于发射第一基色光的第一光源、用于发射第二基色光的第二光源以及用于发射第三基色光的第三光源;
匀光系统,用于将所述第一基色光、第二基色光和第三基色光进行均匀化并出射;
光调制系统,用于依据待显示图像的图像数据调制自所述匀光系统出射的均匀化的光,并形成用于显示图像的图像光和不用于显示图像的非图像光;
光回收系统,用于将所述非图像光引导至所述匀光系统,使所述非图像光经由所述匀光系统进行均匀化后出射。
进一步地,所述投影系统还包括控制装置,所述控制装置用于根据所述图像数据控制自所述光调制系统出射的所述非图像光到达所述匀光系统的光通量,并依据所述非图像光的光通量来调节所述光源装置发射的基色光的光强度,使所述光源装置发射的基色光到达所述匀光系统的光通量与所述非图像光到达所述匀光系统的光通量的总和大致保持不变。
进一步地,所述待显示图像的图像数据包括三基色的图像数据;
所述光调制系统用于在一帧调制周期内依据第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光以产生第一基色的图像光和非图像光,依据第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光以产生第二基色的图像光和非图像光,以及依据第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光以产生第三基色的图像光和非图像光。
进一步地,所述光调制系统包括第一光调制器、第二光调制器以及第三光调制器,所述第一光调制器用于在一帧调制周期内依据所述第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光,所述第二光调制器用于在一帧调制周期内依据所述第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光,所述第三光调制器用于在一帧调制周期内依据所述第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光。
进一步地,所述控制装置还用于产生光源控制信号和调制控制信号,所述光源控制信号用于控制所述第一光源、第二光源和第三光源发光的时序;
所述光调制系统包括一个光调制器,所述调制控制信号用于控制所述光调制器在一帧调制周期内依据相应基色的子帧图像数据分时调制自所述匀光系统出射的第一基色光、第二基色光以及第三基色光。
进一步地,所述调制控制信号具体用于控制所述光调制器在一帧调制周期的第一时段依据所述第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光,在一帧调制周期的第二时段依据所述第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光,以及在一帧调制周期的第三时段依据所述第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光。
进一步地,所述光回收系统包括三个光回收模块,三个所述光回收模块与所述第一光调制器、第二光调制器、第三光调制器一一对应,所述光回收模块用于将对应的所述光调制器调制产生的非图像光引导至所述匀光系统。
进一步地,所述光回收系统包括一个光回收模块,所述光回收模块用于将所述光调制器调制产生的非图像光引导至所述匀光系统。
进一步地,所述光回收模块包括由多个反射镜组成的反射镜组,所述反射镜组用于将所述非图像光在入射到所述匀光系统的光入射面之前转变为与入射到所述匀光系统的基色光平行的光;或者
所述反射镜组用于控制所述非图像光在所述匀光系统的光入射面的入射角度,使得入射到所述匀光系统的所述非图像光和基色光在所述匀光系统的光入射面的入射角度分布连续。
进一步地,所述图像光为具有第一偏振态的光,所述非图像光为具有第二偏振态的光,所述第一偏振态与所述第二偏振态为偏振方向不同的两种偏振态;入射至所述光调制器的基色光为第三偏振态的光,所述第三偏振态与所述第一偏振态或所述第二偏振态相同;
所述光调制器为透射式液晶光阀,包括用于调节入射到所述光调制器的光的偏振态的液晶层、以及相对的入射面和出射面,入射至所述光调制器的光沿垂直于所述光调制器的入射面的方向入射,经所述光调制器调制后产生所述图像光和所述非图像光;所述图像光与所述非图像光从所述光调制器的出射面沿同一方向出射。
进一步地,所述投影系统还包括光引导装置,所述光引导装置包括偏振分光元件,所述偏振分光元件用于透射第一偏振态和第二偏振态之一的偏振态的光,并反射另一偏振态的光;所述偏振分光元件将所述光调制器出射的图像光和非图像光分别引导向不同的方向。
进一步地,所述光调制器为数字微镜设备,包括多个微镜单元,所述数字微镜设备的处于开状态的微镜单元将至少部分入射至所述数字微镜设备的光反射形成所述图像光,所述数字微镜设备的处于关状态的微镜单元将至少部分入射至所述数字微镜设备的光反射形成所述非图像光,所述图像光与所述非图像光从所述数字微镜设备中沿不同方向出射。
进一步地,所述投影系统还包括光引导装置,所述光引导装置包括合光装置,所述合光装置用于将所述第一光调制器、第二光调制器以及第三光调制器调制产生的图像光合为一束光后出射。
进一步地,所述投影系统还包括光引导装置,所述光引导装置包括合光装置,所述合光装置用于将所述第一光源、第二光源与第三光源发射的光引导至所述匀光系统。
进一步地,所述合光装置包括第一合光元件和第二合光元件,所述第一合光元件用于将所述第一光源、第二光源和第三光源中的其中两个光源发射的光引导至第一光路,使其沿所述第一光路入射至所述第二合光元件;所述第二合光元件用于将所述第一光源、第二光源和第三光源中的另一个光源发射的光以及自所述第一光路入射的光引导至第二光路,使其沿所述第二光路入射至所述匀光系统。
进一步地,所述匀光系统至少包括匀光装置,所述匀光装置包括光入射面,用于接收所述第一基色光、第二基色光和第三基色光以及所述非图像光,并对其进行匀光,使其均匀化。
进一步地,所述匀光系统包括三个所述匀光装置,三个所述匀光装置与所述第一光源、第二光源、第三光源一一对应,所述匀光装置用于接收对应的光源发射的基色光以及相应基色的非图像光,并对接收到的光进行匀光。
有益效果
本发明利用光回收系统将光调制系统出射的非图像光重新引导至匀光系统的光入射面,使其与光源发出的基色光一同经匀光系统的均匀化后再次进入光调制系统,有效的实现了非图像光的回收利用,提高了光利用率,提高了显示图像的亮度和对比度。
附图说明
图1是本发明的一种投影系统的方框结构示意图。
图2是本发明第一实施方式的投影系统的结构示意图。
图3是本发明第二实施方式的投影系统的结构示意图。
图4是本发明第三实施方式的投影系统的结构示意图。
图5是本发明第四实施方式的投影系统的结构示意图。
图6是本发明第五实施方式的投影系统的结构示意图。
图7是本发明第六实施方式的投影系统的结构示意图。
图8是本发明的一种投影方法的流程示意图。
主要元件符号说明
投影系统 10 、 100 、 200 、 300 、 400 、 500 、 600
控制装置 11 、 110 、 210 、 311 、 411 、 511 、 611
光源装置 12
第一光源 101R 、 201R 、 301R 、 401R 、 501R 、 601R
第二光源 101G 、 201G 、 301G 、 401G 、 501G 、 601G
第三光源 101B 、 201B 、 301B 、 401B 、 501B 、 601B
匀光系统 13
匀光装置 102 、 202 、 305 、 405 、 505 、 605
中继透镜 103 、 203 、 306 、 404 、 406 、 504 、 506 、 604 、 606
光调制系统 14
第一光调制器 104R 、 205R
第二光调制器 104G 、 205G
第三光调制器 104B 、 205B
光调制器 307 、 408 、 507 、 608
偏振分光元件 105 、 308 、 508
光回收系统 16
反射镜 106 、 204 、 206 、 309 、 407 、 409 、 509 、 607 、 609
合光装置 107 、 207 、 502 、 602
第一合光元件 302 、 402
第二合光元件 303 、 403
投影镜头 18 、 108 、 208 、 310 、 410 、 510 、 610
如下具体实施方式将结合上述附图进一步说明本发明。
本发明的最佳实施方式
请参阅图1,是本发明的一种投影系统10的方框结构示意图。所述投影系统10包括光源装置12、匀光系统13、光调制系统14、光回收系统16以及投影镜头18。其中,所述光源装置12发出的光经过所述匀光系统13进行均匀化后出射。所述光调制系统14用于依据待显示图像的图像数据调制自所述匀光系统13出射的均匀化的光,并形成用于显示图像的图像光和不用于显示图像的非图像光。
其中,所述图像光进入后续光路,例如投影镜头18等。所述投影镜头18设置于所述图像光的出射光路上,用于将所述图像光投影至预定区域,从而产生所述待显示图像。
所述光回收系统16用于将所述非图像光引导至所述匀光系统13,使所述非图像光经由所述匀光系统13进行均匀化后出射,并与所述光源装置12发射的新的光一同进入所述光调制系统14中再次被调制。在理想情况下,非图像光经多次循环,按照图像数据等比例的被分配到图像光的输出通道,从而增强了图像光的亮度。
在本发明中,所述光源装置12包括用于发射第一基色光的第一光源、用于发射第二基色光的第二光源以及用于发射第三基色光的第三光源。所述匀光系统13用于将所述第一基色光、第二基色光和第三基色光进行均匀化并出射。
在本发明中,所述投影系统10还包括控制装置11,所述控制装置11用于根据所述图像数据控制自所述光调制系统14出射的所述非图像光到达所述匀光系统13的光通量,并依据所述非图像光的光通量来调节所述光源装置12发射的基色光的光强度,使所述光源装置12发射的基色光到达所述匀光系统13的光通量与所述非图像光到达所述匀光系统13的光通量的总和大致保持不变。
在本发明中,所述待显示图像的图像数据包括三基色的图像数据。所述光调制系统14用于在一帧调制周期内依据第一基色的子帧图像数据调制自所述匀光系统13出射的第一基色光以产生第一基色的图像光和非图像光,依据第二基色的子帧图像数据调制自所述匀光系统13出射的第二基色光以产生第二基色的图像光和非图像光,以及依据第三基色的子帧图像数据调制自所述匀光系统13出射的第三基色光以产生第三基色的图像光和非图像光。
在投影、显示领域,光调制器主要分为两类,一类是以DMD(数字微镜设备)为代表的不限制入射光偏振态的光调制器,一类是以LCD(液晶光阀)和LCOS(反射式液晶光阀)为代表的限制入射光为偏振光的光调制器。
在本发明中,对应数字微镜设备的技术方案利用微镜的开状态和关状态偏转方向不同的特性,将图像光和非图像光分别反射向不同的方向,再由光回收系统16将其中的非图像光引导至匀光系统13的光入射面,从而实现非图像光的回收利用。
在本发明中,对应液晶光阀和反射式液晶光阀的技术方案利用光的偏振特性,将光调制系统14出射的图像光与非图像光分成两种不同的偏振态,并利用光引导装置将图像光与非图像光分别引导向不同的方向,将其中的非图像光重新引导至匀光系统13的入射端,相对于其他方案具有明显的优势——可以很容易的利用偏振态的不同将图像光与非图像光区分开(如利用偏振分光片)。即使在图像光与非图像光沿同一方向呈一束光的形式出射,仍然可以用偏振分光装置将其分为方向不同的两束光。而如上述数字微镜设备的技术方案中,微镜的偏转角度仅有±12°,也即对应开状态的图像光和对应关状态的非图像光最多有24°的夹角,难以在短传播距离上将其分开。因此,相对于本发明数字微镜设备为代表的方案,利用图像光与非图像光偏振态不同特性的技术方案更具有实用性,适用于更多的应用环境。
本发明所指的光源,既包括光源为单独的发光元件(如半导体发光元件、半导体发光元件阵列、灯泡光源等)的情况,也包括光源为发光元件与其他光学元件组合得到的发光模组的情况(例如,发光元件与透镜组合的发光模组、发光元件与偏振转换元件的发光模组)。可以将本发明所述的光源看作一个出射基色光的“黑盒子”,“黑盒子”中可以包含任何种类的光学元件。
本发明所指的图像光,是指对应于投影系统的显示图像的光,相当于一般的投影系统中的进入显示屏幕的光;非图像光指本发明用于回收利用的光,相当于一般的投影系统中被过滤掉的、不进入显示屏幕的光。
下面结合附图和实施方式对本发明实施例进行详细说明。
第一实施方式
请参阅图2,是本发明第一实施方式的投影系统100的结构示意图。所述投影系统100包括控制装置110、光源装置、匀光系统、光调制系统、光回收系统以及光引导装置。
<光源装置>
其中,所述光源装置包括用于发射第一基色光(例如红色激光)的第一光源101R、用于发射第二基色光(例如绿色激光)的第二光源101G、用于发射第三基色光(例如蓝色激光)的第三光源101B。
在所述第一实施方式中,所述第一光源101R、第二光源101G、第三光源101B均为激光光源,如激光二极管光源、激光二极管阵列光源或激光器光源。所述光源具有光学扩展量小的特点,使得其发出的光在进入匀光系统时具有较小的光斑和较小的光发散角,并使得光经过一系列光学元件入射到光调制系统时保持较小的光学扩展量,避免了大量的光因发散角大而无法被利用,提高了光利用率。如果采用其他光源,如灯泡光源、LED光源,其光学扩展量远大于激光光源的光学扩展量,为使入射到匀光系统的光斑满足入射面的大小,将会扩大光的发散角,这将使得大量的光无法被光调制系统利用而在光调制系统的有效光学面之外被吸收转换成热量。在所述第一实施方式中,将光源发出的光与非图像光通过几何合光的方式合成一束光,本就增大了匀光系统的截面积,使得光学扩展量扩大,如果使用光学扩展量大的光源,将进一步减小光利用率。而所述第一实施方式采用小光学扩展量的激光光源,即使将回收利用的非图像光与光源发出的光几何合光,仍能保证入射到光调制系统的光具有较小的光学扩展量。
当然,在对光利用率要求不高的环境下,也可以采用灯泡或LED光源作为投影系统的光源。在本发明的光回收技术方案下,即使采用该类光源,也能够相对于不采用本发明的技术方案具有更高的光利用率。
<匀光系统>
所述匀光系统至少包括匀光装置102,所述匀光装置102包括光入射面,用于接收所述第一基色光、第二基色光和第三基色光以及所述非图像光,并对其进行匀光,使其均匀化,以按照预设形状的光斑进入所述光调制系统。
在所述第一实施方式中,所述匀光系统包括三个所述匀光装置102,三个所述匀光装置102与所述第一光源101R、第二光源101G、第三光源101B一一对应,所述匀光装置102用于接收对应的光源发射的基色光以及相应基色的非图像光,并对接收到的光进行匀光。
在所述第一实施方式中,所述匀光装置102可选用复眼透镜对,该复眼透镜对的入射面包括互相不重叠的第一区域和第二区域,光源发射的基色光从第一区域入射进入复眼透镜对,而非图像光从第二区域入射进入复眼透镜对。由于第一区域与第二区域互相不重叠,该技术方案可以适用于光源发射的基色光与非图像光波长相同、偏振态相同的情形。这是由于所述第一实施方式中的光源发射的基色光和非图像光的波长相同、偏振态相同,不能通过波长合光或偏振合光的方式合光。
当然,这种几何合光的方式也同样可以适用于光源发射的基色光与非图像光的偏振态不同的情形,甚至适用于光源发射的基色光与非图像光为非偏振光的情形,只要保证合光后的光在入射到光调制器之前变成单一偏振态的光即可。具体地,可以通过在匀光装置102与光调制系统之间的光路上设置一偏振转换元件即可,该偏振转换元件用于将匀光装置102的出射光在入射到光调制系统之前转换为第三偏振态的光。
在所述第一实施方式中,第一区域和第二区域在匀光装置102的光入射面并排排列。在其他实施方式中,第一区域和第二区域也可以依照其他的排列方式。例如,将第二区域设置于第一区域的周围,第一区域与第二区域呈“回”字型分布,使得第一区域位于匀光装置102的中央,该分布方式可以避免光源发射的基色光从匀光装置102出射后具有一定的偏转角,进而便于后续光学器件的角度摆放,而且具有更好的均匀性。本实施方式既可以利用中间带通孔的反射片(如回字型反射片,中间的口是通孔)将非图像光反射到第二区域,同时使光源发射的基色光透过;还可以利用半透半反的分光片将非图像光分成波长、偏振态相同的两束光,分别引导至第一区域上下两侧的第二区域。此外,第一区域和第二区域还可以是“目”字型排布,使得第一区域位于第二区域中央,第二区域分成两部分位于第一区域的上下(或左右)。
在所述第一实施方式中,第一区域与第二区域的面积比为1:1~1:5。在匀光装置102的截面积不变的情况下,第一区域面积小于第二区域面积能够使得投影系统具有更高的光利用率。这是由于第一区域与第二区域在原理上是光学扩展量合光,对于相同的非图像光,第二区域面积越大,非图像光对应的发散角越小,第二区域面积越小,非图像光对应的发散角越大,而过大的发散角的光是无法被利用的,因此第二区域所占的比例决定了光回收利用的效率。此外,受限于投影系统的体积,匀光装置102的体积不能过大,因此第一区域的大小也要满足光源出射光的光学扩展量要求,第一区域不能无限减小,否则光源发射的基色光的发散角也会扩大到使光源发射的基色光的利用率下降。
可以理解,在其他实施方式中,所述匀光装置102也可选用匀光棒或积分棒。
在所述第一实施方式中,所述匀光系统至少还包括中继透镜103,所述中继透镜103设置于所述匀光装置102与所述光调制系统之间的光路上,用于将所述匀光装置102的出射光在入射至所述光调制系统之前进行聚焦、匀光或整形。
可以理解,本发明保护的技术方案不限于所述第一实施方式中数量或种类的中继透镜,所述中继透镜103可以是凸透镜或凹透镜。
<光调制系统>
所述光调制系统包括第一光调制器104R、第二光调制器104G以及第三光调制器104B,所述第一光调制器104R用于在一帧调制周期内依据所述第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光,所述第二光调制器104G用于在一帧调制周期内依据所述第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光,所述第三光调制器104B用于在一帧调制周期内依据所述第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光。
在所述第一实施方式中,所述第一光调制器104R、第二光调制器104G、第三光调制器104B分别为透射式液晶光阀,包括用于调节入射到所述光调制器的光的偏振态的液晶层、以及相对的入射面和出射面,入射至所述光调制器的光沿垂直于所述光调制器的入射面的方向入射,经所述光调制器调制后产生所述图像光和所述非图像光。所述图像光与所述非图像光从所述光调制器的出射面沿同一方向出射。
在所述第一实施方式中,所述图像光为具有第一偏振态的光(如P光,但不限于此),所述非图像光为具有第二偏振态的光(如S光,但不限于此),所述第一偏振态与所述第二偏振态为偏振方向不同的两种偏振态。光调制器出射的图像光与非图像光分别被引导至不同的方向。如上所述,图像光与非图像光的偏振态不同,使得两者便于分光,更具有实用性,适用于更多的应用环境。
在所述第一实施方式中,入射至所述光调制器的基色光为单一偏振态的第三偏振态的光。由于光调制器对入射光的偏振态产生作用,假若入射至光调制器的光有多种偏振态,则无法根据出射光的偏振态区分出作为图像组成部分的图像光。该技术方案避免了额外增加其他偏振转换装置,使得光源装置发出的光和非图像光经匀光系统均匀化后能直接被光调制器利用,简化了结构。
在所述第一实施方式中,所述第三偏振态与所述第二偏振态相同,即被改变偏振态的光成为第一偏振态的图像光,而其余部分未改变偏振态的光成为第二偏振态的非图像光。该调制方式可以通过改变施加到光调制器104R、104G、104B的电压来改变液晶层内液晶分子的排列方向实现,可以参照LCD的工作原理,此处不再赘述。
在其他实施方式中,所述第三偏振态也可以与所述第一偏振态相同,即被改变偏振态的光作为第二偏振态的非图像光,而未被改变偏振态的光作为图像光。该技术方案可以在所述第一实施方式的基础上通过将图像信号转换为反色图像信号,并输入到光调制器来实现;也可以通过在所述第一实施方式的基础上在光调制器中增加二分之一波片来实现;还可以通过采用其他种类的透射式液晶光阀实现,此处不再详细说明。
可以理解,所述第三偏振态也可以与所述第一偏振态和所述第二偏振态均不同,例如所述第三偏振态为椭圆偏振光。
<光引导装置>
在所述第一实施方式中,所述光引导装置包括偏振分光元件105,所述偏振分光元件105用于透射第一偏振态和第二偏振态之一的偏振态的光,并反射另一偏振态的光。所述偏振分光元件105将所述光调制器出射的图像光和非图像光分别引导向不同的方向。
所述光引导装置还包括合光装置107,所述合光装置107设置在所述光调制系统的出射光路上,用于将所述第一光调制器104R、第二光调制器104G以及第三光调制器104B调制产生的图像光合为一束光后出射,例如出射至投影镜头108。
<光回收系统>
在所述第一实施方式中,所述光回收系统包括三个光回收模块,三个所述光回收模块与所述第一光调制器104R、第二光调制器104G、第三光调制器104B一一对应,所述光回收模块用于将对应的所述光调制器调制产生的非图像光引导至所述匀光系统。
在所述第一实施方式中,每一所述光回收模块包括由多个反射镜106组成的反射镜组,所述反射镜组用于将所述非图像光在入射到所述匀光系统的光入射面之前转变为与入射到所述匀光系统的基色光平行的光。或者,所述反射镜组用于控制所述非图像光在所述匀光系统的光入射面的入射角度,使得入射到所述匀光系统的所述非图像光和基色光在所述匀光系统的光入射面的入射角度分布连续。
可以理解,本发明保护的技术方案不限于实施例中数量或种类的反射镜,只要能够实现将所述非图像光引导至匀光装置102的光入射面、使其经匀光装置102后再次进入光调制系统的功能即可。所述反射镜106可以是平面反射镜或曲面反射镜。
第二实施方式
请参阅图3,是本发明第二实施方式的投影系统200的结构示意图。第二实施方式的投影系统200与第一实施方式的投影系统100的主要区别在于:第二实施方式中的第一光调制器205R、第二光调制器205G、第三光调制器205B分别为数字微镜设备,所述数字微镜设备包括多个微镜单元,所述数字微镜设备的处于开状态的微镜单元将至少部分入射至所述数字微镜设备的光反射形成所述图像光,所述数字微镜设备的处于关状态的微镜单元将至少部分入射至所述数字微镜设备的光反射形成所述非图像光,所述图像光与所述非图像光从所述数字微镜设备中沿不同方向出射。
如上所述,数字微镜设备是利用微镜的开状态和关状态偏转方向不同的特性,将图像光和非图像光分别反射向不同的方向,因此,在所述第二实施方式中无需使用偏振分光元件来将所述光调制器出射的图像光和非图像光分别引导向不同的方向。
需要说明的是,在本发明实施例的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于第二实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
第三实施方式
请参阅图4,是本发明第三实施方式的投影系统300的结构示意图。第三实施方式的投影系统300与第一实施方式的投影系统100的主要区别在于:光源装置的发光方式以及三基色光的合光方式不同,使得与之对应的匀光系统、光调制系统、光回收系统的结构在数量上也有所不同。
具体地,在所述第三实施方式中,合光装置设置在光源装置与匀光系统之间的光路上,所述合光装置用于将第一光源301R、第二光源301G和第三光源301B发射的光引导至所述匀光系统。
在所述第三实施方式中,所述合光装置包括第一合光元件302和第二合光元件303,所述第一合光元件302用于将所述第一光源301R、第二光源301G和第三光源301B中的其中两个光源发射的光引导至第一光路,使其沿所述第一光路入射至所述第二合光元件303。所述第二合光元件303用于将所述第一光源301R、第二光源301G和第三光源301B中的另一个光源发射的光以及自所述第一光路入射的光引导至第二光路,使其沿所述第二光路入射至所述匀光系统。
其中,所述第一光源301R、第二光源301G和第三光源301B中的其中两个光源发射的光分别从不同方向入射至所述第一合光元件302,所述第一光源301R、第二光源301G和第三光源301B中的另一个光源发射的光以及自所述第一光路入射的光分别从不同方向入射至所述第二合光元件303。
在所述第三实施方式中,光引导装置还包括中继透镜304,所述中继透镜304设置于所述合光装置与所述匀光系统之间的光路上,用于将所述合光装置的出射光在入射至所述匀光系统之前进行聚焦、匀光或整形。
在所述第三实施方式中,所述匀光系统包括一个匀光装置305,所述光调制系统包括一个光调制器307,所述光回收系统包括一个光回收模块,所述光回收模块用于将所述光调制器307调制产生的非图像光引导至所述匀光装置305。
在所述第三实施方式中,控制装置311用于产生光源控制信号和调制控制信号,所述光源控制信号用于控制所述第一光源301R、第二光源301G和第三光源301B发光的时序。
所述调制控制信号用于控制所述光调制器307在一帧调制周期内依据相应基色的子帧图像数据分时调制自所述匀光系统出射的第一基色光、第二基色光以及第三基色光。
具体地,所述调制控制信号用于控制所述光调制器在一帧调制周期的第一时段依据所述第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光,在一帧调制周期的第二时段依据所述第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光,以及在一帧调制周期的第三时段依据所述第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光。
需要说明的是,在本发明实施例的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于第三实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
第四实施方式
请参阅图5,是本发明第四实施方式的投影系统400的结构示意图。第四实施方式的投影系统400与第三实施方式的投影系统300的主要区别在于:第四实施方式中的光调制器408为数字微镜设备,所述数字微镜设备包括多个微镜单元,所述数字微镜设备的处于开状态的微镜单元将至少部分入射至所述数字微镜设备的光反射形成所述图像光,所述数字微镜设备的处于关状态的微镜单元将至少部分入射至所述数字微镜设备的光反射形成所述非图像光,所述图像光与所述非图像光从所述数字微镜设备中沿不同方向出射。
如上所述,数字微镜设备是利用微镜的开状态和关状态偏转方向不同的特性,将图像光和非图像光分别反射向不同的方向,因此,在所述第四实施方式中无需使用偏振分光元件来将所述光调制器408出射的图像光和非图像光分别引导向不同的方向。
需要说明的是,在本发明实施例的精神或基本特征的范围内,适用于第一、二、三实施方式中的各具体方案也可以相应的适用于第四实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
第五实施方式
请参阅图6,是本发明第五实施方式的投影系统500的结构示意图。第五实施方式的投影系统500与第三实施方式的投影系统300的主要区别在于合光装置的不同,第五实施方式中合光装置包括一个合光元件,第一光源501R、第二光源501G和第三光源501B发射的光分别从不同方向入射至所述合光元件。
需要说明的是,在本发明实施例的精神或基本特征的范围内,适用于第一、三实施方式中的各具体方案也可以相应的适用于第五实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
第六实施方式
请参阅图7,是本发明第六实施方式的投影系统600的结构示意图。第六实施方式的投影系统600与第四实施方式的投影系统400的主要区别在于合光装置的不同,第六实施方式中合光装置包括一个合光元件,第一光源601R、第二光源601G和第三光源601B发射的光分别从不同方向入射至所述合光元件。
需要说明的是,在本发明实施例的精神或基本特征的范围内,适用于第一、二、四实施方式中的各具体方案也可以相应的适用于第六实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
在本发明中,投影系统可以为电视机设备、投影机设备、拼墙设备、舞台电脑灯设备、图像投影灯设备等任何投影或显示出单色或多色图像的设备。
由于本发明通过将非图像调制光重新分配到图像光对应的显示图像中,因此相较于不采用本发明的方案,本发明的显示图像亮度提高。
本说明书中各个实施方式采用递进的方式描述,每个实施方式重点说明的都是与其他实施方式的不同之处,各个实施方式之间相同相似部分互相参见即可。
本发明利用光回收系统将光调制系统出射的非图像光重新引导至匀光系统的光入射面,使其与光源发出的基色光一同经匀光系统的均匀化后再次进入光调制系统,有效的实现了非图像光的回收利用,提高了光利用率,提高了显示图像的亮度和对比度。本发明利用匀光装置本身的较大光学扩展量接收程度的特性,除了满足了光源发出的较小的光学扩展量,还留有足够的光学扩展量余量供非图像光回收利用,使得光回收效率大大提高。
请参阅图8,本发明还提供一种应用于上述投影系统10、100、200、300、400、500或600的投影方法,所述投影方法包括如下步骤:
步骤801,控制光源装置发射第一基色光、第二基色光和第三基色光。
步骤802,利用匀光系统将所述第一基色光、第二基色光和第三基色光进行均匀化并出射。
步骤803,利用光调制系统依据待显示图像的图像数据调制自所述匀光系统出射的均匀化的光,并形成用于显示图像的图像光和不用于显示图像的非图像光。
在本实施方式中,所述待显示图像的图像数据包括三基色的图像数据。
所述步骤803具体包括:
在一帧调制周期内依据第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光以产生第一基色的图像光和非图像光,依据第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光以产生第二基色的图像光和非图像光,以及依据第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光以产生第三基色的图像光和非图像光。
步骤804,利用光回收系统将所述非图像光引导至所述匀光系统,使所述非图像光经由所述匀光系统进行均匀化后出射。
步骤805,将所述图像光投影至预定区域,以产生所述待显示图像。
在本发明中,所述投影方法还包括:根据所述图像数据控制所述非图像光到达所述匀光系统的光通量,并依据所述非图像光的光通量来调节所述光源装置发射的基色光的光强度,使所述光源装置发射的基色光到达所述匀光系统的光通量与所述非图像光到达所述匀光系统的光通量的总和大致保持不变。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

1.一种投影系统,其特征在于:所述投影系统包括:
光源装置,包括用于发射第一基色光的第一光源、用于发射第二基色光的第二光源以及用于发射第三基色光的第三光源;
匀光系统,用于将所述第一基色光、第二基色光和第三基色光进行均匀化并出射;
光调制系统,用于依据待显示图像的图像数据调制自所述匀光系统出射的均匀化的光,并形成用于显示图像的图像光和不用于显示图像的非图像光;
光回收系统,用于将所述非图像光引导至所述匀光系统,使所述非图像光经由所述匀光系统进行均匀化后出射。
2.如权利要求1所述的投影系统,其特征在于:所述投影系统还包括控制装置,所述控制装置用于根据所述图像数据控制自所述光调制系统出射的所述非图像光到达所述匀光系统的光通量,并依据所述非图像光的光通量来调节所述光源装置发射的基色光的光强度,使所述光源装置发射的基色光到达所述匀光系统的光通量与所述非图像光到达所述匀光系统的光通量的总和大致保持不变。
3.如权利要求2所述的投影系统,其特征在于:所述待显示图像的图像数据包括三基色的图像数据;
所述光调制系统用于在一帧调制周期内依据第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光以产生第一基色的图像光和非图像光,依据第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光以产生第二基色的图像光和非图像光,以及依据第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光以产生第三基色的图像光和非图像光。
4.如权利要求3所述的投影系统,其特征在于:所述光调制系统包括第一光调制器、第二光调制器以及第三光调制器,所述第一光调制器用于在一帧调制周期内依据所述第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光,所述第二光调制器用于在一帧调制周期内依据所述第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光,所述第三光调制器用于在一帧调制周期内依据所述第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光。
5.如权利要求3所述的投影系统,其特征在于:所述控制装置还用于产生光源控制信号和调制控制信号,所述光源控制信号用于控制所述第一光源、第二光源和第三光源发光的时序;
所述光调制系统包括一个光调制器,所述调制控制信号用于控制所述光调制器在一帧调制周期内依据相应基色的子帧图像数据分时调制自所述匀光系统出射的第一基色光、第二基色光以及第三基色光。
6.如权利要求5所述的投影系统,其特征在于:所述调制控制信号具体用于控制所述光调制器在一帧调制周期的第一时段依据所述第一基色的子帧图像数据调制自所述匀光系统出射的第一基色光,在一帧调制周期的第二时段依据所述第二基色的子帧图像数据调制自所述匀光系统出射的第二基色光,以及在一帧调制周期的第三时段依据所述第三基色的子帧图像数据调制自所述匀光系统出射的第三基色光。
7.如权利要求4所述的投影系统,其特征在于:所述光回收系统包括三个光回收模块,三个所述光回收模块与所述第一光调制器、第二光调制器、第三光调制器一一对应,所述光回收模块用于将对应的所述光调制器调制产生的非图像光引导至所述匀光系统。
8.如权利要求6所述的投影系统,其特征在于:所述光回收系统包括一个光回收模块,所述光回收模块用于将所述光调制器调制产生的非图像光引导至所述匀光系统。
9.如权利要求7或8所述的投影系统,其特征在于:所述光回收模块包括由多个反射镜组成的反射镜组,所述反射镜组用于将所述非图像光在入射到所述匀光系统的光入射面之前转变为与入射到所述匀光系统的基色光平行的光;或者
所述反射镜组用于控制所述非图像光在所述匀光系统的光入射面的入射角度,使得入射到所述匀光系统的所述非图像光和基色光在所述匀光系统的光入射面的入射角度分布连续。
10.如权利要求4或6所述的投影系统,其特征在于:所述图像光为具有第一偏振态的光,所述非图像光为具有第二偏振态的光,所述第一偏振态与所述第二偏振态为偏振方向不同的两种偏振态;入射至所述光调制器的基色光为第三偏振态的光,所述第三偏振态与所述第一偏振态或所述第二偏振态相同;
所述光调制器为透射式液晶光阀,包括用于调节入射到所述光调制器的光的偏振态的液晶层、以及相对的入射面和出射面,入射至所述光调制器的光沿垂直于所述光调制器的入射面的方向入射,经所述光调制器调制后产生所述图像光和所述非图像光;所述图像光与所述非图像光从所述光调制器的出射面沿同一方向出射。
11.如权利要求10所述的投影系统,其特征在于:所述投影系统还包括光引导装置,所述光引导装置包括偏振分光元件,所述偏振分光元件用于透射第一偏振态和第二偏振态之一的偏振态的光,并反射另一偏振态的光;所述偏振分光元件将所述光调制器出射的图像光和非图像光分别引导向不同的方向。
12.根据权利要求4或6所述的投影系统,其特征在于:所述光调制器为数字微镜设备,包括多个微镜单元,所述数字微镜设备的处于开状态的微镜单元将至少部分入射至所述数字微镜设备的光反射形成所述图像光,所述数字微镜设备的处于关状态的微镜单元将至少部分入射至所述数字微镜设备的光反射形成所述非图像光,所述图像光与所述非图像光从所述数字微镜设备中沿不同方向出射。
13.如权利要求4所述的投影系统,其特征在于:所述投影系统还包括光引导装置,所述光引导装置包括合光装置,所述合光装置用于将所述第一光调制器、第二光调制器以及第三光调制器调制产生的图像光合为一束光后出射。
14.如权利要求6所述的投影系统,其特征在于:所述投影系统还包括光引导装置,所述光引导装置包括合光装置,所述合光装置用于将所述第一光源、第二光源与第三光源发射的光引导至所述匀光系统。
15.如权利要求14所述的投影系统,其特征在于:所述合光装置包括第一合光元件和第二合光元件,所述第一合光元件用于将所述第一光源、第二光源和第三光源中的其中两个光源发射的光引导至第一光路,使其沿所述第一光路入射至所述第二合光元件;所述第二合光元件用于将所述第一光源、第二光源和第三光源中的另一个光源发射的光以及自所述第一光路入射的光引导至第二光路,使其沿所述第二光路入射至所述匀光系统。
16.如权利要求4或6所述的投影系统,其特征在于:所述匀光系统至少包括匀光装置,所述匀光装置包括光入射面,用于接收所述第一基色光、第二基色光和第三基色光以及所述非图像光,并对其进行匀光,使其均匀化。
17.如权利要求16所述的投影系统,其特征在于:所述匀光系统包括三个所述匀光装置,三个所述匀光装置与所述第一光源、第二光源、第三光源一一对应,所述匀光装置用于接收对应的光源发射的基色光以及相应基色的非图像光,并对接收到的光进行匀光。
PCT/CN2017/103656 2017-08-04 2017-09-27 投影系统 WO2019024211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710661535.7 2017-08-04
CN201710661535.7A CN109388004B (zh) 2017-08-04 投影系统

Publications (1)

Publication Number Publication Date
WO2019024211A1 true WO2019024211A1 (zh) 2019-02-07

Family

ID=65232253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103656 WO2019024211A1 (zh) 2017-08-04 2017-09-27 投影系统

Country Status (1)

Country Link
WO (1) WO2019024211A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378100A (zh) * 2001-03-28 2002-11-06 三菱电机株式会社 光源装置及投影电视
JP2003121922A (ja) * 2001-10-18 2003-04-23 Mitsubishi Electric Corp 投写装置
CN1453604A (zh) * 2002-04-28 2003-11-05 明基电通股份有限公司 用于回收关闭状态光的图像显示装置及其方法
US7113324B2 (en) * 2004-02-12 2006-09-26 Benq Corporation Image display apparatus
CN105573033A (zh) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 提高光利用率及投影亮度的投影光学系统
CN207164451U (zh) * 2017-08-04 2018-03-30 深圳市光峰光电技术有限公司 投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378100A (zh) * 2001-03-28 2002-11-06 三菱电机株式会社 光源装置及投影电视
JP2003121922A (ja) * 2001-10-18 2003-04-23 Mitsubishi Electric Corp 投写装置
CN1453604A (zh) * 2002-04-28 2003-11-05 明基电通股份有限公司 用于回收关闭状态光的图像显示装置及其方法
US7113324B2 (en) * 2004-02-12 2006-09-26 Benq Corporation Image display apparatus
CN105573033A (zh) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 提高光利用率及投影亮度的投影光学系统
CN207164451U (zh) * 2017-08-04 2018-03-30 深圳市光峰光电技术有限公司 投影系统

Also Published As

Publication number Publication date
CN109388004A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
JP4245563B2 (ja) 投写型映像表示装置
US7270427B2 (en) Display device, lighting device and projector
US7192140B2 (en) Projector
CN207164451U (zh) 投影系统
WO2017206614A1 (zh) 投影系统
JP4644209B2 (ja) 空間光変調器を使用したタイル状投影ディスプレイ
WO2018010467A1 (zh) 发光装置及相关投影系统
WO2016180298A1 (zh) 一种发光装置及其发光控制方法、投影设备
WO2018126561A1 (zh) 投影系统
WO2018072419A1 (zh) 双空间光调制系统及使用该系统进行光调节的方法
JPH10269802A (ja) 照明装置および映像表示装置
WO2016116039A1 (zh) 光源系统和投影系统
WO2018032857A1 (zh) 一种显示系统
JP2021026089A (ja) プロジェクションシステム及びプロジェクションシステムの制御方法
WO2018113226A1 (zh) 一种投影显示系统
CN112637576A (zh) 投影设备以及投影控制方法
JP2007065408A (ja) 照明装置及び投写型映像表示装置
US10104352B2 (en) Projector and image display method
WO2018170987A1 (zh) 投影系统
WO2016127814A1 (zh) 投影系统及其控制方法
WO2018196195A1 (zh) 光源系统及显示设备
WO2019024211A1 (zh) 投影系统
JP2012252300A (ja) 画像表示装置
WO2020088163A1 (zh) 投影系统及投影控制方法
US20050110955A1 (en) Projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920096

Country of ref document: EP

Kind code of ref document: A1