WO2018129827A1 - 投影显示系统 - Google Patents

投影显示系统 Download PDF

Info

Publication number
WO2018129827A1
WO2018129827A1 PCT/CN2017/081310 CN2017081310W WO2018129827A1 WO 2018129827 A1 WO2018129827 A1 WO 2018129827A1 CN 2017081310 W CN2017081310 W CN 2017081310W WO 2018129827 A1 WO2018129827 A1 WO 2018129827A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
modulation system
fill
lens
Prior art date
Application number
PCT/CN2017/081310
Other languages
English (en)
French (fr)
Inventor
胡飞
郭祖强
米麟
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to US16/477,513 priority Critical patent/US10831088B2/en
Priority to EP17891321.6A priority patent/EP3570107B1/en
Publication of WO2018129827A1 publication Critical patent/WO2018129827A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/26Projecting separately subsidiary matter simultaneously with main image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/108Beam splitting or combining systems for sampling a portion of a beam or combining a small beam in a larger one, e.g. wherein the area ratio or power ratio of the divided beams significantly differs from unity, without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3197Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using light modulating optical valves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a projection display system.
  • the prior art provides a filter for the excess green light component in the synthesized white light, so that the white balance point is restored to the Planck black body curve to solve the white balance problem.
  • this method reduces the light-emitting efficiency of the white light source by filtering the green light component, which is disadvantageous for the brightness of the projection display device.
  • the light source system includes a blue excitation light source 11, a red supplemental light source 12, a spectral filter 13 having a central region and an edge region, a fluorescent color wheel 14, a collecting lens 15, and a light homogenizing device 16.
  • the central region of the spectral filter 13 transmits blue light and red light and reflects green light, and the edge region reflects red light, green light, and blue light.
  • the blue excitation light emitted by the blue laser light source 11 and the red light emitted from the red supplemental light source 12 are transmitted to the color wheel 14 through the central region of the spectral filter 13, and the yellow phosphor on the fluorescent color wheel 14 absorbs the blue excitation.
  • the light simultaneously scatters the red light to emit yellow fluorescence and scattered red light.
  • the yellow fluorescent light and the red light are incident on the spectral filter 13, wherein the light incident on the edge region is reflected and concentrated by the collecting lens 15 to be incident on the light homogenizing device 16, and only a part of the green light is incident on the yellow fluorescent light incident on the central region. After being reflected, it is concentrated by the collecting lens 15 and incident on the light homogenizing device 16, and the red light in the yellow fluorescent light and the scattered red light are transmitted through the central region and are lost.
  • the red light emitted by the red supplemental light source is scattered by the fluorescent material to cause a loss of about 5%-10%, and the collection process after the Lambertian light distribution causes about 10% loss, and then is split and filtered.
  • the central area of the sheet is transmitted into the non-projected light path, causing a loss of about 10%, resulting in a large loss of red light from the red complementary light source, and the light utilization rate of the red light is relatively low, about 60-70%. Due to the high cost of the red light source and the high requirements for heat dissipation, the low utilization rate of red light will lead to a substantial increase in cost. Similarly, in other technical solutions, in order to obtain better green light, it will also be used. The way in which the green light source is added to the light source is similar to the above method of increasing the red light source, and there is also a problem of low utilization.
  • the invention provides a projection display system with high utilization rate of the supplemental light source, which comprises: a first light source for emitting the first light; and a first light modulation system for Receiving the first light and modulating the first light into a first image light; a complementary light source for emitting at least supplemental light, a spectrum of the first light comprising a spectrum of the supplemental light; and a second light modulation system Receiving the supplemental light and modulating the supplemental light into fill light image light; a light combining device located on an outgoing light path of the first light modulation system and the second light modulation system for The first image light and the complementary light image light are combined, and at the light combining position, a beam cross-sectional area of the first image light is larger than a beam cross-sectional area of the fill light image; a projection lens system is located at the light The first optical modulation system and the outgoing optical path of the second optical modulation system are configured to cause the first image light and the fill light image to be image-coincident at predetermined positions.
  • the divergence angle of the supplemental light at the incident position of the second light modulation system is less than the divergence angle of the first light at the incident position of the first light modulation system.
  • the supplemental source is a laser source.
  • the divergence angle of the supplemental light at the incident position of the second light modulation system is less than 1/5 of the divergence angle of the first light at the incident position of the first light modulation system.
  • the first light is a time series light whose spectrum changes over time.
  • the first light is non-sequential light whose spectrum does not change with time.
  • the first light is white light
  • the color coordinates of the white light are off the black body track
  • the supplemental light is red or green light.
  • the supplemental light source is synchronized with the first light source when the projection display system is in an active state.
  • the first light modulation system is a digital micromirror device type light modulation system
  • the second light modulation system is a liquid crystal light valve type light modulation system
  • the second light modulation system is A digital micromirror device type light modulation system, the first light modulation system being a liquid crystal light valve type light modulation system.
  • the projection lens system includes a first projection lens located on an exiting light path of the first light modulation system for imaging the first image light to the predetermined position; the projection The lens system further includes a second projection lens located on an outgoing light path of the second light modulation system for imaging the fill light image image to the predetermined position; the light combining device is located at the first projection The lens and the exit path of the second projection lens.
  • the maximum diameter of the first projection lens is greater than the maximum diameter of the second projection lens.
  • the projection lens system includes a third projection lens located on an outgoing light path of the light combining device for imaging the first image light and the fill light image image to the predetermined position At the office.
  • the projection lens system includes a first front group lens, a second front group lens, and a rear group lens; the first front group lens and the rear group lens form a first lens, and the first lens An outgoing light path of a light modulation system for imaging the first image light to the predetermined position; the second front group lens and the rear group lens forming a second lens located at the second light An exiting optical path of the modulation system for imaging the fill light image to the predetermined position; the light combining device being located between the first front group lens and the rear group lens, and located at the Between the second front group lens and the rear group lens, and the light combining device is located at an aperture stop position of the first lens and the second lens.
  • the light combining device is a region-coated beam splitter, including a first region and a second region, the first image light being incident on the first region and the second region,
  • the fill light image light is incident on the first region;
  • the second region transmits the first image light,
  • the first region reflects the fill light image light, and
  • the first region transmits at least a portion of the first region Image light, the first image light transmitted by the first region does not overlap with the complementary light image spectrum; or the second region reflects the first image light, and the first region transmits the fill light image
  • the first region reflects at least a portion of the first image light, and the first image light reflected by the first region does not overlap with the complementary image light spectrum.
  • the first light modulation system separately modulates red, green, and blue light according to image data of the frame image
  • the second light modulation system according to the frame
  • the supplemental light is modulated by image data associated with the supplemental light color in the image data of the image.
  • the present invention includes the following beneficial effects: the first light emitted by the first light source is modulated into the first image light by the first light modulation system, and the complementary light emitted from the complementary light source by the second light modulation system Modulating the complementary image light, and then combining the first image light and the complementary light image light by the light combining device, so that the beam cross-sectional area of the first image light is greater than the beam cross-sectional area of the fill light image light at the light combining position, and
  • the projection lens system finally makes the two images coincide at a predetermined position, thereby avoiding the light loss caused by the scattered light, the incomplete collection and entering the non-projection light path before the screen reaches the screen, and the utilization of the supplementary light source is improved.
  • FIG. 1 is a schematic structural view of a projection display system in the prior art.
  • FIG. 2 is a schematic structural view of an embodiment of a projection display system of the present invention.
  • FIG. 3 is a schematic structural view of another embodiment of a projection display system of the present invention.
  • FIG. 4 is a schematic structural view of another embodiment of a projection display system of the present invention.
  • FIG. 5 is a schematic structural view of another embodiment of a projection display system of the present invention.
  • FIG. 6 is a schematic structural view of another embodiment of a projection display system of the present invention.
  • Figure 7 is a schematic diagram of the light distribution of the light modulator to the aperture stop.
  • white light having a good white balance effect is obtained by adding a complementary light source to the outside of the basic main light source device.
  • the complementary photosynthetic light position and the way of combining light the large amount of light is supplemented during the scattering, light collection and light guiding process, resulting in low utilization rate of the supplementary light source, and has to rely on increasing the output power of the supplementary light source. Get a white balance.
  • the present invention is not limited to the completion of the fill light in the optical path before the light modulator, but the light combining device of the first light of the main light source (the first light source) and the complementary light of the supplementary light source is disposed.
  • the light combining device of the first light of the main light source (the first light source) and the complementary light of the supplementary light source is disposed.
  • the first light modulation system After the first light is modulated by the first light modulation system into the first image light and the supplemental light is modulated into the fill light image by the second light modulation system, the first image light and the fill light are applied The image light is combined.
  • the technical solution of the present invention directly uses the supplementary light emitted by the supplemental light source for image display, and does not need to consider the problem that the light distribution of the supplemental light and the first photosynthetic light is inconsistent, and thus does not need to pass the supplemental light and the first.
  • the same light scattering, light collection, light guiding, etc. arrive at the light modulation system.
  • the complementary light and the first light are combined in front of the light modulator in the prior art, it is required that the light distribution of the combined light on the incident surface of the light modulator is uniform, so that the supplemental light utilization rate is inevitably low. .
  • the first image light and the fill light image light In order to enable the first image light and the fill light image light to be combined in the light modulation system, a suitable light combining mode needs to be selected. Since the first light forming the first image light contains the spectrum of the complementary light, the first light and the complementary light cannot be combined by the difference in wavelength, which would otherwise cause a large loss of the color in the first light.
  • the invention utilizes different optical expansion amounts of the first image light and the complementary light image light, so that the two meet the following relationship at the light combining position: the beam cross-sectional area of the first image light is larger than the beam cross-sectional area of the complementary light image light, thereby making up
  • the light image light is combined with most of the first image light to emit a beam of light. After the light is combined, the first image light and the fill light image are imaged at a predetermined position (ie, at the screen) along the same optical path, and the two images are the same size and the same position, thereby synthesizing the image to be displayed.
  • the main inventive concept of the present invention is to change the "lighting stage of the illumination light” to "Image light stage fill light”, combined with this technical solution to provide a feasible light combination scheme, thereby reducing the light loss of supplemental light and improving the efficiency of the projection display system.
  • illumination light refers to the light provided by the light source device of the projection display system to the incident surface of the light modulator, characterized in that the spatial distribution of the light is uniform;
  • image light refers to the light modulated by the light modulator, which is characterized by light. The spatial distribution presents a certain pattern.
  • imaging coincidence means that the imaging sizes of the two beams at the imaging position are the same, and the boundaries coincide, and the internal patterns of the imaging are not specifically coincident.
  • monochromatic light refers to color light that can be separated from white light, such as red, orange, yellow, green, cyan, blue, and purple light, and is not limited to light of a single frequency.
  • first”, “second”, “third” and the like are used for descriptive purposes only, for convenience of description, and are not to be construed as indicating or implying their relative importance or implicit indication.
  • features defining “first”, “second”, and “third” may include at least one of the features, either explicitly or implicitly.
  • FIG. 2 is a schematic structural diagram of an embodiment of a projection display system according to the present invention.
  • the projection display system 10 includes a first light source 111, a fill light source 112, a first light modulation system 121, a second light modulation system 122, a light combining device 130, and a third projection lens 150 of the projection lens system.
  • the first light source 111 emits a first light that is incident on the first light modulation system 121 and modulated into a first image light
  • the complementary light source 112 emits supplemental light that is incident on the second light modulation system 122. And modulated to fill light image light.
  • the first image light and the complementary light image light are respectively incident on the light combining device 130 along the respective exit paths, and the light combining device 130 merges and then exits along the same optical path, and finally passes through the projection lens system at a predetermined position (ie, in FIG. 2 At the screen 140, the images are coincident, the images are the same size, and the positions are coincident.
  • the first light source 111 is configured to emit the first light, and the first light includes a red light spectrum, a green light spectrum, and a blue light spectrum.
  • the first light is time-series light whose spectrum changes with time, and the first light source 111 periodically emits red light, green light, and blue light periodically, so that each period of red, green, and blue light is superimposed in time to display white light.
  • the order of emission of red light, green light and blue light is not limited to red, green and blue, and may also be other emission orders, such as red, blue and green.
  • the first light source 111 is a light source for exciting the fluorescent material, and includes a light emitting unit and a wavelength conversion device.
  • the light emitting unit emits excitation light, the excitation light is incident on the wavelength conversion device, and the wavelength conversion device is driven by the driving device.
  • the motion causes different regions on the wavelength conversion device to be exposed to the illumination of the excitation light at different times, thereby producing temporal red, green, and blue light.
  • the light-emitting unit is a laser light source, specifically a laser diode array light source, and is composed of a plurality of laser diodes arranged in an array.
  • the light source has the advantages of small divergence angle, high electro-optical conversion efficiency, good monochromaticity, and the like, and is suitable for high Applications such as brightness display.
  • the light emitting unit may also be a single laser diode, or may be a solid-state laser light source, or may be an LED light source or an LED array light source, without affecting the technical implementation of the subsequent optical path system.
  • the wavelength conversion device includes three regions: a red light region, a green light region, and a blue light region, for receiving the excitation light emitted by the light emitting unit, and respectively emitting red light, green light, and blue light.
  • the light emitted by the light emitting unit is blue light
  • the red light region is a red phosphor region
  • the green light region is a green phosphor region
  • the blue light region is a scattering region
  • the blue light emitted by the light emitting unit is scattered by the blue light region and then emitted. Does not change the wavelength.
  • the emitted light of the light emitting unit may also be light of other spectra, such as but not limited to ultraviolet light.
  • the three regions of the wavelength conversion device may also be wavelength conversion regions for wavelength conversion of incident light.
  • the red light region and the green light region may also be regions obtained by adding a red light filter and a green light filter to the yellow phosphor region, respectively.
  • the wavelength conversion device is a fluorescent color wheel that rotates about its axis under the driving of the motor.
  • the wavelength conversion device may further be a fluorescent color drum/color cylinder, including a plurality of regions distributed around the barrel/cylinder, and the color drum/color cylinder rotates about its axial direction to make the The plurality of regions are periodically illuminated by the excitation light to emit the time series light; or the wavelength conversion device may be a fluorescent color plate, including a plurality of regions arranged in a line direction, and the color plate is along the linear direction. The linear vibration is such that the plurality of regions are periodically irradiated with the excitation light in accordance with the timing, thereby emitting the time series light.
  • the first light is a sequential white light composed of red light, green light, and blue light.
  • the red light in the yellow light is low due to the low luminous efficiency of the red phosphor, and the red light in the first light is caused.
  • the ratio is relatively small compared to the red color in the standard white, so that the white light is blue-green, and the color coordinates of the white light deviate from the black body locus.
  • the fill light source 112 is configured to emit at least supplemental light
  • the supplemental light is a monochromatic light.
  • the supplemental light is red light for compensating for the problem that the red light component of the first light source 111 is insufficient and the first light color is blue-green. It can be understood that in other embodiments, when the color of the white light is reddish (the white light color coordinates also deviate from the black body track), the supplemental light is green light to improve the green display effect of the projection display system.
  • the fill light source 112 is a laser light source, specifically a laser diode array light source, and the light source has a small divergence angle compared to the first light source 111 of the "excitation light excitation fluorescent material".
  • the light emitted by the fluorescent material is a Lambertian-distributed light, and the light divergence angle is large, up to about 180°, and the light collecting lens matched with the fluorescent material can only collect ⁇ 75° (ie, 150°).
  • the light emitted by the laser source of the complementary light source 112 is a Gaussian distribution light, and the divergence angle is small.
  • the laser diode emits light as an approximately elliptical spot, and the long axis divergence angle is 15° to 40°.
  • the short axis divergence angle is 6° ⁇ 10°.
  • the divergence angle of the laser diode is less than 1°, so the diameter of the optical element of the subsequent optical path can be small, and the complementary light emitted by the complementary light source 112 reaches.
  • the light modulator is also capable of maintaining a small divergence angle incidence.
  • the type of the light source of the complementary light source is not limited to the laser light source, and may be other light sources with smaller divergence angles, such as LED light sources with small divergence angles, so as to supplement the light at the incident position of the corresponding light modulation system.
  • the divergence angle is smaller than the divergence angle of the first light.
  • the supplemental light divergence angle is less than 1/5 of the first light divergence angle.
  • the red light component in the first light is generated by the wavelength converting material, the spectral coverage is large, and the red light spectral range in the supplemental light is narrow.
  • the red light spectral range of the first light can cover the red light spectrum of the supplemental light such that the spectrum of the first light can contain a spectrum of supplemental light such that the red light color of the final image does not change too much during fill light.
  • the ratio of the red light power of the first red light to the red light power of the supplemental light is about 2:1, the ratio is 2:1 as the median, and the upper and lower floating ranges are ⁇ 20%.
  • supplemental light source is both necessary and cost-effective.
  • the proportion of the first light red light is small, it is proved that the red light component in the first light is too small, and the first light red light is used.
  • the method of supplementing light is not economical, and it is not necessary to directly use the complementary light source as a separate light source of red light; when the proportion of the first light red light is large, the supplementary light source only provides a small amount of red light, but the light modulation system is added. A large number of costs such as optical path systems, low cost performance.
  • the projection display system includes two sets of light modulation systems: a first light modulation system 121 and a second light modulation system 122.
  • the first light modulation system 121 is for receiving the first light and modulating the first light into the first image light; the second light modulation system 122 is for receiving the supplemental light and modulating the supplemental light into the fill light image light.
  • Types of light modulation systems include digital micromirror devices DMD (Digital MicromirroDevice) and liquid crystal light valve, wherein the liquid crystal light valve is further divided into a transmissive liquid crystal light valve LCD (Liquid Crystal Display) and reflective liquid crystal light valve LCOS (Liquid Crystal on Silicon), in addition, there is a spatial light modulator such as a grating light valve GLV.
  • DMD Digital MicromirroDevice
  • LCD Liquid Crystal Display
  • LCOS Liquid Crystal on Silicon
  • GLV grating light valve
  • the first light is red, green and blue time-series white light
  • the first light modulation system includes only one light modulator, and receives red, green and blue light in sequence according to the time sequence, and after modulation, sequentially emits red according to the time series.
  • Image light, green image light, and blue image light, the red image light, the green image light, and the blue image light are temporally superimposed as a first image light, the first image light forming a person through a visual persistence effect of the human eye Color image in the eye.
  • the second optical modulation system since the supplemental light is a monochromatic light, the second optical modulation system requires only one optical modulator to implement the modulation function.
  • the supplemental light is red light
  • the optical modulator after receiving the red light, the optical modulator is modulated to emit red image light, that is, fill light image light.
  • the fill light image enters the human eye together with the first image light, and forms a color image using the visual persistence effect of the human eye.
  • the first light modulation system and the second light modulation system are modulated according to the same image, wherein the first light modulation system is based on the red image data component, the green image data component, and the blue image data component of the image.
  • the red, green and blue light are respectively modulated
  • the second light modulation system modulates the complementary red light according to the red image data component of the image (for other embodiments, the supplementary light is other monochromatic light, according to the complementary light color)
  • the associated image data components are modulated to ensure that the resulting composite image is displayed correctly.
  • the first light modulation system and the second light modulation system also need to synchronize the modulation by the synchronous control device.
  • the second light modulation system modulates the supplemental light
  • the modulation time of the complementary light by the two-light modulation system is the sum of the modulation time of the first light modulation system for red, green and blue light.
  • the technical solution greatly increases the modulation time of the complementary light by the second light modulation system, and can improve the utilization of the supplementary light source. Rate, reduce the cost of supplemental light sources.
  • the first light source and the supplementary light source synchronous switch are both in an open state or at the same time in a closed state to provide the first light and the supplementary light.
  • the first light source and the supplementary light source may also not synchronize the switches, so that the time when the supplementary light source is in the on state is shorter than the time when the first light source is in the on state.
  • the second light modulation system modulates the supplemental light only when the first light modulation system modulates the red light in the first light.
  • the second light modulation system modulates the supplemental light when the first light modulation system modulates the two color lights of the first light.
  • the first light modulation system is a digital micromirror device type light modulation system and the second light modulation system is a liquid crystal light valve type light modulation system.
  • the digital micromirror type optical modulator controls the brightness and darkness of an image by controlling the time ratio of the on state and the off state of each micromirror of an intra-frame optical modulator, a short full darkness may occur in one frame.
  • the image causes flicker, which is easy to cause visual fatigue.
  • the liquid crystal valve type light modulator controls the light and dark by adjusting the light transmittance. In theory, light passes through at any time without flicker.
  • the first light modulation system may be a liquid crystal light valve type light modulation system
  • the second light modulation may be a digital micromirror device type light modulation system
  • the principle is the same.
  • the first light modulation system and the second light modulation system have the same size and the same resolution as the light modulators of the second light modulation system, so that the emitted light of the two light modulation systems can be image-coincident.
  • the first image light and the fill light image light are combined by the light combining means. Since the complementary light overlaps at least part of the spectrum of the first light, if the two are combined by wavelength, it is inevitable that all of the overlapping spectral portions of one of the beams are lost. Therefore, the present invention utilizes the difference in optical spread amount by making the cross-sectional area of the first image light at the light combining position larger than the cross-sectional area of the fill light at the light combining position, so that the two are spatially combined. The image is then imaged onto the screen through the same subsequent optical path, causing the two image lights to eventually coincide.
  • the imaging process is a process of imaging the image light of the exit surface of the light modulator onto the screen, rather than the process of imaging from the light combining position to the screen, the light combining position being only an intermediate position of the imaging process.
  • the optical spread amount is conserved regardless of the light loss problem from the position of the light modulation system to the light combining position
  • S1sin2 ⁇ 1 S2sin2 ⁇ 2 ⁇ 2
  • S1 is the area of the exit surface of the light modulation system
  • ⁇ 1 is the divergence half angle of the image light at the exit surface of the light modulation system
  • S2 is the cross-sectional area of the image light beam at the junction position
  • ⁇ 2 is the divergence half angle of the image light at the junction position.
  • Both the first light modulation system to the light combining device or the second light modulation system to the light combining device satisfy the above relationship.
  • the divergence half angle is half of the divergence angle.
  • the divergence half angles of the first image light and the fill light image light after combining are preferably the same, that is, the two ⁇ 2 need to be the same To ensure image quality.
  • the S1 of both is the same.
  • the divergence angle of the first light is greater than the divergence angle of the supplemental light at the incident position of the respective light modulation system, the incident light divergence angle of the light modulation system is equal to the divergence angle of the exit light, and thus the first light modulation system is emitted.
  • the divergence half angle ⁇ 1 of the first image light at the face is greater than the divergence half angle ⁇ 1 of the supplemental image light at the exit face of the second light modulation system.
  • the beam cross-sectional area of the first image light is about 25 times the beam cross-sectional area of the fill image light.
  • the fill light image light enters the exit light path of the projection display system, and the portion of the first image light that does not overlap with the fill light image space enters the exit light path of the projection display system, and the area of the overlap portion occupies the first
  • the ratio of the beam cross-sectional area of an image light is small, so the process ensures that most of the light enters the exiting light path, leaving only a small amount of light.
  • the light combining device 130 is a beam splitter disposed on the outgoing light path of the first light modulation system 121, and most of the first image light passes directly through the periphery of the light combining device 130. In the subsequent optical path, a small portion of the first image light is incident on and blocked by a surface of the light combining device 130, failing to enter the subsequent optical path.
  • the fill light image light emitted from the second light modulation system 122 is reflected by a mirror (not shown) and then incident on the other surface of the light combining device 130 and reflected to enter the subsequent light path.
  • the fill light image light replaces part of the first image light, and forms a display image at the position of the screen 140 together with most of the remaining first image light. It can be understood that the mirror between the second light modulation system 122 and the light combining device 130 is not necessary, as long as the light path of the second light modulation system 122 is changed to a straight line to the light combining device 130.
  • the light combining device is not limited to the beam splitter, and the light combining device may also be a wavelength filter for guiding the light of the supplemental light wavelength into the exit channel; the light combining device may also be a polarizing filter, supplementing the light.
  • a light combining device is used to direct light that supplements the polarization state of the light into the exit channel. It should be noted that regardless of the type of spectroscopic combination used in the light combining device, it is necessary to satisfy the relationship of the cross-sectional area of the beam of the first image light and the complementary image light at the position of the light combining device.
  • the projection lens system is located on the outgoing light path of the first light modulation system and the second light modulation system.
  • the projection lens system includes a third projection lens 150 located on the outgoing light path of the light combining device 130 for imaging the combined first image light and the complementary light image to a predetermined position (screen 140). .
  • the first image light and the fill light image light are combined before the third lens 150, which is advantageous for the compact structure of the projection display system, and is also beneficial to pass the comparison on the basis of the prior art projection display system. Small changes were made to upgrade and upgrade.
  • FIG. 3 is a schematic structural diagram of another embodiment of a projection display system according to the present invention.
  • the projection display system 20 includes a first light source 211, a fill light source 212, a first light modulation system 221, a second light modulation system 222, a light combining device 230, and a projection lens system, wherein the projection lens system includes a first projection lens 251 and The second projection lens 252.
  • the descriptions of the first light source 211, the fill light source 212, the first light modulation system 221, the second light modulation system 222, and the light combining device 230 can be referred to the description in any of the above embodiments.
  • the light combining device is disposed in the optical path after the projection lens instead of before the projection lens.
  • the first projection lens 251 is located on the outgoing light path of the first light modulation system 221 for imaging the first image light to the predetermined position screen 240
  • the second projection lens 252 is located in the second light modulation system 222.
  • the outgoing light path is used to image the fill light image to the predetermined position screen 240
  • the light combining device 230 is located on the outgoing light path of the first projection lens 251 and the second projection lens 252.
  • the technical solution is such that the first light source 211, the first light modulation system 221 and the first projection lens 251 form an independent first projection display system, such that the fill light source 212, the second light modulation system 222 and the second projection lens 252 are formed.
  • a separate second projection display system, the first projection display system and the second projection display system form a projection display system 20 through the light combining device 230.
  • the maximum diameter of the first projection lens 251 is greater than the maximum diameter of the second projection lens 252. Since the light divergence angle of the complementary light source 212 is small, the light divergence angles of the incident surface and the exit surface of the second light modulation system 222 are small, resulting in a light path of the fill light image being "straight", so that the second projection lens 252 does not need to have A too large diameter can satisfy a high light collection efficiency, so that the size of the second projection lens 252 can be reduced, thereby reducing the cost of the projection display system.
  • FIG. 4 is a schematic structural diagram of another embodiment of a projection display system according to the present invention.
  • the projection display system 30 includes a first light source 311, a fill light source 312, a first light modulation system 321, a second light modulation system 322, a light combining device 330, and a projection lens system.
  • the projection lens system includes a first front group lens 3501, a second front group lens 3502, and a rear group lens 3503.
  • the descriptions of the first light source 311, the fill light source 312, the first light modulation system 321 and the second light modulation system 322 can be referred to the description in any of the above embodiments.
  • the light combining device 330 is located in the projection lens, that is, the light combining device 330 is neither between the light modulation system and the projection lens nor between the projection lens and the screen. , but between the incident end and the exit end of the projection lens.
  • the first front group lens 3501 and the rear group lens 3503 form a first lens, and the first lens is located on the outgoing light path of the first light modulation system 321 for imaging the first image light to the predetermined position screen 340.
  • the second front group lens 3502 and the rear group lens 3503 form a second lens, which is located on the outgoing light path of the second light modulation system 322 for imaging the fill light image to the predetermined position screen 340.
  • the light combining device 330 is located between the first front group lens 3501 and the rear group lens 3503 and is located between the second front group lens 3502 and the rear group lens 3503.
  • the light combining device 330 is located in the first lens (ie, the first front group lens 3501 and the rear group lens 3503) and the second lens (ie, the second front group lens 3502 and the rear group lens 3503).
  • the aperture stop position At this position, the cross-sectional area of the light beam is minimized, and the volume of the light combining device 330 can be reduced, which is advantageous in cost saving and miniaturization of the volume of the projection display system.
  • each point on the beam section contains There is an outgoing light at any point on the exit surface of the light modulation system, that is, the image information contained in each point on the beam cross section is the same, but for the light emerging from the point, the image information represented by the different exit angles is different.
  • FIG. 7 is a schematic diagram of the light distribution of the light modulator to the aperture stop ⁇ , and the three points P1, P2 and P3 on the light modulator exhibit different illumination according to different image positions of the displayed pattern. strength.
  • the light emitted by the three points P1, P2 and P3 of the light modulator reaches the aperture stop ⁇ through the front lens
  • a and B are two points of the position of the aperture stop ⁇
  • each of the points A and B has Light from P1, P2, and P3 passes, that is, any point at the position of the aperture stop ⁇ contains a portion of the light emitted from all points on the light modulator.
  • the difference is that in the outgoing light of point A or point B, the light from P1, P2 and P3 respectively have different beam angles, that is, the beam of light at different positions of the aperture position at a certain point of the aperture stop position ⁇ . Different angles, the "face distribution" becomes the “angular distribution”.
  • the light combining device is located at the aperture stop position of the first lens, so that the first image light is not missing part of the information due to the blocking of the light combining device, and the image display effect is ensured; the light combining device is located in the second lens.
  • the aperture stop position is such that the beam cross-sectional area of the fill light image light is minimized at the light combining position, thereby reducing the luminous flux of the first image light blocked by the light combining device, which is advantageous for the improvement of the brightness of the projection display system and the image uniformity. Improvement.
  • the light combining device 330 is a region-coated beam splitter, and includes a first region 331 and a second region 332.
  • the first image light is simultaneously incident on the first region 331 and the second region 332, and the fill light image is light. It is incident only on the first area 331.
  • the second region 332 transmits the first image light, and the second region 332 may be a transparent glass, a transparent plastic sheet, a transparent crystal, or the like.
  • the first region 331 is a wavelength filter for reflecting the fill light image and transmitting at least some of the other wavelengths of light. That is, the first region 331 transmits at least a portion of the first image light, and the transmitted first image light does not overlap the spectrum of the complementary light image light.
  • the first image light only loses the light having the same wavelength as the light of the complementary light image incident on the first region 331, and the light utilization efficiency is improved.
  • the transflective characteristic of the light combining device 330 can also be changed such that the second region 332 reflects the first image light, the first region 331 transmits the fill light image light, and the first region 331 reflects at least part of the first image light.
  • the first image light reflected by the first region and the complementary light image light spectrum do not overlap.
  • the supplemental light is polarized light
  • the fill light image light is polarized light
  • the first region 331 further includes a polarization wavelength splitter, and the first region 331 only reflects and overlaps with the wavelength of the fill light image.
  • the light with the same polarization state further reduces the light lost by the first image light at the light combining device, reduces the light loss, and improves the image display effect.
  • the light combining device 330 used in the embodiment may be replaced by the light combining device in the above embodiments, and the light combining device in each of the above embodiments may be replaced with the light combining device 330 in the embodiment.
  • the projection display system 40 includes a first light source 411, a fill light source 412, a first light modulation system 421, a second light modulation system 422, and a light combining device 430, wherein A light modulation system 421 includes three light modulators 4211, 4212, and 4213.
  • the first light is non-sequential light whose spectrum does not change with time, that is, the first light is light whose color does not change with time.
  • the first light contains a red light spectrum, a green light spectrum, and a blue light spectrum
  • the first light is a mixed color light.
  • the first light source is a white light source that continuously emits a first white light of constant color.
  • the white light can be obtained by exciting a yellow fluorescent material (such as a yellow phosphor, a YAG:Ce fluorescent ceramic, etc.) by using a blue laser, in particular, the laser yellow light generated by the yellow fluorescent material and the unabsorbed excitation light blue light are combined.
  • the light is expressed as white light.
  • the acquisition of white light is not limited to laser excitation of fluorescent materials.
  • the first light modulation system 421 includes three light modulators, and the projection display system further includes a light splitting element and a light combining element (the light combining element is not the light combining means 430).
  • the splitting element splits the first light into red, green and blue light, and directs them into three light modulators 4211, 4212, and 4213 of the first light modulation system, respectively, and the three light modulators respectively emit red light.
  • the green light and the blue light are modulated into a red image light, a green image light, and a blue image light, and the three image lights are further combined into a first image light by a light combining element.
  • the first image light in the embodiment shown in FIG.
  • the process of emitting the first light from the first light source to the first light modulating system to emit the first image light may refer to the prior art such as 3LCD and 3DMD, and details are not described herein again.
  • the first image light emitted by the first light modulation system is color image light
  • the color image light and the complementary light image light emitted by the second light modulation system are combined by the light combining device, and then are along the same optical path. The same size image on the screen.
  • the first light modulation system modulates the red, green, and blue lights at the same time, during which the second light modulation system modulates the supplemental light.
  • the two are synchronized by the synchronous control means, and the first light source 411 and the supplemental light source 412 which supply the first light and the supplemental light are also synchronously switched.
  • the first light modulation system and the second light modulation system may also be different types of light modulation systems to obtain an effect of eliminating flicker and improving image display quality.
  • the projection display system 50 includes a first light source 511, a fill light source 512, a first light modulation system 521, a second light modulation system 522, and a light combining device 530, wherein A light modulation system 521 includes two light modulators 5211 and 5212.
  • the first light is a time-series light of yellow light and blue light
  • the yellow light is a broad-spectrum yellow light, including a red light spectrum and a green light spectrum
  • the first light still appears as a time series.
  • the first light source is a light source of a blue light excitation fluorescent color wheel that includes a yellow light region (yellow phosphor region) and a blue light region (scattering region).
  • the first light modulation system 521 includes two light modulators 5211 and 5212, and the projection display system further includes a light splitting element and a light combining element (the light combining element is not the light combining means 530).
  • the beam splitting element splits the first light into two paths, one of which is red light and the other of which is sequential light of green and blue light, and is directed to the two light modulators 5211 and 5212, respectively.
  • One light modulator modulates red light into red image light
  • the other light modulator modulates green light and blue light into green image light and blue image light, respectively, in time series.
  • the three images simultaneously obtain the first image light by time superposition and spatial superposition.
  • the process of emitting the first light from the first light source to the first light modulating system to emit the first image light may refer to the prior art such as 2DMD, and details are not described herein again.
  • the first image light emitted by the first light modulation system is color image light
  • the color image light and the complementary light image light emitted by the second light modulation system are combined by the light combining device, and then are along the same optical path. The same size image on the screen.
  • the first light modulation system modulates the green light and the blue light in a time period, during which the second light modulation system can modulate the supplemental light only when the first light modulation system modulates the green light, or
  • the first light modulation system modulates the complementary light when modulating the green light and modulating the blue light.
  • the complementary light source and the first light source are synchronously switched, so that the first light source and the supplementary light source are simultaneously turned on, which can improve the supplement.
  • the utilization of the light source reduces the cost of supplementing the light source.
  • the first light modulation system and the second light modulation system may also be different types of light modulation systems to obtain an effect of eliminating flicker and improving image display quality.
  • the period of the supplemental light is studied and summarized.
  • the supplementary light source can be combined with the first A light source synchronous switch causes the supplemental light source and the first light source to be simultaneously turned on, so that the second light modulation system modulates the supplemental light in a maximum time, thereby improving the utilization of the supplemental light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影显示系统(10),包括:第一光源(111),用于出射第一光;第一光调制系统(121),用于接收第一光并将其调制为第一图像光;补光光源(112),用于至少出射补充光,第一光的光谱包含补充光的光谱;第二光调制系统(122),用于接收补充光并将其调制为补光图像光;合光装置(130),位于第一光调制系统(121)及第二光调制系统(122)的出射光路上,用于对第一图像光和补光图像光进行合光,在合光位置处,第一图像光的光束截面积大于补光图像光的光束截面积,投影镜头系统(150)位于第一光调制系统(121)及第二光调制系统(122)的出射光路上,用于使第一图像光和补光图像光在预定位置(140)处成像重合。该投影显示系统(10)的补充光源利用率高。

Description

投影显示系统 技术领域
本发明涉及显示技术领域,特别是涉及一种投影显示系统。
背景技术
目前,在投影显示行业中,大量光源应用激光激发荧光粉获得高亮度多色光的技术,典型的技术方案是应用蓝紫色激光激发黄色荧光粉获得白光。然而现阶段的黄色荧光粉的发射光谱在红色段较弱,使得白光平衡点偏离普朗克黑体曲线,呈现一种偏绿的白色。
技术问题
为了避免该白平衡问题,现有技术提供了一种过滤合成的白光中过剩的绿光成分,使得白平衡点恢复到普朗克黑体曲线上,以解决白平衡问题。但这种方法由于过滤了绿光成分,从而降低了该白光光源的出光效率,不利于投影显示装置的亮度提高。
另一种现有技术提供了在黄色荧光或者红色荧光中增加红色激光的方法来解决白光光源的白平衡问题,如在黄色荧光中补充光谱范围在638nm或者650nm附近的激光,以增加合光中的红色成分,从而解决白色平衡问题。如图1所示,该光源系统包括蓝色激发光源11,红色补充光源12,具有中心区域和边缘区域的分光滤光片13,荧光色轮14,聚光透镜15以及匀光装置16。其中分光滤光片13的中心区域透射蓝光和红光并反射绿光,边缘区域反射红光、绿光和蓝光。这样,蓝色激光光源11发出的蓝色激发光以及红色补充光源12发出的红光经分光滤光片13的中心区域透射至色轮14,荧光色轮14上的黄色荧光粉吸收蓝色激发光同时对红光进行散射,从而出射黄色荧光和散射后的红光。该黄色荧光和红光入射到分光滤光片13,其中,入射至边缘区域的光被反射后经聚光透镜15会聚入射到匀光装置16,入射到中心区域的黄色荧光中只有一部分绿色光被反射后经聚光透镜15会聚入射到匀光装置16,而黄色荧光中的红光以及散射后的红光透射过中心区域而损失掉。
在该现有技术中,红色补充光源发出的红光被荧光材料散射造成大约5%-10%的损失,形成朗伯光分布后的收集过程中造成大约10%的损失,再被分光滤光片的中心区域透射进入非投影光路而造成大约10%左右的损失,从而导致红色补充光源发出的红光的损失较大,红光的光利用率较低,大概仅为60-70%左右。由于红色光源成本较高,同时对于散热又有较高要求,因此红光利用率低会导致成本的大幅增加;同理,在其他技术方案中,为了得到较好的绿光,也会采用在光源中添加绿光光源的方式,类似于以上增加红光光源的增加方式,同样存在利用率低的问题。
因此,针对现有技术的不足,亟需提出能够提高补充光源的利用率的技术方案。
技术解决方案
针对上述现有技术的补充光利用率低的缺陷,本发明提供一种补充光源利用率高的投影显示系统,包括:第一光源,用于出射第一光;第一光调制系统,用于接收所述第一光,并将第一光调制为第一图像光;补光光源,用于至少出射补充光,第一光的光谱包含所述补充光的光谱;第二光调制系统,用于接收所述补充光,并将所述补充光调制为补光图像光;合光装置,位于所述第一光调制系统及所述第二光调制系统的出射光路上,用于对所述第一图像光和所述补光图像光进行合光,在合光位置处,所述第一图像光的光束截面积大于所述补光图像光的光束截面积;投影镜头系统,位于所述第一光调制系统及所述第二光调制系统的出射光路上,用于使所述第一图像光和所述补光图像光在预定位置处成像重合。
在一个实施方式中,所述补充光在所述第二光调制系统的入射位置的发散角小于所述第一光在所述第一光调制系统的入射位置的发散角。
在一个实施方式中,所述补充光源为一激光光源。
在一个实施方式中,补充光在所述第二光调制系统的入射位置的发散角小于所述第一光在所述第一光调制系统的入射位置的发散角的1/5。
在一个实施方式中,所述第一光为光谱随时间变化的时序光。
在一个实施方式中,所述第一光为光谱不随时间变化的非时序光。
在一个实施方式中,所述第一光为白光,该白光的色坐标偏离黑体轨迹,所述补充光为红光或绿光。
在一个实施方式中,在所述投影显示系统处于工作状态时,所述补充光源与所述第一光源同步开关。
在一个实施方式中,所述第一光调制系统为数字微镜装置类型的光调制系统,所述第二光调制系统为液晶光阀类型的光调制系统;或者所述第二光调制系统为数字微镜装置类型的光调制系统,所述第一光调制系统为液晶光阀类型的光调制系统。
在一个实施方式中,所述投影镜头系统包括第一投影镜头,位于所述第一光调制系统的出射光路上,用于将所述第一图像光成像到所述预定位置处;所述投影镜头系统还包括第二投影镜头,位于所述第二光调制系统的出射光路上,用于将所述补光图像光成像到所述预定位置处;所述合光装置位于所述第一投影镜头和所述第二投影镜头的出射光路上。
在一个实施方式中,所述第一投影镜头的最大直径大于所述第二投影镜头的最大直径。
在一个实施方式中,所述投影镜头系统包括第三投影镜头,位于所述合光装置的出射光路上,用于将所述第一图像光和所述补光图像光成像到所述预定位置处。
在一个实施方式中,所述投影镜头系统包括第一前组镜头、第二前组镜头和后组镜头;所述第一前组镜头与所述后组镜头组成第一镜头,位于所述第一光调制系统的出射光路上,用于将所述第一图像光成像到所述预定位置处;所述第二前组镜头与所述后组镜头组成第二镜头,位于所述第二光调制系统的出射光路上,用于将所述补光图像光成像到所述预定位置处;所述合光装置位于所述第一前组镜头与所述后组镜头之间,且位于所述第二前组镜头与所述后组镜头之间,且所述合光装置位于所述第一镜头和所述第二镜头的孔径光阑位置。
在一个实施方式中,所述合光装置为一区域镀膜的分光片,包括第一区域与第二区域,所述第一图像光入射到所述第一区域和所述第二区域,所述补光图像光入射到所述第一区域;所述第二区域透射所述第一图像光,所述第一区域反射所述补光图像光,所述第一区域透射至少部分所述第一图像光,该第一区域透射的第一图像光与所述补光图像光光谱不重叠;或者,所述第二区域反射所述第一图像光,所述第一区域透射所述补光图像光,所述第一区域反射至少部分所述第一图像光,该第一区域反射的第一图像光与所述补光图像光光谱不重叠。
在一个实施方式中,在一帧图像的显示期间,所述第一光调制系统根据该帧图像的图像数据对红光、绿光和蓝光分别进行调制,所述第二光调制系统根据该帧图像的图像数据中与所述补充光颜色相关的图像数据对所述补充光进行调制。
有益效果
与现有技术相比,本发明包括如下有益效果:通过第一光调制系统将第一光源出射的第一光调制为第一图像光,通过第二光调制系统将补光光源出射的补充光调制为补光图像光,然后利用合光装置对第一图像光和补光图像光进行合光,使第一图像光的光束截面积在合光位置大于补光图像光的光束截面积,并利用投影镜头系统最终使两者在预定位置处成像重合,从而避免了补充光在到达屏幕之前因散射、未完全收集及进入非投影光路等而造成的光损失,提高了补充光源的利用率。
附图说明
图1为现有技术中的投影显示系统的结构示意图。
图2为本发明投影显示系统的一个实施例的结构示意图。
图3为本发明投影显示系统的另一个实施例的结构示意图。
图4为本发明投影显示系统的另一个实施例的结构示意图。
图5为本发明投影显示系统的另一个实施例的结构示意图。
图6为本发明投影显示系统的另一个实施例的结构示意图。
图7为光调制器到孔径光阑的光分布示意图。
本发明的最佳实施方式
现有技术中,通过在基础的主光源装置之外增加补充光源来获得白平衡效果好的白光。然而,受到补充光源的补充光合光位置、合光方式的影响,在散射、光收集及光引导过程中补充光大量损失,导致补充光源的利用率低,不得不依靠增加补充光源的输出功率来获得白平衡。
为提高补充光源的利用率,本领域一般的思维方式是从器件的改进入手,如降低补充光的散射、提高光收集效率等。不同于现有技术,本发明另辟蹊径,不局限于在光调制器前的光路完成补光,而是将主光源(第一光源)的第一光与补充光源的补充光的合光装置设置在光调制器的出射光路上,待第一光经第一光调制系统调制为第一图像光及补充光经第二光调制系统调制为补光图像光后,再对第一图像光和补光图像光进行合光。通过这种方式,本发明技术方案将补充光源出射的补充光直接用于图像显示,无需考虑补充光与第一光合光时的光分布不一致等问题,也就不需要使补充光通过与第一光相同的散射、光收集、光引导等装置到达光调制系统。相反地,由于现有技术中令补充光与第一光在光调制器前合光,必须要求两者的合光在光调制器的入射面的光分布均匀,因此补充光利用率低不可避免。
为使第一图像光与补光图像光能够在光调制系统后合光可实现,需选择合适的合光方式。由于形成第一图像光的第一光包含补充光的光谱,因此第一光和补充光无法利用波长的不同而合光,否则将造成第一光中该颜色的大量损失。本发明利用第一图像光与补光图像光的光学扩展量不同,使两者在合光位置满足以下关系:第一图像光的光束截面积大于补光图像光的光束截面积,从而使补光图像光与大部分第一图像光合为一束光出射。在合光后,第一图像光与补光图像光沿相同光路在预定位置处(即屏幕处)成像,两像大小相同、位置一致,从而合成所需显示的图像。
如上所述,本发明的主要发明构思在于改“照明光阶段补光”为 “图像光阶段补光”,并结合该技术方案提供可行的合光方案,从而减少补充光的光损失,提高投影显示系统的效率。此处,“照明光”指投影显示系统的光源装置提供给光调制器入射面的光,特点是光的空间分布均匀;“图像光”指经光调制器调制出射后的光,特点是光的空间分布呈现出一定的图案。
在本发明中,“成像重合”是指在两束光在成像位置的成像大小相同,且边界重合,并非特指成像的内部图案重合。
在本发明中,单色光指可以从白光分离出的色光,如红、橙、黄、绿、青、蓝、紫色光,非限定于单一频率的光。
下面结合附图和实施方式对本发明实施例进行详细说明。
在本发明中如涉及“第一”、“第二”、“第三”等的描述仅用于描述目的,以便于描述方便,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。
请参见图2,图2为本发明投影显示系统的一个实施例的结构示意图。投影显示系统10包括第一光源111、补光光源112、第一光调制系统121、第二光调制系统122、合光装置130和投影镜头系统的第三投影镜头150。
第一光源111出射第一光,该第一光入射到第一光调制系统121,并被调制为第一图像光,补光光源112出射补充光,该补充光入射到第二光调制系统122,并被调制为补光图像光。第一图像光和补光图像光沿各自的出射路径分别入射到合光装置130,经合光装置130合光后沿相同光路出射,经投影镜头系统最终在预定位置处(即图2中所示屏幕140处)成像重合,成像大小相同、位置重合。
<光源>
本实施例中,第一光源111用于出射第一光,第一光包含红光光谱、绿光光谱和蓝光光谱。具体地,第一光为光谱随时间变化的时序光,第一光源111依时序周期性地依次出射红光、绿光和蓝光,使得每一周期红绿蓝光在时间上叠加后显示为白光。可以理解,红光、绿光和蓝光的出射次序不限于红绿蓝,也可以为其他的出射次序,如红蓝绿等。
本实施例中,第一光源111为一激发光激发荧光材料的光源,包括发光单元和波长转换装置,发光单元发出激发光,激发光入射到波长转换装置,波长转换装置在驱动装置的驱动下运动,使得该波长转换装置上的不同区域在不同时间暴露于激发光的照射下,从而产生时序的红光、绿光和蓝光。发光单元为一激光光源,具体为一激光二极管阵列光源,由多颗呈阵列排布的激光二极管组成,该光源具有发散角小、电光转换效率高、单色性好等的优点,适于高亮度显示等应用。在本发明的其他实施方式中,发光单元还可以是单颗的激光二极管,还可以是固体激光器光源,还可以是LED光源或LED阵列光源,不影响后续光路系统的技术方案实施。
波长转换装置包括三个区域:红光区域、绿光区域和蓝光区域,用于接收发光单元发出的激发光,并分别出射红光、绿光和蓝光。在本实施例中,发光单元发出的光为蓝光,红光区域为红色荧光粉区,绿光区域为绿色荧光粉区,蓝光区域为散射区域,发光单元发出的蓝光经蓝光区域散射后出射,不改变波长。
可以理解,在本发明的另一实施方式中,发光单元的出射光也可以为其他光谱的光,如但不限于紫外光。波长转换装置的三个区域也可以都是波长转换区域,对入射光进行波长转换。红光区域和绿光区域也可以分别为通过在黄色荧光粉区域上加装红光滤光片和绿光滤光片而得到的区域。
在本实施例中,波长转换装置为荧光色轮,在马达的驱动下绕其中轴转动。在本发明的另一实施方式中,波长转换装置还可以为荧光色桶/色筒,包括沿桶/筒面环绕分布的多个区域,色桶/色筒绕其轴线方向旋转,以使该多个区域依时序周期性处于激发光的照射下,从而出射时序光;或者,波长转换装置还可以为荧光色板,包括沿一直线方向依次排布的多个区域,色板沿该直线方向线性振动,以使该多个区域依时序周期性处于激发光的照射下,从而出射时序光。
在本实施例中,第一光为由红光、绿光和蓝光组成的时序白光,由于红色荧光粉的发光效率低、黄色荧光粉发出的黄光中的红色成分少,导致第一光中红光的比例相对与标准白色中的红色比例较小,使得该白光偏蓝绿,该白光的色坐标偏离黑体轨迹。
本实施例中,补光光源112用于至少出射补充光,补充光为一单色光。具体地,补充光为红光,用于弥补第一光源111中红光成分不足、第一光颜色偏蓝绿的问题。可以理解,在其他实施方式中,当白光的颜色偏红时(白光色坐标同样偏离黑体轨迹),补充光为绿光,以提高投影显示系统的绿色显示效果。
补光光源112为一激光光源,具体为一激光二极管阵列光源,该光源相比上述“激发光激发荧光材料”的第一光源111,具有发散角小的特点。一般地,荧光材料受激发而发出的光为朗伯分布的光,光发散角很大,大约可达180°,而与荧光材料相配合的光收集透镜仅能够收集±75°(即150°范围内)的光;而补光光源112的激光光源发出的光为高斯分布的光,发散角很小,如激光二极管出射光为近似椭圆光斑,其长轴发散角为15°~40°,短轴发散角为6°~10°,经过准直透镜后,激光二极管的发散角不到1°,因此其后续光路的光学元件的直径可以较小,该补光光源112发出的补充光到达光调制器也能够保持小发散角入射。可以理解,补光光源的光源类型不限于激光光源,也可以是其他发散角度较小的光源,如小发散角的LED光源,以使在各自对应的光调制系统的入射位置处,补充光的发散角小于第一光的发散角。优选地,在入射到光调制系统的位置,补充光发散角小于第一光发散角的1/5。
在本实施例中,第一光中的红光成分是由波长转换材料产生的,光谱覆盖范围较大,而补充光中的红光光谱范围窄。第一光的红光光谱范围能够覆盖补充光的红光光谱,使得第一光的光谱能够包含补充光的光谱,从而在补光时不会使最终图像的红光颜色变化太大。
在一个实施方式中,第一光红光的红光功率与补充光的红光功率的比值约为2:1,该比值以2:1为中值,且上下浮动范围为±20%。在该比值范围内,补充光源既是必需,又具有较高的性价比——当第一光红光的比例较少时,证明第一光中的红光成分太少,采用第一光红光与补充光结合的方式不经济,不若直接采用补光光源作为红光的单独发光源;当第一光红光的比例较多时,补充光源只提供少量的红光,却增加了光调制系统、光路系统等大量成本,性价比低。
<光调制系统>
本发明中,投影显示系统包括两套光调制系统:第一光调制系统121和第二光调制系统122。第一光调制系统121用于接收第一光,并将第一光调制为第一图像光;第二光调制系统122用于接收补充光,并将补充光调制为补光图像光。
光调制系统的类型包括数字微镜装置DMD(Digital MicromirroDevice)和液晶光阀,其中液晶光阀又分为透射式液晶光阀LCD(Liquid Crystal Display)和反射式液晶光阀LCOS(Liquid Crystal on Silicon),此外,还有光栅光阀GLV等空间光调制器,以上各光调制系统调制图像的原理为现有技术,此处不再赘述。
在本实施例中,第一光为红绿蓝的时序白光,第一光调制系统仅包括一个光调制器,依时序依次接收红光、绿光和蓝光,经调制后,依时序依次出射红色图像光、绿色图像光和蓝色图像光,该红色图像光、绿色图像光和蓝色图像光在时间上叠加为第一图像光,该第一图像光通过人眼的视觉暂留效应形成人眼中的彩色图像。
本发明中,由于补充光为一单色光,因此第二光调制系统仅需一个光调制器即可实现调制功能。在本实施例中,补充光为红光,光调制器接收该红光后,经调制,出射红色图像光即为补光图像光。该补光图像光与第一图像光一同进入人眼,利用人眼的视觉暂留效应形成彩色图像。
一帧图像的显示期间,第一光调制系统和第二光调制系统根据同一个图像进行调制,其中第一光调制系统根据该图像的红色图像数据分量、绿色图像数据分量和蓝色图像数据分量分别对红绿蓝光进行调制,而第二光调制系统根据该图像的红色图像数据分量对补充红光进行调制(对于其他实施方式中补充光是其他单色光的情形,根据与该补充光颜色相关的图像数据分量进行调制),以保证出射的合成图像能够正确显示。为提高显示质量,第一光调制系统和第二光调制系统还需要通过同步控制装置实现调制的同步。
在本实施例的一个实施方式中,在一帧图像期间,当第一光调制系统对第一光的红绿蓝任意成分进行调制时,第二光调制系统都对补充光进行调制,即第二光调制系统对补充光的调制时间为第一光调制系统对红绿蓝光的调制时间之和,该技术方案大大增加了第二光调制系统对补充光的调制时间,可以提高补充光源的利用率,降低补充光源的成本。在该技术方案下,当投影显示系统处于工作状态时,第一光源和补充光源同步开关,两者同时处于开启状态或同时处于关闭状态,以提供第一光和补充光。
可以理解,第一光源和补充光源也可以不同步开关,使补充光源处于开启状态的时间短于第一光源处于开启状态的时间。在本实施例的另一个实施方式中,只有当第一光调制系统对第一光中的红光进行调制时,第二光调制系统才对补充光进行调制。在本实施例的另一个实施方式中,当第一光调制系统对第一光中的两种色光进行调制时,第二光调制系统对补充光进行调制。
在一个实施方式中,第一光调制系统为数字微镜装置类型的光调制系统,第二光调制系统为液晶光阀类型的光调制系统。由于数字微镜类型的光调制器通过控制一帧内光调制器的各个微镜的开状态和关状态的时间比例来控制图像的亮暗,因此,在一帧内有可能出现短暂的全暗图像而导致闪烁,容易引起视觉疲劳;而液晶光阀类型的光调制器通过调节光透过率来控制明暗,理论上任何一段时间内都是有光通过的,不会有闪烁现象。本实施方式通过将数字微镜类型的光调制系统与液晶光阀类型的光调制系统相结合,避免了单独使用数字微镜装置类型的光调制器时的闪烁问题,有利于提高视觉体验。在另一个实施方式中,也可以使第一光调制系统为液晶光阀类型的光调制系统,而使第二光调制为数字微镜装置类型的光调制系统,原理相同。优选地,第一光调制系统与第二光调制系统的光调制器尺寸相同、分辨率相同,以便于两个光调制系统的出射光能够图像重合。
<合光装置>
本发明中,第一图像光和补光图像光通过合光装置合光。由于补充光与第一光至少部分光谱重叠,如果两者采用波长合光,则必然会全部损失掉其中一束光的重叠光谱部分。因此,本发明利用光学扩展量的差异,通过使第一图像光在合光位置处的光束截面积大于补光图像光在合光位置处的光束截面积,使得两者在空间上合光,然后通过相同的后续光路成像到屏幕上,使两个图像光最终重合。此处,成像过程为光调制器的出射面的图像光成像到屏幕上的过程,而非从合光位置成像到屏幕的过程,合光位置仅为成像过程的一个中间位置。
在本发明中,从光调制系统位置到合光位置的过程中,不考虑光损失问题,可以认为光学扩展量守恒,S1sin2θ1=S2sin2θ2,其中。S1为光调制系统出射面的面积,θ1为光调制系统出射面处图像光的发散半角,S2为合光位置处图像光光束截面积,θ2为合光位置处图像光的发散半角。无论是第一光调制系统到合光装置还是第二光调制系统到合光装置都满足以上关系。发散半角为发散角的一半。
由于从合光装置到屏幕之间,第一图像光和补光图像光的路径相同,因此合光后第一图像光和补光图像光的发散半角最好相同,即需要使两者θ2相同,以保证成像质量。在第一光调制系统与第二光调制系统采用同尺寸的光调制器的情况下,两者的S1相同。此外,由于在各自对应的光调制系统的入射位置处,第一光的发散角大于补充光的发散角,光调制系统的入射光发散角与出射光发散角相等,因此第一光调制系统出射面处第一图像光的发散半角θ1大于第二光调制系统出射面处补充图像光的发散半角θ1。综上所述,根据公式S1sin2θ1=S2sin2θ2,在确定了第一图像光与补光图像光的S1、θ1、θ2的相互关系的情况下,可知第一图像光的S2大于补光图像光的S2。假设在第一光调制系统的入射位置,第一光发散半角为10°,在第二光调制系统的入射位置,补充光发散半角为2°(即前者的1/5),则可计算得到,在合光位置,第一图像光的光束截面积是补光图像光的光束截面积的约25倍。第一光和补充光的发射角比值越大,合光位置的第一图像光光束截面积与补光图像光光束截面积比值越大。
在合光过程中,补光图像光全部进入投影显示系统的出射光路,第一图像光的不与补光图像光空间重叠的部分进入投影显示系统的出射光路,由于重叠部分面积占第一图像光的光束截面积的比例很小,因此该过程保证了大部分光进入出射光路,仅损失了少量的光。
请参见图2,在本实施例中,合光装置130为一分光片,设置于第一光调制系统121的出射光路上,大部分第一图像光从合光装置130的周围直接通过而进入后续光路,少部分第一图像光入射到合光装置130的一表面并被其阻挡,未能进入后续光路。第二光调制系统122出射的补光图像光经一反射镜(图中未标号)反射后,入射到合光装置130的另一表面并被反射,从而进入后续光路。在合光装置130之后,补光图像光取代了部分第一图像光,与剩余的大部分第一图像光一同在屏幕140位置形成显示图像。可以理解,第二光调制系统122与合光装置130之间的反射镜非必需的,只要将第二光调制系统122出射光路改为直线入射到合光装置130即可。
在本发明中,合光装置不限于分光片,合光装置还可以是波长滤光片,用于将补充光波长的光引导进入出射通道;合光装置还可以是偏振滤光片,补充光为偏振光,合光装置用于将补充光偏振态的光引导进入出射通道。需要注意的是,无论合光装置采用何种类型的分光合光片,都需要满足第一图像光与补光图像光在合光装置位置的光束截面积关系。
<投影镜头系统>
投影镜头系统位于第一光调制系统和第二光调制系统的出射光路上。本实施例中,投影镜头系统包括第三投影镜头150,位于合光装置130的出射光路上,用于将合光后的第一图像光和补光图像光成像到预定位置(屏幕140)处。
在本实施例中,第一图像光和补光图像光在第三镜头150之前进行合光,有利于投影显示系统的结构紧凑,也有利于在现有技术的投影显示系统的基础上通过较小的改动进行改造升级。
请参见图3,图3为本发明投影显示系统的另一个实施例的结构示意图。投影显示系统20包括第一光源211、补光光源212、第一光调制系统221、第二光调制系统222、合光装置230和投影镜头系统,其中,投影镜头系统包括第一投影镜头251和第二投影镜头252。
本实施例中,第一光源211、补光光源212、第一光调制系统221、第二光调制系统222和合光装置230的描述可以参照上述任意实施方式中的描述。与图2所示的实施例不同的是,本实施例中的投影镜头有两个,合光装置设置在投影镜头之后的光路而非设置在投影镜头之前。
在本实施例中,第一投影镜头251位于第一光调制系统221的出射光路上,用于将第一图像光成像到预定位置屏幕240处,第二投影镜头252位于第二光调制系统222的出射光路上,用于将补光图像光成像到预定位置屏幕240处,合光装置230位于第一投影镜头251和第二投影镜头252的出射光路上。该技术方案使得第一光源211、第一光调制系统221和第一投影镜头251形成一个独立的第一投影显示系统,使得补光光源212、第二光调制系统222和第二投影镜头252形成一个独立的第二投影显示系统,该第一投影显示系统和第二投影显示系统通过合光装置230组成一个投影显示系统20。该技术方案使得两个投影显示系统具有独立性,便于拆卸、组合和维护。
在本实施例的一个实施方式中,第一投影镜头251的最大直径大于第二投影镜头252的最大直径。由于补光光源212的光发散角小,第二光调制系统222的入射面和出射面的光发散角小,导致补光图像光传播路径“较直”,使得第二投影镜头252不需要有太大的直径就能够满足较高的光收集效率,因此可以使第二投影镜头252的尺寸减小,从而降低投影显示系统的成本。
请参见图4,图4为本发明投影显示系统的另一个实施例的结构示意图。投影显示系统30包括第一光源311、补光光源312、第一光调制系统321、第二光调制系统322、合光装置330和投影镜头系统。其中,投影镜头系统包括第一前组镜头3501、第二前组镜头3502和后组镜头3503。
本实施例中,第一光源311、补光光源312、第一光调制系统321和第二光调制系统322的描述可以参照上述任意实施方式中的描述。与上述图2、图3的实施例不同的是,合光装置330位于投影镜头内,也就是说,合光装置330既不在光调制系统与投影镜头之间,也不在投影镜头与屏幕之间,而是位于投影镜头的入射端和出射端之间。
本实施例中,第一前组镜头3501与后组镜头3503组成第一镜头,该第一镜头位于第一光调制系统321的出射光路上,用于将第一图像光成像到预定位置屏幕340处;第二前组镜头3502与后组镜头3503组成第二镜头,该第二镜头位于第二光调制系统322的出射光路上,用于将补光图像光成像到预定位置屏幕340处。合光装置330位于第一前组镜头3501与后组镜头3503之间,且同时位于第二前组镜头3502与后组镜头3503之间。该技术方案充分利用了投影镜头的空间,不必增加投影长度,有利于结构紧凑。
在一个实施方式中,合光装置330位于上述第一镜头(即第一前组镜头3501与后组镜头3503组成的)和第二镜头(即第二前组镜头3502与后组镜头3503组成的)的孔径光阑位置。在该位置,光束的截面积达到最小,能够减小合光装置330的体积,有利于节约成本和投影显示系统的体积小型化。此外,在该位置,光调制系统的出射面的“面分布”的光变成孔径光阑位置的“角分布”的光——在光调制系统的出射面,光束截面上的每一点的光照强度都随着该点在图案中的位置不同而不同,称为“面分布”光,光照强度随在出射面的坐标位置不同而变化;在孔径光阑位置,光束截面上的每一点都包含有光调制系统出射面上任意一点的出射光,即光束截面上的每一点包含的图像信息都是相同的,但是对于从该点出射的光,各个不同出射角度所代表的图像信息是不同的,不同的出射角度代表光调制系统上不同点发出的图像光,称为“角分布”光,光照强度随着光束立体角度不同而变化。在该技术方案中,由于合光位置孔径光阑处的各点包含的图像信息是完整的,从合光位置出射的光经过后组镜头投射到屏幕上重新成像为“面分布”的光,不会导致某一部位图像信息的缺失,能够提高图像显示效果。
进一步结合附图7说明,图7为光调制器到孔径光阑Φ的光分布示意图,光调制器上的三个点P1、P2和P3根据所显示的图案的图像位置不同而呈现不同的光照强度。图中光调制器的三个点P1、P2和P3发出的光经前组透镜到达孔径光阑Φ,A和B为孔径光阑Φ位置任取的两点,A点和B点都各自有来自P1、P2和P3的光通过,即孔径光阑Φ位置上任意点都包含光调制器上全部点发出的一部分光。所不同的是,A点或B点的出射光中,来自P1、P2和P3的光分别有着不同的光束角度,即图案上不同位置的光在孔径光阑位置Φ的一个确定的点的光束角度不同,“面分布”变成了“角分布”。
在本实施例中,合光装置位于第一镜头的孔径光阑位置,使得第一图像光不会因合光装置的阻挡而缺失部分信息,保证了图像显示效果;合光装置位于第二镜头的孔径光阑位置,使得补光图像光的光束截面积在合光位置最小,从而减少了被合光装置阻挡的第一图像光的光通量,有利于投影显示系统出射亮度的提高和图像均匀性的提高。
在本实施例中,合光装置330为一区域镀膜的分光片,包括第一区域331和第二区域332,第一图像光同时入射到第一区域331和第二区域332,补光图像光仅入射到第一区域331。其中,第二区域332透射第一图像光,第二区域332可以为透明玻璃、透明塑料片、透明晶体等。第一区域331为波长滤光片,用于反射补光图像光,并透射至少部分其他波长的光。即第一区域331透射至少部分第一图像光,该透射过的第一图像光与补光图像光的光谱不重叠。在该技术方案中,第一图像光仅损失了入射到第一区域331的与补光图像光波长相同的光,提高了光利用率。
当然,可以理解,也可以改变合光装置330的透反特性,使得第二区域332反射第一图像光,第一区域331透射补光图像光,同时第一区域331反射至少部分第一图像光,其中该第一区域反射的第一图像光与补光图像光光谱不重叠。
在本实施例的另一个实施方式中,补充光为偏振光,补光图像光为偏振光,第一区域331进一步包括偏振波长分光片,第一区域331仅反射与补光图像光波长重叠且偏振态相同的光,该技术方案进一步减少了第一图像光在合光装置处损失的光,减少了光损失,提高了图像显示效果。
可以理解,本实施例采用的合光装置330也可以替换为上述各实施例中的合光装置,上述各实施方式中的合光装置也可以替换为本实施例中的合光装置330。
请参见图5,在本发明的另一个实施例中,投影显示系统40包括第一光源411、补光光源412、第一光调制系统421、第二光调制系统422和合光装置430,其中第一光调制系统421包括三个光调制器4211、4212和4213。
与图2所示的实施例不同,第一光为光谱不随时间变化的非时序光,即第一光为颜色不随时间变化的光。在该实施方式中,由于第一光含有红光光谱、绿光光谱和蓝光光谱,因此第一光为一个混合色光。具体地,在一个实施方式中,第一光源为白光光源,持续出射颜色恒定的第一光白光。该白光可以通过利用蓝光激光激发黄色荧光材料(如黄色荧光粉、YAG:Ce荧光陶瓷等)得到,具体地,黄色荧光材料产生的受激光黄光和未被吸收的激发光蓝光合光,该合光表现为白光。当然,白光的获得不限于激光激发荧光材料获得。
在该实施例中,第一光调制系统421包括三个光调制器,投影显示系统进一步还包括分光元件和合光元件(该合光元件并非合光装置430)。分光元件将第一光分成红光、绿光和蓝光三路光,并分别将其引导进入第一光调制系统的三个光调制器4211、4212、4213,三个光调制器分别将红光、绿光和蓝光调制为红色图像光、绿色图像光和蓝色图像光,该三个图像光再通过合光元件合成为第一图像光。图2所示的实施例中的第一图像光为通过时间叠加的“时间合光”,则本实施例中的第一图像光为通过空间叠加的“空间合光”。本实施例中,从第一光源出射第一光到第一光调制系统出射第一图像光的过程,可以参考3LCD、3DMD等现有技术,此处不再赘述。
在本实施例中,第一光调制系统出射的第一图像光为彩色图像光,该彩色图像光与第二光调制系统出射的补光图像光通过合光装置合光后,沿相同光路在屏幕上成相同大小的像。
在本实施例中,第一光调制系统同一时间内对红绿蓝三色光进行调制,在此期间,第二光调制系统对补充光进行调制。两者通过同步控制装置进行同步,提供第一光和补充光的第一光源411和补充光源412也同步开关。
在本实施例中,如同上述实施方式中所述,第一光调制系统和第二光调制系统也可以是不同类型的光调制系统,以获得消除闪烁、改善图像显示质量的效果。
本实施例中的第一光和补充光的颜色选择以及合光装置430的设置可以参照上述各实施方式的技术方案,此处不再赘述。本实施例中的合光装置与镜头的位置关系也可以参照上述各实施方式的技术方案,此处不再赘述。
请参见图6,在本发明的另一个实施例中,投影显示系统50包括第一光源511、补光光源512、第一光调制系统521、第二光调制系统522和合光装置530,其中第一光调制系统521包括两个光调制器5211和5212。
与图2所示的实施例不同,第一光为黄光和蓝光的时序光,而且该黄光为宽光谱黄光,包含红光光谱和绿光光谱,该第一光仍然表现为一时序白光。具体地,在一个实施方式中,第一光源为蓝光激发荧光色轮的光源,该荧光色轮包含黄光区域(黄色荧光粉区域)和蓝光区域(散射区域)。
在该实施例中,第一光调制系统521包括两个光调制器5211和5212,投影显示系统进一步还包括分光元件和合光元件(该合光元件并非合光装置530)。分光元件将第一光分成两路,其中一路光为红光,另一路光为绿光和蓝光的时序光,并分别将其引导进入两个光调制器5211和5212。一个光调制器将红光调制为红色图像光,另一个光调制器依时序分别把绿光和蓝光调制为绿色图像光和蓝色图像光。然后三个图像同时通过时间叠加和空间叠加得到第一图像光。本实施例中,从第一光源出射第一光到第一光调制系统出射第一图像光的过程,可以参考2DMD等现有技术,此处不再赘述。
在本实施例中,第一光调制系统出射的第一图像光为彩色图像光,该彩色图像光与第二光调制系统出射的补光图像光通过合光装置合光后,沿相同光路在屏幕上成相同大小的像。
在本实施例中,第一光调制系统分时段对绿光和蓝光进行调制,在此期间,第二光调制系统既可以仅在第一光调制系统调制绿光时调制补充光,也可以在第一光调制系统调制绿光和调制蓝光时都对补充光进行调制,后者的技术方案下,补充光源与第一光源同步开关,使第一光源和补充光源同时处于开启状态,可以提高补充光源的利用率,降低补充光源的成本。
在本实施例中,如同上述实施方式中所述,第一光调制系统和第二光调制系统也可以是不同类型的光调制系统,以获得消除闪烁、改善图像显示质量的效果。
本实施例中的第一光和补充光的颜色选择以及合光装置530的设置可以参照上述各实施方式的技术方案,此处不再赘述。本实施例中的合光装置与镜头的位置关系也可以参照上述各实施方式的技术方案,此处不再赘述。
根据对图2所示实施例与本实施例中的第二光调制系统调制补充光的时段进行研究总结,进一步地,在本发明中,当投影显示系统处于工作状态时,补充光源可以与第一光源同步开关,使补充光源和第一光源同时处于开启状态,以使第二光调制系统在最大限度的时间内对补充光进行调制,从而提高补充光源的利用率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

1、一种投影显示系统,其特征在于,包括:
第一光源,用于出射第一光;
第一光调制系统,用于接收所述第一光,并将第一光调制为第一图像光;
补光光源,用于至少出射补充光,第一光的光谱包含所述补充光的光谱;
第二光调制系统,用于接收所述补充光,并将所述补充光调制为补光图像光;
合光装置,位于所述第一光调制系统及所述第二光调制系统的出射光路上,用于对所述第一图像光和所述补光图像光进行合光,在合光位置处,所述第一图像光的光束截面积大于所述补光图像光的光束截面积;
投影镜头系统,位于所述第一光调制系统及所述第二光调制系统的出射光路上,用于使所述第一图像光和所述补光图像光在预定位置处成像重合。
2、根据权利要求1所述的投影显示系统,其特征在于,所述补充光在所述第二光调制系统的入射位置的发散角小于所述第一光在所述第一光调制系统的入射位置的发散角。
3、根据权利要求2所述的投影显示系统,其特征在于,所述补充光源为一激光光源。
4、根据权利要求2所述的投影显示系统,其特征在于,补充光在所述第二光调制系统的入射位置的发散角小于所述第一光在所述第一光调制系统的入射位置的发散角的1/5。
5、根据权利要求1所述的投影显示系统,其特征在于,所述第一光为光谱随时间变化的时序光。
6、根据权利要求1所述的投影显示系统,其特征在于,所述第一光为光谱不随时间变化的非时序光。
7、根据权利要求5或6所述的投影显示系统,其特征在于,所述第一光为白光,该白光的色坐标偏离黑体轨迹,所述补充光为红光或绿光。
8、根据权利要求5所述的投影显示系统,其特征在于,在所述投影显示系统处于工作状态时,所述补充光源与所述第一光源同步开关。
9、根据权利要求1所述的投影显示系统,其特征在于,所述第一光调制系统为数字微镜装置类型的光调制系统,所述第二光调制系统为液晶光阀类型的光调制系统;或者所述第二光调制系统为数字微镜装置类型的光调制系统,所述第一光调制系统为液晶光阀类型的光调制系统。
10、根据权利要求1所述的投影显示系统,其特征在于,所述投影镜头系统包括第一投影镜头,位于所述第一光调制系统的出射光路上,用于将所述第一图像光成像到所述预定位置处;
所述投影镜头系统还包括第二投影镜头,位于所述第二光调制系统的出射光路上,用于将所述补光图像光成像到所述预定位置处;
所述合光装置位于所述第一投影镜头和所述第二投影镜头的出射光路上。
11、根据权利要求10所述的投影显示系统,其特征在于,所述第一投影镜头的最大直径大于所述第二投影镜头的最大直径。
12、根据权利要求1所述的投影显示系统,其特征在于,所述投影镜头系统包括第三投影镜头,位于所述合光装置的出射光路上,用于将所述第一图像光和所述补光图像光成像到所述预定位置处。
13、根据权利要求1所述的投影显示系统,其特征在于,所述投影镜头系统包括第一前组镜头、第二前组镜头和后组镜头;
所述第一前组镜头与所述后组镜头组成第一镜头,位于所述第一光调制系统的出射光路上,用于将所述第一图像光成像到所述预定位置处;
所述第二前组镜头与所述后组镜头组成第二镜头,位于所述第二光调制系统的出射光路上,用于将所述补光图像光成像到所述预定位置处;
所述合光装置位于所述第一前组镜头与所述后组镜头之间,且位于所述第二前组镜头与所述后组镜头之间,且所述合光装置位于所述第一镜头和所述第二镜头的孔径光阑位置。
14、根据权利要求1所述的投影显示系统,其特征在于,所述合光装置为一区域镀膜的分光片,包括第一区域与第二区域,所述第一图像光入射到所述第一区域和所述第二区域,所述补光图像光入射到所述第一区域;
所述第二区域透射所述第一图像光,所述第一区域反射所述补光图像光,所述第一区域透射至少部分所述第一图像光,该第一区域透射的第一图像光与所述补光图像光光谱不重叠;或者,所述第二区域反射所述第一图像光,所述第一区域透射所述补光图像光,所述第一区域反射至少部分所述第一图像光,该第一区域反射的第一图像光与所述补光图像光光谱不重叠。
15、根据权利要求1所述的投影显示系统,其特征在于,在一帧图像的显示期间,所述第一光调制系统根据该帧图像的图像数据对红光、绿光和蓝光分别进行调制,所述第二光调制系统根据该帧图像的图像数据中与所述补充光颜色相关的图像数据对所述补充光进行调制。
PCT/CN2017/081310 2017-01-12 2017-04-20 投影显示系统 WO2018129827A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/477,513 US10831088B2 (en) 2017-01-12 2017-04-20 Projection display system with improved utilization rate of supplementary light source
EP17891321.6A EP3570107B1 (en) 2017-01-12 2017-04-20 Projection display system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710021717.8 2017-01-12
CN201710021717.8A CN108303842B (zh) 2017-01-12 2017-01-12 投影显示系统

Publications (1)

Publication Number Publication Date
WO2018129827A1 true WO2018129827A1 (zh) 2018-07-19

Family

ID=62839764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081310 WO2018129827A1 (zh) 2017-01-12 2017-04-20 投影显示系统

Country Status (4)

Country Link
US (1) US10831088B2 (zh)
EP (1) EP3570107B1 (zh)
CN (1) CN108303842B (zh)
WO (1) WO2018129827A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097431A1 (en) * 2017-11-14 2019-05-23 Imax Theatres International Limited Light conditioning of direct view display for cinema
CN111580325A (zh) * 2020-05-21 2020-08-25 天津聚贤三诺科技有限公司 一种高亮转角同轴光源
CN215416236U (zh) * 2020-12-18 2022-01-04 深圳光峰科技股份有限公司 一种光调制器与投影显示系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020154277A1 (en) * 2001-04-02 2002-10-24 Hiroshi Mukawa Image display device
CN101430492A (zh) * 2007-11-08 2009-05-13 北京中视中科光电技术有限公司 一种用于投影系统的光源装置及投影显示装置
CN101576660A (zh) * 2008-05-08 2009-11-11 北京中视中科光电技术有限公司 一种投影系统
CN101576659A (zh) * 2008-05-08 2009-11-11 北京中视中科光电技术有限公司 一种投影系统
CN102722073A (zh) * 2011-12-18 2012-10-10 深圳市光峰光电技术有限公司 光源系统及投影装置
CN105204279A (zh) * 2014-06-23 2015-12-30 深圳市绎立锐光科技开发有限公司 光源系统及投影设备

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676591A (en) * 1971-01-28 1972-07-11 Westinghouse Electric Corp Photochromic display device utilizing light valve activation
US3953117A (en) * 1975-06-10 1976-04-27 The United States Of America As Represented By The Secretary Of The Army Single image plane two color photochromic display technique
US5612753A (en) * 1995-01-27 1997-03-18 Texas Instruments Incorporated Full-color projection display system using two light modulators
JP2001222064A (ja) * 2000-02-08 2001-08-17 Ibm Japan Ltd 照光制御装置、プロジェクタ、および照光制御方法
JP2005215475A (ja) * 2004-01-30 2005-08-11 Seiko Epson Corp プロジェクタ
DE102004010913A1 (de) * 2004-03-05 2005-09-29 Carl Zeiss Jena Gmbh Projektionsvorrichtung
KR100628125B1 (ko) * 2004-09-02 2006-09-26 엘지전자 주식회사 Led를 이용한 조명장치와 이를 이용한 투사 표시장치
JP4165479B2 (ja) * 2004-09-08 2008-10-15 セイコーエプソン株式会社 プロジェクタ
KR20060080805A (ko) * 2005-01-06 2006-07-11 엘지전자 주식회사 디스플레이 장치의 광원유닛
US7188953B2 (en) * 2005-05-03 2007-03-13 Eastman Kodak Company Display apparatus using LCD panel
KR100720591B1 (ko) * 2005-08-31 2007-05-22 엘지전자 주식회사 휴대가능한 프로젝터
JP2007079028A (ja) * 2005-09-13 2007-03-29 Canon Inc 投射型画像表示装置およびマルチプロジェクションシステム
US7540616B2 (en) * 2005-12-23 2009-06-02 3M Innovative Properties Company Polarized, multicolor LED-based illumination source
US7766490B2 (en) * 2006-12-13 2010-08-03 Philips Lumileds Lighting Company, Llc Multi-color primary light generation in a projection system using LEDs
JP4232826B2 (ja) * 2007-01-22 2009-03-04 セイコーエプソン株式会社 レーザ光源装置およびそれを用いたモニタ装置ならびに画像表示装置
CN101261427A (zh) * 2007-03-09 2008-09-10 上海飞锐光电科技有限公司 一种双液晶板的投影显示系统
US8011792B2 (en) * 2007-12-28 2011-09-06 Sanyo Electric Co., Ltd. Lighting unit and projection display apparatus
EP2161704A1 (en) * 2008-09-05 2010-03-10 Dmitrijs Volohovs Image projection apparatus
US20110279780A1 (en) * 2009-01-29 2011-11-17 Hiroyuki Saitou Projection display device
JP5412996B2 (ja) * 2009-06-30 2014-02-12 カシオ計算機株式会社 光源装置、投影装置及び投影方法
JP5504747B2 (ja) * 2009-08-20 2014-05-28 セイコーエプソン株式会社 プロジェクター
TWI448804B (zh) * 2010-08-20 2014-08-11 Delta Electronics Inc 光源系統及包含該光源系統之投影裝置
CN101963744A (zh) * 2010-09-15 2011-02-02 伍振弋 一种lcos液晶投影系统及装置
US20130077062A1 (en) * 2011-06-21 2013-03-28 Kenneth K. Li Projector system having interchangeable light source modules
JP5720586B2 (ja) * 2012-01-19 2015-05-20 コニカミノルタ株式会社 画像投映装置
TWI464452B (zh) * 2012-08-27 2014-12-11 Delta Electronics Inc 顯示器及其顯示方法
DE102012221467A1 (de) * 2012-11-23 2014-05-28 Osram Gmbh Lichtmodul für eine projektionsvorrichtung
CN104980721B (zh) * 2014-04-02 2019-03-29 深圳光峰科技股份有限公司 一种光源系统及投影系统
CN105022212B (zh) * 2014-04-23 2018-11-06 深圳市光峰光电技术有限公司 光源系统、投影系统及方法
CN105025279B (zh) * 2014-04-24 2017-03-01 深圳市绎立锐光科技开发有限公司 一种光源系统及投影显示装置
CN204178055U (zh) * 2014-09-26 2015-02-25 深圳市绎立锐光科技开发有限公司 分光合光装置和投影显示系统
US10230928B2 (en) * 2014-10-27 2019-03-12 Texas Instruments Incorporated Color recapture using polarization recovery in a color-field sequential display system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020154277A1 (en) * 2001-04-02 2002-10-24 Hiroshi Mukawa Image display device
CN101430492A (zh) * 2007-11-08 2009-05-13 北京中视中科光电技术有限公司 一种用于投影系统的光源装置及投影显示装置
CN101576660A (zh) * 2008-05-08 2009-11-11 北京中视中科光电技术有限公司 一种投影系统
CN101576659A (zh) * 2008-05-08 2009-11-11 北京中视中科光电技术有限公司 一种投影系统
CN102722073A (zh) * 2011-12-18 2012-10-10 深圳市光峰光电技术有限公司 光源系统及投影装置
CN105204279A (zh) * 2014-06-23 2015-12-30 深圳市绎立锐光科技开发有限公司 光源系统及投影设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3570107A4 *

Also Published As

Publication number Publication date
EP3570107B1 (en) 2021-12-22
CN108303842B (zh) 2020-09-15
EP3570107A4 (en) 2020-08-19
US20200162707A1 (en) 2020-05-21
CN108303842A (zh) 2018-07-20
US10831088B2 (en) 2020-11-10
EP3570107A1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
WO2016161924A1 (zh) 光源系统和投影系统
EP2902844B1 (en) Light source system and related projection system
WO2018028240A1 (zh) 光源系统及投影设备
US9146452B2 (en) Multi-color illumination apparatus
US20070297061A1 (en) Optical Integrator, Illuminator and Projection Type Image Display
WO2018126561A1 (zh) 投影系统
WO2018107634A1 (zh) 光源系统及投影装置
WO2018129827A1 (zh) 投影显示系统
WO2018113226A1 (zh) 一种投影显示系统
JP3972837B2 (ja) 照明装置、プロジェクタ及び光学装置
CN109426052B (zh) 投影系统
US10104352B2 (en) Projector and image display method
JP4143533B2 (ja) 光源装置、画像表示装置
WO2007141953A1 (ja) 照明装置及びそれを用いた投写型映像表示装置
JP2021182058A (ja) 表示装置
WO2018133501A1 (zh) 一种投影显示系统
WO2018170987A1 (zh) 投影系统
WO2018201627A1 (zh) 激发光源系统及投影设备
WO2017219747A1 (zh) 投影系统及图像调制方法
WO2020088163A1 (zh) 投影系统及投影控制方法
CN104813228B (zh) 对投影器的成像光学元件的照射
JP2006337941A (ja) 画像投影装置及び画像投影方法
JP4162971B2 (ja) 光学エンジン
US20200166826A1 (en) Illumination system and projection device
JP2013190514A (ja) プロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891321

Country of ref document: EP

Effective date: 20190812