WO2018072419A1 - 双空间光调制系统及使用该系统进行光调节的方法 - Google Patents

双空间光调制系统及使用该系统进行光调节的方法 Download PDF

Info

Publication number
WO2018072419A1
WO2018072419A1 PCT/CN2017/081305 CN2017081305W WO2018072419A1 WO 2018072419 A1 WO2018072419 A1 WO 2018072419A1 CN 2017081305 W CN2017081305 W CN 2017081305W WO 2018072419 A1 WO2018072419 A1 WO 2018072419A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spatial
modulator
mirror
spatial light
Prior art date
Application number
PCT/CN2017/081305
Other languages
English (en)
French (fr)
Inventor
周宇轩
胡飞
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018072419A1 publication Critical patent/WO2018072419A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the invention belongs to the field of optical technologies, and in particular relates to a dual spatial light modulation system and a method for light adjustment.
  • HDR dynamic range
  • 1' is the first light source
  • 2' is the first spatial light modulator
  • 3' is the second spatial light modulator
  • 4' is the subsidiary structure
  • the latter part can include relay frames, lenses and screens.
  • the light source 1' emits light source light
  • the image light formed by the first spatial light modulator 2' modulating the light source is projected onto the second spatial light modulator 3'
  • the second spatial light modulator 3' further modulates the image light.
  • the spatial light modulator includes a plurality of modulation units, one modulation unit for modulating image light of one pixel.
  • the resolution of the image finally modulated by the system is determined by the resolution of the image modulated by the spatial light modulator 3' of the second spatial light modulator; generally, the resolution of the image modulated by the spatial light modulator 2' is smaller than or equal to the spatial modulation of the second spatial light.
  • the resolution of the image modulated by the device 3' the image light of one pixel modulated by the spatial light modulator 2' is projected onto a plurality of modulation units of the second spatial light modulator 3', by the plurality of modulation units
  • the image light forming the plurality of pixels is further modulated; thus, one pixel modulated by the first spatial light modulator 2' corresponds to one or more pixels modulated by the second spatial light modulator 3'.
  • the contrast of the spatial light modulator can be understood as: the spatial light modulator modulates the incident light uniformly incident on each modulation unit, and the luminance ratio of the image light of the all-white pixel formed and the image light of the all-black pixel is formed.
  • the ratio is equal to the conversion efficiency of the all-white pixel and the conversion efficiency corresponding to the all-black pixel;
  • the conversion efficiency corresponding to the all-white pixel is: the image light of the all-white pixel formed by the spatial light modulation and the incident light to the spatial light modulator
  • the conversion efficiency corresponding to the all-black pixel is the luminance ratio of the image light of the all-black pixel formed by the spatial light modulation to the incident light incident on the spatial light modulator.
  • the light extraction efficiency of the spatial light modulator can be considered as the conversion efficiency corresponding to all white pixels.
  • the contrast of the first spatial light modulator 2' is a:1 (a>1) and the light extraction efficiency is c(0 ⁇ c ⁇ 1), and the contrast of the second spatial light modulator 3' is b:1 (b) >1) and the light extraction efficiency is d (0 ⁇ d ⁇ 1) as an example.
  • the light source light is uniformly incident on the first spatial light modulator 2', and the brightness of the light source incident on the first spatial light modulator 2' is 1; then the white formed by the first spatial light modulator 2' is formed.
  • the luminance of the image light WL of the pixel is 1*c
  • the luminance of the image light BL of the all-black pixel formed by the first spatial light modulator 2' is 1*c/a.
  • the second spatial light modulator 3' further modulates the image light WL to form an all-white pixel, and the brightness of the image light of the all-white pixel formed by the modulation is 1*c*d; and the spatial light modulator 3' of the second space is further When the image light BL is modulated to form an all-black pixel, the luminance of the image light of the all-black pixel formed by modulation is (1*c/a)*d/b.
  • the final contrast of the projection system can be considered as the brightness ratio of the image light of the all white pixel formed by the second spatial light modulator 3' to the image light of the all black pixel, that is, a*b:1; the final light extraction efficiency of the projection system It can be considered that the luminance ratio of the image light of the all-white pixel formed by the second spatial light modulator 3' to the light source light is c*d.
  • the present invention proposes a dual spatial light modulation system that achieves a balance between light extraction efficiency and contrast by using the dual spatial light modulation system of the present invention.
  • the present invention provides a dual spatial light modulation system comprising a light source, a first spatial light modulator, a second spatial light modulator, and a light recovery device, the light source for providing source light; the first spatial light modulator Modulating the source light to form a first light for displaying an image and a second light for outputting an image that is emitted along the second path; the light recycling device is configured to receive along the first The second light emitted by the two paths, and guiding the second light to be combined with the first light, and transmitting the combined light of the first light and the second light to the second space a light modulator; the second spatial light modulator is configured to receive the combined light of the first light and the second light, and modulate the combined light of the first light and the second light to form Image light used to project to the screen.
  • the light recovery device includes: an optical path conversion component configured to receive the second light emitted along the second path, and change an optical path of the second light to transmit the second light to the light combining device And the light combining device configured to receive the second light transmitted by the optical path conversion component, and receive the first light, and combine the received second light with the first light.
  • an optical path conversion component configured to receive the second light emitted along the second path, and change an optical path of the second light to transmit the second light to the light combining device
  • the light combining device configured to receive the second light transmitted by the optical path conversion component, and receive the first light, and combine the received second light with the first light.
  • the optical path conversion component includes: a first mirror for receiving the second light emitted along the second path and reflecting the second light; and a second mirror for receiving the first The second light reflected by the mirror further reflects the second light to the light combining device.
  • the light recovery device further includes: a light homogenizing device configured to homogenize the second light before the second light is transmitted to the light combining device.
  • the light recovery device further comprises: controllable attenuation means for attenuating the second light according to the specified attenuation parameter before the second light is transmitted to the light combining device.
  • the source light comprises red, green and blue light which are provided to the first spatial light modulator in time series within a frame color image modulation period; the first spatial light modulator is based on a color frame image The three monochrome frame image data of red, green and blue included in the data respectively modulate the red, green and blue light; the controllable attenuation device modulates the red light separately for the first spatial light modulator And the second light formed by the green light and the blue light is subjected to attenuation processing to obtain a second attenuated red light, a second attenuated green light, and a second attenuated blue light, so that the second color obtained in a frame color image modulation period The amount of light that attenuates red light, second attenuated green light, and second attenuated blue light is uniform.
  • said dual spatial light modulation system comprises three sets of modulation means, each set of said modulation means comprising said first spatial light modulator, said light recovery means and said second spatial light modulator; said source light Included in the color image modulation period of one frame simultaneously for red, green, and blue light respectively supplied to the three sets of modulation devices; the first spatial light modulators of the three sets of modulation devices respectively according to a color frame image The red, green and blue three-color frame image data included in the data modulate the red, green and blue light; the controllable attenuation devices in the three sets of modulation devices respectively correspond to the first space The second light formed by the red, green and blue light modulated by the light modulator is attenuated to obtain a second attenuated red light, a second attenuated green light and a second attenuated blue light, so as to be obtained in a frame color image modulation period. The amount of light of the second attenuating red light, the second attenuating green light, and the second attenuating blue light
  • control device is configured to calculate a proportion of recoverable light corresponding to each of the three monochrome frames of red, green and blue contained in each color image data, and control the controllable attenuation device according to the lowest recoverable light ratio therein
  • the attenuation process is such that the amounts of the second attenuated red light, the second attenuated green light, and the second attenuated blue light obtained in one frame of the color image modulation period are uniform.
  • the first spatial light modulator is an LCD or an LCOS.
  • the light combining device is a polarization combining device
  • the first light transmitted to the light combining device has a first polarization state
  • the second light transmitted to the light combining device has a second polarization
  • the light combining device is configured to combine the first light having a first polarization state with the second light having the second polarization state.
  • the first spatial light modulator is a DMD.
  • the light combining device is a mirror having a through hole; the first light is incident through the through hole to the second spatial light modulator, and the second light is reflected by the mirror to The second spatial light modulator, or the second light is incident through the through hole to the second spatial light modulator, and the second light is reflected by the mirror to the second spatial light Modulator.
  • the first mirror is a plane mirror; or the first mirror is a curved mirror; a first spot of the first light projected onto the second spatial light modulator and the first The second spot of light projected onto the second spatial light modulator has an overlapping area.
  • the second mirror is a plane mirror; or the second mirror is a curved mirror.
  • controllable attenuation device is a whole piece of controllable liquid crystal film.
  • an angle between the first mirror and the second mirror is 90°
  • the present invention also provides a method for performing light adjustment using the above dual spatial light modulation system, comprising the following steps:
  • Source light modulation modulating the source light through the first spatial light modulator to form a first light for displaying an image that exits along the first path and a second that is not for displaying an image that is emitted along the second path Light;
  • Combining light receiving, by the light recovery device, the second light emitted along the second path, and guiding the second light to combine with the first light, and combining the first light with the first light
  • the combined light of the two lights is transmitted to the second spatial light modulator;
  • the light display receives and combines the combined light of the first light and the second light by the second spatial light modulator to form image light and project it onto a screen display.
  • the light recovery device is added, and the second light exiting along the second path is received by the light recovery device Lighting, and directing the second light to combine with the first light, and transmitting the combined light of the first light and the second light to the second spatial light modulator; further
  • a second spatial light modulator receives the combined light of the first light and the second light and modulates the combined light of the first light and the second light to form an image for projection to a screen Light
  • the dual spatial light modulation system can reduce contrast and improve light extraction efficiency with respect to a dual spatial light modulation system without light recovery; thereby achieving a balance between contrast and light extraction efficiency.
  • FIG. 1 is a schematic structural view of a dual spatial light modulator in the prior art.
  • FIG. 2 is a schematic structural view of an embodiment of a dual spatial light modulation system of the present invention.
  • FIG. 3 is a schematic structural view of another embodiment of a dual spatial light modulation system of the present invention.
  • Figure 4 is an image diagram of a projection display.
  • Figure 5 is a schematic illustration of a first spot and a second spot of a first light and a second light projected onto a second spatial light modulator.
  • FIG. 2 is a schematic structural diagram of an embodiment of a dual spatial light modulation system according to the present invention.
  • the present invention provides a dual spatial light modulation system comprising a light source 1, a first spatial light modulator 2, a second spatial light modulator 3, a post processing device 4, a first mirror 5, a light homogenizing device 6, and a Two mirrors 7 and light combining device 8 .
  • the first mirror 5, the light homogenizing device 6, the second mirror 7, and the light combining device 8 constitute a light recovery device.
  • the light source 1 can be an LED or a laser diode for providing source light for the dual spatial light modulation system.
  • the first spatial light modulator 2 is configured to modulate the source light emitted by the light source 1 to form a first light for displaying an image that is emitted along the first path and a second light that is emitted along the second path and that is not used for displaying an image.
  • the first spatial light modulator 2 is an LCD or an LCOS.
  • the first spatial light modulator 2 is not limited thereto, and components having the same principle structure that can satisfy the image modulation requirements can be used.
  • the first spatial light modulator 2 is an LCD or an LCOS, it includes a polarization converter (not shown) and an analyzer (not shown).
  • the polarization converter includes a plurality of polarization conversion units, each polarization conversion unit corresponding to one pixel in an image.
  • the polarization conversion unit converts a corresponding proportion of light into light of a first polarization state according to a grayscale value of the pixel, and converts the remaining portion into light of a second polarization state.
  • the corresponding polarization conversion unit converts 100/255 of the light beam incident to itself into a P polarization state, and 155/255 converts into an S polarization state.
  • the analyzer has characteristics of transmitting light in a P-polarized state and reflecting light in an S-polarized state.
  • LCD is the abbreviation of Liquid Crystal Display, LCD
  • the structure is to place liquid crystals in two parallel glass. There are many vertical and horizontal small wires between the two glasses.
  • the power of the rods is controlled to change the direction of the rod-shaped crystal molecules, and the light is refracted to produce a picture.
  • LCOS is Liquid Crystal on Silicon's abbreviation, liquid crystal with silicon, also known as silicon-based liquid crystal, is a matrix liquid crystal display device based on reflection mode and very small size.
  • the second spatial light modulator 3 is configured to receive the combined light of the first light and the second light, and modulate the combined light of the first light and the second light to form a projection for The image light of the screen.
  • the first light for displaying an image formed by the first spatial light modulator 2 is modulated, and the second spatial light modulator 3 is located on the optical path of the first light.
  • the specific type or model of the second spatial light modulator 3 is not limited by the first spatial light modulator 2, which may be an LCD, LOS or DMD or the like.
  • the post-processing device 4 includes a relay lens group (not shown), a lens (not shown), and the like.
  • the post-processing device 4 is configured to collect, diffuse, homogenize, and shape the light modulated by the second spatial light modulator 3, and project it onto the screen.
  • the light recovery device is configured to receive the second light that is emitted along the second path, and guide the second light to combine with the first light, and to combine the first light and the second light The combined light is transmitted to the second spatial light modulator 3.
  • the first mirror 5 is configured to receive the second light emitted along the second path and reflect the second light.
  • the first mirror 5 is a plane mirror or a curved mirror, and can be disposed according to actual needs.
  • the light homogenizing device 6 is configured to homogenize the second light before the second light is transmitted to the light combining device 8.
  • the second mirror 7 is configured to receive the second light reflected by the first mirror 5 and further reflect the second light to the light combining device 8 .
  • the second mirror 7 is a plane mirror or a curved mirror, and can be disposed according to actual needs.
  • the light combining device 8 is configured to receive the second light transmitted by the optical path conversion component, and receive the first light, and combine the received second light with the first light.
  • the light combining device 8 is a polarization combining device, the first light transmitted to the light combining device 8 has a first polarization state, and the second light transmitted to the light combining device 8 has a second polarization state.
  • the optical device 8 is configured to combine the first light having a first polarization state with the second light having the second polarization state.
  • the light combining device 8 transmits the first light having the first polarization state and the second light having the second polarization state.
  • the spatial angle between the first mirror 5 and the second mirror 7 can be set to 90°. Such an angle setting ensures that the second light not used for displaying the image can be completely reflected onto the second spatial light modulator 3, ensuring the brightness of the source light.
  • the invention is not limited thereto.
  • the first mirror 5 and the second mirror 7 constitute an optical path conversion assembly for receiving the second light emitted along the second path, and changing the optical path of the second light to make the second Light is transmitted to the light combining device 8.
  • the present invention does not limit the number and type of optical elements included in the optical path conversion assembly for changing the optical path.
  • the optical path conversion component may include one or both of a mirror that can change the optical path and a transmissive mirror that can change the optical path, and the number of optical elements included may be plural. All of the second light that is received along the second path and the optical path that changes the optical path of the second light to transmit the second light to the light combining device 8 are all protected by the present invention range.
  • the light combining device 8 can also be a mirror having a through hole.
  • the first light is incident on the second spatial light modulation through the through hole.
  • the second light is reflected by the light combining device 8 to the second spatial light modulator 3; the first light and the first light spot projected onto the second spatial light modulator 3
  • the second spot of the second light projected onto the second spatial light modulator 3 has an overlapping area.
  • the second mirror 7 is a curved mirror, the convex surface reflects the second light, the area of the light spot projected onto the light combining device 8 by the second light is larger than the light spot of the second light projected onto the second mirror 7, and the second reflection
  • the mirror 7 has a diffusing effect on the second light.
  • the light combining device 8 is also a curved mirror, the second light reflected by the concave surface of the light combining device 8, and the second light reflected by the light combining device can be concentrated into a smaller spot (projected relative to the second light to the light combining device) In the case of the spot on 8, the light combining means 8 has a converging effect on the second light.
  • the second light is incident on the second spatial light modulator 3 through a through hole of the light combining device 8, and the second light is reflected by the light combining device 8.
  • the characteristics of the second mirror 7 and the light combining device 8 can be set according to actual needs.
  • the first mirror 5, the light-sharing device 6, the second mirror 7, and the light combining device 8 which are sequentially disposed in the second light direction collectively constitute a light recovery device and are used for the second The light is transmitted to the second spatial light modulator 3.
  • a light recycling device is located between the first spatial light modulator 2 and the second spatial light modulator 3.
  • the second spatial light modulator 3 After receiving the first light and the second light, the second spatial light modulator 3 modulates it again, and finally forms an image by the post-processing device 4.
  • a single color image contains three monochrome image frames of red, green, and blue.
  • the image can be modulated in the following two ways.
  • the timing provides three colors of red, green and blue
  • a set of modulation means is used to modulate the three colors of red, green and blue according to the three monochrome image frames of red, green and blue.
  • the block diagram shown in Fig. 2 is applicable to the first mode and to one of the optical paths in the second mode.
  • FIG. 3 is a schematic structural diagram of another embodiment of a dual spatial light modulation system according to the present invention.
  • the embodiment shown in Fig. 3 is substantially identical to the embodiment shown in Fig. 2, except that the recovery optical device of the embodiment shown in Fig. 3 further includes a controllable attenuation device 9 and a control device (not shown).
  • a controllable attenuation device 9 is located between the homogenizing device 6 and the second mirror 7.
  • the controllable attenuation device 9 is configured to attenuate the second light according to a specified attenuation parameter before the second light is transmitted to the light combining device 8, and control to recover the second light.
  • the first spatial modulator 2, the first mirror 5, the light homogenizing device 6, the controllable attenuation device 9, the second mirror 7, the light combining device 8, and the second spatial light modulator 3 together form a set Modulation device.
  • a set of modulating means is used to modulate the three colors of red, green and blue according to the three color image frames of red, green and blue of the second light, respectively.
  • the source light provided by the light source 1 includes red, green, and blue light that are sequentially supplied to the first spatial light modulator 2 in a frame color image modulation period; the first spatial light modulator 2 modulating the red, green, and blue light according to the three monochrome frame image data of red, green, and blue included in one color frame image data, respectively, forming a first light for displaying an image that is emitted along the first path And a second light that is emitted along the second path that is not used to display an image; the first mirror 5 receives the second light that is emitted along the second path, and reflects the second light to the light homogenizing device 6, the uniform The light device 6 performs uniform light on the second light; the controllable attenuation device 9 attenuates the second light after the homogenization process to obtain a second attenuated red light, a second attenuated green light, and a second Attenuating blue light such that the amounts of the second attenuated red light, the second attenuated green light
  • three colors of red, green, and blue light are simultaneously provided on three optical paths, and three sets of modulation devices respectively modulate red, green, and blue according to three monochrome image frames of red, green, and blue.
  • Color light a set of modulation devices on each light path.
  • Each of the modulation devices includes the first spatial modulator 2, the first mirror 5, the light homogenizing device 6, the controllable attenuation device 9, the second mirror 7, the light combining device 8, and the second spatial light.
  • Modulator 3 is the first spatial modulator 2, the first mirror 5, the light homogenizing device 6, the controllable attenuation device 9, the second mirror 7, the light combining device 8, and the second spatial light.
  • the source light provided by the light source 1 includes three lights of three colors of red light, green light and blue light, and is respectively supplied to three sets of the modulation devices. It may be that three light sources 1 respectively provide red light, green light and blue light; or one light source 1 may provide one source light, and then the prism splits into three colors of red light, green light and blue light, which are feasible.
  • the specific form is not limited, and the principle is the same.
  • the first spatial light modulator 2 of each of the three sets of modulation devices respectively receives red, green, and blue light and modulates the red, green, and blue light according to corresponding color frame image data. That is to say, three colors of red, green and blue light are simultaneously passed through the three first spatial light modulators 2, respectively.
  • the red light modulation process the red light passes through a first spatial light modulator 2, and the first spatial light modulator 2 modulates the red light according to the red frame image data to form an output along the first path.
  • the first mirror 5 receives the red light second light that is emitted along the second path, and reflects Red light second light to the light homogenizing device 6, the light homogenizing device 6 homogenizes the red light second light;
  • the controllable attenuation device 9 pairs the red light after the homogenizing treatment
  • the light is attenuated as required to obtain a second attenuated red light;
  • the second mirror 7 receives the second attenuated red light and is reflected to the light combining device 8;
  • the light combining device 8 receives the above-described attenuation processing Subsequent second attenuating red light, and receiving the red first light, combining the received atten
  • the modulation process of green light is the same as the modulation process of the above red light;
  • the modulation process of blue light is the same as the modulation process of the above red light;
  • three sets of the modulation devices respectively modulate the red, green and blue light
  • one control device can be added to control the attenuation parameter, and the three sets of the modulation devices share one control device. can.
  • the second light is actually three optical paths simultaneously, each of the optical paths includes a second light (corresponding to a second light modulated by red light, a second light modulated by green light, and blue light Modulated second light).
  • the three second lights of the three optical paths respectively pass through the first mirror 5, the light homogenizing device 6, the controllable attenuation device 9, the second mirror 7, and the light combining device 8 on the respective optical paths to complete corresponding light processing, each of which
  • the optical processing of the optical path is the same as the embodiment of the above embodiment using a modulation device.
  • three sets of modulation devices respectively modulate the three second lights, and the principles are the same, and are not described herein again. .
  • the ratio of the amount of light that can be recovered by each monochrome image frame is different, that is, the attenuation parameters are different.
  • the proportion of light that can be recovered by a relatively dark image frame is large because the spatial light modulator modulates the relatively dark image frame to form more light that is not used to display the image; and the relatively bright image frame can be recycled with a smaller proportion of light. .
  • the dual-space optical modulation system of the present invention does not necessarily have to have a control device, and the ratio of the amount of light that can be recovered by three kinds of monochrome image frames can be directly read by other components in a fixed form, as long as three kinds of monochrome can be read. The ratio of the amount of light that can be recovered by the image frame is sufficient.
  • the controllable attenuation device 9 respectively reads the recoverable proportions of the red, green and blue light of the second light, and recovers the red, green and blue light of the second light. Adjusted to the same by the timing adjustment method or the three optical path adjustment modes.
  • the brightness and contrast in the dual spatial light modulation system of the present invention can be further adjusted to achieve the desired equilibrium state.
  • controllable attenuation device 9 can adopt a whole piece of controllable liquid crystal film.
  • the liquid crystal cell is a liquid crystal imaging device used to combine the colors of red, green and blue light into an image.
  • the controllable liquid crystal film can control the color brightness of the composite image.
  • the ratio of the recoverable light corresponding to the red frame image data is 20%
  • the recoverable ratio corresponding to the green frame image data is 40%
  • the recoverable ratio corresponding to the blue frame image data is 60%.
  • Three attenuation parameters for controlling red, green, and blue attenuation can be generated, respectively: 0%, 50%, and 67%.
  • Attenuation parameter (the amount of light received by the controllable attenuation device - the amount of light emitted) / the amount of light received.
  • the projected image will have different areas of light and dark.
  • the areas 101, 102, 104 are all dark, and the area 103 is fully bright.
  • the first spatial light modulator 2 and the second spatial light modulator 3 have a light passing efficiency of 70% and a contrast ratio of 100:1. If only one spatial light modulator is used to display the image shown in Fig. 4, it is assumed that the brightness of the area 103 on the screen is x. Then the brightness of the 101, 102, and 104 regions is 1% x.
  • the brightness of the 103 area on the screen is 70% x, and the brightness of the brightest point of the image is lowered.
  • the brightness of the 101, 102, and 104 regions is 0.007% x, and the system contrast can be increased to as high as 10,000:1. But in fact, there is always some stray light in the environment of the projection system, so the too high contrast is not well reflected.
  • the brightness of the 103 region is 122.5% x. So the brightest point of the projected image of the system may even be brighter than the brightest point of the image displayed by the single spatial light modulator.
  • the brightness of the 101, 102, and 104 regions is 0.525% x, and the contrast ratio of the system is 233:1, which is higher than the contrast of a single spatial light modulator, and lower than that of the two spatial light modulators without the light recovery device. .
  • the light recovery device sacrifices contrast in the system of two spatial light modulators to increase brightness. Excessive contrast in practical applications is often not well reflected due to ambient stray light.
  • the controllable attenuation device 9 of Figure 2 controlling the amount of recovered light, the contrast and brightness can be adjusted in the system to achieve an optimal balance.
  • FIG. 3 is basically the same as the second part of the embodiment, except that the first spatial light modulator 2 adopts DMD in this embodiment.
  • Digital Micro-mirror Device digital micromirror device, includes a plurality of micromirror units (not shown), each of which corresponds to one pixel in the image.
  • the micromirror unit can be in an ON state and an OFF state, and when in the ON state, reflects the light beam to the projection lens, and when in the OFF state, reflects the light beam to the other optical path.
  • the time or number of times the micromirror cell is in the ON state during a modulation cycle is proportional to the grayscale value of the pixel.
  • the light combining means 8 may be a mirror of the intermediate band through hole.
  • the first light formed after being modulated by the first spatial light modulator 2 can be struck onto the second spatial light modulator 3 through the intermediate hole of the light combining device 8.
  • the through hole is located at an intermediate position of the mirror, but the invention is not limited thereto. In other embodiments, the through hole may also be located at other positions.
  • the second light passes through the first mirror 5, the light homogenizing device 6, the controllable attenuation device 9, the second mirror 7, and the light combining device 8, and is finally reflected onto the second spatial light modulator 3. Since the light combining device 8 has a through hole in the middle, the second light has a certain loss during the recycling process.
  • the characteristics of the second mirror 7 and the light combining device 8 reference may be made to the above-described embodiments, and details are not described herein again.
  • the present invention also provides a method for performing light adjustment using the above dual spatial light modulation system, comprising the following steps:
  • the present invention also provides a method for performing light adjustment using the above-described dual spatial light modulation system, wherein the light recovery device includes an optical path conversion assembly, a light combining device 8, a light homogenizing device 6, and a controllable attenuation device 9, the optical path
  • the conversion assembly includes a first mirror 5 and a second mirror 7, the method comprising the steps of:
  • step S1 source light is provided, and source light is emitted through the light source 1.
  • Step S2 source light modulation, modulating the source light through the first spatial light modulator 2 to form a first light for displaying an image and a non-display for output along the second path.
  • the second light of the image is
  • Step S3 combining light, receiving the second light emitted along the second path by the light recovery device, and guiding the second light to combine with the first light, and combining the first light with The combined light of the second light is transmitted to the second spatial light modulator 3.
  • the step specifically includes:
  • Step S31 receiving, by the optical path conversion component, the second light emitted along the second path and changing an optical path of the second light, so that the second light is transmitted to the light combining device 8.
  • the second light reflected by the first mirror 5 and reflected along the second path is received by the second mirror 7 and the optical path of the second light is changed, so that the first The two lights are reflected to the light combining device 8.
  • Step S32 performing homogenizing processing on the second light by the light homogenizing device 6 before the second light is transmitted to the light combining device 8.
  • Step S33 the second light is attenuated according to the specified attenuation parameter by the controllable attenuation device 9 before the second light is transmitted to the light combining device 8.
  • Step S34 The second light and the first light transmitted by the optical path conversion component are received by the light combining device 8, and the received second light and the first light are combined and processed.
  • step S32 and step S33 may change the sequence.
  • the optical path conversion component receives the second light that is emitted along the second path, and then the second light is homogenized by the light homogenizing device 6, and then the said controllable attenuation device 9 The second light is subjected to an attenuation process, and finally the second light is received by the light combining device 8.
  • the light sequentially passes through the first mirror 5, the light homogenizing device 6, the controllable attenuation device 9, the second mirror 7, and the light combining device 8, and finally reflects to
  • the second spatial light modulator 3 is on.
  • Step S4 optical display, receiving, by the second spatial light modulator 3, the combined light of the first light and the second light combined after the step S3, and modulating the combined light to form image light and projecting to screen display.
  • the light recovery device is added, and the second light exiting along the second path is received by the light recovery device Lighting, and directing the second light to combine with the first light, and transmitting the combined light of the first light and the second light to the second spatial light modulator; further A second spatial light modulator receives the combined light of the first light and the second light and modulates the combined light of the first light and the second light to form an image for projection to a screen Light, the dual spatial light modulation system can adjust the relative balance of contrast and brightness according to the needs of use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

一种双空间光调制系统,包括光源(1),用于向系统提供源光;第一空间光调制器(2),用于对光源(1)发出的光进行调制,形成用于显示图像的第一光和不用于显示图像的第二光;第二空间光调制器(3),用于接收第一光和第二光,并对第一光和第二光进行调制;后处理装置(4),用于将经过第二空间光调制器(3)调制后的光进行后续处理;光回收装置(4),用于将第二光传输给第二空间光调制器(3)。光回收装置(4)位于第一空间光调制器(2)和第二空间光调制器(3)之间。使用双空间光调制系统进行光调节的方法,能够自由调节系统的亮度和对比度,使系统亮度和对比度之间取得平衡。

Description

双空间光调制系统及使用该系统进行光调节的方法 技术领域
本发明属于光学技术领域,具体涉及一种双空间光调制系统及光调节的方法。
背景技术
目前,投影技术在人们日常生活的得到普遍的应用。无论在会议、教学或是娱乐场所都可以随处可见投影系统的使用。提高投影系统的动态范围(HDR)是投影系统下一步发展的主要方向之一。
技术问题
为了提高投影系统的动态范围,使用双空间光调制器是一种常见的做法。如图1所示,1'是一号光源,2'是一号空间光调制器,3'是二号空间光调制器,4'是附属结构,为投影系统在二号空间光调制器3'后的部分,可包括中继镜组、镜头和屏幕等。光源1'发出光源光,一号空间光调制器2'对光源光调制形成的图像光投射到二号空间光调制器3'上,二号空间光调制器3'进一步对图像光进行调制。空间光调制器包括多个调制单元,一个调制单元用于调制一个像素的图像光。系统最终调制出的图像的分辨率由二号空间光调制器3'所调制的图像的分辨率决定;一般一号空间光调制器2'所调制的图像的分辨率小于等于二号空间光调制器3'所调制的图像的分辨率,一号空间光调制器2'调制的一个像素的图像光被投射到二号空间光调制器3'的多个调制单元上,由该多个调制单元进一步调制形成多个像素的图像光;从而一号空间光调制器2'调制的一个像素对应二号空间光调制器3'调制的一个或多个像素。
空间光调制器的对比度可以理解为:空间光调制器对均匀入射到各调制单元上的入射光进行调制,所形成的全白像素的图像光和全黑像素的图像光的亮度比,该亮度比等于全白像素对应的转换效率与全黑像素对应的转换效率之比;所谓全白像素对应的转换效率即为:空间光调制形成的全白像素的图像光与入射到空间光调制器的入射光的亮度比;而所谓全黑像素对应的转换效率即为:空间光调制形成的全黑像素的图像光与入射到空间光调制器的入射光的亮度比。而空间光调制器的出光效率可以认为是全白像素对应的转换效率。
以一号空间光调制器2'的对比度为a:1(a>1)且出光效率为c(0<c≤1)、以及二号空间光调制器3'的对比度为b:1(b>1)且出光效率为d(0≤d≤1)为例。设光源光均匀入射到一号空间光调制器2',以及设入射到一号空间光调制器2'的光源光的亮度为1;则经一号空间光调制器2'调制形成的全白像素的图像光WL的亮度为1*c,以及经一号空间光调制器2'调制形成的全黑像素的图像光BL的亮度为1*c/a。设二号空间光调制器3'进一步将图像光WL调制形成全白像素,则调制形成的全白像素的图像光的亮度为1*c*d;以及二号空间光调制器3'进一步将图像光BL调制形成全黑像素,则调制形成的全黑像素的图像光的亮度为(1*c/a)*d/b。投影系统最终的对比度,可以认为是二号空间光调制器3'形成的全白像素的图像光与全黑像素的图像光的亮度比,即为a*b:1;投影系统的最终出光效率可认为是二号空间光调制器3'形成的全白像素的图像光与光源光的亮度比,即为c*d。
由此可见,采用两个空间光调制器,系统的对比度可以得到大幅提高,然而,系统的出光效率则降低比较多。
技术解决方案
针对以上现有技术的不足,本发明提出一种双空间光调制系统,通过使用本发明所述的双空间光调制系统,使出光效率和对比度之间取得平衡。
本发明提供了一种双空间光调制系统,包括光源、第一空间光调制器、第二空间光调制器以及光回收装置,所述光源用于提供源光;所述第一空间光调制器用于对所述源光进行调制,形成沿第一路径出射的用于显示图像的第一光和沿第二路径出射的不用于显示图像的第二光;所述光回收装置用于接收沿第二路径出射的所述第二光,并引导所述第二光与所述第一光进行合光,以及将所述第一光与所述第二光的合光传输至所述第二空间光调制器;所述第二空间光调制器用于接收所述第一光和所述第二光的合光,并对所述第一光和所述第二光的合光进行调制,以形成用于投影至屏幕的图像光。
优选的,所述光回收装置包括:光路转换组件,用于接收沿第二路径出射的所述第二光,以及改变所述第二光的光路,使所述第二光传输至合光装置;以及所述合光装置,用于接收所述光路转换组件传输的所述第二光,以及接收所述第一光,将接收的所述第二光与所述第一光进行合光。
优选的,所述光路转换组件包括:第一反射镜,用于接收沿第二路径出射的所述第二光,并反射所述第二光;第二反射镜,用于接收所述第一反射镜反射的所述第二光,进一步将所述第二光反射至所述合光装置。
优选的,所述光回收装置还包括:匀光装置,用于在所述第二光传输至所述合光装置之前,对所述第二光进行匀光。
优选的,所述光回收装置进一步包括:可控衰减装置,用于在所述第二光传输至所述合光装置之前,根据指定的衰减参数对所述第二光进行衰减处理。
优选的,所述源光包括在一帧彩色图像调制时段内依时序提供给所述第一空间光调制器的红光、绿光和蓝光;所述第一空间光调制器依据一彩色帧图像数据包含的红、绿和蓝三种单色帧图像数据分别对所述红光、绿光和蓝光进行调制;所述可控衰减装置对所述第一空间光调制器分别调制所述红光、绿光、蓝光形成的所述第二光进行衰减处理,得到第二衰减红光、第二衰减绿光和第二衰减蓝光,以使得在一帧彩色图像调制时段内得到的所述第二衰减红光、第二衰减绿光和第二衰减蓝光的光量一致。
优选的,所述双空间光调制系统包括三套调制装置,每一套所述调制装置包括所述第一空间光调制器、光回收装置和所述第二空间光调制器;所述源光包括在一帧彩色图像调制时段内同时分别提供给所述三套调制装置的红光、绿光和蓝光;所述三套调制装置中的所述第一空间光调制器分别依据一彩色帧图像数据包含的红、绿和蓝三种单色帧图像数据对所述红光、绿光和蓝光进行调制;所述三套调制装置中的所述可控衰减装置分别对相应的第一个空间光调制器调制的红光、绿光和蓝光形成的第二光进行衰减处理,得到第二衰减红光、第二衰减绿光和第二衰减蓝光,以使得在一帧彩色图像调制时段内得到的所述第二衰减红光、第二衰减绿光和第二衰减蓝光的光量一致。
优选的,控制装置,用于计算每一彩色图像数据包含的红、绿和蓝三种单色帧分别对应的可回收光比例,根据其中最低的可回收光比例控制所述可控衰减装置进行衰减处理,以使得在一帧彩色图像调制时段内得到的所述第二衰减红光、第二衰减绿光和第二衰减蓝光的光量一致。
优选的,所述第一空间光调制器为LCD或LCOS。
优选的,所述合光装置为偏振合光装置,传输至所述合光装置的所述第一光具有第一偏振态,传输至所述合光装置的所述第二光具有第二偏振态,所述合光装置用于将具有第一偏振态的所述第一光与具有所述第二偏振态的所述第二光进行合光。
优选的,所述第一空间光调制器为DMD。
优选的,所述合光装置为具有通孔的反射镜;所述第一光透过所述通孔入射至所述第二空间光调制器,所述第二光经所述反射镜反射至所述第二空间光调制器,或者所述第二光透过所述通孔入射至所述第二空间光调制器,所述第二光经所述反射镜反射至所述第二空间光调制器。
优选的,所述第一反射镜为平面反射镜;或者所述第一反射镜为曲面反射镜;所述第一光投射到所述第二空间光调制器上的第一光斑与所述第二光投射到所述第二空间光调制器的第二光斑具有重叠区域。
优选的,所述第二反射镜为平面反射镜;或者所述第二反射镜为曲面反射镜。
优选的,所述可控衰减装置为整片的可控液晶片。
优选的,所述第一反射镜和所述第二反射镜之间的夹角为90°
本发明还提供一种利用上述双空间光调制系统进行光调节的方法,包括以下步骤:
提供源光,通过所述光源发出源光;
源光调制,使所述源光经过所述第一空间光调制器进行调制,形成沿第一路径出射的用于显示图像的第一光和沿第二路径出射的不用于显示图像的第二光;
合光,通过所述光回收装置接收沿第二路径出射的所述第二光,并引导所述第二光与所述第一光进行合光,并将所述第一光与所述第二光的合光传输至所述第二空间光调制器;
光显示,通过所述第二空间光调制器接收所述第一光和所述第二光合成的所述合光并对其进行调制,形成图像光并投影至屏幕显示。
有益效果
与相关技术相比,本发明的双空间光调制系统及利用该系统进行光调节的方法中,增加了所述光回收装置,通过所述光回收装置接收沿第二路径出射的所述第二光,并引导所述第二光与所述第一光进行合光,以及将所述第一光与所述第二光的合光传输至所述第二空间光调制器;进一步通过所述第二空间光调制器接收所述第一光和所述第二光的合光,并对所述第一光和所述第二光的合光进行调制,以形成用于投影至屏幕的图像光,所述双空间光调制系统可以相对于没有光回收的双空间光调制系统而言,降低了对比度,而提高了出光效率;从而在对比度和出光效率之间可以取得平衡。
附图说明
下面结合附图详细说明本发明。通过结合以下附图所作的详细描述,本发明的上述或其他方面的内容将变得更清楚和更容易理解。附图中:
图1为现有技术中双空间光调制器的结构示意图。
图2为本发明的双空间光调制系统一个实施例的结构示意图。
图3为本发明的双空间光调制系统另一个实施例的结构示意图。
图4为投影显示的图像图。
图5为第一光与第二光投射到第二空间光调制器上的第一光斑和第二光斑的示意图。
附图中各标记表示如下:
1:光源、1':一号光源;
2:第一空间光处理器、2':二号空间光处理器;
3:第二空间光处理器、3':三号空间光处理器;
4:后处理装置、4':附属结构;
5:第一反射镜;
6:匀光装置;
7:第二反射镜;
8:合光装置;
9:可控衰减装置。
本发明的最佳实施方式
下面结合附图详细说明本发明的具体实施方式。
在此记载的具体实施方式/实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本发明的保护范围之内。
第一部分实施例:请参见图2,图2为本发明的双空间光调制系统一个实施例的结构示意图。本发明提出了一种双空间光调制系统,其包括光源1、第一空间光调制器2、第二空间光调制器3、后处理装置4、第一反射镜5、匀光装置6、第二反射镜7以及合光装置8 。所述第一反射镜5、匀光装置6、第二反射镜7以及合光装置8组成光回收装置。
其中,光源1可以为LED或激光二极管,用于为所述双空间光调制系统提供源光。
第一空间光调制器2用于对光源1发出的源光进行调制,形成沿第一路径出射的用于显示图像的第一光和沿第二路径出射的不用于显示图像的第二光。
在本实施例中,第一空间光调制器2是LCD或LCOS。当然,所述第一空间光调制器2也并非限于此,同原理结构均能满足图像调制要求的元器件均可行。当第一空间光调制器2为LCD或LCOS时,包括偏振转换器(未图示)和检偏器(未图示)。所述偏振转换器包括多个偏振转换单元,每一个偏振转换单元对应图像中的一个像素。所述偏振转换单元根据像素的灰阶值将光的对应比例转换成第一偏振态的光,剩余部分转换成第二偏振态的光。例如,某一像素的灰阶值为100,则对应的偏振转换单元将入射到自身的光束的100/255转换成P偏振态,155/255转换成S偏振态。而检偏器具有透射P偏振态的光、反射S偏振态的光的特性。
LCD是 Liquid Crystal Display(液晶显示) 的简称,LCD 的构造是在两片平行的玻璃当中放置液态的晶体,两片玻璃中间有许多垂直和水平的细小电线,透过通电与否来控制杆状水晶分子改变方向,将光折射出来产生画面。
LCOS是Liquid Crystal on Silicon的简称,即液晶附硅,也叫硅基液晶,是一种基于反射模式、尺寸非常小的矩阵液晶显示装置。
第二空间光调制器3用于接收所述第一光和所述第二光的合光,并对所述第一光和所述第二光的合光进行调制,以形成用于投影至屏幕的图像光。
经过第一空间光调制器2调制后形成的用于显示图像的所述第一光,第二空间光调制器3位于第一光的光路上。第二空间光调制器3的具体类型或型号不受第一空间光调制器2的限制,第二空间光调制器可以为LCD、LOS或DMD等。
所述后处理装置4包括中继镜组(未图示)和镜头(未图示)等。后处理装置4用于将经过所述第二空间光调制器3调制后的光进行收集、扩散、匀光和整形等后续处理,并投影到屏幕上。
所述光回收装置用于接收沿第二路径出射的所述第二光,并引导所述第二光与所述第一光进行合光,以及将所述第一光与所述第二光的合光传输至所述第二空间光调制器3。
所述第一反射镜5用于接收沿第二路径出射的第二光,并反射第二光。本实施方式中,所述第一反射镜5为平面反射镜或曲面反射镜,可以根据实际需要进行设置。
所述匀光装置6用于在所述第二光传输至所述合光装置8之前,对所述第二光进行匀光。
所述第二反射镜7用于接收所述第一反射镜5反射的第二光,进一步将第二光反射至合光装置8。本实施方式中,所述第二反射镜7为平面反射镜或曲面反射镜,可以根据实际需要进行设置。
所述合光装置8用于接收光路转换组件传输的所述第二光,以及接收所述第一光,将接收的所述第二光与所述第一光进行合光。
具体的,合光装置8为偏振合光装置,传输至合光装置8的所述第一光具有第一偏振态,传输至合光装置8的所述第二光具有第二偏振态,合光装置8用于将具有第一偏振态的所述第一光与具有所述第二偏振态的所述第二光进行合光。合光装置8透射具有第一偏振态的第一光以及反射具有第二偏振态的第二光。
进一步的,所述第一反射镜5和第二反射镜7之间在空间上的夹角可设定为90°。这样的夹角设置,可以保证不用于显示图像的第二光可以完全反射到第二空间光调制器3上,保证了所述源光的亮度。但本发明并不以此为限。
本实施例中,第一反射镜5和第二反射镜7构成光路转换组件,以接收沿第二路径出射的所述第二光,以及改变所述第二光的光路,使所述第二光传输至所述合光装置8。
本发明不限制光路转换组件所包含的用于改变光路的光学元件的数量和种类。例如,光路转换组件可包括可改变光路的反射镜和可改变光路的透射镜中的一种或两种,所包含的光学元件的数量可以为多个。所有用于接收沿第二路径出射的所述第二光,以及改变所述第二光的光路,使所述第二光传输至所述合光装置8的光路转换组件都属于本发明的保护范围。
当然,在一个实施例中,所述合光装置8也可为具有通孔的反射镜,请结合参阅图5:所述第一光透过所述通孔入射至所述第二空间光调制器3,所述第二光经所述合光装置8反射至所述第二空间光调制器3;所述第一光投射到所述第二空间光调制器3上的第一光斑与所述第二光投射到所述第二空间光调制器3的第二光斑具有重叠区域。其中,第二反射镜7为曲面反射镜,其凸面反射第二光,第二光投射到合光装置8上的光斑的面积大于第二光投射到第二反射镜7的光斑,第二反射镜7对第二光具有扩散的作用。合光装置8也为曲面反射镜,由合光装置8的凹面反射的第二光,经合光装置反射的第二光能够会聚成更小的光斑(相对于第二光投射到合光装置8上的光斑而言),合光装置8对第二光具有汇聚作用。
或者,在另一个实施例中,所述第二光透过所述合光装置8的通孔入射至所述第二空间光调制器3,所述第二光经所述合光装置8反射至所述第二空间光调制器3。其中,第二反射镜7以及合光装置8的特性可以根据实际需要进行设置。
本实施方式中,沿所述第二光方向依次设置的第一反射镜5、匀光装置6、第二反射镜7以及合光装置8,其共同构成光回收装置并用于将所述第二光传输给第二空间光调制器3。光回收装置位于所述第一空间光调制器2和所述第二空间光调制器3之间。
第二空间光调制器3接收第一光和第二光后,再次对其进行调制,最终通过后处理装置4形成影像。
第二部分实施例:
一般的,一帧彩色图像都包含由红、绿和蓝三种单色图像帧。可以采用以下两种方式调制图像。
第一种方式,时序提供红、绿和蓝三种颜色的光,采用一套调制装置,分别根据红、绿和蓝三种单色图像帧调制红、绿和蓝三种颜色的光。
第二种方式,在三条光路上同时提供红、绿和蓝三种颜色的光,采用三套调制装置分别根据红、绿和蓝三种单色图像帧调制红、绿和蓝三种颜色的光,每条光路上设置一套调制装置。
图2示出的结构图适用于第一种方式以及适用于第二种方式中的一条光路。
请参阅图3,图3为本发明的双空间光调制系统另一个实施例的结构示意图。图3所示实施例与图2所示的实施例基本相同,区别在于:图3所示的实施例中回收光装置进一步包括可控衰减装置9和控制装置(未图示)。
可控衰减装置9位于匀光装置6以及所述第二反射镜7之间。可控衰减装置9用于在所述第二光传输至所述合光装置8之前,根据指定的衰减参数对所述第二光进行衰减处理,控制回收所述第二光。所述第一空间调制器2、所述第一反射镜5、匀光装置6、可控衰减装置9、第二反射镜7、合光装置8以及第二空间光调制器3共同形成一套调制装置。
在一个实施例中,采用一套调制装置,分别根据所述第二光的红、绿和蓝三种单色图像帧调制红、绿和蓝三种颜色的光。
具体的,所述光源1提供的源光包括在一帧彩色图像调制时段内依时序提供给所述第一空间光调制器2的红光、绿光和蓝光;所述第一空间光调制器2依据一彩色帧图像数据包含的红、绿和蓝三种单色帧图像数据分别对所述红光、绿光和蓝光进行调制,形成沿第一路径出射的用于显示图像的第一光和沿第二路径出射的不用于显示图像的第二光;所述第一反射镜5接收沿第二路径出射的第二光,并反射第二光至所述匀光装置6,所述匀光装置6对所述第二光进行匀光;所述可控衰减装置9对匀光处理后的所述第二光进行衰减处理,得到第二衰减红光、第二衰减绿光和第二衰减蓝光,以使得在一帧彩色图像调制时段内得到的所述第二衰减红光、第二衰减绿光和第二衰减蓝光的光量一致;所述第二反射镜7接收所述第二衰减红光、第二衰减绿光和第二衰减蓝光合成经衰减后的第二光并反射至所述合光装置8;所述合光装置8接收上述经衰减处理后的第二光,以及接收所述第一光,将接收的经衰减处理后的所述第二光与所述第一光进行合光;第二空间光调制器3接收所述合光,再次对其进行调制,最终通过后处理装置4形成影像。
在另一个实施例中,在三条光路上同时提供红、绿和蓝三种颜色的光,采用三套调制装置分别根据红、绿和蓝三种单色图像帧调制红、绿和蓝三种颜色的光,每条光路上设置一套调制装置。每一套调制装置均包括所述第一空间调制器2、所述第一反射镜5、匀光装置6、可控衰减装置9、第二反射镜7、合光装置8以及第二空间光调制器3,
具体的,所述光源1提供的源光包括红光、绿光和蓝光三种颜色的三道光,并分别提供给三套所述调制装置。可以是由三个光源1分别提供红光、绿光和蓝光;也可以由一个光源1提供一个源光,再由棱镜分光成红光、绿光和蓝光三个颜色的光,这都是可行的,具体形式不限,其原理都一样。
所述三套调制装置中的每一个所述第一空间光调制器2分别接收红光、绿光、蓝光并根据对应的彩色帧图像数据对所述红光、绿光和蓝光进行调制。也就是说,红光、绿光和蓝光三个颜色的光同时分别经三个所述第一空间光调制器2。
比如,红光的调制过程:红光经过一个第一空间光调制器2,该第一空间光调制器2依据红色帧图像数据对所述红光进行调制,形成沿第一路径出射的用于显示图像的红光第一光和沿第二路径出射的不用于显示图像的红光第二光;所述第一反射镜5接收沿第二路径出射的所述红光第二光,并反射红光第二光至所述匀光装置6,所述匀光装置6对所述红光第二光进行匀光;所述可控衰减装置9对匀光处理后的所述红光第二光按要求进行衰减处理,得到第二衰减红光;所述第二反射镜7接收所述第二衰减红光并反射至所述合光装置8;所述合光装置8接收上述经衰减处理后的第二衰减红光,以及接收所述红光第一光,将接收的经衰减处理后的所述第二衰减红光与所述红光第一光进行合光;第二空间光调制器3接收所述合光,再次对其进行调制。经过上述调制后的红光最终通过后处理装置4形成影像。
绿光的调制过程与上述红光的调制过程同理;
蓝光的调制过程与上述红光的调制过程同理;
当然,在整个系统中,三套所述调制装置分别对所述红光、绿光和蓝光进行调制过程中,可增加一个控制装置用控制衰减参数,三套所述调制装置共用一个控制装置即可。
因此,本实施例中,所述第二光实际上为三条光路同时进行,每条光路都包括一个第二光(分别对应为红光调制的第二光、绿光调制的第二光及蓝光调制的第二光)。三条光路的三个第二光再分别经过各自光路上的第一反射镜5、匀光装置6、可控衰减装置9、第二反射镜7及合光装置8完成对应的光处理,每一条光路的光处理过程与上述采用一套调制装置进行调制的实施例的过程相同,本实施方式中为三套调制装置对三个第二光分别进行调制,其原理都一样,在此不再赘述。
因在每一帧彩色图像都包含由红、绿和蓝三种单色图像帧,每一单色图像帧可被回收的光量比例不同,即衰减参数不同。相对暗的图像帧可被回收的光量比例较大,因为空间光调制器调制相对暗的图像帧形成的不用于显示图像的光更多;而相对亮的图像帧可被回收的光量比例较小。对于每一帧彩色图像都需要控制装置控制调节三种单色图像帧可以被回收的光量比例,该控制装置计算每一彩色帧中各单色图像帧的可被回收的光的比例=不用于显示图像的光/(用于显示图像的光+不用于显示图像的光)。当然,本发明的双空间光调制系统也并非一定要具有控制装置,也可以通过其它元件按固定形式直接读取三种单色图像帧可被回收的光量比例,只要能读取三种单色图像帧可被回收的光量比例即可。
可控衰减装置9分别读取所述第二光的红色、绿色和蓝色三种颜色光的可回收比例,并将所述第二光的红色、绿色和蓝色三种颜色光的回收比例通过时序调节方式或三条光路分别调节方式调节至一致。
通过采用可控衰减装置9控制回收光的多少,可以进一步调节本发明双空间光调制系统中的亮度和对比度,使其达到所需的平衡状态。
本实施例中,所述可控衰减装置9可以采用整片的可控液晶片。液晶片是一块液晶成像器件,用来将红、绿及蓝色光合成图像的颜色。可控液晶片即可控制合成图像的颜色亮度。
比如,红色帧图像数据对应的可回收光比例是20%,绿色帧图像数据对应的可回收比例是40%,蓝色帧图像数据对应的可回收比例是60%。则可分别生成用于控制红光、绿光和蓝光衰减的三个衰减参数,分别为:0%、50%和67%。衰减参数=(可控衰减装置接收的光量-出射的光量)/接收的光量。
请结合参阅图4,为投影显示的图像图。一般投影的图像都会有明暗不同的区域。假设想要投影显示的图像如图4所示,区域101,102,104为全暗,区域103为全亮。假设第一空间光调制器2以及第二空间光调制器3的通光效率都为70%,对比度都为100:1。如果只用一个空间光调制器显示图4所示图像,假设屏幕上103区域的亮度为x。则101、102以及104区域的亮度为1%x。
如果使用两个空间光调制器显示图4所示图像,则屏幕上103区域的亮度为70%x,图像最亮点的亮度降低。而101、102以及104区域的亮度为0.007%x,系统对比度可以提高到高达10000:1。但实际上在投影系统的环境中总存在一些杂光,这样太高的对比度并不能很好的体现出来。
如果使用加了光回收装置的两个空间光调制器显示图4所示的图像,而不用可控衰减装置衰减回收光的话,103区域的亮度为122.5%x。所以系统投影图像的最亮点甚至可能比用单片空间光调制器显示图像的最亮点还要亮。而101、102以及104区域的亮度为0.525%x,系统的对比度233:1,会比单个空间光调制器显示的对比度高,而比没有光回收装置的两个空间光调制器显示的对比度低。
所以该光回收装置在两个空间光调制器的系统中牺牲了对比度而提高了亮度。在实际应用中过高的对比度往往由于环境杂光的原因不能很好的体现。通过调节图2中可控衰减装置9,控制回收光的多少,可在系统中调节对比度和亮度,以达到最佳平衡。
第三部分实施例:
请继续参阅图3,与第二部分实施例基本相同,不同的是,本实施例中所述第一空间光调制器2采用DMD (Digital Micro-mirror Device,数字微镜器件),包括多个微镜单元(未图示),每一个微镜单元对应图像中的一个像素。微镜单元可以处于ON(开)状态和OFF(关)状态,当处于ON状态时,将光束反射到投影镜头,当处于OFF状态时,将光束反射到另外的光路。在一个调制周期内,微镜单元处于ON状态的时间或次数与像素的灰阶值成正比。
由于本实施例中的第一空间光调制器2采用DMD,对应的合光装置8有所不同。合光装置8可以是中间带通孔的反射镜。经过第一空间光调制器2调制后形成的第一光可以通过合光装置8的中间孔打到第二空间光调制器3上。本实施例中,通孔位于反射镜的中间位置,但本发明并不以此为限,在其它实施例中,通孔也可以位于其它位置。
而第二光经过第一反射镜5、匀光装置6、可控衰减装置9、第二反射镜7以及合光装置8,最终反射到第二空间光调制器3上。由于合光装置8中间具有通孔,第二光在回收过程中会有一定损失。第二反射镜7和合光装置8的特性的设置可参照上文所述的实施例,在此不再赘述。
如此,通过使用本发明的双空间光调制系统,能够得到对比度和亮度相对平衡的影像输出。
此外,本发明还提出了一种利用上述双空间光调制系统进行光调节的方法,包括以下步骤:
本发明还提供一种利用上述双空间光调制系统进行光调节的方法,其中,所述光回收装置包括光路转换组件、合光装置8、匀光装置6和可控衰减装置9,所述光路转换组件包括第一反射镜5和第二反射镜7,该方法包括以下步骤:
步骤S1、提供源光,通过所述光源1发出源光。
步骤S2、源光调制,使所述源光经过所述第一空间光调制器2进行调制,形成沿第一路径出射的用于显示图像的第一光和沿第二路径出射的不用于显示图像的第二光。
步骤S3、合光,通过所述光回收装置接收沿第二路径出射的所述第二光,并引导所述第二光与所述第一光进行合光,并将所述第一光与所述第二光的合光传输至所述第二空间光调制器3。
更优的,该步骤中具体包括:
步骤S31、通过所述光路转换组件接收沿第二路径出射的所述第二光并改变所述第二光的光路,使所述第二光传输至所述合光装置8。
本步骤中具体的,通过所述第二反射镜7接收所述第一反射镜5反射的沿第二路径出射的所述第二光,并改变所述第二光的光路,使所述第二光反射至所述合光装置8。
步骤S32、通过所述匀光装置6在所述第二光传输至所述合光装置8之前,对所述第二光进行匀光处理。
步骤S33、通过所述可控衰减装置9在所述第二光传输至所述合光装置8之前根据指定的衰减参数对所述第二光进行衰减处理。
步骤S34、通过所述合光装置8接收所述光路转换组件传输的所述第二光以及所述第一光,并将接收的所述第二光和所述第一光进行合光处理。
需要说明的是,步骤S32和步骤S33可更改先后顺序。比如:光路转换组件接收沿第二路径出射的所述第二光,然后所述第二光经过所述匀光装置6对其进行匀光处理,再通过所述可控衰减装置9对所述第二光进行衰减处理,最后通过所述合光装置8接收所述第二光。
本实施方式中,光先后依次经过所述第一反射镜5、所述匀光装置6、所述可控衰减装置9、所述第二反射镜7以及所述合光装置8,最终反射到所述第二空间光调制器3上。
步骤S4、光显示,通过所述第二空间光调制器3接收步骤S3处理后的所述第一光和所述第二光合成的所述合光并对其进行调制,形成图像光并投影至屏幕显示。
与相关技术相比,本发明的双空间光调制系统及利用该系统进行光调节的方法中,增加了所述光回收装置,通过所述光回收装置接收沿第二路径出射的所述第二光,并引导所述第二光与所述第一光进行合光,以及将所述第一光与所述第二光的合光传输至所述第二空间光调制器;进一步通过所述第二空间光调制器接收所述第一光和所述第二光的合光,并对所述第一光和所述第二光的合光进行调制,以形成用于投影至屏幕的图像光,所述双空间光调制系统可以根据使用需要调节对比度和亮度相对平衡。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本发明而非限制本发明的范围,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的修改或者等同替换,均应涵盖在本发明的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (17)

1、一种双空间光调制系统,其特征在于,包括光源、第一空间光调制器、第二空间光调制器以及光回收装置,
所述光源用于提供源光;
所述第一空间光调制器用于对所述源光进行调制,形成沿第一路径出射的用于显示图像的第一光和沿第二路径出射的不用于显示图像的第二光;
所述光回收装置用于接收沿第二路径出射的所述第二光,并引导所述第二光与所述第一光进行合光,以及将所述第一光与所述第二光的合光传输至所述第二空间光调制器;
所述第二空间光调制器用于接收所述第一光和所述第二光的合光,并对所述第一光和所述第二光的合光进行调制,以形成用于投影至屏幕的图像光。
2、根据权利要求1所述的双空间光调制系统,其特征在于,所述光回收装置包括:
光路转换组件,用于接收沿第二路径出射的所述第二光,以及改变所述第二光的光路,使所述第二光传输至合光装置;以及,
所述合光装置,用于接收所述光路转换组件传输的所述第二光,以及接收所述第一光,将接收的所述第二光与所述第一光进行合光。
3、根据权利要求2所述的双空间光调制系统,其特征在于,所述光路转换组件包括:
第一反射镜,用于接收沿第二路径出射的所述第二光,并反射所述第二光;
第二反射镜,用于接收所述第一反射镜反射的所述第二光,进一步将所述第二光反射至所述合光装置。
4、根据权利要求2所述的双空间光调制系统,其特征在于,所述光回收装置还包括:
匀光装置,用于在所述第二光传输至所述合光装置之前,对所述第二光进行匀光。
5、根据权利要求2所述的双空间光调制系统,其特征在于,所述光回收装置进一步包括:
可控衰减装置,用于在所述第二光传输至所述合光装置之前,根据指定的衰减参数对所述第二光进行衰减处理。
6、根据权利要求5所述的双空间光调制系统,其特征在于,
所述源光包括在一帧彩色图像调制时段内依时序提供给所述第一空间光调制器的红光、绿光和蓝光;
所述第一空间光调制器依据一彩色帧图像数据包含的红、绿和蓝三种单色帧图像数据分别对所述红光、绿光和蓝光进行调制;
所述可控衰减装置对所述第一空间光调制器分别调制所述红光、绿光、蓝光形成的所述第二光进行衰减处理,得到第二衰减红光、第二衰减绿光和第二衰减蓝光,以使得在一帧彩色图像调制时段内得到的所述第二衰减红光、第二衰减绿光和第二衰减蓝光的光量一致。
7、根据权利要求5所述的双空间光调制系统,其特征在于,所述双空间光调制系统包括三套调制装置,每一套所述调制装置包括所述第一空间光调制器、光回收装置和所述第二空间光调制器;
所述源光包括在一帧彩色图像调制时段内同时分别提供给所述三套调制装置的红光、绿光和蓝光;
所述三套调制装置中的所述第一空间光调制器分别依据一彩色帧图像数据包含的红、绿和蓝三种单色帧图像数据对所述红光、绿光和蓝光进行调制;
所述三套调制装置中的所述可控衰减装置分别对相应的第一个空间光调制器调制的红光、绿光和蓝光形成的第二光进行衰减处理,得到第二衰减红光、第二衰减绿光和第二衰减蓝光,以使得在一帧彩色图像调制时段内得到的所述第二衰减红光、第二衰减绿光和第二衰减蓝光的光量一致。
8、根据权利要求6或7所述的双空间光调制系统,其特征在于,所述双空间光调制系统还包括:
控制装置,用于计算每一彩色图像数据包含的红、绿和蓝三种单色帧分别对应的可回收光比例,根据其中最低的可回收光比例控制所述可控衰减装置进行衰减处理,以使得在一帧彩色图像调制时段内得到的所述第二衰减红光、第二衰减绿光和第二衰减蓝光的光量一致。
9、根据权利要求2所述的双空间光调制系统,其特征在于,所述第一空间光调制器为LCD或LCOS。
10、根据权利要求9所述的双空间光调制系统,其特征在于,所述合光装置为偏振合光装置,传输至所述合光装置的所述第一光具有第一偏振态,传输至所述合光装置的所述第二光具有第二偏振态,所述合光装置用于将具有第一偏振态的所述第一光与具有所述第二偏振态的所述第二光进行合光。
11、根据权利要求1所述的双空间光调制系统,其特征在于,所述第一空间光调制器为DMD。
12、根据权利要求2所述的双空间光调制系统,其特征在于,所述合光装置为具有通孔的反射镜;
所述第一光透过所述通孔入射至所述第二空间光调制器,所述第二光经所述反射镜反射至所述第二空间光调制器,或者,
所述第二光透过所述通孔入射至所述第二空间光调制器,所述第二光经所述反射镜反射至所述第二空间光调制器。
13、根据权利要求12所述的双空间光调制系统,其特征在于,所述第一反射镜为平面反射镜;或者,
所述第一反射镜为曲面反射镜;
所述第一光投射到所述第二空间光调制器上的第一光斑与所述第二光投射到所述第二空间光调制器的第二光斑具有重叠区域。
14、根据权利要求3所述的双空间光调制系统,其特征在于,所述第二反射镜为平面反射镜;或者,
所述第二反射镜为曲面反射镜。
15、根据权利要求5所述的双空间光调制系统,其特征在于,所述可控衰减装置为整片的可控液晶片。
16、根据权利要求3所述的双空间光调制系统,其特征在于,所述第一反射镜和所述第二反射镜之间的夹角为90°
17、一种光调节的方法,包括以下步骤:
提供源光,通过所述光源发出源光;
源光调制,使所述源光经过所述第一空间光调制器进行调制,形成沿第一路径出射的用于显示图像的第一光和沿第二路径出射的不用于显示图像的第二光;
合光,通过所述光回收装置接收沿第二路径出射的所述第二光,并引导所述第二光与所述第一光进行合光,并将所述第一光与所述第二光的合光传输至所述第二空间光调制器;
光显示,通过所述第二空间光调制器接收所述第一光和所述第二光合成的所述合光并对其进行调制,形成图像光并投影至屏幕显示。
PCT/CN2017/081305 2016-09-05 2017-04-20 双空间光调制系统及使用该系统进行光调节的方法 WO2018072419A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610802939 2016-09-05
CN201610900966.XA CN107797368B (zh) 2016-09-05 2016-10-17 双空间光调制系统及使用该系统进行光调节的方法
CN201610900966.X 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018072419A1 true WO2018072419A1 (zh) 2018-04-26

Family

ID=61530969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081305 WO2018072419A1 (zh) 2016-09-05 2017-04-20 双空间光调制系统及使用该系统进行光调节的方法

Country Status (2)

Country Link
CN (1) CN107797368B (zh)
WO (1) WO2018072419A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110837199B (zh) * 2018-08-16 2021-10-12 深圳光峰科技股份有限公司 显示设备
CN111385549B (zh) * 2018-12-28 2023-10-10 深圳光峰科技股份有限公司 空间光调制器的调节装置及其投影装置
CN112799272B (zh) * 2019-11-13 2023-09-15 深圳光峰科技股份有限公司 显示设备及其控制方法
CN113138522B (zh) * 2020-01-17 2023-08-04 深圳光峰科技股份有限公司 光源调制系统、方法及光源系统
CN115808291A (zh) * 2021-09-14 2023-03-17 深圳光峰科技股份有限公司 双空间光调制设备的标定方法、装置、系统及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625905A (zh) * 2002-01-28 2005-06-08 汤姆森特许公司 立体光引擎体系结构
US20090180080A1 (en) * 2008-01-16 2009-07-16 Oakley William S Intra-Scene Dynamic Range Increase by Use of Programmed Multi-Step Filter
CN105549215A (zh) * 2015-12-15 2016-05-04 中国电子科技集团公司第四十一研究所 近红外照明光源转换线偏振光的方法及其专用装置
CN105573033A (zh) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 提高光利用率及投影亮度的投影光学系统
CN105824177A (zh) * 2015-01-09 2016-08-03 深圳市绎立锐光科技开发有限公司 硅基液晶投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625905A (zh) * 2002-01-28 2005-06-08 汤姆森特许公司 立体光引擎体系结构
US20090180080A1 (en) * 2008-01-16 2009-07-16 Oakley William S Intra-Scene Dynamic Range Increase by Use of Programmed Multi-Step Filter
CN105824177A (zh) * 2015-01-09 2016-08-03 深圳市绎立锐光科技开发有限公司 硅基液晶投影系统
CN105549215A (zh) * 2015-12-15 2016-05-04 中国电子科技集团公司第四十一研究所 近红外照明光源转换线偏振光的方法及其专用装置
CN105573033A (zh) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 提高光利用率及投影亮度的投影光学系统

Also Published As

Publication number Publication date
CN107797368B (zh) 2020-05-05
CN107797368A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2018072419A1 (zh) 双空间光调制系统及使用该系统进行光调节的方法
US6553168B2 (en) Projection system utilizing fiber optic illumination
US7396131B2 (en) Projection assembly
TWI269928B (en) LCoS display system with software/firmware correction enabling use of imperfect LCoS chips
WO2016124094A1 (zh) 投影设备、投影控制系统及投影控制方法
WO2010143891A2 (en) Projection system
WO2016129969A1 (ko) 레이저다이오드 액정 프로젝터
WO2018126561A1 (zh) 投影系统
JP3174812U (ja) 小型プロジェクター用光学エンジン
US10809610B1 (en) Two-piece LCD projector based on semi-field sequence display manner
WO2017206614A1 (zh) 投影系统
KR20070020030A (ko) 일렬로 2개의 이미저를 포함하는 2 스테이지 시스템에서 더작은 이미저를 갖는 더 큰 아크 램프를 이용하는 시스템
WO2018028238A1 (zh) 投影系统及应用于投影系统的亮度调节方法
KR20050085372A (ko) 2단 프로젝터 아키텍처
WO2018113226A1 (zh) 一种投影显示系统
WO2017206259A1 (zh) 投影装置及投影系统
US20200089093A1 (en) Display system
WO2018170987A1 (zh) 投影系统
WO2018032857A1 (zh) 一种显示系统
WO2016127814A1 (zh) 投影系统及其控制方法
WO2017219747A1 (zh) 投影系统及图像调制方法
WO2011035551A1 (zh) 一种激光电视机
CN101976011B (zh) Md短焦距投影显示装置
CN210323739U (zh) 一种基于半场序显示方式的两片式lcd投影机
WO2020088163A1 (zh) 投影系统及投影控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861298

Country of ref document: EP

Kind code of ref document: A1