WO2018126561A1 - 投影系统 - Google Patents

投影系统 Download PDF

Info

Publication number
WO2018126561A1
WO2018126561A1 PCT/CN2017/081496 CN2017081496W WO2018126561A1 WO 2018126561 A1 WO2018126561 A1 WO 2018126561A1 CN 2017081496 W CN2017081496 W CN 2017081496W WO 2018126561 A1 WO2018126561 A1 WO 2018126561A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
image data
light source
sub
Prior art date
Application number
PCT/CN2017/081496
Other languages
English (en)
French (fr)
Inventor
胡飞
郭祖强
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018126561A1 publication Critical patent/WO2018126561A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a projection system.
  • the existing projection system is widely used in the fields of theater, education, television, etc., and the projection system can be divided into DMD according to the type of light modulation device (Digital Micromirror). Device), LCOS (Liquid Crystal on Silicon), LCD (Liquid Crystal Display, etc., can be divided into single-chip, two-piece and three-piece systems according to the number of light modulation devices.
  • the conventional light source includes a bulb source such as a UHP or a xenon lamp, and an LED light source, an RGB pure laser light source, and a laser-excited phosphor light source are gradually developed, and the latter can be considered as a semiconductor light-emitting device. light source.
  • RGB laser source Due to the limited amount of optical expansion, the projection system of the LED light source has insufficient brightness, and is limited in many fields, especially in theater applications where brightness is required.
  • the common contrast is RGB laser source and laser phosphor source.
  • RGB laser source has the advantages of high color purity and wide color gamut. It can generally reach the REC2020 color gamut standard, but its speckle problem is difficult to solve.
  • the light source that excites the phosphor does not have speckle problems, and the visual performance is good, and the DCI standard can generally be achieved in terms of color gamut. For most cases of actually viewing images, the DCI gamut is sufficient. It can be imagined that the captured image comes from nature, life around, etc.
  • the object has a certain color, from the spectrum of its reflection, the spectrum of the general reflection will be a relatively continuous spectrum with a certain width. Therefore, the color of the object will fall within the DCI gamut unless there is a situation where the camera directly captures a pure laser beam, such as a 532 nm green laser beam and a 638 nm red laser beam, at which point the DCI gamut cannot be restored.
  • the intrinsic color of these two laser beams which is also considered to be a place where the laser fluorescent light source is not as good as the RGB pure laser light source, so how to make the laser fluorescent light source also have a color gamut beyond the DCI while maintaining its high luminous efficiency.
  • Existing pure laser projectors can achieve a large color gamut of REC2020, while the color gamut range of laser phosphor technology projectors is DCI709, although most of the colors in nature are in the DCI gamut, but in certain cases For example, when the color of a pure laser is displayed, it will be outside the DCI gamut. When the projector of the existing laser phosphor technology displays the color, the color display beyond the DCI gamut is not realistic.
  • the projection image with high fidelity has become a reference standard for consumers to pursue projection products.
  • the color gamut range of the existing laser phosphor technology satisfies the conventional color display in nature, but the special image color will be outside the DCI color gamut. If the DCI color gamut is used for display, it is outside the DCI color gamut. Colors can only be displayed with colors on the DCI gamut boundaries, but different color differences are not reflected. Eventually the color display that is not within the DCI gamut is distorted.
  • the present invention provides a projection system that can effectively widen the color gamut.
  • a projection system comprising:
  • a first light source for emitting primary color light for modulating an image, the primary color light being capable of modulating an image within a first color gamut
  • a second light source for emitting complementary light that widens a color gamut of the at least one of the primary light sources, wherein the primary light emitted by the first light source and the complementary light are emitted at a preset ratio Modulating an image within a second color gamut;
  • a color gamut determining module configured to receive image data, determine a color gamut range of the image to be displayed according to the image data, and output a control signal according to the color gamut range;
  • a light source controller configured to receive the control signal, and control opening and closing of the first light source and the second light source according to the control signal, so that light emitted by the first light source and the second light source can be modulated
  • the color gamut range satisfies the color gamut range of the image to be displayed
  • a light modulating device configured to image modulate the primary color light and the supplemental light to generate projection light required for an image to be displayed.
  • the second light source may emit supplemental light to widen the color gamut of the projection system, and the color gamut determining module determines the color gamut range of the image to be displayed according to the image data. And controlling the opening and closing of the first light source and the second light source according to the color gamut range output control signal, wherein the light modulating device performs image modulation on the at least two color lights and the supplementary light Projecting light required to produce a projected image, wherein the second light source is capable of emitting supplemental light that broadens the color gamut of the projection system, the light modulating device modulating the supplemental light to produce projected light such that the color gamut of the projected image is effective
  • the invention is widened to improve the color distortion of the picture, so that the color gamut of the projection system is wider, the picture color is realistic, and the display effect is better.
  • FIG. 1 is a block schematic view of a projection system in accordance with a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a light emitting device according to an embodiment of the projection system shown in FIG. 1.
  • FIG. 2 is a schematic structural view of a light emitting device according to an embodiment of the projection system shown in FIG. 1.
  • FIG. 3 is a schematic structural view of a light emitting device according to another embodiment of the projection system shown in FIG. 1.
  • FIG. 3 is a schematic structural view of a light emitting device according to another embodiment of the projection system shown in FIG. 1.
  • FIG. 4 is a schematic structural view of the color wheel shown in FIG. 1.
  • Figure 5 is a schematic illustration of the color gamut range of the projection system of Figure 1.
  • FIG. 6 is a schematic diagram showing the driving sequence of the light-emitting device and the spatial light modulator of the projection system shown in FIG. 1.
  • Figure 7 is a block schematic diagram of a projection system in accordance with a second embodiment of the present invention.
  • FIG. 8 is a schematic view showing the structure of a color wheel of a projection system according to a second embodiment of the present invention.
  • FIGS. 9, 10 and 11 are schematic diagrams showing driving timings of a light source and a spatial light modulator of a projection system according to a second embodiment of the present invention.
  • Fig. 12 is a schematic view showing the structure of a color wheel according to a modified embodiment of the second embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a projection system 100 according to a first embodiment of the present invention.
  • the projection system 100 includes a light emitting device 110, a light source controller 150, an optical processing component 190, a light modulating device 160, a color gamut determining module 170, and a projection lens 180.
  • the light emitting device 110 includes a first light source 120, a second light source 130, and a color wheel 140.
  • the first light source 120 is for emitting primary color light, the primary color light is used to modulate an image, and the primary color light can be used to modulate an image within a first color gamut.
  • the color wheel 140 is located on an optical path where the primary color light emitted by the first light source 120 is located, and the color wheel 140 includes at least two segmented regions, and the at least two segmented regions receive the primary color light and correspondingly emit Converting light, wherein the converted light comprises at least two colors of light.
  • the second light source 130 is configured to emit supplemental light that widens a color gamut of the first light source 120 to emit at least one of the primary colors, and the primary light emitted by the first light source 120 and the supplementary light are preset.
  • Proportional emissions can be used to modulate images in the second gamut.
  • the color gamut determining module 170 is configured to receive image data and determine a color gamut range of the image to be displayed according to the image data, and output a control signal according to the color gamut range.
  • the light source controller 150 is configured to receive the control signal and control the opening and closing of the first light source 120 and the second light source 130 according to the control signal, so that the first light source 120 and the second light source 130 are emitted.
  • the range of gamuts that the light can modulate satisfies the gamut of the image to be displayed.
  • the light processing element 190 can include a collection lens system, a relay lens system, etc., the light processing element homogenizing and/or changing the optical path of the at least two color lights emitted by the illumination device with the supplemental light And collecting, diffusing, shaping, etc. the at least two color lights and the supplemental light to illuminate the at least two color lights and the supplemental light onto the light modulation device 160 according to a preset spot size .
  • the light modulating device 160 is configured to respectively perform image modulation on the at least two color lights and the supplementary light according to the image data to generate projection light required for projecting an image. It can be understood that, in a modified embodiment, the first light source 120 can directly emit primary color lights of at least two colors, so that the color wheel 140 can be omitted.
  • the first light source 120 is an excitation light source that emits primary color light under the control of the light source controller 150.
  • the first light source 120 may be disposed on one side of the color wheel 140.
  • the first light source 120 may be a blue light source and emit blue primary light, but it is understood that the first light source 120 is not limited to a blue light source, and may also be a red light source, a green light source, an ultraviolet light source, or the like.
  • the first light source 120 includes a blue laser for emitting blue laser light as the primary color light. It can be understood that the first light source 120 may include one, two or more blue lasers. The number of lasers can be selected according to actual needs.
  • the second light source 130 is a supplemental light source that emits supplemental light under the control of the light source controller 150.
  • the second light source 130 may be disposed on a side of the color wheel 140 where the first light source 120 is located, that is, the first light source 120 and the second The light source 130 is located on the same side of the color wheel 140, and the color wheel 140 is a transmissive color wheel.
  • the light emitted by the first light source 120 and the second light source 130 are both emitted through the color wheel 140 to be provided to The light modulation device 160. As shown in FIG.
  • the second light source 130 may be disposed on a side opposite to the first light source 120 of the color wheel 140, that is, the first light source 120 and the first Two light sources 130 are located on different sides of the color wheel 140.
  • the color wheel 140 is also a transmissive color wheel. Light emitted by the first light source 120 is supplied to the light modulation device 160 via the color wheel 140. The light emitted by the second light source 130 is also supplied to the light modulation device 160 but not via the color wheel 140.
  • the second light source 130 may include at least one laser for emitting laser light of at least one color as the supplemental light. As shown in FIG. 2 and FIG. 3, the second light source 130 may include a first laser 131 and a second laser 132, respectively emitting first supplemental light and second supplemental light, the first supplemental light and the second The complementary light colors are different. However, in a modified embodiment, the second light source 130 may also include only one type of laser to emit only one color of complementary light; or the second light source 130 may also include three types of lasers to emit three colors. Light complements the light. It can be understood that the type of the laser of the second light source 130 or the number of colors of the supplementary light may be determined according to the color gamut color that needs to be widened.
  • the second light source 130 may include a red laser to provide a red color supplement. If the light needs to broaden the green color gamut, the green light of the second light source 130 includes a green complementary light, and if the red color gamut and the green color gamut need to be widened, the second light source 130 may include a red laser to emit red complementary light. Also included is a green laser that emits green supplemental light.
  • the first light source 120 is a blue laser
  • the first laser 131 and the second laser 132 may be a red laser and a green laser, respectively.
  • the number of the first lasers 131 and the second lasers 132 may also be one, two or more, and may be selected according to actual needs.
  • FIG. 4 is a schematic structural view of the color wheel 140 shown in FIG. At least two segmented regions 141 of the color wheel 140 disposed in a circumferential direction, and the color wheel 140 is rotatable along a center of the color wheel 140 such that the at least two segmented regions 141 are periodically located
  • the light path on which the primary light emitted by the first light source 120 is located is such that the at least two segmented regions 141 periodically emit the at least two colors of light.
  • the size of the at least two segment regions 141 can be set to be the same or different according to actual needs.
  • the area irradiated by the primary color light when the spot formed on the color wheel traverses the two segmented regions is a spoke area
  • the area outside the spoke area in the segment area is a non-spoke area.
  • the two partial spoke regions 141b between the non-spoke regions 141a of the adjacent two segment regions 141 constitute the spoke region 142.
  • the color wheel 140 includes three segmented regions 141 sequentially disposed in the circumferential direction, which are a first segment region B, a second segment region R, and a third segment region G, respectively.
  • the first segment area B, the second segment area R, and the third segment area G each include a non-spoke area 141a and a partial spoke area 141b adjacent to another segment area, because the color wheel 140 is also correspondingly divided.
  • the first segment area B is used to emit a first color light, such as blue light.
  • the first light source 120 is a blue light source
  • the first segment area B may be provided with a scattering material.
  • Light emitted by the first light source 120 may be scattered through the first segment region B and then emitted.
  • the first segment region B may be provided with a first wavelength converting material, and the light emitted by the first light source 120 may excite the light.
  • the first wavelength converting material produces the first color light.
  • the second segment region R is for emitting second color light, such as red light
  • the second segment region R may be disposed with a second wavelength converting material, such as a red phosphor, and the light emitted by the light source 120.
  • the second wavelength converting material may be excited to generate the second color light, that is, red light
  • the third segment region G is for emitting a third color light, such as green light
  • the third segment region G A third wavelength converting material, such as a green phosphor, may be disposed thereon, and the light emitted by the light source 120 may excite the third wavelength converting material to generate the third color light, that is, green light.
  • the color wheel 140 can also be a reflective color wheel or a transflective color wheel (eg, a partially segmented area is a transmissive area, and another part of the segmented area is a reflective area), the first light source 120 and
  • the optical path and the positional relationship between the second light source 130 and the color wheel may also be designed and adjusted according to actual needs.
  • the optical paths of the different types of color wheel and the first light source 120 and the second light source 130 are not described herein. ,Positional relationship.
  • the light modulating device 160 is located on the optical path of the light emitted by the color wheel 140 and the light emitted by the second light source 130.
  • the light modulating device 160 further receives the image data DATA and modulates the color wheel according to the image data DATA.
  • the light emitted by 140 and the light emitted by the second light source 130 are used to generate projection light.
  • the light modulating device 160 is a spatial light modulator, such as may be a DMD light modulator but is not limited to a DMD light modulator.
  • the projection lens 180 receives the projection light emitted by the light modulation device 160 for projection display.
  • the color gamut determining module 170 is further configured to receive the image data DATA, determine a color gamut range of the image to be displayed corresponding to the image data according to the image data DATA, and determine a color gamut corresponding to the image data DATA. Whether the range falls within the first color gamut range F1. As shown in FIG.
  • the first color gamut range F1 may be a color gamut range that can be displayed by the at least two colors of light, such as a DCI color gamut range, such as a color gamut range DCI 709, specifically,
  • the at least two colors of light may include blue laser light of the first light source 120 exciting red and green fluorescence generated by the red, green wavelength conversion material on the color wheel 140, and The blue laser light of the first light source 120 that transmits, scatters, or reflects the color wheel 140.
  • the red fluorescence and the green fluorescence are obtained by exciting the wavelength conversion material instead of the pure color laser, and therefore, the colors of the red light and the green light in the at least two colors of light
  • the field is narrow, and only the gamut range of the DCI 709 (ie, the first color gamut range) can be exhibited, and the blue light emitted by the color wheel is the blue laser light emitted by the first light source 120, so there is generally no blue light color.
  • the second light source 130 includes a red laser and a green laser to respectively supplement the light of the red laser and the green laser to widen the color gamut.
  • the supplemental light emitted by the second light source 130 may emit light exceeding the first color gamut range F1.
  • the supplemental light emitted by the second light source 130 may exhibit REC.
  • the gamut range such as the gamut range REC2020, may be wider than the first gamut range F1, such as the gamut range of the REC 2020.
  • a second gamut range F is defined, and the second gamut range F2 is a range of REC gamuts other than the first gamut range F1, and is a gamut range that the supplemental light can exhibit.
  • the color gamut determining module 170 may analyze the grayscale values of the primary color image data of the image data DATA to calculate the mixed color gamut values of the primary color image data, thereby determining that the color gamut value falls on The first is the second gamut range.
  • the color gamut judging module 170 may be integrated in an image data processing module of the projection system 100, and the image data processing module receives the image data DATA, decompresses the image data DATA, and the like, and further based on the primary color.
  • the gray scale value of the image data is used to calculate the color gamut value to determine a color gamut range of the image to be displayed.
  • the preset ratio of the primary light emitted by the first light source 120 and the complementary light emitted by the second light source 130 can be set according to actual needs, and the preset ratio can be understood as a color wheel cycle.
  • the preset ratio may be adjusted according to the color gamut determination result of the image data, such as in the image data. If the color gamut value of a part of the pixels falls within the second color gamut, the proportion of the complementary light emitted by the second light source 130 can be increased.
  • the color gamut determining module 170 may issue a first control signal to the light source control.
  • the light source controller 150 controls the first light source 120 to turn on and control the second light source 130 to be turned off according to the first control signal, and the light modulating device 160 modulates the color wheel according to the image data.
  • the light emitted by 140 produces projection light.
  • the color gamut determining module 170 may issue a second control signal to the
  • the light source controller 150 controls the first light source 120 and the second light source 130 to be turned on according to the second control signal, and the light modulation device 160 separately modulates the image according to the image data.
  • the light emitted by the color wheel 140 and the supplemental light produce projection light. It can be understood that the light emitted by the color wheel 140 includes the converted light (such as a yellow received laser) and the unconverted light (such as blue primary light).
  • the light source controller 150 controls the first light source 120 and the second light source 130 to be turned on according to the second control signal, and the light modulating device 160 divides the time according to the image data.
  • the light emitted from the color wheel 140 and the supplemental light generate projection light.
  • each segment receives the light of the first light source 120 and emits a corresponding color light in the non-rotation period T1, and the time between two adjacent non-rotation periods T1
  • the segment corresponds to the spoke period T2 of the spoke region 142.
  • Each color wheel period T may include at least two non-rotation periods T1 and at least two rotation periods T2.
  • each color wheel period T includes three non-rotation periods T1 and three spoke periods T2, The non-rotation period T2 is alternately set with the spoke period T1.
  • the image data corresponding to each color wheel period T is one frame of image data, and the one frame of image data generally includes three subframes of primary color image data.
  • the primary colors refer to red, green, and blue
  • the three subframe primary color image data are red subframe image data, green subframe image data, and blue subframe image data.
  • the color gamut determination module 170 determines that the color gamut range of the image to be displayed corresponding to a sub-frame primary color image data in the three-subframe primary color image data falls within the first color gamut range F1, the three-subframe primary color image The data respectively corresponds to the three non-spin periods T1, and the color gamut determination module 170 sends a control signal to the light source controller 150 to control the first light source 120 in the corresponding non-via via the light source controller 150.
  • the spoke period T1 is turned on and the second light source 130 is turned off in the corresponding non-spin period T1, and the color wheel 140 receives the light emitted by the first light source 120 and emits the corresponding sub-frame in the corresponding non-spin period T1.
  • the light modulating device 160 generates the projection light by modulating the light emitted by the color wheel according to the sub-frame primary color image data in the corresponding non-spin period T1.
  • the first light source 120 may be turned off during the spoke period T2 of the color wheel period T, and the second light source 130 is also in the off state during the spoke period T2, that is, if the image data falls In the first color gamut range F1, the first light source 120 may be turned on during the non-rotation period T1 of the color wheel period T, and the non-rotation period T1 and the spoke of the second light source 130 in the color wheel period T Period T2 is closed.
  • the gamut determination module 170 determines that the color gamut range of the image to be displayed corresponding to a sub-frame primary color image data in the three-subframe primary color image data falls within the second color gamut range F (eg, red sub-frame image data or The color gamut corresponding to the green sub-frame image data falls within the second gamut range F, and the gamut determination module 170 sends a control signal to the light source controller 150 to control the first via the light source controller 150.
  • the second color gamut range F eg, red sub-frame image data or The color gamut corresponding to the green sub-frame image data falls within the second gamut range F
  • a light source 120 is turned on at a corresponding non-rotation period T1 and controls the second light source 130 to turn off T1 during a corresponding non-spin period, the color wheel 140 emitting color light corresponding to the sub-frame primary color image data (eg, red light, Green light, or other color light containing red or green light components, the light modulating device 160 at least partially projecting the light emitted by the color wheel 140 according to the sub-frame primary color image data during the non-spin period T1
  • the control signal sent by the color gamut judging module 170 further controls the first light source 120 to be turned off at the corresponding spoke period T2 and the second light source 130 at the color wheel via the light source controller 150.
  • a period T2 of the period T is turned on, the second light source 130 emits complementary light (such as a red laser or a green laser) corresponding to the primary color image data of the sub-frame, and the light modulating device 160 is in the spoke period T2.
  • the sub-frame primary color image data modulates the supplemental light to produce another portion of the projected light.
  • the projection lens 180 sequentially displays a projection image (such as a red image or a green image) corresponding to the sub-frame primary color image data according to the partial projection light of the non-spin period T1 and another part of the projection light of the spoke period T2.
  • the color gamut of the supplementary light emitted by the second light source 130 is wider, a color exceeding the first color gamut range F2 of the first color gamut range F1 can be exhibited, and the light modulating device 160 modulates the supplement.
  • the color gamut of the projected light emitted after the light is wider, so that the color of the first gamut range F2 beyond the first gamut range F1 can also be displayed, and the color of the image data is more effectively restored, so that the projected image is The colors are more realistic.
  • the color gamut determining module 170 determines that the color gamut corresponding to the two sub-frame primary color image data in the three-subframe primary color image data falls within the second color gamut range F (eg, red sub-frame image data and green sub-frame image) The color gamut corresponding to the data falls within the second color gamut range F), and the color gamut determination module 170 sends a control signal to the light source controller 150 to control the first light source 120 via the light source controller 150.
  • Corresponding two non-rotation periods T1 are turned on and the second light source 130 is controlled to be turned off in the corresponding two non-spinning periods T2, and the color wheel 140 sequentially emits color light corresponding to the sub-frame primary color image data (such as red light).
  • the light modulating device 160 modulates the light emitted by the color wheel 140 according to the two sub-frame primary color image data in corresponding two non-spinning periods T1 Generating at least a portion of the projected light; the control signal sent by the color gamut determining module 170 further controls, by the light source controller 150, that the first light source 120 is turned off during the spoke period T2 and controls the second light source 130 A laser 131 is turned on during a first spoke period T2 of the color wheel period T, the second source 130 emits a first supplemental light (such as a red laser R1), and the light modulating device 160 is in the first spoke period T2 Modulating the first supplemental light according to the sub-frame primary color image data produces another portion of the projected light.
  • the control signal sent by the color gamut determining module 170 further controls, by the light source controller 150, that the first light source 120 is turned off during the spoke period T2 and controls the second light source 130
  • a laser 131 is turned on during a first spoke period T2 of the color wheel
  • the control signal sent by the color gamut determining module 170 is further controlled by the light source controller 150 to control the second laser 132 of the second light source 130 to be turned on during the second spoke period T2 of the color wheel period T, the second The light source 130 emits a second supplemental light (such as the green laser G1), and the light modulating device 160 generates a further portion of the projected light by modulating the second supplemental light according to the sub-frame primary color image data during the second spoke period T2.
  • the projection lens 180 sequentially displays the projection images corresponding to the two sub-frame primary color image data according to the partial projection light of the non-rotation period T1 and the two-part projection light of the first and second spoke periods T2.
  • the second light source 130 emits the first supplemental light and the second supplemental light at different spoke periods T2.
  • the light modulating device 160 modulates the first supplemental light and the second supplemental light according to the two sub-frame primary color image data, and the color gamut of the first and second complementary lights emitted by the second light source 130 is compared.
  • a color of the second color gamut F beyond the first color gamut range F1 can be displayed, and the light modulating device 160 modulates the complementary light to emit a wider color gamut, thereby also exhibiting The color of the second color gamut range F of the first color gamut range F1 more effectively restores the color of the image data DATA, so that the color of the projected image is more realistic.
  • the second light source 130 may emit supplemental light to widen the color gamut of the projection system 100, and the color gamut determining module 170 determines the image to be displayed according to the image data DATA. a color gamut range, and outputting a control signal according to the judgment result to control opening and closing of the first light source 120 and the second light source 130, so that the light modulating device 160 emits light and light to the color wheel 140
  • the supplementary light is image modulated to produce projection light required to project the image, and the complementary light emitted by the second light source 130 can effectively broaden the color gamut of the projection system 100.
  • the color gamut determining module 170 determines the color gamut range and controls the opening and closing of the two light sources 120 and 130 according to the image data DATA, and may further select the at least two according to the color gamut range of the image data. Which of the color light and the supplemental light is such that the color gamut of the image data DATA is adapted to the light modulated by the light modulating device 160, thereby effectively improving the picture color distortion phenomenon, the projection
  • the color gamut of the system 100 is wide, the picture color is realistic, and the display effect is good.
  • FIG. 7 is a block diagram of a projection system 200 according to a second embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a color wheel 240 of the projection system 200 according to the second embodiment of the present invention.
  • the projection system of the second embodiment is similar to the projection system of the first embodiment, that is, the above description of the first embodiment can basically be used for the second embodiment, the difference between the two Mainly: the structure of the color wheel 240, the number of spatial light modulators of the light modulation device, and the driving timing of the light source and the spatial light modulator are different.
  • the portions of the second embodiment that are different from the first embodiment are mainly described below, and the same portions of the second embodiment as those of the first embodiment will not be described again.
  • the color wheel 240 includes two segment regions 241 sequentially disposed in the circumferential direction, which are a first segment region B and a second segment region, respectively. Y.
  • the first segment area B is used to emit a first color light, such as blue light.
  • the first segment area B may be provided with a scattering material.
  • the light emitted by the first light source 220 may be scattered after being emitted through the first segment region B; when the first light source 220 is an ultraviolet light source, the first segment region B may be provided with a first wavelength conversion material.
  • the light emitted by the first light source 200 can excite the first wavelength converting material to generate the first color light, such as blue light.
  • the second segment area Y is used to emit a second color light, such as yellow light, and the second segment area Y may be provided with a second wavelength conversion material, such as a yellow phosphor, and the first light source 220 is emitted.
  • the light can excite the second wavelength converting material to produce the second color light, i.e., yellow light.
  • the first segment area B and the second segment area Y each include a non-spoke area 241a and a partial spoke area 241b adjacent to the other segment area.
  • the two partial spoke regions 241b between the first segment region B and the non-spoke region 241a of the second segment region Y may be defined as a spoke region 242; the second segment region Y and The other two partial spoke regions 241b between the non-spoke regions 241a of the first segment region B may be defined as another spoke region 242.
  • the projection system 200 includes two spatial light modulators: a first spatial light modulator 261 and a second spatial light modulator 261.
  • the first spatial light modulator 261 can be configured to modulate an image according to the first subframe primary color image data in the three subframe primary color image data
  • the second spatial light modulator 262 is configured to perform the modulation according to the modulation.
  • the second and third sub-frame primary color image data in the three-subframe primary color image data modulate the image.
  • each color wheel period T includes two non-rotation periods T1 and two spoke periods T2.
  • the three subframe primary color image data respectively correspond to the two non-spin periods T1, that is, one non-spin period T1 corresponds to two subframe primary color image data (eg, the first non-spin period T1 corresponds to the red sub-frame image data and Green sub-frame image data), the color wheel also emits color light corresponding to the two sub-frame image data in the non-spin period T1 (eg, the second segment area Y emits yellow light), the first spatial light
  • the modulator 261 generates projection light according to the corresponding one-frame primary color image data (such as red sub-frame image data) modulating the light emitted by the color wheel 240 in the non-spin period T1, and the second spatial light modulator 262 according to another
  • a sub-frame primary color image data (e.g., green sub-frame image data) modulates light emitted by the color wheel 240 in the same non-spin period T
  • the other non-spin period T1 corresponds to another sub-frame primary color image data (such as blue sub-frame image data), and the color wheel 240 also issues the further sub-frame image in the other non-spin period T1.
  • Color light corresponding to the data eg, the first segment area B emits blue light
  • the second spatial light modulator 262 further modulates the other non-spin period T1 according to the further subframe primary color image data.
  • the light emitted by the color wheel 240 produces projection light.
  • the color gamut determining module 270 determines that the color gamut range of the image to be displayed corresponding to the three-subframe primary color image data falls within the first color gamut range F1
  • the light source 130 can display the color gamut range corresponding to the three sub-frame image data, so that the color gamut determining module 270 outputs the light source to the light source during the entire color wheel period T corresponding to the three sub-frame primary color image data.
  • the second light source 230 can be always turned off, and the first light source 220 can be turned on during the non-rotation period T1 and closed during the spoke period T2.
  • the first light source 220 is turned off during the spoke period T2 to avoid the spoke effect caused by the color wheel of the two colors being easily generated during the spoke period T2, and the image color distortion caused by the spoke effect is reduced.
  • the effect of such color distortion is not significant or not considered, it is also possible that the first light source 220 is turned on during the spoke period T2.
  • the gamut determining module 270 determines that the color gamut range of the image to be displayed corresponding to a sub-frame primary color image data in the three-subframe primary color image data falls within the second color gamut range F (eg, The color gamut corresponding to the red sub-frame image data falls within the second gamut range F, and the gamut judging module 270 sends a control signal to control the first light source 220 to the corresponding non-spoke via the light source controller 250.
  • Period T1 is turned on and the second light source 230 is controlled to be turned off at a corresponding non-spin period T1, and the color wheel 240 emits color light corresponding to the sub-frame primary color image data (red light; or other color light including a red light component) , such as yellow light
  • the first spatial light modulator 261 modulates light emitted by the color wheel 240 according to the sub-frame primary color image data (eg, green sub-frame image data) at least during the non-spin period T1.
  • the second spatial light modulator 262 modulates light emitted by the color wheel according to another sub-frame primary color image data (such as red sub-frame image data) to generate another portion of the projected light during the non-spin period T1.
  • control signal sent by the color gamut determining module 270 further controls, by the light source controller 250, the first light source 220 to be turned off during one or two spoke periods T2 of the color wheel period T and to control the first
  • the two light sources 230 are turned on at one or two spoke periods T2 of the color wheel period T, and the second light source 230 emits complementary light (such as a red laser light) corresponding to the sub-frame primary color image data, the second spatial light
  • the modulator 262 modulates the supplemental light in accordance with the sub-frame primary color image data to generate a portion of the projected light during the spoke period T2.
  • the control signal sent by the color gamut judging module 270 further controls, by the light source controller 250, the first light source 220 to turn on another non-spin period T1 of the color wheel period T and control the second light source 230 in the Another non-spin period T1 is turned off, the color wheel 240 emits color light (such as blue light) corresponding to another sub-frame primary color image data (such as blue sub-frame image data), and the second spatial light modulator 262 is The other non-spin period T1 modulates light emitted by the color wheel 240 to generate projection light according to the further sub-frame primary color image data (eg, blue sub-frame image data).
  • the further sub-frame primary color image data eg, blue sub-frame image data
  • the gamut determining module 270 determines that the gamut of the image to be displayed corresponding to the two sub-frames of the three-subframe primary color image data falls within the second gamut range F (eg, The color gamut corresponding to the red sub-frame image data and the green sub-frame image data falls within the second gamut range F, and the gamut judging module 270 sends a control signal to control the first via the light source controller 250.
  • the gamut judging module 270 sends a control signal to control the first via the light source controller 250.
  • the light source 220 is turned on at a corresponding first non-spin period T1 and the second light source 230 is controlled to be turned off at the first non-spin period T1, and the color wheel 240 emits color light corresponding to the two sub-frame primary color image data
  • the first spatial light modulator 261 modulates the primary non-spin period T1 according to the one-subframe primary color image data (eg, green sub-frame image data), such as yellow light including red and green light components.
  • the light emitted by the color wheel 240 generates at least a portion of the projected light
  • the second spatial light modulator 262 modulates the first non-spin period T1 according to another sub-frame color image data (eg, red sub-frame image data).
  • Color wheel 240 Another portion of light generating projection light.
  • control signal sent by the color gamut judging module 270 further controls the first light source 220 to be turned off during the spoke period T2 of the color wheel period T to reduce the spoke effect, and the control station via the light source controller 250.
  • a first laser (eg, a red laser) of the second light source 220 is turned on to emit a first supplemental light during one or two spoke periods T2 of the color wheel period T, and the second spatial light modulator 262 is in the one or The two spoke periods T2 modulate the first supplemental light (such as a red laser) to produce projected light.
  • control signal sent by the color gamut judging module 270 further controls the second laser (such as a green laser) of the second light source 220 via the light source controller 250 during the color wheel period T (one or Two) a spoke period T2 or a second non-spoke period T1' different from the first non-rotation period T1 to emit a second supplemental light (such as a green laser), the first spatial light modulator 261 being in the color One or two spoke periods T2 of the wheel period T or a second non-spin period T1' different from the first non-spin period T1 are modulated according to the further sub-frame image data (blue sub-frame image data)
  • the second supplemental light produces a projected light.
  • the color gamut determining module 270 further controls the second laser of the second light source 230 to be turned on during a partial period of at least one of the spoke period T2 and the second non-spin period T1' of the color wheel period T.
  • a second supplemental light such as a green laser
  • the first spatial light modulator 261 is in accordance with the further sub-frame during a partial period of at least one of the spoke period T2 and the second non-spin period T1' of the color wheel period T
  • the image data (blue sub-frame image data) modulates the second supplemental light to generate projection light.
  • the first non-rotation period T1 and the second non-rotation period T1' are two different non-rotation periods.
  • the first supplemental light is a red laser R1, which is mainly provided to a corresponding spatial light modulator (such as the second spatial light modulator 262) during the spoke period T2, so that the The first complementary light and the light emitted by the color wheel 240 modulated by the second spatial light modulator 262 (such as red light and blue light) are time-divisionally modulated to avoid timing disorder;
  • the second supplemental light is a green laser G1 , which may be provided to the corresponding spatial light modulator during any period in which the color wheel 240 does not emit a green light component (ie, the spoke period or the non-rotation period in which the color wheel does not emit light with a green light component) (such as the first spatial light modulator 261), which ensures that the second supplemental light (such as the green laser) and the color wheel (such as green light) modulated by the first spatial light modulator 261 are time-divided. Modulated to avoid timing clutter.
  • the two segment regions of the color wheel 240 may be the first segment region C and the second segment region Y, respectively.
  • the first segment region C may carry cyan phosphors to emit cyan light, that is, mixed light of blue light and green light
  • the second segment region Y may carry yellow phosphors to emit yellow light.
  • the first spatial light modulator 261 may modulate the first segment region C to emit cyan light to generate projection light according to the green sub-frame image data when the first segment region C emits cyan light.
  • the second spatial light modulator 262 may modulate the first segment region C according to the blue sub-frame image data to emit cyan light to generate projection light when the first segment region C emits cyan light. Specifically, before the modulation, the cyan light needs to be filtered to filter out the blue light and the green light respectively, and the first spatial light modulator modulates the filtered green light according to the green sub-frame image data to generate the projected light, and the second spatial light The modulator modulates the filtered blue light according to the blue sub-frame image data to generate projection light.
  • the second spatial light modulator 262 also generates the projection light according to the red sub-frame image data to generate the projection light when the second segment area Y emits yellow light, or simultaneously according to the red sub-frame image data and The green sub-frame image data modulates the yellow light to produce projection light.
  • the first spatial light modulator 261 modulates the green sub-frame image data
  • the second spatial light modulator 262 time-modulates the red sub-frame image data and the blue sub-frame image. data.
  • the first spatial light modulator 261 may also time-modulate the green sub-frame image data and the red sub-frame image data, and the second spatial light modulator 262 modulates the blue.
  • the color sub-frame image data, or the first spatial light modulator time-modulates the green sub-frame image data and the blue sub-frame image data, and the second spatial light modulator 262 modulates the red sub-frame image
  • the data and the like are not limited to the above, as long as it is possible to time-modulate the light corresponding to the color wheel according to the three-subframe primary color image data.
  • the color gamut determining module 270 determines the color gamut range of the image to be displayed according to the image data DATA, and outputs a control signal according to the determination result to control the first light source 220 and the Turning on and off the second light source 230, so that the two spatial light modulators 261, 262 image-modulate the at least two color lights and the supplemental light to generate projection light required to project an image,
  • the supplemental light emitted by the second light source 230 not only effectively broadens the color gamut of the projection system 200.
  • the color gamut determining module 270 determines, according to the image data, that the color gamut range issuance control signal controls the turning on and off of the two light sources 220, 230 via the light source controller 250, and may also depend on the color of the image data DATA.
  • the domain ranges to select which of the at least two color lights and the supplemental light is modulated such that the color gamut of the image data DATA is adapted to the light modulated by the spatial light modulators 261, 262 Therefore, the picture color distortion phenomenon is effectively improved, and the color gamut of the projection system is wide, the picture color is realistic, and the display effect is good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Projection Apparatus (AREA)

Abstract

<?xm-replace_text {摘要}?> 一种投影系统包括第一光源、第二光源、色域判断模块、光源控制器及光调制装置。所述第一光源用于发出用于调制图像的基色光,所述基色光能够用于调制第一色域范围内的图像,所述第二光源,用于发出拓宽所述第一光源发出基色光中的至少一种光的色域的补充光;所述色域判断模块用于接收图像数据并依据所述图像数据判断待显示图像的色域范围,以及依据所述色域范围输出控制信号;用于接收所述控制信号,并根据所述控制信号控制所述第一光源及所述第二光源的开启与关闭,以使得第一光源及第二光源出射的光能够调制的色域范围满足所述待显示图像的色域范围;所述光调制装置用于对所述基色光及所述补充光进行图像调制以产生待显示图像所需的投影光。

Description

投影系统 技术领域
本发明涉及投影技术领域,尤其涉及一种投影系统。
背景技术
现有投影系统被广泛地应用在影院、教育、电视等领域,投影系统按照其采用光调制装置的种类可以分为DMD(Digital Micromirror Device)、LCOS(Liquid Crystal on Silicon)、LCD(Liquid Crystal Display)等,按照光调制装置的数量可分为单片式、双片式和三片式系统。在投影系统的光源方面,传统的光源包括UHP、氙灯等灯泡光源,目前逐渐发展起来的有LED光源、RGB纯激光光源和激光激发荧光粉光源,后者可以认为是以半导体发光器件为基础的光源。受限于光学扩展量,LED光源的投影系统,亮度不足,在许多领域尤其是对亮度要求较高的影院场合应用受限。目前常见的对比区分在于RGB激光光源和激光荧光粉光源,RGB激光光源具有色纯度高、色域广的优势,一般能够达到REC2020色域标准,但其散斑问题是难以解决的疑难问题,激光激发荧光粉的光源不存在散斑问题,视觉表现好,在色域方面一般能够达到DCI标准。针对实际观看图像的绝大多数情况,DCI色域已经足够。可以这样设想,拍摄的图像来自于自然界、生活周边等,我们之所以能够看到物体具有一定的颜色,来自于其反射的光谱,一般反射的光谱都会是较为连续的、具有一定宽度的光谱,因此物体的颜色都会落在DCI色域之内,除非存在这样的情况:拍摄设备直接拍摄了纯激光的光束,例如532nm的绿激光光束和638nm的红激光光束,此时DCI色域无法还原出这两种激光光束的本征颜色,而这也被认为是激光荧光光源不如RGB纯激光光源的地方,因此如何使得激光荧光光源也能够具有超出DCI的色域,同时又能够维持其高光效的特点,成为一个有挑战性的课题。
技术问题
现有纯激光投影机能够实现REC2020的大色域范围,而激光荧光粉技术的投影机的色域范围是DCI709,虽然自然界中绝大部分颜色均在DCI色域范围内,但是在特定情况下,比如显示纯激光的颜色时,会位于DCI色域之外,现有的激光荧光粉技术的投影机在显示该颜色时,会使超出DCI色域之外的颜色显示不逼真。
随着激光投影技术的发展,逼真度高的投影画面也成为消费者追逐投影产品的一个参考标准。现有的激光荧光粉技术的色域范围满足一般自然界中常规的颜色显示,但对于特殊的图像颜色会在DCI色域之外,如果采用DCI色域来显示,则位于DCI色域之外的颜色只能用DCI色域边界上的颜色来显示,然而不同的颜色差就无法体现出来。最终使得不在DCI色域范围之内的颜色显示失真。
技术解决方案
为解决现有技术投影系统不能显示特定色域的技术问题,本发明提供一种可以有效拓宽色域的投影系统。
一种投影系统,其包括:
第一光源,用于发出用于调制图像的基色光,所述基色光能够用于调制第一色域范围内的图像;
第二光源,用于发出拓宽所述第一光源发出基色光中的至少一种光的色域的补充光,所述第一光源发出的基色光与所述补充光按照预设比例出射能够用于调制第二色域范围内的图像;
色域判断模块,用于接收图像数据并依据所述图像数据判断待显示图像的色域范围,以及依据所述色域范围输出控制信号;
光源控制器,用于接收所述控制信号,并根据所述控制信号控制所述第一光源及所述第二光源的开启与关闭,以使得第一光源及第二光源出射的光能够调制的色域范围满足所述待显示图像的色域范围;及
光调制装置,用于对所述基色光及所述补充光进行图像调制以产生待显示图像所需的投影光。
有益效果
与现有技术相比较,所述投影系统中,所述第二光源可以发出补充光以拓宽所述投影系统的色域,所述色域判断模块依据图像数据判断待显示图像的色域范围,并依据所述色域范围输出控制信号来控制所述第一光源及所述第二光源的开启与关闭,所述光调制装置对所述至少两种颜色光与所述补充光进行图像调制以产生投影图像所需的投影光,由于所述第二光源能够发出拓宽所述投影系统的色域的补充光,所述光调制装置调制所述补充光产生投影光使得投影图像的色域被有效拓宽,从而改善画面颜色失真现象,因而所述投影系统的色域范围较宽、画面颜色逼真、显示效果较好。
附图说明
图1是本发明第一实施方式的投影系统的方框示意图。
图2是图1所示投影系统一种实施例的发光装置的结构示意图。
图3是图1所示投影系统另一种实施例的发光装置的结构示意图。
图4是图1所示色轮的结构示意图。
图5是图1所示投影系统的色域范围示意图。
图6是图1所示投影系统的发光装置与空间光调制器的驱动时序示意图。
图7是本发明第二实施方式的投影系统的方框示意图。
图8是本发明第二实施方式的投影系统的色轮结构示意图。
图9、10及11是本发明第二实施方式的投影系统的光源与空间光调制器的驱动时序示意图。
图12是本发明第二实施方式的一种变更实施方式的色轮结构示意图。
主要元件符号说明
投影系统   100、200
发光装置   110
光源控制器  150、250
光调制装置  160
空间光调制器 261、262
色域判断模块 170、270
投影镜头   180
光处理元件  190
第一光源   120、220
第二光源   130、230
色轮     140、240
分段区域   141、241
非轮辐区   141a、241a
轮辐区    142、242
部分轮辐区  141b、241b
第一色域范围 F1
第二色域范围 F2
如下具体实施方式将结合上述附图进一步说明本发明。
本发明的最佳实施方式
第一实施方式
请参阅图1,图1是本发明第一实施方式的投影系统100的结构示意图。所述投影系统100包括发光装置110、光源控制器150、光处理元件190、光调制装置160、色域判断模块170、及投影镜头180。所述发光装置110包括第一光源120、第二光源130与色轮140。
所述第一光源120用于发出基色光,所述基色光用于调制图像,且所述基色光能够用于调制第一色域范围内的图像。所述色轮140位于所述第一光源120发出的基色光所在的光路上,所述色轮140包括至少两个分段区域,所述至少两个分段区域接收所述基色光并对应射出转换光,其中转换光包括至少两种颜色光。所述第二光源130用于发出拓宽所述第一光源120发出基色光中的至少一种光的色域的补充光,所述第一光源120发出的基色光与所述补充光按照预设比例出射能够用于调制第二色域范围内的图像。所述色域判断模块170用于接收图像数据并依据所述图像数据判断待显示图像的色域范围,以及依据所述色域范围输出控制信号。所述光源控制器150用于接收所述控制信号并依据所述控制信号控制所述第一光源120及所述第二光源130的开启与关闭,以使得第一光源120及第二光源130出射的光能够调制的色域范围满足所述待显示图像的色域范围。所述光处理元件190可以包括收集透镜系统、中继透镜系统等,所述光处理元件将所述发光装置发出的所述至少两种颜色光与所述补充光进行匀光和/或改变光路,以及对所述至少两种颜色光与所述补充光进行收集、扩散、整形等以使所述至少两种颜色光与所述补充光按照预设光斑大小照射到所述光调制装置160上。所述光调制装置160用于依据所述图像数据分别对所述至少两种颜色光与所述补充光进行图像调制以产生投影图像所需的投影光。可以理解,在变更实施方式中,所述第一光源120可以直接发出至少两种颜色的基色光,从而所述色轮140可以被省略。
所述第一光源120为激发光源,其在所述光源控制器150的控制下发出基色光。所述第一光源120可以设置于所述色轮140的一侧。所述第一光源120可以为蓝色光源,发出蓝色基色光,但是可以理解,所述第一光源120并不限于蓝色光源,其也可以为红色光源、绿色光源、紫外光源等。本实施方式中,所述第一光源120包括蓝色激光器,用于发出蓝色激光作为所述基色光,可以理解,所述第一光源120可以包括一个、两个或多个蓝色激光器,其激光器的数量可以依据实际需要选择。
所述第二光源130为补充光源,其在所述光源控制器150的控制下发出补充光。如图2所示,在一种实施例中,所述第二光源130可以设置于所述色轮140的所述第一光源120所在的一侧,即,所述第一光源120与第二光源130位于所述色轮140的同一侧,所述色轮140为透射式色轮,所述第一光源120与第二光源130发出的光均经由所述色轮140后再射出以提供到所述光调制装置160。如图3所示,在另一种实施例中,所述第二光源130可以设置于所述色轮140的所述第一光源120相反的一侧,即,所述第一光源120与第二光源130位于所述色轮140的不同侧,所述色轮140也为透射式色轮,所述第一光源120发出的光均经由所述色轮140后提供到所述光调制装置160,所述第二光源130发出的光也被提供到所述光调制装置160但不经由所述色轮140。
所述第二光源130可以包括至少一激光器,用于发出至少一种颜色的激光作为所述补充光。如图2与图3所示,所述第二光源130可以包括第一激光器131与第二激光器132,分别发出第一补充光与第二补充光,所述第一补充光与所述第二补充光颜色不同。但是,在变更实施方式中,所述第二光源130也可以只包括一种激光器,只发出一种颜色的补充光;或者,所述第二光源130也可以包括三种激光器,发出三种颜色光补充光。可以理解,所述第二光源130的激光器的种类或补充光的颜色数量可以依据需要拓宽的色域颜色来确定,如需要拓宽红色色域,所述第二光源130可以包括红色激光器发出红色补充光,如需要拓宽绿色色域,所述第二光源130的包括绿色激光器发出绿色补充光,如需要拓宽红色色域与绿色色域,所述第二光源130可以包括红色激光器发出红色补充光,还包括绿色激光器发出绿色补充光。
本实施方式中,所述第一光源120为蓝色激光器,所述第一激光器131与第二激光器132可以分别为红色激光器与绿色激光器。所述第一激光器131与第二激光器132的数量也可以为一个、两个或多个,具体可以依据实际需要选择。
请参阅图4,图4是图1所示色轮140的结构示意图。所述色轮140的沿圆周方向设置的至少两个分段区域141,且所述色轮140可以沿所述色轮140中心旋转,使得所述至少两个分段区域141周期性的位于所述第一光源120发出的基色光所在的光路上,从而所述至少两个分段区域141周期性的射出所述至少两种颜色光。可以理解,所述至少两个分段区域141的大小可以依据实际需要设定为相同或不同。
进一步地,所述基色光照射在所述色轮上形成的光斑跨越两个分段区域时所照射到的区域为轮辐区,所述分段区域中轮辐区之外的区域为非轮辐区。由此,相邻两个分段区域141的非轮辐区141a之间的两个部分轮辐区141b构成所述轮辐区142。
本实施方式中,所述色轮140包括沿圆周方向依次设置的三个分段区域141,分别为第一分段区域B、第二分段区域R、及第三分段区域G,所述第一分段区域B、第二分段区域R及所述第三分段区域G均包括非轮辐区141a及邻近另一分段区域的部分轮辐区141b,因所述色轮140也对应划分为三个非轮辐区141a与三个位于所述非轮辐区141a之间的轮辐区142。所述第一分段区域B用于射出第一颜色光,如蓝色光,当所述第一光源120为蓝色光源时,所述第一分段区域B上可以设置有散射材料,所述第一光源120发出的光可以经由所述第一分段区域B散射后射出。在变更实施方式中,当所述第一光源120为紫外光光源时,所述第一分段区域B上可以设置有第一波长转换材料,所述第一光源120发出的光可以激发所述第一波长转换材料而产生所述第一颜色光。
所述第二分段区域R用于射出第二颜色光,如红色光,所述第二分段区域R上可以设置有第二波长转换材料,如红色荧光粉,所述光源120发出的光可以激发所述第二波长转换材料而产生所述第二颜色光,即红色光;所述第三分段区域G用于射出第三颜色光,如绿色光,所述第三分段区域G上可以设置有第三波长转换材料,如绿色荧光粉,所述光源120发出的光可以激发所述第三波长转换材料而产生所述第三颜色光,即绿色光。
可以理解,所述色轮140也可以为反射式色轮或者半透射半反射式色轮(如部分分段区域为透射区域,另一部分分段区域为反射区域),所述第一光源120与所述第二光源130跟所述色轮的光路、位置关系也可以依据实际需要设计调整,此处就不再赘述不同类型色轮与所述第一光源120与所述第二光源130的光路、位置关系。
所述光调制装置160位于所述色轮140发出的光以及所述第二光源130发出的光的光路上,所述光调制装置160还接收图像数据DATA并依据图像数据DATA调制所述色轮140发出的光与所述第二光源130发出的光以产生投影光。所述光调制装置160为空间光调制器,如可以为DMD光调制器但不限于DMD光调制器。所述投影镜头180接收所述光调制装置160发出的投影光进行投影显示。
所述色域判断模块170也用于接收所述图像数据DATA,并依据所述图像数据DATA判断所述图像数据对应的待显示图像的色域范围,以及判断所述图像数据DATA对应的色域范围是否落在所述第一色域范围F1内。其中,如图5所示,所述第一色域范围F1可以为所述至少两种颜色的光可以展示的色域范围,如DCI色域范围,具体如色域范围DCI709,具体地,在一种实施方式中,所述至少两种颜色的光可以包括所述第一光源120的蓝色激光激发所述色轮140上的红色、绿色波长转换材料产生的红色荧光与绿色荧光,以及所述色轮140透射、散射或反射的所述第一光源120的蓝色激光。由于所述至少两种颜色的光中,所述红色荧光与绿色荧光是激发波长转换材料获得的,而不是纯色的激光,因此,所述至少两种颜色的光中红色光与绿色光的色域较窄,仅能展现DCI709的色域范围(即第一色域范围),而所述色轮射出的蓝色光为所述第一光源120发出的蓝色激光,因此一般不存在蓝色光色域较窄的问题,因此本实施方式中,所述第二光源130包括红色激光器与绿色激光器分别发出红色激光与绿色激光的补充光来拓宽色域即可。
经设置所述第二光源130后,所述第二光源130发出的补充光可以发出超过所述第一色域范围F1的光,具体地,所述第二光源130发出的补充光可以展现REC色域范围,如色域范围REC2020,所述REC色域范围可以比所述第一色域范围F1宽,如REC2020的色域范围。定义第二色域范围F,所述第二色域范围F2为所述第一色域范围F1以外的REC色域范围,且为所述补充光可以展示的色域范围。
可以理解,所述色域判断模块170可以分析所述图像数据DATA的各基色图像数据的灰阶值来计算所述各基色图像数据混合后的色域值,从而判断所述色域值落在第一还是第二色域范围。所述色域判断模块170可以集成在所述投影系统100的图像数据处理模块中,所述图像数据处理模块接收到所述图像数据DATA对所述图像数据DATA进行解压等处理,并进一步基于基色图像数据的灰阶值来计算所述色域值以判断所述待显示图像的色域范围。
可以理解,所述第一光源120发出的基色光与所述第二光源130发出的补充光的预设比例可以依据实际需要设定,所述预设比例可以理解为一个色轮周期内所述第一光源120发出的基色光与所述第二光源130发出的补充光的光量比例,具体地,所述预设比例可以依据图像数据的色域判断结果来调整,如所述图像数据中大部分的像素的色域值落在第二色域范围内,则可以调高所述第二光源130发出的补充光的比例。
若所述色域判断模块170依据所述图像数据DATA判断待显示图像的色域范围落在第一色域范围F1内,所述色域判断模块170可以发出第一控制信号至所述光源控制器150,所述光源控制器150依据所述第一控制信号控制所述第一光源120开启及控制所述第二光源130关闭,所述光调制装置160依据所述图像数据调制所述色轮140发出的光产生投影光。
若所述色域判断模块170依据所述图像数据DATA判断待显示图像的色域范围的至少部分在所述第二色域范围F,所述色域判断模块170可以发出第二控制信号至所述光源控制器150,所述光源控制器150依据所述第二控制信号控制所述第一光源120与所述第二光源130开启,所述光调制装置160依据所述图像数据分别调制所述色轮140发出的光与所述补充光产生投影光。可以理解,所述色轮140发出的光包括所述转换光(如黄色受激光)及没有经过转换的光(如蓝色基色光)。本实施方式中,所述光源控制器150依据所述第二控制信号控制所述第一光源120与第二光源130分时开启,所述光调制装置160依据所述图像数据分时调制所述色轮140射出的光与所述补充光产生投影光。
具体地,如图4与图6所示,所述色轮140旋转一周的时间定义为一个色轮周期T,每个色轮周期T内,每个分段区域141的非轮辐区141a对应时间段为非轮辐期T1,每个分段区域141在所述非轮辐期T1接收所述第一光源120的光并射出对应的一种颜色光,相邻两个非轮辐期T1之间的时间段为对应所述轮辐区142的轮辐期T2。每个色轮周期T可以包括至少两个非轮辐期T1及至少两个轮辐期T2,本实施方式中,每个色轮周期T包括三个非轮辐期T1与三个轮辐期T2,所述非轮辐期T2与所述轮辐期T1交替设置。
每个色轮周期T对应的图像数据为一帧图像数据,所述一帧图像数据通常包括三子帧基色图像数据。可以理解,所述基色指红色、绿色与蓝色,所述三子帧基色图像数据为红色子帧图像数据、绿色子帧图像数据与蓝色子帧图像数据。
若所述色域判断模块170判断所述三子帧基色图像数据中一子帧基色图像数据对应的待显示图像的色域范围落在第一色域范围F1内,所述三子帧基色图像数据分别与所述三个非轮辐期T1相对应,所述色域判断模块170发出控制信号至所述光源控制器150从而经由所述光源控制器150控制所述第一光源120在对应的非轮辐期T1开启及控制所述第二光源130在对应的非轮辐期T1关闭,所述色轮140在对应的非轮辐期T1接收所述第一光源120发出的光并射出对应所述子帧基色图像数据的光,所述光调制装置160在对应的非轮辐期T1依据所述子帧基色图像数据调制所述色轮发出的光产生投影光。进一步地,所述第一光源120在所述色轮周期T的轮辐期T2可以关闭,所述第二光源130则在所述轮辐期T2也处于关闭状态,即,若所述图像数据落在第一色域范围F1内,所述第一光源120可以在所述色轮周期T的非轮辐期T1开启,所述第二光源130在所述色轮周期T内的非轮辐期T1与轮辐期T2均关闭。
若所述色域判断模块170判断所述三子帧基色图像数据中一子帧基色图像数据对应的待显示图像的色域范围落在第二色域范围F内(如红色子帧图像数据或绿色子帧图像数据对应的色域范围落在第二色域范围F内),所述色域判断模块170发出控制信号至所述光源控制器150从而经由所述光源控制器150控制所述第一光源120在对应的非轮辐期T1开启以及控制所述第二光源130在对应的非轮辐期关闭T1,所述色轮140发出对应所述子帧基色图像数据的颜色光(如红色光、绿色光、或包含红色或绿色光成分的其他颜色光),所述光调制装置160在所述非轮辐期T1依据所述子帧基色图像数据调制所述色轮140发出的光产生至少部分投影光;所述色域判断模块170发出的控制信号还经由所述光源控制器150控制所述第一光源120在对应的轮辐期T2关闭以及控制所述第二光源130在所述色轮周期T的一轮辐期T2开启,所述第二光源130发出对应所述子帧基色图像数据的补充光(如红色激光或绿色激光),所述光调制装置160在所述轮辐期T2依据所述子帧基色图像数据调制所述补充光产生另一部分投影光。所述投影镜头180依序依据所述非轮辐期T1的部分投影光以及所述轮辐期T2的另一部分投影光显示所述子帧基色图像数据对应的投影图像(如红色图像或绿色图像)。
可见,由于所述第二光源130发出的补充光的色域较宽,可以展示超出所述第一色域范围F1的第一色域范围F2的色彩,所述光调制装置160调制所述补充光后射出的投影光的色域较宽,从而也可以展示超出所述第一色域范围F1的第一色域范围F2的色彩,更有效的还原所述图像数据的颜色,使得投影图像的色彩更逼真。
若所述色域判断模块170判断所述三子帧基色图像数据中两个子帧基色图像数据对应的色域范围落在第二色域范围F内(如红色子帧图像数据与绿色子帧图像数据对应的色域范围落在第二色域范围F内),所述色域判断模块170发出控制信号至所述光源控制器150从而经由所述光源控制器150控制所述第一光源120在对应的两个非轮辐期T1开启以及控制所述第二光源130在对应的两个非轮辐期T2关闭,所述色轮140顺序发出对应所述子帧基色图像数据的颜色光(如红色光、绿色光、或包含红色或绿色光成分的其他颜色光),所述光调制装置160在对应的两个非轮辐期T1依据所述两个子帧基色图像数据调制所述色轮140发出的光产生至少部分投影光;所述色域判断模块170发出的控制信号还经由所述光源控制器150控制所述第一光源120在轮辐期T2关闭以及控制所述第二光源130的第一激光器131在所述色轮周期T的第一轮辐期T2开启,所述第二光源130发出第一补充光(如红色激光R1),所述光调制装置160在所述第一轮辐期T2依据所述子帧基色图像数据调制所述第一补充光产生另一部分投影光。所述色域判断模块170发出的控制信号还经由所述光源控制器150控制所述第二光源130的第二激光器132在所述色轮周期T的第二轮辐期T2开启,所述第二光源130发出第二补充光(如绿色激光G1),所述光调制装置160在所述第二轮辐期T2依据所述子帧基色图像数据调制所述第二补充光产生再一部分投影光。所述投影镜头180依序依据所述非轮辐期T1的部分投影光以及所述第一与第二轮辐期T2的两部分投影光显示所述两个子帧基色图像数据对应的投影图像。
可见,当两个子帧基色图像数据对应的色域范围落在第二色域范围F内时,所述第二光源130在不同的轮辐期T2分时发出第一补充光与第二补充光,所述光调制装置160分时依据所述两个子帧基色图像数据调制所述第一补充光与第二补充光,由于所述第二光源130发出的第一与第二补充光的色域较宽,可以展示超出所述第一色域范围F1的第二色域范围F的色彩,所述光调制装置160调制所述补充光后射出的投影光的色域较宽,从而也可以展示超出所述第一色域范围F1的第二色域范围F的色彩,更有效的还原所述图像数据DATA的颜色,使得投影图像的色彩更逼真。
与现有技术相比较,所述投影系统100中,所述第二光源130可以发出补充光以拓宽所述投影系统100的色域,所述色域判断模块170依据图像数据DATA判断待显示图像的色域范围,并依据判断结果输出控制信号来控制所述第一光源120及所述第二光源130的开启与关闭,从而所述光调制装置160对所述色轮140发出的光与所述补充光进行图像调制以产生投影图像所需的投影光,所述第二光源130发出的补充光能够对所述投影系统100的色域进行有效拓宽。
所述色域判断模块170依据所述图像数据DATA判断色域范围及控制所述两个光源120与130的开启与关闭,还可以依据所述图像数据的色域范围来选择调制所述至少两种颜色光与所述补充光中的哪一种光,从而使得所述图像数据DATA的色域范围与所述光调制装置160调制的光相适应,从而有效改善画面颜色失真现象,所述投影系统100的色域范围较宽、画面颜色逼真、显示效果较好。
第二实施方式
请参阅图7、图8,图7是本发明第二实施方式的投影系统200的方框示意图,图8是本发明第二实施方式的投影系统200的色轮240结构示意图。所述第二实施方式的投影系统与第一实施方式的投影系统类似,也就是说,上述对所述第一实施方式的多数描述基本上可以用于所述第二实施方式,二者的区别主要在于:色轮240的结构、光调制装置的空间光调制器的数量、光源与空间光调制器的驱动时序有所不同。可以理解,以下主要针对所述第二实施方式与第一实施方式区别的部分进行描述,而对于第二实施方式与第一实施方式相同的部分就不再赘述。
具体地,如图8所示,所述第二实施方式中,所述色轮240包括沿圆周方向依次设置的两个分段区域241,分别为第一分段区域B与第二分段区域Y。所述第一分段区域B用于射出第一颜色光,如蓝色光,当所述第一光源220为蓝色光源时,所述第一分段区域B上可以设置有散射材料,所述第一光源220发出的光可以经由所述第一分段区域B散射后射出;当所述第一光源220为紫外光源时,所述第一分段区域B上可以设置有第一波长转换材料,所述第一光源200发出的光可以激发所述第一波长转换材料而产生所述第一颜色光,如蓝色光。所述第二分段区域Y用于射出第二颜色光,如黄色光,所述第二分段区域Y上可以设置有第二波长转换材料,如黄色荧光粉,所述第一光源220发出的光可以激发所述第二波长转换材料而产生所述第二颜色光,即黄色光。
进一步地,在图8所示的实施方式中,所述第一分段区域B、第二分段区域Y均包括非轮辐区241a及邻近另一分段区域的部分轮辐区241b。其中,所述第一分段区域B与所述第二分段区域Y的非轮辐区241a之间的两个部分轮辐区241b可以定义为一轮辐区242;所述第二分段区域Y与所述第一分段区域B的非轮辐区241a之间的另外两个部分轮辐区241b可以定义为另一轮辐区242。
进一步地,所述第二实施方式中,所述投影系统200包括两个空间光调制器:第一空间光调制器261与第二空间光调制器261。其中,所述第一空间光调制器261可以用于依据所述三子帧基色图像数据中的第一子帧基色图像数据调制图像,所述第二空间光调制器262用于依据调制所述三子帧基色图像数据中的第二与第三子帧基色图像数据调制图像。
依据图9所示,本实施方式中,每个色轮周期T包括两个非轮辐期T1与两个轮辐期T2。所述三子帧基色图像数据分别与所述两个非轮辐期T1相对应,即其中一个非轮辐期T1对应两个子帧基色图像数据(如第一非轮辐期T1对应红色子帧图像数据与绿色子帧图像数据),所述色轮也在所述非轮辐期T1发出所述两个子帧图像数据对应的颜色光(如第二分段区域Y发出黄色光),所述第一空间光调制器261依据对应一子帧基色图像数据(如红色子帧图像数据)在所述非轮辐期T1调制所述色轮240发出的光产生投影光,所述第二空间光调制器262依据另一子帧基色图像数据(如绿色子帧图像数据)在同一非轮辐期T1调制所述色轮240发出的光产生投影光。另一非轮辐期T1则与再一子帧基色图像数据(如蓝色子帧图像数据)相对应,所述色轮240也在所述另一非轮辐期T1发出所述再一子帧图像数据对应的颜色光(如第一分段区域B发出蓝色光),所述第二空间光调制器262还依据所述再一子帧基色图像数据在所述另一非轮辐期T1调制所述色轮240发出的光产生投影光。
可以理解,如图9所示,若色域判断模块270判断所述三子帧基色图像数据对应的待显示图像的色域范围均落在第一色域范围F1内,由于不需要通过第二光源130即可展现所述三子帧图像数据对应的色域范围,因此在所述三子帧基色图像数据对应的整个色轮周期T内,在所述色域判断模块270输出至所述光源控制器250的控制信号的控制下,所述第二光源230可以始终关闭,所述第一光源220则可以在非轮辐期T1开启而在轮辐期T2关闭。其中,在所述第一光源220在所述轮辐期T2关闭可以避免在所述轮辐期T2开启容易出现的色轮同时发出两种颜色的光导致的轮辐效应,减少轮辐效应造成的图像颜色失真,当然,当这种颜色失真的影响不大或者不被考虑时,所述第一光源220在所述轮辐期T2开启也是可以的。
如图10所示,若所述色域判断模块270判断所述三子帧基色图像数据中一子帧基色图像数据对应的待显示图像的色域范围落在第二色域范围F内(如红色子帧图像数据对应的色域范围落在第二色域范围F内),所述色域判断模块270发出控制信号经由所述光源控制器250控制所述第一光源220在对应的非轮辐期T1开启以及控制所述第二光源230在对应的非轮辐期T1关闭,所述色轮240发出对应所述子帧基色图像数据的颜色光(红色光;或包含红色光成分的其他颜色光,如黄色光),所述第一空间光调制器261在所述非轮辐期T1依据所述子帧基色图像数据(如绿色子帧图像数据)调制所述色轮240发出的光产生至少部分投影光,所述第二空间光调制器262在所述非轮辐期T1依据另一子帧基色图像数据(如红色子帧图像数据)调制所述色轮发出的光产生另一部分投影光。
进一步地,所述色域判断模块270发出的控制信号还经由所述光源控制器250控制所述第一光源220在所述色轮周期T的一个或两个轮辐期T2关闭以及控制所述第二光源230在所述色轮周期T的一个或两个轮辐期T2开启,所述第二光源230发出对应所述子帧基色图像数据的补充光(如红色激光),所述第二空间光调制器262在所述轮辐期T2依据所述子帧基色图像数据调制所述补充光产生再一部分投影光。
所述色域判断模块270发出的控制信号还经由所述光源控制器250控制所述第一光源220在色轮周期T的另一非轮辐期T1开启以及控制所述第二光源230在所述另一非轮辐期T1关闭,所述色轮240发出再一子帧基色图像数据(如蓝色子帧图像数据)对应的颜色光(如蓝色光),所述第二空间光调制器262在所述另一非轮辐期T1依据所述再一子帧基色图像数据(如蓝色子帧图像数据)调制所述色轮240发出的光产生投影光。
如图11所示,若所述色域判断模块270判断所述三子帧基色图像数据中两个子帧基色图像数据对应的待显示图像的色域范围落在第二色域范围F内(如红色子帧图像数据与绿色子帧图像数据对应的色域范围均落在第二色域范围F内),所述色域判断模块270发出控制信号经由所述光源控制器250控制所述第一光源220在对应的第一非轮辐期T1开启以及控制所述第二光源230在所述第一非轮辐期T1关闭,所述色轮240发出对应所述两个子帧基色图像数据的颜色光(如包含红色光与绿色光成分的黄色光),所述第一空间光调制器261在所述第一非轮辐期T1依据所述一子帧基色图像数据(如绿色子帧图像数据)调制所述色轮240发出的光产生至少部分投影光,所述第二空间光调制器262在所述第一非轮辐期T1依据另一子帧基色图像数据(如红色子帧图像数据)调制所述色轮240发出的光产生另一部分投影光。
进一步地,所述色域判断模块270发出的控制信号还经由所述光源控制器250控制所述第一光源220在所述色轮周期T的轮辐期T2关闭以减小轮辐效应,以及控制所述第二光源220的第一激光器(如红色激光器)在所述色轮周期T的一个或两个轮辐期T2开启发出第一补充光,所述第二空间光调制器262在所述一个或两个轮辐期T2调制所述第一补充光(如红色激光)而产生投影光。
更进一步地,所述色域判断模块270发出的控制信号还经由所述光源控制器250控制所述第二光源220的第二激光器(如绿色激光器)在所述色轮周期T的(一个或两个)轮辐期T2或不同于所述第一非轮辐期T1的第二非轮辐期T1'开启发出第二补充光(如绿色激光),所述第一空间光调制器261在所述色轮周期T的一个或两个轮辐期T2或不同于所述第一非轮辐期T1的第二非轮辐期T1'依据所述再一子帧图像数据(蓝色子帧图像数据)调制所述第二补充光以产生投影光。本实施方式中,所述色域判断模块270还控制所述第二光源230的第二激光器在所述色轮周期T的至少一个轮辐期T2及第二非轮辐期T1'的部分时段开启发出第二补充光(如绿色激光),所述第一空间光调制器261在所述色轮周期T的至少一个轮辐期T2及第二非轮辐期T1'的部分时段依据所述再一子帧图像数据(蓝色子帧图像数据)调制所述第二补充光以产生投影光。可以理解,所述第一非轮辐期T1与所述第二非轮辐期T1'为不同的两个非轮辐期。
可以理解,本实施方式中,所述第一补充光为红色激光R1,其主要在所述轮辐期T2提供到对应的空间光调制器(如第二空间光调制器262),这样可以保证所述第一补充光与所述第二空间光调制器262调制的色轮240发出的光(如红色光及蓝色光)分时被调制,避免时序混乱;所述第二补充光为绿色激光G1,其可以在所述色轮240未发出带有绿色光成分的任意时段(即轮辐期或所述色轮未发出带有绿色光成分的光的非轮辐期)提供至对应的空间光调制器(如第一空间光调制器261),这样即可保证所述第二补充光(如绿色激光)与所述第一空间光调制器261调制的色轮发出的光(如绿色光)分时被调制,避免时序混乱。
可以理解,在第二实施方式的一种变更实施方式中,如图12所示,所述色轮240的两个分段区域可以分别为第一分段区域C与第二分段区域Y,所述第一分段区域C可以承载青色荧光粉发出青色光,即蓝色光与绿色光的混合光,所述第二分段区域Y可以承载黄色荧光粉发出黄色光。对应地,所述第一空间光调制器261可以在所述第一分段区域C发出青色光时依据所述绿色子帧图像数据调制所述第一分段区域C发出青色光产生投影光,所述第二空间光调制器262可以在所述第一分段区域C发出青色光时依据所述蓝色子帧图像数据调制所述第一分段区域C发出青色光产生投影光。具体地,在调制前,需要将青光进行过滤,分别过滤出蓝色光和绿色光,第一空间光调制器依据绿色子帧图像数据调制过滤得到的绿色光以产生投影光,第二空间光调制器依据所述蓝色子帧图像数据调制过滤得到的蓝色光以产生投影光。所述第二空间光调制器262还在所述第二分段区域Y发出黄色光时,依据红色子帧图像数据调制所述黄色光而产生投影光,或者,同时依据红色子帧图像数据和绿色子帧图像数据调制所述黄色光而产生投影光。
此外,上述实施方式中,所述第一空间光调制器261调制所述绿色子帧图像数据,所述第二空间光调制器262分时调制所述红色子帧图像数据与蓝色子帧图像数据。但是,在变更实施方式中,所述第一空间光调制器261也可以分时调制所述绿色子帧图像数据与红色子帧图像数据,所述第二空间光调制器262则调制所述蓝色子帧图像数据,或者所述第一空间光调制器分时调制所述绿色子帧图像数据与蓝色子帧图像数据,所述第二空间光调制器262则调制所述红色子帧图像数据等,并不限于上述,只要能够实现依据所述三子帧基色图像数据分时调制对应所述色轮射出的光即可。
所述第二实施方式及其变更实施方式中,所述色域判断模块270依据图像数据DATA判断待显示图像的色域范围,并依据判断结果输出控制信号来控制所述第一光源220及所述第二光源230的开启与关闭,从而所述两个空间光调制器261、262对所述至少两种颜色光与所述补充光进行图像调制以产生投影图像所需的投影光,所述第二光源230发出的补充光不仅对所述投影系统200的色域进行有效拓宽。所述色域判断模块270依据所述图像数据判断色域范围发出控制信号经由所述光源控制器250控制所述两个光源220、230的开启与关闭,还可以依据所述图像数据DATA的色域范围来选择调制所述至少两种颜色光与所述补充光中的哪一种光,从而使得所述图像数据DATA的色域范围与所述空间光调制器261、262调制的光相适应,从而有效改善画面颜色失真现象,所述投影系统的色域范围较宽、画面颜色逼真、显示效果较好。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种投影系统,其特征在于:所述投影系统包括:
第一光源,用于发出用于调制图像的基色光,所述基色光能够用于调制第一色域范围内的图像;
第二光源,用于发出拓宽所述第一光源发出基色光中的至少一种光的色域的补充光,所述第一光源发出的基色光与所述补充光按照预设比例出射能够用于调制第二色域范围内的图像;
色域判断模块,用于接收图像数据并依据所述图像数据判断待显示图像的色域范围,以及依据所述色域范围输出控制信号;
光源控制器,用于接收所述控制信号,并根据所述控制信号控制所述第一光源及所述第二光源的开启与关闭,以使得第一光源及第二光源出射的光能够调制的色域范围满足所述待显示图像的色域范围;及
光调制装置,用于对所述基色光及所述补充光进行图像调制以产生待显示图像所需的投影光。
2.如权利要求1所述的投影系统,其特征在于:所述投影系统还包括色轮,所述色轮包括至少两个分段区域,所述至少两个分段区域接收所述基色光并对应射出所述转换光,所述转换光包括至少两种颜色光,所述第二光源包括至少一激光器,所述补充光包括激光;
若所述色域判断模块判断待显示图像的色域范围落在第一色域范围内,所述第一色域范围为所述至少两种颜色的光可以展示的色域范围,所述色域判断模块依据所述第一色域范围输出控制信号至所述光源控制器控制所述第二光源关闭,所述光调制装置依据所述图像数据调制所述至少两种颜色光产生投影光;
若所述色域判断模块判断待显示图像的色域范围的至少部分在第二色域范围,所述第二色域范围为所述第一色域范围以外的色域范围,且所述第二色域范围在所述补充光可以展示的色域范围内,所述色域判断模块依据所述第二色域范围输出控制信号至所述光源控制器控制所述第一光源与所述第二光源均开启,所述光调制装置依据所述图像数据分别调制所述色轮发出的光与所述补充光产生投影光。
3.如权利要求2所述的投影系统,其特征在于:所述基色光照射在所述色轮上形成的光斑跨越两个分段区域时所照射到的区域为轮辐区,所述分段区域中轮辐区之外的区域为非轮辐区,每个分段区域的非轮辐区对应时间段为非轮辐期,每个分段区域在所述非轮辐期接收所述基色光并射出对应的一种颜色光,相邻两个非轮辐期之间的时间段为对应所述轮辐区的轮辐期;
每个色轮周期包括至少两个非轮辐期及至少两个轮辐期,每个色轮周期对应的一帧图像数据包括三子帧基色图像数据;
若所述色域判断模块判断其中一子帧基色图像数据对应的待显示图像的色域范围的至少部分在所述第二色域范围内,所述色域判断模块发出控制信号至所述光源控制器控制所述第一光源在所述色轮周期的与所述子帧基色图像数据对应的非轮辐期开启,所述色轮在所述非轮辐期射出对应所述子帧基色图像数据的颜色光,所述光调制装置在所述非轮辐期依据所述子帧基色图像数据调制所述色轮发出的光;所述光源控制器还控制所述第二光源在所述色轮周期的轮辐期开启发出所述补充光,所述光调制装置在所述轮辐期还依据所述子帧基色图像数据调制所述补充光,其中所述补充光与所述色轮发出的光均至少包括所述子帧基色图像数据的基色成分。
4.如权利要求3所述的投影系统,其特征在于:所述第二光源包括第一激光器与第二激光器,分别发出第一补充光与第二补充光,若所述三子帧基色图像数据中二子帧基色图像数据对应的色域范围的至少部分均不在所述第一色域范围内,所述光源控制器控制所述第一光源在所述色轮周期的与所述二子帧基色图像数据对应的非轮辐期开启,所述色轮在所述非轮辐期射出包含对应所述二子帧基色图像数据的基色成分的颜色光,所述光调制装置在所述非轮辐期依据所述二子帧基色图像数据调制所述色轮发出的光;
所述光源控制器还控制所述第二光源在所述色轮周期的至少两个轮辐期中的第一轮辐期开启发出所述第一补充光,所述光源控制器还控制所述第二光源在所述至少两个轮辐期中的第二轮辐期开启发出所述第二补充光,所述光调制装置在所述第一轮辐期与第二轮辐期分别依据所述二子帧基色图像数据调制所述第一补充光与第二补充光。
5.如权利要求3所述的投影系统,其特征在于:所述第二光源包括第一激光器与第二激光器,分别发出第一补充光与第二补充光,所述光调制装置包括第一空间光调制器与第二空间光调制器,所述第一空间光调制器用于调制所述三子帧基色图像数据中的第一子帧基色图像数据,所述第二空间光调制器用于调制所述三子帧基色图像数据中的第二与第三子帧基色图像数据;
所述第一空间光调制器在所述至少两个非轮辐期中的第一非轮辐期依据所述第一子帧基色图像数据调制所述色轮对应发出的光;
所述第二空间光调制器则在所述至少两个非轮辐期分别依据所述第二与第三子帧基色图像数据调制所述色轮对应发出的光;
若所述色域判断模块判断所述三子帧基色图像数据中第一子帧基色图像数据对应的待显示图像的色域范围的至少部分在所述第二色域范围内,所述色域判断模块输出控制信号至所述光源控制器控制所述第二光源在所述色轮周期的轮辐期或所述两个非轮辐期中的不同于所述第一非轮辐期的第二非轮辐期开启发射所述第一补充光,所述第一空间光调制器还在所述色轮周期的轮辐期或所述第二非轮辐期依据所述第一子帧基色图像数据调制所述第一补充光;
若所述色域判断模块判断所述三子帧基色图像数据中第二子帧基色图像数据对应的色域范围的至少部分在所述第二色域范围内,所述色域判断模块输出控制信号至所述光源控制器控制所述第二光源在所述色轮周期的至少一轮辐期开启发射所述第二补充光,所述第二空间光调制器还在所述色轮周期的至少一轮辐期依据所述第二子帧基色图像数据调制所述第二补充光。
6.如权利要求5所述的投影系统,其特征在于:若所述色域判断模块判断所述三子帧基色图像数据中第一子帧基色图像数据与第二子帧基色图像数据对应的色域范围的至少部分均在所述第二色域范围内,所述色域判断模块输出控制信号至所述光源控制器控制所述第二光源在所述色轮周期的轮辐期开启发射所述第一补充光与第二补充光,所述第一空间光调制器还在所述色轮周期的轮辐期依据所述第一子帧基色图像数据调制所述第一补充光;所述第二空间光调制器还在所述色轮周期的轮辐期依据所述第二子帧基色图像数据调制所述第二补充光。
7.如权利要求6所述的投影系统,其特征在于:若所述色域判断模块判断所述三子帧基色图像数据中第一子帧基色图像数据在所述第二色域范围内,所述色域判断模块输出控制信号至所述光源控制器控制所述第二光源在所述色轮周期的轮辐期以及所述第二非轮辐期的部分时间开启发射所述第一补充光,所述第一空间光调制器还在所述色轮周期的轮辐期以及所述第二非轮辐期的部分时间依据所述第一子帧基色图像数据调制所述第一补充光。
8.如权利要求2所述的投影系统,其特征在于:所述第一色域范围为DCI色域范围,所述第二色域范围为REC色域范围除去DCI色域范围的部分。
9.如权利要求4、5、6、7项任意一项所述的投影系统,其特征在于:所述三子帧基色图像数据分别为红色子帧图像数据、绿色子帧图像数据与蓝色子帧图像数据,所述色轮对应在所述至少两个非轮辐期发出黄色光与蓝色光,在所述色轮发出黄色光的非轮辐期,所述光调制装置依据所述红色与绿色子帧图像数据调制所述黄色光,在所述色轮发出蓝色光的非轮辐期,所述光调制装置依据所述蓝色子帧图像数据调制所述蓝色光,所述第一补充光为红色激光与绿色激光其中的一种,所述第二补充光为红色激光与绿色激光其中的另外一种。
10.如权利要求4、5、6、7项任意一项所述的投影系统,其特征在于:所述三子帧基色图像数据分别为红色子帧图像数据、绿色子帧图像数据与蓝色子帧图像数据,所述色轮对应在所述至少两个非轮辐期发出黄色光与青色光,在所述色轮发出黄色光的非轮辐期,所述光调制装置依据所述红色子帧图像数据调制所述黄色光,在所述色轮发出青色光的非轮辐期,所述光调制装置依据所述蓝色子帧图像数据与所述绿色子帧图像数据调制所述青色光,所述第一补充光为红色激光,所述第二补充光为绿色激光其中的另外一种。
PCT/CN2017/081496 2017-01-06 2017-04-21 投影系统 WO2018126561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710010618.X 2017-01-06
CN201710010618.XA CN108279548B (zh) 2017-01-06 2017-01-06 投影系统

Publications (1)

Publication Number Publication Date
WO2018126561A1 true WO2018126561A1 (zh) 2018-07-12

Family

ID=62788978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081496 WO2018126561A1 (zh) 2017-01-06 2017-04-21 投影系统

Country Status (2)

Country Link
CN (1) CN108279548B (zh)
WO (1) WO2018126561A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941134A (zh) * 2018-09-21 2020-03-31 深圳光峰科技股份有限公司 显示设备、显示设备的控制方法及计算机可读存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278421B (zh) * 2018-03-16 2022-04-15 深圳光峰科技股份有限公司 显示设备及显示方法
CN110874002B (zh) 2018-08-31 2021-12-21 深圳光峰科技股份有限公司 动态调节显示系统色域的系统、方法及显示系统
CN110874004B (zh) 2018-09-03 2021-11-30 深圳光峰科技股份有限公司 光源装置及显示设备
CN110941135B (zh) * 2018-09-21 2022-05-13 深圳光峰科技股份有限公司 动态色域调节系统、方法及显示系统
CN109283783A (zh) * 2018-11-30 2019-01-29 青岛海信激光显示股份有限公司 一种激光投影方法及装置
CN111381420B (zh) * 2018-12-27 2022-04-22 深圳光峰科技股份有限公司 显示设备及其控制方法
CN111381427A (zh) * 2018-12-29 2020-07-07 深圳光峰科技股份有限公司 光源系统、显示装置及光源控制方法
CN112147834B (zh) * 2019-06-28 2022-05-17 成都理想境界科技有限公司 一种光源、投影显示装置及光源调制方法
CN114326274A (zh) * 2020-09-27 2022-04-12 成都极米科技股份有限公司 一种合光光源装置及投影系统
CN115248524A (zh) 2021-04-26 2022-10-28 中强光电股份有限公司 照明系统及投影装置
JPWO2023002675A1 (zh) * 2021-07-21 2023-01-26

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123120A1 (en) * 2001-12-31 2003-07-03 Hewlett Gregory J. Pulse width modulation sequence generation
EP1599051A2 (en) * 2004-05-21 2005-11-23 JDS Uniphase Corporation Two-panel liquid-crystal-on-silicon color management system
CN103529630A (zh) * 2012-07-05 2014-01-22 株式会社理光 光源装置以及图像投影装置
CN204302654U (zh) * 2014-12-08 2015-04-29 深圳市绎立锐光科技开发有限公司 投影系统
WO2016165569A1 (zh) * 2015-04-09 2016-10-20 深圳市光峰光电技术有限公司 发光装置和投影系统
CN106154715A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 拼接显示装置和拼接显示控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB690482A (en) * 1950-05-25 1953-04-22 Emi Ltd Improvements relating to apparatus for scanning cinematograph film for the purpose of generating or recording television signals
TW522280B (en) * 2001-04-13 2003-03-01 Fusion Lighting Inc Projection systems
US7410262B2 (en) * 2005-08-02 2008-08-12 Tte Technology, Inc. System and method for compensating for spoke light
JP5412996B2 (ja) * 2009-06-30 2014-02-12 カシオ計算機株式会社 光源装置、投影装置及び投影方法
CN102474629B (zh) * 2009-07-27 2015-01-21 杜比实验室特许公司 具有扩展色域的数字投影仪和数字显示装置
CN102722073B (zh) * 2011-12-18 2014-12-31 深圳市光峰光电技术有限公司 光源系统及投影装置
CN202443241U (zh) * 2012-02-16 2012-09-19 深圳市光峰光电技术有限公司 光源系统及投影系统
CN103702095B (zh) * 2013-12-24 2016-01-20 北京淳中科技股份有限公司 图像融合处理的色域校正方法、装置及系统
CN105025279B (zh) * 2014-04-24 2017-03-01 深圳市绎立锐光科技开发有限公司 一种光源系统及投影显示装置
TWM503341U (zh) * 2015-03-03 2015-06-21 You-Peng Zhan 以兩片式結合構成之油箱
CN106292142B (zh) * 2015-05-14 2018-12-11 深圳市光峰光电技术有限公司 一种发光装置及其发光控制方法、投影设备
CN105676577A (zh) * 2016-03-07 2016-06-15 海信集团有限公司 光源装置和激光投影显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123120A1 (en) * 2001-12-31 2003-07-03 Hewlett Gregory J. Pulse width modulation sequence generation
EP1599051A2 (en) * 2004-05-21 2005-11-23 JDS Uniphase Corporation Two-panel liquid-crystal-on-silicon color management system
CN103529630A (zh) * 2012-07-05 2014-01-22 株式会社理光 光源装置以及图像投影装置
CN204302654U (zh) * 2014-12-08 2015-04-29 深圳市绎立锐光科技开发有限公司 投影系统
WO2016165569A1 (zh) * 2015-04-09 2016-10-20 深圳市光峰光电技术有限公司 发光装置和投影系统
CN106154715A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 拼接显示装置和拼接显示控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941134A (zh) * 2018-09-21 2020-03-31 深圳光峰科技股份有限公司 显示设备、显示设备的控制方法及计算机可读存储介质
CN110941134B (zh) * 2018-09-21 2021-11-12 深圳光峰科技股份有限公司 显示设备、显示设备的控制方法及计算机可读存储介质
US11404010B2 (en) 2018-09-21 2022-08-02 Appotronics Corporation Limited Display apparatus, method for controlling same, and computer-readable storage medium

Also Published As

Publication number Publication date
CN108279548B (zh) 2021-02-02
CN108279548A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
WO2018126561A1 (zh) 投影系统
KR101578829B1 (ko) 광원 장치, 투영 장치 및 투영 방법
JP4245563B2 (ja) 投写型映像表示装置
US7192140B2 (en) Projector
TWI511576B (zh) 在使用發光二極體的投影系統中的多色原色光產生器
WO2016161924A1 (zh) 光源系统和投影系统
JPH0311390A (ja) 投写型画像表示装置
US7852329B2 (en) Image display apparatus
WO2019064985A1 (ja) 表示装置
JP2009237302A (ja) 画像投影装置、プロジェクタ用の光源点灯装置
WO2020057150A1 (zh) 投影系统及投影显示方法
WO2018113226A1 (zh) 一种投影显示系统
US10104352B2 (en) Projector and image display method
JP5446721B2 (ja) 放電ランプ点灯装置および投射型映像表示装置
WO2020048099A1 (zh) 投影光学系统及其偏色调整方法
WO2018170987A1 (zh) 投影系统
WO2018129827A1 (zh) 投影显示系统
WO2018028237A1 (zh) 图像处理装置与投影系统
CN111131802A (zh) 一种dlp投影仪及动态颜色管理系统
JP2004309622A (ja) 画像表示装置とその階調表現方法、投射型表示装置
US9392676B2 (en) Discharge lamp lighting device, projector, and method for driving discharge lamp
JP3847990B2 (ja) プロジェクタ用の照明方法及び装置
JP4060162B2 (ja) 映像投影装置
WO2018201682A1 (zh) 投影系统、投影方法及图像数据处理方法
JP2005534987A (ja) 交流動作ランプを用いたスクローリング・カラー・システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890216

Country of ref document: EP

Kind code of ref document: A1