WO2017206614A1 - 投影系统 - Google Patents

投影系统 Download PDF

Info

Publication number
WO2017206614A1
WO2017206614A1 PCT/CN2017/081161 CN2017081161W WO2017206614A1 WO 2017206614 A1 WO2017206614 A1 WO 2017206614A1 CN 2017081161 W CN2017081161 W CN 2017081161W WO 2017206614 A1 WO2017206614 A1 WO 2017206614A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
state
digital micromirror
micromirror device
incident
Prior art date
Application number
PCT/CN2017/081161
Other languages
English (en)
French (fr)
Inventor
李屹
胡飞
郭祖强
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to EP17805559.6A priority Critical patent/EP3467583B1/en
Priority to US16/306,780 priority patent/US10620524B2/en
Publication of WO2017206614A1 publication Critical patent/WO2017206614A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/26Projecting separately subsidiary matter simultaneously with main image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a projection system.
  • DLP Digital Light Procession, digital light processing
  • the light source timing is emitted by R (red), G (green), B (blue) three-color light (or, R (red), G (green), B (blue), W (white), etc. Color)
  • DMD Digital Micromirror Device, on the chip, after receiving the control signal from the DLP control system, the DMD chip reflects different colors of light onto the projection screen to form an image.
  • DMD chips consist of hundreds of thousands or even millions of micromirrors, and one micromirror corresponds to one pixel.
  • a rotating device is disposed under each micromirror.
  • the micromirror Under the control of the digital driving signal outputted by the DLP control system, the micromirror can be flipped between the on state and the off state, and the micromirror can be flipped at a rate Thousands of times per second.
  • the micromirror when the micromirror is in the on state, the incident light is reflected to the projection lens and finally emerges as an image; when the micromirror is in the OFF state, the incident light is reflected to an area outside the lens, which is absorbed by the projector casing. Or it can be reflected back and forth inside the casing.
  • the DLP control system controls the number of times (the total duration) of the corresponding micromirror in the ON state according to the grayscale value of each pixel in the image frame data, and the number of times (the total duration) of each micromirror in the ON state determines the corresponding pixel on the projection screen. Brightness.
  • the micromirror in which the DMD chip is in an ON state reflects incident light to the projection lens to form projection light, and the DMD chip also loses considerable intensity of light from the reflection of the micromirror in the OFF state, other than the projection light. The light is not being used effectively.
  • the problem that the light other than the above-described projection light is not effectively utilized exists not only in the scene where the spatial light modulator is a digital micromirror device, but also in the projection system using other spatial light modulators.
  • a projection system comprising: a light source, a spatial light modulator, a light recovery system, and a lens assembly;
  • the light source is configured to emit light from the source and to the spatial light modulator
  • the spatial light modulator is configured to modulate light incident on the spatial light modulator according to the image signal to form light other than the projected light and the projected light;
  • the light recovery system is configured to receive at least part of the light other than the projected light, and direct at least part of the light other than the projected light to the spatial light modulator;
  • the lens assembly is configured to receive and emit the projected light to form a projected image.
  • the light recovery system receives at least part of the light other than the projected light, and directs light other than at least part of the projected light to the spatial light modulator, so that light other than the projected light can also be modulated by the spatial light modulator. Light other than the projected light is effectively utilized.
  • the source light is incident from the light incident side of the spatial light modulator to the spatial light modulator;
  • the spatial light modulator modulates light incident from the light incident side according to an image signal to form light other than the projection light and the projection light;
  • the light recovery system directs light other than at least a portion of the projected light to be incident from the light incident side to the spatial light modulator.
  • the spatial light modulator is a digital micromirror device
  • the light source light is incident from the light incident side of the digital micromirror device to the digital micromirror device;
  • the digital micromirror device modulates light incident from a light incident side of the digital micromirror device according to an image signal, wherein a micromirror unit of the digital micromirror device in an open state reflects at least a portion of the incident light Forming an open state light as the projection light, and a micromirror unit of the digital micromirror device in an off state reflects at least a portion of the incident light to form off state light that is not the projection light;
  • the light recovery system collects and changes the optical path formed by the micromirror unit in the off state of the digital micromirror device, and forms a process of projecting the digital micromirror device along the light incident side. Recycling light;
  • the lens assembly is located on an optical path of the open state light formed by the micromirror unit in the open state of the digital micromirror device, and projects the open state light to a screen forming image.
  • the light recovery system collects the off-state light formed by the reflection of the micromirror unit in the off state of the digital micromirror device and changes the processing of the optical path to form a digital micromirror along the light incident side of the digital micromirror device.
  • the recovered light of the device is further modulated by the digital micromirror device, instead of being absorbed by the outer casing of the projector or repeatedly reflected in the projector to form stray light, so that the light reflected by the micromirror of the closed state of the digital micromirror device is obtained. Used effectively.
  • the source light is incident on the digital micromirror device along the same path as the recovered light.
  • the light source light and the recovered light are incident on the digital micromirror device along the same path, so that the brightness of the light source light can be enhanced, and the brightness of the projected image can be further enhanced.
  • the light recycling system comprises:
  • a polarization combining component located on a light incident side of the digital micromirror device
  • An optical path conversion component configured to change an optical path of the off-state light formed by the micromirror unit in the off state of the digital micromirror device, such that the off-state light is incident on the polarization combining element;
  • An off-state light polarization conversion device for converting the off-state light into a first polarization state before the off-state light is incident on the polarization combining element
  • the polarization combining light element is configured to combine light of a second polarization state of the light source light and off state light of the first polarization state, and direct the synthesized light to be incident on the digital micromirror device.
  • the method further includes:
  • the light source light is light of a second polarization state, and the polarization directions of the light of the first polarization state and the second polarization state are perpendicular.
  • the method further includes:
  • the source light polarization conversion device is configured to convert the light source light into a second polarization state before the light source light is incident on the polarization combining light element.
  • the source light is incident on the digital micromirror device along a first path
  • the recovered light is incident on the digital micromirror device along a second path.
  • the light recycling system comprises:
  • a first mirror located on a light incident side of the digital micromirror device
  • a second mirror for reflecting off state light formed by the micromirror unit in the off state of the digital micromirror device is reflected to the first mirror
  • the first mirror is configured to reflect the off-state light to form the recovered light.
  • the lens assembly includes a first lens assembly and a second lens assembly
  • the micromirror unit of the digital micromirror device in an open state reflects at least part of the light source light along a third path to form a first open state light
  • the micromirror unit of the digital micromirror device in an open state reflects at least a portion of the recovered light along a fourth path to form a second open state light;
  • the first lens assembly is located on an optical path of the first open state light, and projects the first open state light to a screen forming image;
  • the second lens assembly is located on the optical path of the second open state light, and projects the second open state light to a screen forming image.
  • the first lens assembly and the second lens assembly project the first open state light and the second open state light to the same area to form an image.
  • the recovered light and the light source are modulated, they are all projected onto the same area to form an image, so that the brightness of the projected image can be enhanced.
  • the first lens assembly and the second lens assembly project the first on state light and the second on state light to different regions to form two images.
  • the projection system of the present embodiment can effectively form two independent images by utilizing the light reflected by the micromirrors of the off state of the digital micromirror device.
  • the light recovery system includes an optical fiber, one end of the optical fiber being located on an exit side of the light other than the projected light, for receiving light other than the projected light, and the other end being located in the spatial light modulation
  • the light incident side of the device is configured to emit at least a portion of the light other than the projected light to the spatial light modulator.
  • the method further includes:
  • control unit configured to parse the number of bright pixels in the image frame corresponding to the image signal, obtain a ratio of the number of bright pixels to the total number of pixels of the image frame, and control the light recovery system according to the ratio And causing the light recovery system to not form the recovered light when the ratio is less than a first threshold, and forming the recovered light when the ratio is greater than or equal to the first threshold;
  • the grayscale value of the bright pixel is greater than a second threshold.
  • the off-state light formed by the reflection of the micromirror unit in the off state of the digital micromirror device is recycled, a part of which is modulated by the micromirror unit in the open state to form a projected image, and the other portion is recovered and recycled. From the overall process, the off-state light formed by the reflection of the micromirror unit corresponding to the off state is reused and distributed to the on-state micromirror unit, and further forms a projected image.
  • the projection system of the embodiment can effectively avoid the total amount of over-brightness of the projected image.
  • control unit configured to parse the number of bright pixels in the image frame corresponding to the image signal, obtain a ratio of the number of bright pixels to the total number of pixels of the image frame, and control the light recovery system according to the ratio
  • the time at which the recovered light is formed during a modulation period of the image frame the higher the ratio, the longer the light recovery system forms the recovered light during the modulation period of the image frame.
  • the projection system of the embodiment can effectively avoid the total amount of over-brightness of the projected image.
  • the method further includes:
  • control unit configured to control the light recovery system according to a color to which the image frame corresponding to the image signal belongs, such that the light recovery system forms the recovered light when the image frame belongs to a specific color, and when the image The recovered light is not formed when the frame does not belong to the specific color.
  • the particular color is red.
  • the off-state light is recycled to increase the brightness of the projected image, and the problem of insufficient red light brightness can be effectively solved.
  • the light recovery system includes a driving device that drives the optical element of the light recovery system to move to a first state under control of the control unit to cause the light recovery system The recovered light is not formed, or the optical element of the light recovery system is driven to a second state under the control of the control unit such that the light recovery system forms the recovered light.
  • FIG. 1 is a schematic diagram of a micromirror unit of a digital micromirror device modulating incident light
  • FIG. 2 is a schematic structural diagram of a projection system 100 according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a projection system 200 according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a projection system 200 forming two projected images according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the driving device 130 driving the optical path conversion component 60 in the projection system 100 to rotate to change the optical path according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a control flow of a control unit for a light recovery system according to an embodiment of the present invention.
  • the present invention provides a projection system 100.
  • a projection system 100 includes a light source 10, a source light polarization conversion device 20, a polarization combining element 30, a digital micromirror device 40, a lens assembly 50, an optical path conversion assembly 60, and Off state light polarization conversion device 70, wherein:
  • the light source 10 is for emitting light from the source.
  • the source light polarization conversion device 20 is configured to convert the light source light into a second polarization state before the light source light is incident on the polarization combining element 30.
  • source light polarization conversion device 20 can transmit light of a second polarization state and convert light of a first polarization state to light of a second polarization state.
  • the source light polarization conversion device 20 may be a system composed of a polarizing plate (for example, a linear polarizing plate, a rotating polarizing plate, etc.) and a liquid crystal phase variable retarder.
  • the polarization combining light element 30 is located on the light incident side of the digital micromirror device 40, and the light source light of the second polarization state is transmitted through the polarization combining light element and incident on the digital micromirror device 40.
  • the light source light is incident from the light incident side of the digital micromirror device 40 to the digital micromirror device 40.
  • the digital micromirror device 40 is configured to modulate the light source light incident from the light incident side of the digital micromirror device 40 according to the image signal, wherein the micromirror unit of the digital micromirror device 40 in an open state reflects at least part of the light source light to form The state light, as well as the micromirror unit of the DMD in an off state, reflects at least a portion of the source light to form an off state light.
  • the image signal is a modulation pulse formed according to image frame data, and the image frame data includes grayscale values corresponding to each pixel in the image frame, each image frame has a predetermined modulation period, and the image signal is used to control the digital micromirror.
  • the micromirror unit of the device modulates the incident light during the modulation period such that the brightness of the pixels of the projected image formed after the modulation matches the grayscale value of the corresponding pixel in the image frame data.
  • the lens assembly 50 is located on the optical path of the open state light formed by the micromirror unit of the digital micromirror device 40 in an open state for projecting the on state light onto a screen (not shown) to form an image.
  • the optical path conversion component 60 is configured to change an optical path of the off-state light formed by the reflection of the micromirror unit in the off state of the digital micromirror device 40 such that the off state light is incident on the polarization combining element 30.
  • the off-state light polarization conversion device 70 is configured to convert the off-state light into a first polarization state before the off-state light is incident on the polarization combining element 30.
  • the off-state light polarization conversion device 70 can transmit light in a first polarization state and light in a second polarization state into light in a first polarization state.
  • the off-state light polarization conversion device 70 may be a system composed of a polarizing plate (for example, a linear polarizing plate, a rotating polarizing plate, etc.) and a liquid crystal phase variable retarder.
  • the polarization combining light element 30 reflects the off-state light converted into the first polarization state to form recovered light, which is incident on the digital micromirror device 40 along the same path as the source light.
  • the micromirror unit of the digital micromirror device 40 in an open state reflects at least partially recovered light to form an open state light
  • the micromirror unit of the digital micromirror device 40 in an off state reflects at least part of the recovered light to form an off state.
  • the on state light is further projected by the lens assembly 50 to the screen to form an image; and the off state light is further recycled for recycling.
  • the projection system 100 of the present embodiment further includes a first relay system 801, a second relay system 802, and a third relay system 803, a first relay system 801, a second relay system 802, and
  • the third relay system 803 collects, homogenizes, shapes (changes the spot shape) of the light beam, and changes one or more of the necessary divergence angles.
  • one or more of the first relay system 801, the second relay system 802, and the third relay system 803 may be removed according to actual needs; other relay systems may also be added. .
  • the source light polarization conversion device 20 converts the light source light into a second polarization state.
  • the source light itself is the light of the second polarization state, and the source light polarization conversion device 20 can be omitted.
  • the polarization combining light element 30 transmits the light source light of the second polarization state and reflects the recovered light of the first polarization state.
  • the polarized light combining element can also reflect the source light of the second polarization state and transmit the recovered light of the first skew state.
  • the polarization combining light element is configured to combine the light of the second polarization state of the light source light and the off state light of the first polarization state, and guide The synthesized light is incident on the digital micromirror device. It will be readily apparent to those skilled in the art that in a particular embodiment, the optical path formed by the optical path conversion assembly and the optical path of the source light are suitably modified to accommodate the characteristics of the polarization combining element.
  • the polarized light combining element 30 is used to inject the light source light and the recovered light into the digital micromirror device along the same path by means of polarization combining light; in other embodiments, other forms may be adopted by those skilled in the art to make the light source
  • the light and the recovered light are incident on the digital micromirror device along the same path, which is not limited in the present invention.
  • the optical path conversion assembly 60 can include a plurality of mirrors.
  • the polarization directions of the light of the first polarization state and the second polarization state are perpendicular.
  • the first polarization state may be an S polarization state
  • the second polarization state may be a P polarization state
  • the first polarization state may be a P polarization state
  • the second polarization state may be an S polarization state.
  • the light source 10 emits light of different colors in sequence, for example, the light source 10 sequentially emits three primary colors of red, green, and blue.
  • the light source 10 includes an LED and a filter wheel; wherein the LED emits white light, and the filter wheel is composed of a plurality of segments, each segment allowing only one single color light of white light to pass through, multiple regions The segments are time-series on the white light path emitted by the LEDs such that the light source 10 sequentially emits light of different colors through which the segments pass.
  • the light source 10 includes a laser and a fluorescent wheel, wherein the laser emits a laser, and the fluorescent wheel is composed of a plurality of segments, each segment is provided with a phosphor of a different color, and the plurality of segments are sequentially placed at the LED emission.
  • the laser excites phosphors of different colors to produce fluorescence of a corresponding color, thereby causing the light source 10 to emit light of different colors in sequence.
  • the wavelength of the laser light is shorter than the wavelength of the fluorescent light.
  • a certain section or two lower sections of the fluorescent wheel may also be provided as a transparent area such that the laser light emitted by the laser itself becomes one of the different colors of light emitted by the light source 10 in time series.
  • combinations of other solid state light sources and fluorescent wheels are also possible.
  • a projection system 200 includes a light source 10, a digital micromirror device 40, a first lens assembly 501, a second lens assembly 502, a first mirror 90, and a second mirror. 110, where:
  • the light source 10 is for emitting light from the source.
  • the light source light is incident from the light incident side of the digital micromirror device 40 to the digital micromirror device 40.
  • the digital micromirror device 40 is configured to modulate the light source light incident from the light incident side of the digital micromirror device 40 according to the image signal, wherein the micromirror unit of the digital micromirror device 40 in the open state will at least partially source the light along the third The path reflection forms a first open state light, and the micromirror unit of the digital micromirror device 40 in an off state reflects at least a portion of the source light to form an off state light.
  • the first lens assembly 501 is located on the optical path of the first on-state light, and projects the first on-state light onto the screen 120 to form an image.
  • the first mirror 90 is located on the light incident side of the digital micromirror device 40.
  • the second mirror 110 is configured to reflect the off-state light formed by the reflection of the micromirror unit of the digital micromirror device 40 in the off state to the first mirror 90.
  • the first mirror 90 is for reflecting off light in the off state to form recovered light.
  • micromirror unit of the digital micromirror device 40 in an open state reflects at least part of the recovered light along the fourth path to form a second open state light.
  • the second lens assembly 502 is located on the optical path of the second open state light, and projects the second open state light onto the screen 120 to form an image.
  • the micromirror unit of the digital micromirror device 40 in an off state reflects at least a portion of the recovered light to form an off state light; the off state light is further recovered for recycling.
  • the projection system 200 of the present embodiment further includes a first relay system 801, a second relay system 802, and a third relay system 803, a first relay system 801, a second relay system 802, and
  • the third relay system 803 collects, homogenizes, shapes (changes the spot shape) of the light beam, and changes one or more of the necessary divergence angles.
  • one or more of the first relay system 801, the second relay system 802, and the third relay system 803 may be removed according to actual needs; other relay systems may also be added. .
  • the first path of the light source light incident on the digital micromirror device 40 is different from the second path in which the recovered light is incident on the digital micromirror device 40; the angle between the first path and the second path is within a preset angle range.
  • the first mirror 90 and the second mirror 110 are used to guide the recovered light to the digital micromirror device 40 along a second path different from the first path; in other embodiments, those skilled in the art may also In other possible forms, the recovered light is incident on the digital micromirror device 40 along a second path different from the first path, which is not limited by the present invention.
  • first mirror 90 Only one optical element is shown in FIG. 3 as the first mirror 90, and one optical element is shown as the second mirror 110, but the first mirror 90 may include a combination of a plurality of mirrors, and the second mirror 110 also A combination of a plurality of mirrors may be included, which is not limited in the present invention.
  • the first lens assembly 501 and the second lens assembly 502 project the first open state light and the second open state light to the same area to form an image.
  • the first lens assembly 501 and the second lens assembly 502 can also project the first on state light and the second on state light to different regions to form two images.
  • the two images may be in the same screen or in different screens. 4 illustrates a case where the first lens assembly 501 and the second lens assembly 502 project the first open state light and the second open state light to different screens 1201 and 1202 to form two images.
  • the open state light formed by the micromirror unit in the open state of the digital micromirror device is projected by the lens assembly to the screen to form an image, so that the state light is used as the projection light (the projection light can be understood as being emitted by the lens assembly). And the light of the projected image is formed, and the off-state light formed by the reflection of the micromirror unit in the off state of the digital micromirror device is not used as the projection light.
  • the digital micromirror device 40 modulates the source light and the recovered light almost simultaneously. It can be understood that the digital micromirror device modulates light incident from the light incident side of the digital micromirror device 40 according to the image signal, wherein the micromirror unit of the digital micromirror device 40 in an open state reflects at least part of the incident light.
  • the open state light as the projected light, and the micromirror unit of the digital micromirror device 40 in the off state reflect at least a portion of the incident light to form off state light that is not the projected light.
  • the light incident on the light incident side of the digital micromirror device 40 includes light source light and recovered light.
  • the combination of the polarization combining element 30, the optical path conversion component 60, and the off-state light polarization conversion device 70 corresponds to a light recovery system that reflects the micromirror unit of the digital micromirror device 40 in an off state.
  • the formed off-state light collects and changes the processing of the optical path to form recovered light that is projected onto the digital micromirror device 40 along the light incident side; in the embodiment shown in FIG. 3, the first mirror 90 and the second mirror
  • the combination of 110 corresponds to a light recovery system that collects and changes the optical path formed by the reflection of the micromirror unit of the digital micromirror device 40 in an off state, and forms a light incident side along the light incident side of the digital micromirror device 40.
  • the digital micromirror device 40 recovers light.
  • the light recovery system includes an optical fiber, one end of which is located on an exit side of the off-state light formed by the micromirror unit of the digital micromirror device 40 in an off state, for receiving the off state light, and the other end of the optical fiber Located on the light incident side of the digital micromirror device 40, the off state light is emitted to the digital micromirror device 40 to form recovered light.
  • a projection system comprising: a light source for emitting light source light; and a digital micromirror device for modulating the digital micromirror device according to an image signal
  • the light source light incident on the light incident side wherein the micromirror unit of the digital micromirror device in an open state reflects at least a portion of the light source light to form an open state light, and the digital micromirror device is off
  • the micromirror unit of the state reflects at least part of the light of the light source to form off state light
  • the light recovery system is configured to collect and change the light path of the off state light formed by the reflection of the micromirror unit in the off state of the digital micromirror device Processing to form recovered light projected onto
  • the projection system of the above embodiment re-projects light other than the projection light formed by the digital micromirror device to the digital micromirror device for reuse by the digital micromirror device.
  • the present invention is not limited to embodiments in which the spatial light modulator is a digital micromirror device, and embodiments in which light other than the projection light formed by the other spatial light modulators is recovered and re-projected to the spatial light modulator for reuse are also The scope of protection of the present invention.
  • the light source light is incident from the light incident side of the spatial light modulator to the spatial light modulator; the spatial light modulator modulates light incident from the light incident side of the spatial light modulator according to the image signal to form the projected light and Light other than the projected light; the light recovery system directs light other than at least part of the projected light to be incident from the light incident side of the spatial light modulator to the spatial light modulator.
  • the present invention does not limit the direction in which the light source light is incident on the spatial light modulator, and does not limit the direction in which the light recovery system guides light other than at least part of the projected light to the spatial light modulator.
  • a projection system comprising: a light source, a spatial light modulator, a light recovery system, and a lens assembly; wherein the light source is used to emit light from the source And illuminating the spatial light modulator; the spatial light modulator for modulating light incident on the spatial light modulator according to the image signal to form light other than the projected light and the projected light; the light recovery system, Receiving at least a portion of the light other than the projected light and directing at least a portion of the light other than the projected light to the spatial light modulator; the lens assembly for receiving and emitting the projected light to form a projection image.
  • the projection system described above (including projection systems 100 and 200) further includes:
  • control unit for parsing the number of bright pixels in the image frame corresponding to the image signal modulated by the digital micromirror device 40, and obtaining the proportion of the number of bright pixels and the total number of pixels of the image frame, and Controlling the light recovery system according to the ratio, such that the light recovery system does not form the recovered light when the ratio is less than the first threshold, and forms the recovered light when the ratio is greater than or equal to the first threshold; wherein, the bright pixel The grayscale value is greater than the second threshold.
  • the ratio of the number of bright pixels in the image frame to the total number of pixels of the image frame is less than 40%, the recovered light is not formed, and when the ratio is 40% or more, the recovered light is formed.
  • control unit controls the light recovery system
  • the control unit may be configured to parse the number of bright pixels in the image frame corresponding to the image signal modulated by the digital micro-mirror device 40, obtain the proportion of the number of bright pixels and the total number of pixels of the image frame, and control the light according to the ratio.
  • the recycling system forms a time to recover light during the modulation period of the image frame, the higher the ratio, the longer the light recovery system will form the recovered light during the modulation period of the image frame.
  • the ratio of the number of bright pixels in the first image frame to the total number of pixels of the first image frame is the first ratio
  • the number of bright pixels in the second image frame is The ratio of the total number of pixels of the second image frame
  • the control unit controls the time during which the light recovery system forms the recovered light in the first image frame modulation period as the first time, and the control unit controls the second image frame modulation period.
  • the time for the light recovery system to form the recovered light is the second time. If the first ratio is greater than the second ratio, the first time is also greater than the second time.
  • control unit may be configured to control the light recovery system according to a color to which the image frame corresponding to the image signal modulated by the digital micromirror device 40 belongs, such that the light recovery system forms the recovered light when the image frame belongs to a specific color, and The recovered light is not formed when the image frame does not belong to a specific color.
  • the particular color is red, and so on.
  • the light recovery system further includes a driving device that drives the optical component of the light recovery system to move to a first state under the control of the control unit, such that the light recovery system does not form recovered light, or is in control
  • the optical elements of the drive light recovery system are moved under control of the unit to a second state such that the light recovery system forms recovered light.
  • the driving device can be used to drive any one of the optical recovery systems other than itself that can cause the optical path to change in such a manner that the optical path changes, such as rotation or translation or combination of rotation and translation, thereby enabling the light recovery system
  • the recovered light is formed or the recovered light is not formed.
  • the drive device can drive the polarization combining element 30 or the optical path conversion assembly 60 to move in such a manner that the optical path changes.
  • the driving device can drive the first mirror 90 or the second mirror 110 to move in such a manner that the optical path changes.
  • FIG. 5 shows a schematic diagram of the drive device 130 driving the optical path conversion assembly 60 in the projection system 100 to rotate to change the optical path.
  • the control device is not shown in the figure.
  • the optical path conversion component 60 as a plane mirror as an example, the rotation axis of the plane mirror rotation is not perpendicular to the plane in which the plane mirror is located.
  • FIG. 6 shows a specific control flow of the control unit for the light recovery system:
  • step S1 the control unit determines whether the color to which the image frame corresponding to the image signal modulated by the digital micromirror device 40 belongs is red. If yes, proceed to step S2, otherwise, proceed to step S7.
  • step S2 the number of bright pixels in the image frame corresponding to the image signal modulated by the digital micromirror device 40 is analyzed, and the proportion of the number of bright pixels and the total number of pixels of the image frame is obtained.
  • step S3 it is determined whether the ratio of the number of bright pixels to the total number of pixels of the image frame is greater than or equal to the first threshold. If yes, step S4 is performed; otherwise, the process proceeds to step S7.
  • step S4 the time for forming the recovered light in the modulation period of the image frame is calculated according to the ratio of the number of bright pixels to the total number of pixels of the image frame.
  • step S5 the timing is started, and a control signal is sent to the driving device 130 to cause the driving device 130 to drive the optical path conversion assembly 60 to rotate to the second state, and in the second state, the light recovery system forms the recovered light.
  • step S6 it is judged whether the time for the light recovery system to form the recovered light reaches the above calculated time, and if so, the process proceeds to step S6, otherwise, the process proceeds to step S7.
  • a control signal is sent to the driving device 130 to cause the driving device 130 to drive the optical path conversion assembly 60 to rotate to a first state, in which the light recovery system does not form the recovered light.
  • the present invention does not limit the order of the above steps, and those skilled in the art can change the order between the steps as possible.
  • the off-state light polarization conversion device 70 is a device that can control the polarization conversion function by voltage, and the change in voltage can cause the off-state light polarization conversion device to be in a working or inoperative state.
  • the off-state light polarization conversion device 70 can transmit the light of the first polarization state and convert the light of the second polarization state into the light of the first polarization state; in the non-operating state, the off-state light polarization conversion device 70 does not transmit light of the first polarization state and does not convert light of the second polarization state into light of the first polarization state.
  • control unit can control the off-state light polarization conversion device 70 to be in an active state or an inoperative state by controlling the voltage of the off-state light polarization conversion device 70, thereby causing the light recovery system to form recovered light or not to form recovered light. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种投影系统(100),包括:光源(10)、空间光调制器(40)、光回收系统(30、60、70)和镜头组件(50)。光源(10),用于发出光源光,并射向空间光调制器(40)。空间光调制器(40),用于根据图像信号调制入射到空间光调制器(40)上的光,形成投影光和投影光以外的光。光回收系统(30、60、70),用于接收至少部分投影光以外的光,并将至少部分投影光以外的光引导至空间光调制器(40)。镜头组件(50),用于接收并出射投影光以形成投影图像。这种投影系统(100)可有效地利用投影光以外的光。

Description

投影系统 技术领域
本发明涉及投影技术领域,特别涉及一种投影系统。
背景技术
DLP(Digital Light Procession,数字光处理)投影技术由于其对比度高、器件寿命长、填充因子高等优点而被越来越广泛地应用。DLP投影技术中,光源时序的出射R(红)、G(绿)、B(蓝)三色光(或者,R(红)、G(绿)、B(蓝)、W(白)等更多色),各种色彩的光投射在DMD(Digital Micromirror Device,数字微镜设备)芯片上,DMD芯片在接受到DLP控制系统的控制信号后,将不同色彩的光反射到投影屏幕上形成图像。
技术问题
DMD芯片由数十万乃至上百万个微镜,一个微镜对应一个像素。每个微镜的下方均设置有转动装置,在DLP控制系统输出的数字驱动信号的控制下,微镜可以在on状态和off状态这两种状态之间进行翻转,微镜翻转的速率可达几千次每秒。
如图1所示,当微镜处于on状态时,将入射光反射至投影镜头最终出射成图像;当微镜处于OFF状态时,将入射光反射至镜头之外的区域,被投影机外壳吸收或者在壳体内部来回反射损耗掉。DLP控制系统根据图像帧数据中各像素的灰阶值控制对应微镜处于ON状态的次数(总时长),而每一个微镜处于ON状态的次数(总时长)又决定了投影屏幕上对应像素的亮度。
在图像调制过程中,DMD芯片处于ON状态的微镜将入射光反射至投影镜头形成投影光,而DMD芯片也会将相当强度的光由OFF状态的微镜的反射而损失掉,投影光以外的光没有得到有效利用。
上述投影光以外的光未被有效利用的问题,不仅存在于空间光调制器为数字微镜设备的场景,在使用其它空间光调制器的投影系统中也存在相同的问题。
技术解决方案
基于此,有必要提供一种可以有效利用投影光以外的光的投影系统。
一种投影系统,包括:光源、空间光调制器、光回收系统和镜头组件;其中,
所述光源,用于发出光源光,并射向所述空间光调制器;
所述空间光调制器,用于根据图像信号调制入射到空间光调制器上的光,形成投影光和投影光以外的光;
所述光回收系统,用于接收至少部分所述投影光以外的光,并将至少部分所述投影光以外的光引导至所述空间光调制器;
所述镜头组件,用于接收并出射所述投影光以形成投影图像。
上述投影系统中,光回收系统接收至少部分所述投影光以外的光,并将至少部分投影光以外的光引导至空间光调制器,从而投影光以外的光也可以被空间光调制器调制,投影光以外的光得到了有效地利用。
在其中一个实施例中,所述光源光从所述空间光调制器的光入射侧入射至所述空间光调制器;
所述空间光调制器根据图像信号调制从所述光入射侧入射的光,形成所述投影光和所述投影光以外的光;
所述光回收系统引导至少部分所述投影光以外的光从所述光入射侧入射至所述空间光调制器。
在其中的一个实施例中, 所述空间光调制器为数字微镜设备;
所述光源光从所述数字微镜设备的光入射侧入射至所述数字微镜设备;
所述数字微镜设备根据图像信号调制从所述数字微镜设备的光入射侧入射的光,其中,所述数字微镜设备的处于开状态的微镜单元将至少部分所述入射的光反射形成作为所述投影光的开状态光,以及所述数字微镜设备的处于关状态的微镜单元将至少部分所述入射的光反射形成不作为所述投影光的关状态光;
所述光回收系统对所述数字微镜设备的处于关状态的微镜单元反射形成的关状态光进行收集并改变光路的处理,形成沿所述光入射侧投射至所述数字微镜设备的回收光;
所述镜头组件位于所述数字微镜设备的处于开状态的微镜单元反射形成的开状态光的光路上,将所述开状态光投射至屏幕形成图像。
上述投影系统中,光回收系统对数字微镜设备的处于关状态的微镜单元反射形成的关状态光进行收集并改变光路的处理,形成沿数字微镜设备的光入射侧投射至数字微镜设备的回收光,回收光进一步被数字微镜设备调制,而不是被投影机的外壳吸收或者在投影机内反复反射形成杂散光,因此数字微镜设备的关状态的微镜所反射的光得到了有效地利用。
在其中一个实施例中,所述光源光与所述回收光沿相同路径入射至所述数字微镜设备。
本实施例的投影系统,光源光与回收光沿相同路径入射至数字微镜设备,从而可以加强光源光的亮度,进一步的可以加强投影图像的亮度。
在其中一个实施例中,所述光回收系统包括:
偏振合光元件,位于所数字微镜设备的光入射侧;
光路转换组件,用于改变所述数字微镜设备的处于关状态的微镜单元反射形成的关状态光的光路,使得所述关状态光入射至所述偏振合光元件;
关状态光偏振转换装置,用于在所述关状态光入射至所述偏振合光元件之前,将所述关状态光转换成第一偏振态;
所述偏振合光元件用于将所述光源光中第二偏振态的光和所述第一偏振态的关状态光进行合光,并引导合成的光入射至所述数字微镜设备。
在其中一个实施例中,还包括:
所述光源光为第二偏振态的光,所述第一偏振态和第二偏振态的光的偏振方向垂直。
在其中一个实施例中,还包括:
源光偏振转换装置,用于在所述光源光入射至所述偏振合光元件之前,将所述光源光转换成第二偏振态。
在其中一个实施例中,所述光源光沿第一路径入射至所述数字微镜设备,所述回收光沿第二路径入射至所述数字微镜设备。
在其中一个实施例中,所述光回收系统包括:
第一反射镜,位于所述数字微镜设备的光入射侧;
第二反射镜,用于将所述数字微镜设备的处于关状态的微镜单元反射形成的关状态光反射至所述第一反射镜;
所述第一反射镜用于将所述关状态光反射,形成所述回收光。
在其中一个实施例中,所述镜头组件包括第一镜头组件和第二镜头组件;
所述数字微镜设备的处于开状态的微镜单元将至少部分所述光源光沿第三路径反射形成第一开状态光;
所述数字微镜设备的处于开状态的微镜单元将至少部分所述回收光沿第四路径反射形成第二开状态光;
所述第一镜头组件位于所述第一开状态光的光路上,将所述第一开状态光投射至屏幕形成图像;
所述第二镜头组件位于所述第二开状态光的光路上,将所述第二开状态光投射至屏幕形成图像。
在其中一个实施例中,所述第一镜头组件和第二镜头组件将第一开状态光和第二开状态光投射至相同区域,形成一幅图像。
本实施例的投影系统,回收光和光源光被调制后,都被投影到相同区域形成一幅图像,从而可以加强投影图像的亮度。
在其中一个实施例中,所述第一镜头组件和第二镜头组件将第一开状态光和第二开状态光投射至不同区域,形成两幅图像。
本实施例的投影系统,可有效地利用数字微镜设备的关状态的微镜所反射的光而形成两幅独立的图像。
在其中一个实施例中,所述光回收系统包括光纤,所述光纤一端位于所述投影光以外的光的出射侧,用于接收所述投影光以外的光,另一端位于所述空间光调制器的光入射侧,用于将至少部分所述投影光以外的光出射至所述空间光调制器。
在其中一个实施例中,还包括:
控制单元,用于解析所述图像信号对应的图像帧中亮像素的数量,获取亮像素的数量与所述图像帧的像素总量的占比,并且根据所述占比控制所述光回收系统,使得所述光回收系统当所述占比小于第一阈值时不形成所述回收光,且当所述占比大于或等于所述第一阈值时形成所述回收光;
其中,所述亮像素的灰阶值大于第二阈值。
由于数字微镜设备的处于关状态的微镜单元反射形成的关状态光被循环利用,其中一部分由开状态的微镜单元调制形成投影图像,另一部分又被回收,循环往复。从整体过程来看,相当于关状态的微镜单元反射形成的关状态光被重新利用分布到开状态的微镜单元上,并进一步形成投影图像。若图像帧的相对亮的像素的数量过少,则在该图像帧的调制过程中的某一时刻,数字微镜设备处于开状态的微镜单元的数量也会过少,数量较多的处于关状态的微镜反射形成的关状态光都集中分布到少量的开状态的微镜单元上,从而很可能导致投影图像过亮。本实施例的投影系统,可有效地避免投影图像过亮的总量。
在其中一个实施例中,还包括;
控制单元,用于解析所述图像信号对应的图像帧中亮像素的数量,获取亮像素的数量与所述图像帧的像素总量的占比,并且根据所述占比控制所述光回收系统在所述图像帧的调制时段内形成所述回收光的时间,所述占比越高,则所述光回收系统在所述图像帧的调制时段内形成所述回收光的时间越长。
本实施例的投影系统,可有效地避免投影图像过亮的总量。
在其中一个实施例中,还包括:
控制单元,用于根据所述图像信号对应的图像帧所属的颜色控制所述光回收系统,使得所述光回收系统当所述图像帧属于特定颜色时形成所述回收光,且当所述图像帧不属于所述特定颜色时不形成所述回收光。
在其中一个实施例中,所述特定颜色为红色。
有益效果
本实施例中的投影系统,在图像帧属于红色时,回收利用关状态光以增加投影图像的亮度,可以有效解决红光亮度不足的问题。
在其中一个实施例中,所述光回收系统包括驱动装置,所述驱动装置在所述控制单元的控制下驱动所述光回收系统的光学元件运动至第一状态、以使得所述光回收系统不形成所述回收光,或者在所述控制单元的控制下驱动所述光回收系统的光学元件运动至第二状态、以使得所述光回收系统形成所述回收光。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为数字微镜设备的微镜单元调制入射光的示意图;
图2为本发明一个实施例中的投影系统100的结构示意图;
图3为本发明一个实施例中的投影系统200的结构示意图;
图4为本发明一个实施例中投影系统200形成两幅投影图像的示意图;
图5为本发明一个实施例中驱动装置130驱动投影系统100中的光路转换组件60发生旋转以改变光路的示意图;
图6为本发明一个实施例中控制单元对于光回收系统的控制流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。本发明的各个实施例之间的技术方案在不相互矛盾的前提下可以相互结合,以本领域普通技术人员能够实现为基础,在没有作出创造性劳动的前提下、抽取不同实施例的技术特征组合而成的技术方案也属于本发明保护的范围。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所作的简单变形等获得的其他实施例,都属于本发明保护的范围。
本发明提出一种投影系统100。
如图2所示,在一个实施例中,一种投影系统100,包括光源10、源光偏振转换装置20、偏振合光元件30、数字微镜设备40、镜头组件50、光路转换组件60和关状态光偏振转换装置70,其中:
光源10,用于发出光源光。
源光偏振转换装置20,用于在光源光入射至偏振合光元件30之前,将光源光转换成第二偏振态。在一个实施例中,源光偏振转换装置20可透射第二偏振态的光,而将第一偏振态光转换成第二偏振态的光。在一个实施例中,源光偏振转换装置20可以为由偏振片(例如,线偏振片、旋转偏振片等)和液晶相位可变延迟器等组成的系统。
偏振合光元件30位于数字微镜设备40的光入射侧,第二偏振态的光源光透射偏振合光元件并入射至数字微镜设备40。
光源光从数字微镜设备40的光入射侧入射至数字微镜设备40。
数字微镜设备40,用于根据图像信号调制从数字微镜设备40的光入射侧入射的光源光,其中,数字微镜设备40的处于开状态的微镜单元将至少部分光源光反射形成开状态光,以及DMD的处于关状态的微镜单元将至少部分光源光反射形成关状态光。其中,图像信号为根据图像帧数据形成的调制脉冲,图像帧数据中包含图像帧中每一个像素对应的灰阶值,每一图像帧都具有规定的调制时段,图像信号用于控制数字微镜设备的微镜单元在该调制时段内对入射光进行调制,使得调制后形成的投影图像的像素的亮度与图像帧数据中对应像素的灰阶值相匹配。
镜头组件50,位于数字微镜设备40的处于开状态的微镜单元反射形成的开状态光的光路上,用于将开状态光投射至屏幕(图中未示出)形成图像。
光路转换组件60,用于改变数字微镜设备40的处于关状态的微镜单元反射形成的关状态光的光路,使得关状态光入射至偏振合光元件30。
关状态光偏振转换装置70,用于在关状态光入射至偏振合光元件30之前,将关状态光转换成第一偏振态。在一个实施例中,关状态光偏振转换装置70可透射第一偏振态的光,而将第二偏振态的光转换成第一偏振态的光。在一个实施例中,关状态光偏振转换装置70可以为由偏振片(例如,线偏振片、旋转偏振片等)和液晶相位可变延迟器等组成的系统。
偏振合光元件30反射转换成第一偏振态的关状态光,形成回收光,该回收光与光源光沿相同路径入射至数字微镜设备40。
进一步的,数字微镜设备40的处于开状态的微镜单元将至少部分回收光反射形成开状态光,以及数字微镜设备40的处于关状态的微镜单元将至少部分回收光反射形成关状态光;
开状态光进一步的由镜头组件50投射至屏幕形成图像;而关状态光则进一步被回收进行循环利用。
如图2所示,本实施例的投影系统100还包括第一中继系统801、第二中继系统802和第三中继系统803,第一中继系统801、第二中继系统802和第三中继系统803对光束进行聚集、匀光、整形(改变光斑形状)以及改变发散角中的一种或几种必要的处理。在其它实施例中,本领域技术人员可以根据实际需要去除第一中继系统801、第二中继系统802和第三中继系统803中的一个或多个;也可以增加其它的中继系统。
本实施例中,源光偏振转换装置20将光源光转换成第二偏振态。在一个实施例中,光源光本身即为第二偏振态的光,则源光偏振转换装置20可以省略。
本实施例中,偏振合光元件30透射第二偏振态的光源光而反射第一偏振态的回收光。在其它实施例中,偏振合光元件也可以反射第二偏振态的光源光而透射第一偏态的回收光。具有以下技术特征的实施例均属于本发明保护的范围,其中:偏振合光元件用于将所述光源光中第二偏振态的光和第一偏振态的关状态光进行合光,并引导合成的光入射至所述数字微镜设备。本领域技术人员容易想到,在具体的实施例中,将光路转换组件所形成的光路以及光源光的光路进行适当的变形以适用偏振合光元件的特性。
本实施例中,利用偏振合光元件30采用偏振合光的方式将光源光和回收光沿相同路径入射至数字微镜设备;在其它实施例中,本领域技术人员也可以采用其它形式使得光源光与回收光沿相同路径入射至数字微镜设备,本发明对此不进行限制。
图2中仅示出一个反射镜作为光路转换组件60,在其它实施例中,光路转换组件60可包括多个反射镜。
在一个实施例中,第一偏振态和第二偏振态的光的偏振方向垂直。在一个实施例中,第一偏振态可以为S偏振态,第二偏振态可以为P偏振态;或者,第一偏振态可以为P偏振态,第二偏振态可以为S偏振态。
在一个实施例中,光源10时序地出射不同颜色的光,例如,光源10时序地出射红、绿、蓝三基色光。在一个实施例中,光源10包括LED和滤光轮;其中,LED发射白光,滤光轮由多个区段组成,每一个区段只允许白光中的一种单颜色光通过,多个区段时序地位于LED发射的白光光路上,从而使得光源10时序地出射各区段通过的不同颜色的光。在另一个实施例中,光源10包括激光器和荧光轮,其中,激光器发出激光,荧光轮由多个区段组成,各区段上设置有不同颜色的荧光粉,多个区段时序地位于LED发射的激光光路上,激光激发不同颜色的荧光粉产生相对应颜色的荧光,从而使得光源10时序地出射不同颜色的光。其中,激光的波长比荧光的波长短。在一个实施例中,荧光轮的某一区段或两个以下区段也可以设置为透明区域,从而使得激光器发射的激光本身成为光源10时序出射的不同颜色的光中的一种。在其他实施例中,其它固态光源与荧光轮的组合也是可行的。
如图3所示,在一个实施例中,一种投影系统200,包括光源10、数字微镜设备40、第一镜头组件501、第二镜头组件502、第一反射镜90、第二反射镜110,其中:
光源10,用于发出光源光。
光源光从数字微镜设备40的光入射侧入射至数字微镜设备40。
数字微镜设备40,用于根据图像信号调制从数字微镜设备40的光入射侧入射的光源光,其中,数字微镜设备40的处于开状态的微镜单元将至少部分光源光沿第三路径反射形成第一开状态光,以及数字微镜设备40的处于关状态的微镜单元将至少部分光源光反射形成关状态光。
第一镜头组件501位于第一开状态光的光路上,将第一开状态光投射至屏幕120形成图像。
第一反射镜90,位于数字微镜设备40的光入射侧。
第二反射镜110,用于将数字微镜设备40的处于关状态的微镜单元反射形成的关状态光反射至第一反射镜90。
第一反射镜90用于将关状态光反射,形成回收光。
进一步的,数字微镜设备40的处于开状态的微镜单元将至少部分回收光沿第四路径反射形成第二开状态光。
第二镜头组件502位于第二开状态光的光路上,将第二开状态光投射至屏幕120形成图像。
数字微镜设备40的处于关状态的微镜单元将至少部分回收光反射形成关状态光;关状态光进一步被回收进行循环利用。
如图3所示,本实施例的投影系统200还包括第一中继系统801、第二中继系统802和第三中继系统803,第一中继系统801、第二中继系统802和第三中继系统803对光束进行聚集、匀光、整形(改变光斑形状)以及改变发散角中的一种或几种必要的处理。在其它实施例中,本领域技术人员可以根据实际需要去除第一中继系统801、第二中继系统802和第三中继系统803中的一个或多个;也可以增加其它的中继系统。
本实施例中,光源光入射至数字微镜设备40的第一路径与回收光入射至数字微镜设备40的第二路径不同;第一路径与第二路径的夹角处于预设角度范围内。本实施例中,利用第一反射镜90和第二反射镜110将回收光沿与第一路径不同的第二路径引导至数字微镜设备40;在其它实施例中,本领域技术人员也可以采用其它可能的形式使得回收光沿与第一路径不同的第二路径入射至数字微镜设备40,本发明对此不进行限制。
图3中仅示出一个光学元件作为第一反射镜90,以及示出一个光学元件作为第二反射镜110,但是第一反射镜90可以包含多个反射镜的组合,第二反射镜110也可以包含多个反射镜的组合,本发明对此不进行限制。
本实施例中,如图3所示,第一镜头组件501和第二镜头组件502将第一开状态光和第二开状态光投射至相同区域,形成一幅图像。在其它实施例中,第一镜头组件501和第二镜头组件502也可以将第一开状态光和第二开状态光投射至不同区域,形成两幅图像。在一个实施例中,该两幅图像可以位于同一屏幕中,也可以位于不同的屏幕中。图4示出了第一镜头组件501和第二镜头组件502将第一开状态光和第二开状态光投射至不同的屏幕1201和1202以形成两幅图像的情形。
上述的实施例中,数字微镜设备的处于开状态的微镜单元反射形成的开状态光由镜头组件投射至屏幕形成图像,从而开状态光作为投影光(投影光可理解为由镜头组件出射并形成投影图像的光),而数字微镜设备的处于关状态的微镜单元反射形成的关状态光则不作为投影光。
虽然上文对于数字微镜设备40调制光源光和调制回收光的描述有先后次序,但是,由于光速非常快,数字微镜设备40几乎是同时调制光源光和回收光的。可以理解为,数字微镜设备根据图像信号调制从数字微镜设备40的光入射侧入射的光,其中,数字微镜设备40的处于开状态的微镜单元将至少部分该入射的光反射形成作为投影光的开状态光,以及数字微镜设备40的处于关状态的微镜单元将至少部分该入射的光反射形成不作为投影光的关状态光。数字微镜设备40的光入射侧入射的光包括光源光和回收光。
图2所示的实施例中,偏振合光元件30、光路转换组件60和关状态光偏振转换装置70的组合相当于光回收系统,对数字微镜设备40的处于关状态的微镜单元反射形成的关状态光进行收集并改变光路的处理,形成沿所述光入射侧投射至数字微镜设备40的回收光;图3所示的实施例中,第一反射镜90和第二反射镜110的组合相当于光回收系统,对数字微镜设备40的处于关状态的微镜单元反射形成的关状态光进行收集并改变光路的处理,形成沿数字微镜设备40的光入射侧投射至数字微镜设备40的回收光。
在一个实施例中,光回收系统包括光纤,光纤一端位于数字微镜设备40的处于关状态的微镜单元反射形成的关状态光的出射侧,用于接收该关状态光,光纤的另一端位于数字微镜设备40的光入射侧,用于将该关状态光出射至数字微镜设备40以形成回收光。
本发明不限于利用上述实施例所述的光回收系统对数字微镜设备40的处于关状态的微镜单元反射形成的关状态光进行回收利用实现方式;以其它的光回收系统进行回收利用也是可以的;所有具有以下技术特征的投影系统也属于本发明保护的范围:投影系统,包括:光源,用于发出光源光;数字微镜设备,用于根据图像信号调制从所述数字微镜设备的光入射侧入射的所述光源光,其中,所述数字微镜设备的处于开状态的微镜单元将至少部分所述光源光反射形成开状态光,以及所述数字微镜设备的处于关状态的微镜单元将至少部分所述光源光反射形成关状态光;光回收系统,用于对所述数字微镜设备的处于关状态的微镜单元反射形成的关状态光进行收集并改变光路的处理,形成沿所述光入射侧投射至所述数字微镜设备的回收光;所述数字微镜设备的处于开状态的微镜单元将至少部分所述回收光反射形成开状态光,以及所述数字微镜设备的处于关状态的微镜单元将至少部分所述回收光反射形成关状态光;镜头组件,位于所述数字微镜设备的处于开状态的微镜单元反射形成的开状态光的光路上,用于将开状态光投射至屏幕形成图像。
上述实施例的投影系统,将数字微镜设备形成的投影光以外的光重新投射至数字微镜设备,以被数字微镜设备重新利用。但是,本发明不限于空间光调制器为数字微镜设备的实施方式,回收其它空间光调制器形成的投影光以外的光并将其重新投射至空间光调制器以重复利用的实施方式也属于本发明保护的范围。
另外,上述实施例中,光源光从空间光调制器的光入射侧入射至空间光调制器;空间光调制器根据图像信号调制从空间光调制器的光入射侧入射的光,形成投影光和投影光以外的光;光回收系统引导至少部分投影光以外的光从空间光调制器的光入射侧入射至空间光调制器。但是,本发明对光源光入射至空间光调制器的方向不进行限制,而且对光回收系统引导至少部分投影光以外的光入射到空间光调制器的方向也不进行限制。
所有具有以下技术特征的投影系统也属于本发明保护的范围:投影系统,其特征在于,包括:光源、空间光调制器、光回收系统和镜头组件;其中,所述光源,用于发出光源光,并射向所述空间光调制器;所述空间光调制器,用于根据图像信号调制入射到空间光调制器上的光,形成投影光和投影光以外的光;所述光回收系统,用于接收至少部分所述投影光以外的光,并将至少部分所述投影光以外的光引导至所述空间光调制器;所述镜头组件,用于接收并出射所述投影光以形成投影图像。
在一个实施例中,上述的投影系统(包括投影系统100和200),还包括:
控制单元(图中未示出),用于解析数字微镜设备40所调制的图像信号对应的图像帧中亮像素的数量,获取亮像素的数量与图像帧的像素总量的占比,并且根据该占比控制光回收系统,使得光回收系统当该占比小于第一阈值时不形成上述回收光,且当该占比大于或等于第一阈值时形成该回收光;其中,亮像素的灰阶值大于第二阈值。
例如,当图像帧中亮像素的数量与图像帧的像素总量的占比小于40%时,不形成回收光,而当该占比大于等于40%时,形成回收光。
在另一个实施例中,控制单元控制光回收系统的方式可以发生变化。例如,控制单元可用于解析数字微镜设备40所调制的图像信号对应的图像帧中亮像素的数量,获取亮像素的数量与图像帧的像素总量的占比,并且根据该占比控制光回收系统在图像帧的调制时段内形成回收光的时间,该占比越高,则光回收系统在图像帧的调制时段内形成回收光的时间越长。
例如,对于第一图像帧和第二图像帧,第一图像帧中亮像素的数量与第一图像帧的像素总量的占比为第一占比,第二图像帧中亮像素的数量与第二图像帧的像素总量的占比为第二占比,控制单元控制第一图像帧调制时段内光回收系统形成回收光的时间为第一时间,控制单元控制第二图像帧调制时段内光回收系统形成回收光的时间为第二时间,若第一占比大于第二占比,则第一时间也大于第二时间。
在又一个实施例中,控制单元可用于根据数字微镜设备40所调制的图像信号对应的图像帧所属的颜色控制光回收系统,使得光回收系统当图像帧属于特定颜色时形成回收光,且当图像帧不属于特定颜色时不形成回收光。例如,该特定颜色为红色,等等。
将上述实施例中控制单元的控制方式进行可以实施的任意组合得到的技术方案也属于本发明保护的范围。
在一个实施例中,上述光回收系统还包括驱动装置,驱动装置在上述控制单元的控制下驱动光回收系统的光学元件运动至第一状态、以使得光回收系统不形成回收光,或者在控制单元的控制下驱动光回收系统的光学元件运动至第二状态、以使得光回收系统形成回收光。驱动装置可用于驱动光回收系统中的除自身之外的可以使得光路改变的任意一个光学元件按照使得光路改变的方式发生运动,例如旋转或者平移或者旋转与平移相结合等,从而使得光回收系统形成回收光或者不形成回收光。例如,对应于图2所示的投影系统100,驱动装置可驱动偏振合光元件30或者光路转换组件60按照使得光路改变的方式发生运动。又例如,对应于图3所示的投影系统200,驱动装置可驱动第一反射镜90或者第二反射镜110按照使得光路改变的方式发生运动。
图5示出了驱动装置130驱动投影系统100中的光路转换组件60发生旋转以改变光路的示意图。其中,控制装置在图中未示出。以光路转换组件60为一平面反射镜为例,平面反射镜旋转的旋转轴不垂直于平面反射镜所在的平面。
以图5所示的投影系统100为基础,图6示出了控制单元对于光回收系统的一种具体的控制流程:
步骤S1,控制单元判断数字微镜设备40所调制的图像信号对应的图像帧所属的颜色是否为红色,若是,则进行步骤S2,否则,进入步骤S7。
步骤S2,解析数字微镜设备40所调制的图像信号对应的图像帧中亮像素的数量,获取亮像素的数量与图像帧的像素总量的占比。
步骤S3,判断亮像素的数量与图像帧的像素总量的占比是否大于等于第一阈值,若是,则执行步骤S4,否则,进入步骤S7。
步骤S4,根据亮像素的数量与图像帧的像素总量的占比计算在图像帧的调制时段内形成回收光的时间。
步骤S5,启动计时,向驱动装置130发出控制信号,以使得驱动装置130驱动光路转换组件60旋转至第二状态,在第二状态下,光回收系统形成回收光。
步骤S6,判断光回收系统形成回收光的时间是否达到上述所计算的时间,若是,则循环执行步骤S6,否则,进入步骤S7。
S7,向驱动装置130发出控制信号,以使得驱动装置130驱动光路转换组件60旋转至第一状态,在第一状态下,光回收系统不形成回收光。
本发明对上述步骤的顺序不进行限制,本领域技术人员可按照可能的方式调换步骤之间的顺序。
在一个实施例中,关状态光偏振转换装置70为可通过电压控制偏振转换功能的装置,电压的变化可使得关状态光偏振转换装置处于工作或者不工作的状态。在工作状态下,关状态光偏振转换装置70可透射第一偏振态的光,且将第二偏振态的光转换成第一偏振态的光;在不工作状态下,关状态光偏振转换装置70不透射第一偏振态的光,且不将第二偏振态的光转换成第一偏振态的光。
在一个实施例中,控制单元可通过控制关状态光偏振转换装置70的电压来控制关状态光偏振转换装置70处于工作状态或者不工作状态,从而使得光回收系统形成回收光或者不形成回收光。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (18)

1、一种投影系统,其特征在于,包括:光源、空间光调制器、光回收系统和镜头组件;其中,
所述光源,用于发出光源光,并射向所述空间光调制器;
所述空间光调制器,用于根据图像信号调制入射到空间光调制器上的光,形成投影光和投影光以外的光;
所述光回收系统,用于接收至少部分所述投影光以外的光,并将至少部分所述投影光以外的光引导至所述空间光调制器;
所述镜头组件,用于接收并出射所述投影光以形成投影图像。
2、根据权利要求1所述的投影系统,其特征在于,所述光源光从所述空间光调制器的光入射侧入射至所述空间光调制器;
所述空间光调制器根据图像信号调制从所述光入射侧入射的光,形成所述投影光和所述投影光以外的光;
所述光回收系统引导至少部分所述投影光以外的光从所述光入射侧入射至所述空间光调制器。
3、根据权利要求1所述的投影系统,其特征在于, 所述空间光调制器为数字微镜设备;
所述光源光从所述数字微镜设备的光入射侧入射至所述数字微镜设备;
所述数字微镜设备根据图像信号调制从所述数字微镜设备的光入射侧入射的光,其中,所述数字微镜设备的处于开状态的微镜单元将至少部分所述入射的光反射形成作为所述投影光的开状态光,以及所述数字微镜设备的处于关状态的微镜单元将至少部分所述入射的光反射形成不作为所述投影光的关状态光;
所述光回收系统对所述数字微镜设备的处于关状态的微镜单元反射形成的关状态光进行收集并改变光路的处理,形成沿所述数字微镜设备的光入射侧投射至所述数字微镜设备的回收光;
所述镜头组件位于所述数字微镜设备的处于开状态的微镜单元反射形成的开状态光的光路上,将所述开状态光投射至屏幕形成图像。
4、根据权利要求3所述的投影系统,其特征在于,所述光源光与所述回收光沿相同路径入射至所述数字微镜设备。
5、根据权利要求4所述的投影系统,其特征在于,所述光回收系统包括:
偏振合光元件,位于所数字微镜设备的光入射侧;
光路转换组件,用于改变所述数字微镜设备的处于关状态的微镜单元反射形成的关状态光的光路,使得所述关状态光入射至所述偏振合光元件;
关状态光偏振转换装置,用于在所述关状态光入射至所述偏振合光元件之前,将所述关状态光转换成第一偏振态;
所述偏振合光元件用于将所述光源光中第二偏振态的光和所述第一偏振态的关状态光进行合光,并引导合成的光入射至所述数字微镜设备。
6、根据权利要求5所述的投影系统,其特征在于,还包括:
所述光源光为第二偏振态的光,所述第一偏振态和第二偏振态的光的偏振方向垂直。
7、根据权利要求5所述的投影系统,其特征在于,还包括:
源光偏振转换装置,用于在所述光源光入射至所述偏振合光元件之前,将所述光源光转换成第二偏振态。
8、根据权利要求3所述的投影系统,其特征在于,所述光源光沿第一路径入射至所述数字微镜设备,所述回收光沿第二路径入射至所述数字微镜设备。
9、根据权利要求8所述的投影系统,其特征在于,所述光回收系统包括:
第一反射镜,位于所述数字微镜设备的光入射侧;
第二反射镜,用于将所述数字微镜设备的处于关状态的微镜单元反射形成的关状态光反射至所述第一反射镜;
所述第一反射镜用于将所述关状态光反射,形成所述回收光。
10、根据权利要求8所述的投影系统,其特征在于,所述镜头组件包括第一镜头组件和第二镜头组件;
所述数字微镜设备的处于开状态的微镜单元将至少部分所述光源光沿第三路径反射形成第一开状态光;
所述数字微镜设备的处于开状态的微镜单元将至少部分所述回收光沿第四路径反射形成第二开状态光;
所述第一镜头组件位于所述第一开状态光的光路上,将所述第一开状态光投射至屏幕形成图像;
所述第二镜头组件位于所述第二开状态光的光路上,将所述第二开状态光投射至屏幕形成图像。
11、根据权利要求10所述的投影系统,其特征在于,所述第一镜头组件和第二镜头组件将第一开状态光和第二开状态光投射至相同区域,形成一幅图像。
12、根据权利要求10所述的投影系统,其特征在于,所述第一镜头组件和第二镜头组件将第一开状态光和第二开状态光投射至不同区域,形成两幅图像。
13、根据权利要求2所述的投影系统,其特征在于, 所述光回收系统包括光纤,所述光纤一端位于所述投影光以外的光的出射侧,用于接收所述投影光以外的光,另一端位于所述空间光调制器的光入射侧,用于将至少部分所述投影光以外的光出射至所述空间光调制器。
14、根据权利要求1所述的投影系统,其特征在于,还包括:
控制单元,用于解析所述图像信号对应的图像帧中亮像素的数量,获取亮像素的数量与所述图像帧的像素总量的占比,并且根据所述占比控制所述光回收系统,使得所述光回收系统当所述占比小于第一阈值时不形成所述回收光,且当所述占比大于或等于所述第一阈值时形成所述回收光;
其中,所述亮像素的灰阶值大于第二阈值。
15、根据权利要求1所述的投影系统,其特征在于,还包括;
控制单元,用于解析所述图像信号对应的图像帧中亮像素的数量,获取亮像素的数量与所述图像帧的像素总量的占比,并且根据所述占比控制所述光回收系统在所述图像帧的调制时段内形成所述回收光的时间,所述占比越高,则所述光回收系统在所述图像帧的调制时段内形成所述回收光的时间越长。
16、根据权利要求1所述的投影系统,其特征在于,还包括:
控制单元,用于根据所述图像信号对应的图像帧所属的颜色控制所述光回收系统,使得所述光回收系统当所述图像帧属于特定颜色时形成所述回收光,且当所述图像帧不属于所述特定颜色时不形成所述回收光。
17、根据权利要求15所述的投影系统,其特征在于,所述特定颜色为红色。
18、根据权利要求14至17任一所述的投影系统,其特征在于,
所述光回收系统包括驱动装置,所述驱动装置在所述控制单元的控制下驱动所述光回收系统的光学元件运动至第一状态、以使得所述光回收系统不形成所述回收光,或者在所述控制单元的控制下驱动所述光回收系统的光学元件运动至第二状态、以使得所述光回收系统形成所述回收光。
PCT/CN2017/081161 2016-06-01 2017-04-19 投影系统 WO2017206614A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17805559.6A EP3467583B1 (en) 2016-06-01 2017-04-19 Projection system
US16/306,780 US10620524B2 (en) 2016-06-01 2017-04-19 Projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610379125.9 2016-06-01
CN201610379125.9A CN107450258B (zh) 2016-06-01 2016-06-01 投影系统

Publications (1)

Publication Number Publication Date
WO2017206614A1 true WO2017206614A1 (zh) 2017-12-07

Family

ID=60478460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081161 WO2017206614A1 (zh) 2016-06-01 2017-04-19 投影系统

Country Status (5)

Country Link
US (1) US10620524B2 (zh)
EP (1) EP3467583B1 (zh)
CN (1) CN107450258B (zh)
TW (1) TWI731081B (zh)
WO (1) WO2017206614A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909968B (zh) * 2017-12-28 2019-07-23 武汉华星光电半导体显示技术有限公司 Amoled显示面板的驱动方法及相关产品
CN108495105A (zh) * 2018-03-23 2018-09-04 青岛海信电器股份有限公司 图像处理装置、方法及激光投影设备
CN110837199B (zh) * 2018-08-16 2021-10-12 深圳光峰科技股份有限公司 显示设备
CN111147831A (zh) * 2018-11-02 2020-05-12 深圳光峰科技股份有限公司 投影系统及投影控制方法
CN112004000A (zh) * 2019-05-27 2020-11-27 三赢科技(深圳)有限公司 发光装置及应用其的图像采集装置
CN113138522B (zh) * 2020-01-17 2023-08-04 深圳光峰科技股份有限公司 光源调制系统、方法及光源系统
JP2022100660A (ja) * 2020-12-24 2022-07-06 セイコーエプソン株式会社 ロボットの制御プログラムを作成する処理をプロセッサーに実行させるコンピュータープログラム、並びに、ロボットの制御プログラムを作成する方法及びシステム
CN115356888B (zh) * 2022-10-19 2023-03-24 深圳市橙子数字科技有限公司 一种dlp投影照明装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309786A (ja) * 2003-04-07 2004-11-04 Casio Comput Co Ltd 光源装置及びそれを用いた表示装置
JP2007072031A (ja) * 2005-09-06 2007-03-22 Plus Vision Corp プロジェクタ
CN103676426A (zh) * 2012-09-13 2014-03-26 扬明光学股份有限公司 减少杂散光的投影装置及方法
CN105573033A (zh) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 提高光利用率及投影亮度的投影光学系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW522280B (en) * 2001-04-13 2003-03-01 Fusion Lighting Inc Projection systems
US6710909B2 (en) * 2001-11-08 2004-03-23 Seiko Epson Corporation Projector
CN1914905A (zh) * 2004-01-30 2007-02-14 皇家飞利浦电子股份有限公司 具有光再利用的投影显示装置
TWM252024U (en) * 2004-02-12 2004-12-01 Benq Corp Image display apparatus
TW200717164A (en) * 2005-10-21 2007-05-01 Coretronic Corp Projection display apparatus and recycling energy method thereof
US20080246705A1 (en) * 2007-04-03 2008-10-09 Texas Instruments Incorporated Off-state light recapturing in display systems employing spatial light modulators
DE102007027952A1 (de) * 2007-06-18 2008-12-24 Zumtobel Lighting Gmbh Beleuchtungseinrichtung mit zwei nutzbaren Lichtwegen
US7959305B2 (en) * 2007-07-02 2011-06-14 Texas Instruments Incorporated Light recycling in a micromirror-based projection display system
CN103207507B (zh) * 2012-01-11 2015-07-08 中强光电股份有限公司 光源模组与投影装置
JP6738746B2 (ja) * 2017-01-30 2020-08-12 株式会社日立エルジーデータストレージ 映像投影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309786A (ja) * 2003-04-07 2004-11-04 Casio Comput Co Ltd 光源装置及びそれを用いた表示装置
JP2007072031A (ja) * 2005-09-06 2007-03-22 Plus Vision Corp プロジェクタ
CN103676426A (zh) * 2012-09-13 2014-03-26 扬明光学股份有限公司 减少杂散光的投影装置及方法
CN105573033A (zh) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 提高光利用率及投影亮度的投影光学系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467583A4 *

Also Published As

Publication number Publication date
EP3467583A4 (en) 2020-02-19
US20190129295A1 (en) 2019-05-02
EP3467583A1 (en) 2019-04-10
US10620524B2 (en) 2020-04-14
TW201743126A (zh) 2017-12-16
EP3467583B1 (en) 2023-11-22
CN107450258B (zh) 2020-04-28
TWI731081B (zh) 2021-06-21
CN107450258A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2017206614A1 (zh) 投影系统
WO2010143891A2 (en) Projection system
WO2016165569A1 (zh) 发光装置和投影系统
WO2016116039A1 (zh) 光源系统和投影系统
WO2016180298A1 (zh) 一种发光装置及其发光控制方法、投影设备
WO2016124094A1 (zh) 投影设备、投影控制系统及投影控制方法
KR100816971B1 (ko) 투사형 영상 표시 장치
WO2018010467A1 (zh) 发光装置及相关投影系统
US6771326B2 (en) Multi-screen laser projection system using a shared laser source
WO2016161924A1 (zh) 光源系统和投影系统
JP4644209B2 (ja) 空間光変調器を使用したタイル状投影ディスプレイ
JP2001222064A (ja) 照光制御装置、プロジェクタ、および照光制御方法
WO2016161932A1 (zh) 发光装置和投影显示设备
WO2010099707A1 (zh) 激光光学引擎
JP2007047638A (ja) 画像表示装置及び光源装置
KR960015068A (ko) 투영형 칼라 표시 장치
WO2018072419A1 (zh) 双空间光调制系统及使用该系统进行光调节的方法
US20220082924A1 (en) Image display apparatus
JPH11305710A (ja) 光の変調方法及びその装置、並びに、画像投影方法及びその装置
WO2016127814A1 (zh) 投影系统及其控制方法
JP2007065408A (ja) 照明装置及び投写型映像表示装置
WO2018032857A1 (zh) 一种显示系统
WO2018113226A1 (zh) 一种投影显示系统
WO2018170987A1 (zh) 投影系统
US10409148B2 (en) RGB projector with multi-laser broadband light source and system for dynamically controlling image contrast ratio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017805559

Country of ref document: EP

Effective date: 20190102