WO2016180298A1 - 一种发光装置及其发光控制方法、投影设备 - Google Patents

一种发光装置及其发光控制方法、投影设备 Download PDF

Info

Publication number
WO2016180298A1
WO2016180298A1 PCT/CN2016/081393 CN2016081393W WO2016180298A1 WO 2016180298 A1 WO2016180298 A1 WO 2016180298A1 CN 2016081393 W CN2016081393 W CN 2016081393W WO 2016180298 A1 WO2016180298 A1 WO 2016180298A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
compensation
light source
primary
Prior art date
Application number
PCT/CN2016/081393
Other languages
English (en)
French (fr)
Inventor
李屹
王则钦
郭祖强
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2016180298A1 publication Critical patent/WO2016180298A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a light-emitting device, a light-emitting control method thereof, and a projection device.
  • FIG. 1 is a schematic diagram showing the gamut result before and after compensating the light source of the prior art projection device, as shown in FIG. 2 .
  • a schematic diagram of a prior art projection apparatus using a color gamut range before and after compensating a light source is shown.
  • FIG. 2 is a schematic diagram for facilitating the description of FIG. 1, FIG. 1 and FIG.
  • the compensation light used by the projection device is a red laser.
  • the color coordinates fall on the GBR' for a certain frame image. The color of the pixels outside is not displayed efficiently.
  • the mixed light of red fluorescent light and red laser light is used as the red primary color light
  • the red primary color light for some images, since all pixels in the picture are in GBR , that is, you don't need to use RBR'' The area, so that the light source corresponding to the red fluorescent and red laser lights at the same time will cause a great waste of electric energy, which is not conducive to saving energy and expenses, and seriously affects the practicality of the projection device product.
  • a light emission control method of a light emitting device comprising a main light source, the light emitting device emitting a first light comprising three primary colors when the main light source is turned on, the first light being formed on the color coordinate map First color gamut area;
  • the illuminating device further includes a compensating light source for emitting the compensating light, the illuminating device emitting the second light including the three primary colors when the main light source and the compensating light source are both turned on, and compensating the light to form the photosynthetic light with at least one of the first lights.
  • a primary color light of the second light wherein the color coordinates of at least one of the three primary colors included in the second light and the color coordinates of any one of the three primary colors included in the first light are different, and the second The light forms a second color gamut region on the color coordinate map;
  • the illumination control method includes the following processes:
  • the main light source is controlled to be turned on, and the compensation light source is controlled to not emit light;
  • both the control main light source and the compensation light source are turned on, so that the color coordinates of all the pixels are in the second color gamut area.
  • controlling both the main light source and the compensation light source to be turned on specifically includes: adjusting a ratio of the main light source illumination intensity to the compensation light source illumination intensity, so that the color coordinates of all the pixels are in the second Within the gamut area.
  • Adjusting the ratio of the illumination intensity of the main light source to the illumination intensity of the compensation source, so that the color coordinates of all the pixels are in the second color gamut region specifically including: adjusting the ratio of the illumination intensity of the main light source to the illumination intensity of the compensation source, so that the color coordinates of all the pixels are at The second color gamut area, and the color coordinates of at least one pixel are on the side line of the second color gamut area.
  • Controlling both the primary light source and the compensation light source to be turned on includes: controlling the light source to emit the first compensation light and/or the second compensation light according to the distribution of the pixels whose color coordinates are outside the first color gamut region, the first compensation light and the first light
  • the first primary color photosynthetic light forms a first primary color light of the second light
  • the second complementary light and the second primary color of the first light are combined to form a second primary color light of the second light.
  • Distributing the first compensation light and/or the second compensation light according to the distribution control of the pixels whose color coordinates are outside the first color gamut area comprises: distributing the color coordinates in the pixels outside the first color gamut area
  • the compensation compensation light source emits the first compensation light
  • the third color gamut region is the color coordinate of the first compensation light, the color coordinate of the first primary color light in the first light, and the first light a color gamut region surrounded by the color coordinates of the third primary color light
  • the control compensation light source emits the second compensation
  • the light, fourth color gamut region is a color gamut region surrounded by the color coordinates of the second compensation light, the color coordinates of the second primary color light in the first light, and the color coordinates of the third primary color light in the first light.
  • the color coordinate of the intersection of the two lines which is closest to the color coordinate distance of the first compensation light (or the color coordinate which is the farthest from the color coordinate of the first primary color light of the first light), and the second color gamut area is the first compensation light a color gamut region enclosed by a color coordinate of the combined light of the first primary color light in the first light, a color coordinate of the second primary color light in the first light, and a color coordinate of the third primary color light in the first light;
  • a color gamut region enclosed by the color coordinates of the combined light of the light, the color coordinates of the first primary color light in the first light, and the color coordinates of the third primary color light in the first light; when the color coordinates are in the first color gamut region
  • the pixels outside the pixel have the pixels distributed in the third color gamut region, and when there are pixels distributed in the fourth color gamut region, the ratio of the illumination intensity of the main light source to the illumination intensity of the first compensation light emitted by the compensation source is adjusted.
  • the first line is an extension line of the color coordinate of the third primary color light in the second light and the color coordinate of the pixel distributed in the third color gamut area
  • the second line is the color coordinate of the first compensation light and the first line a line connecting the color coordinates of the first primary color light in the light
  • the third line being an extension of the line coordinate of the third primary color light in the first light and the color coordinate of the pixel distributed in the fourth color gamut region
  • the four lines are the lines connecting the color coordinates of the second compensation light to the color coordinates of the second primary color light in the first light.
  • the first light forms a first color gamut region of the triangle on the color coordinate map;
  • the apex of the first color gamut region formed by the first primary color light of the first light is the first primary color coordinate
  • a vertex of the first color gamut region formed by the second primary color light of the first light is a second primary color coordinate
  • a vertex of the first color gamut region formed by the third primary color light of the first light is a third primary color coordinate
  • a line connecting the first primary color coordinate and the third primary color coordinate is a first primary color edge
  • a color coordinate of the first compensation light a color coordinate of the first primary color light in the first light, and a color of the third primary color light in the first light
  • the coordinate is a triangular third color gamut region on the color coordinate map
  • the first primary color coordinate is connected to the color coordinate of the first compensation light as a second line; for all or part of the current frame projection image in the third color gamut region
  • the first light forms a first color gamut region of the triangle on the color coordinate map; the apex of the first color gamut region formed by the first primary color light of the first light is the first primary color coordinate, a vertex of the first color gamut region formed by the second primary color light of the first light is a second primary color coordinate, and a vertex of the first color gamut region formed by the third primary color light of the first light is a third primary color coordinate;
  • the line connecting the first primary color coordinate and the third primary color coordinate is a first primary color edge; the first compensation light is connected to the color coordinate of the first primary color light of the first light and the third primary color coordinate is connected to the fifth line.
  • the third primary color coordinate is connected to the color coordinates of all or part of the pixels of the current frame projection image in the third color gamut region, thereby obtaining at least one connecting line, the at least one connecting line and the first primary color edge forming at least one angle; In the at least one angle, taking the angle at which the angle value is the largest, adjusting the ratio of the luminous intensity of the main light source to the luminous intensity of the compensation light source, so that the angle formed by the fifth line and the first primary color side is the angle at which the angle value is the largest.
  • the illuminating device emits the first primary color light, the second primary color light and the third primary color light in a light sequence manner, and controls the compensation light source to turn on and emit the compensation light in a manner of: controlling the compensation light source emission during the emission of the compensated primary color light by the illuminating device Corresponding compensation light, during the emission of other light by the illumination device, controls the compensation light source not to emit corresponding compensation light.
  • the first compensation light source is controlled to emit the first compensation light during the emission of the first primary color light by the light emitting device (if the second compensation light source is present, the second compensation light source is simultaneously controlled) Turning off, the first compensation light source is turned off during the emission of the second primary color light and the third primary color light by the illumination device.
  • the second compensation light source is controlled to emit the second compensation light during the emission of the second primary color light by the light emitting device, and is controlled during the emission of the first primary color light and the third primary color light by the light emitting device The second compensation light source is turned off.
  • the first compensation light source is controlled to emit the first compensation light, and the second compensation light source is controlled to be turned off;
  • the second compensation light source is controlled to emit the second compensation light, and the first compensation light source is controlled to be turned off; and the first compensation light source and the second compensation light source are controlled to be turned off during the emission of the third primary color light by the illumination device.
  • Controlling the opening of the main light source and controlling the compensation light source not to emit light further comprises: adjusting a ratio of the three primary colors of light in the first light such that the first light reaches a preset brightness and/or white balance.
  • Controlling both the primary light source and the compensation light source to be turned on further includes: adjusting a ratio of the three primary colors of light in the second light such that the second light reaches a preset brightness and/or white balance.
  • a light emitting device comprising: a main light source for emitting excitation light; a compensation light source for emitting compensation light; and a color light generating device for generating three colors under illumination of the excitation light The first light of the primary color light, the first light forming a first color gamut region on the color coordinate map.
  • the illuminating device emits the second light including the three primary colors when the primary light source and the compensation light source are both turned on, and the complementary light and the at least one primary color of the first light are combined to form one of the second lights, and the second light is Forming a second color gamut region on the color coordinate map;
  • the light emitting device further includes a controller connected to the main light source and the compensation light source respectively for acquiring color coordinates of all pixels of the current frame projection image to be projected, and determining whether the color coordinates of all the pixels are in the first color gamut region. If all the color coordinates of the pixels are in the first color gamut area, the main light source is controlled to be turned on, and the compensation light source is not illuminated; if there are pixels whose color coordinates are outside the first color gamut area, both the main light source and the compensation light source are controlled. Turn on so that the color coordinates of all pixels are in the second gamut area.
  • the controller determines that there is a pixel whose color coordinate is outside the first color gamut region, and then controls both the main light source and the compensation light source to be turned on, and specifically includes: the controller adjusts a ratio of the main light source illumination intensity to the compensation light source illumination intensity, so that all the pixels are colored.
  • the coordinates are all in the second gamut area.
  • the controller adjusts the ratio of the intensity of the main light source to the intensity of the compensated light source, so that the color coordinates of all the pixels are in the second color gamut region, specifically including: the controller adjusts the ratio of the intensity of the main light source to the intensity of the compensated light source, so that all pixels
  • the color coordinates are all in the second color gamut area, and the color coordinates of at least one pixel are on the side line of the second color gamut area.
  • the compensation light source includes a first compensation light source and/or a second compensation light source; the first compensation light source is for emitting the first compensation light, and the second compensation light source is for emitting the second compensation light;
  • the controller controls the main light source and the compensation light source to be both turned on: the controller controls the compensation light source to emit the first compensation light and/or the second compensation light according to the distribution of the pixels whose color coordinates are outside the first color gamut area, the first compensation light and The first primary color photosynthetic light of the first light forms a first primary color light of the second light, and the second complementary light and the second primary color of the first light are combined to form a second primary color light of the second light.
  • the color light generating device of the light emitting device emits the second light including the three primary colors, that is, the color light generating device can generate the light containing the three primary colors after receiving the excitation light emitted by the main light source.
  • the compensation light emitted by the compensation light source may be transmitted by the color light generating device, and therefore, the second light emitted from the color light generating device is composed of the first light and the compensation light, and the second light also includes the three primary colors, and the compensation light Photosynthetic light is coupled to at least one of the first lights to form one of the second colors, and the second light forms a second color gamut region on the color map.
  • the first compensation light source is controlled to emit the first compensation light during the emission of the first primary color light by the color light generating device (if the second compensation light source is present, the second control is simultaneously controlled)
  • the compensation light source is turned off, and the first compensation light source is turned off during the emission of the second primary color light and the third primary color light by the color light generating device.
  • the second compensation light source is controlled to emit the second compensation light during the color light generating device to emit the second primary color light, and the first primary color light and the third primary color are emitted by the color light generating device.
  • the second compensation light source is controlled to be turned off.
  • the first primary color light and the second primary color light are compensated light
  • controlling the first compensation light source to emit the first compensation light
  • controlling the second compensation light source to be turned off
  • the color light generating device emits the second primary color light
  • controlling the second compensation light source to emit the second compensation light
  • controlling the first compensation light source to be turned off
  • controlling the first compensation light source and the second during the color light generating device to emit the third primary color light
  • the compensation light source is turned off.
  • a projection apparatus comprising any of the above-described illumination devices.
  • the invention has the beneficial effects that: according to the difference of each frame image, the first compensation image is turned on by analyzing a certain frame image, and the color coordinate portion of all the pixels of the current frame image is located in the third color gamut region, When the color coordinates of all the pixels are in the first color gamut area, the first compensation light source is not turned on, thereby achieving the energy saving effect.
  • the present invention further includes a second compensation light source
  • the second compensation light source by analyzing a certain frame image, is turned on only when the color coordinate portion of all the pixels of the current frame image is located in the fourth color gamut region.
  • the second compensation light source is not turned on when the color coordinates of all the pixels are in the first color gamut region, which more significantly reflects the advantages of the energy saving and power saving of the present invention.
  • FIG. 1 is a schematic diagram of a color gamut result before and after a compensation device is used in a prior art projection device
  • FIG. 2 is a schematic diagram showing a comparison of color gamut ranges before and after the compensation device of the prior art projection device
  • FIG. 3 is a schematic structural diagram of a projection apparatus of Embodiment 1;
  • FIG. 4 is a schematic structural view of a wavelength conversion device according to Embodiment 1;
  • FIG. 5 is a schematic diagram showing the principle of emitting compensation light by the illuminating device of the first embodiment
  • FIG. 6 is a comparison diagram of a color gamut range before and after the compensation device of the first embodiment adopts a compensation light source
  • FIG. 8 is a schematic diagram showing the principle of determining whether the color coordinates are located in the third color gamut region by the light-emitting device of the first embodiment
  • FIG. 9 is a schematic diagram showing the principle of emitting compensation light by the illuminating device of Embodiment 2;
  • FIG. 10 is a schematic diagram showing the principle of emitting compensation light by the illuminating device of the third embodiment
  • FIG. 11 is a schematic diagram showing the principle of emitting compensation light by the illuminating device of Embodiment 4.
  • FIG. 12 is a schematic structural diagram of a wavelength conversion device of Embodiment 4.
  • FIG. 13 is a schematic diagram showing the principle of emitting compensation light by the illuminating device of Embodiment 5;
  • Figure 14 is a timing chart of light emission of the light-emitting device of the fifth embodiment.
  • FIG. 15 is a schematic diagram showing the principle of determining which compensation light is emitted by the light-emitting device of Embodiment 5;
  • 16 is a schematic structural view of a wavelength conversion device of a light-emitting device of Embodiment 6;
  • Figure 17 is a timing chart of illumination of the light-emitting device of Embodiment 6;
  • FIG. 18 is a schematic structural view of another wavelength conversion device of the light-emitting device of Embodiment 6.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 is a schematic structural diagram of a projection apparatus according to the present embodiment.
  • the projection apparatus includes a main light source 405, a spectroscopic filter 406, a color wheel 408, a driving device 409, a shaping lens 410, a prism device 411, and a spatial light modulator ( Spatial Light Modulators, SLM) 412, an exit lens 413, a controller 403, and a first compensation light source 404, mirror 407.
  • the main light source 405, the spectral filter 406, the first compensation light source 404, the mirror 407, the color wheel 408, the driving device 409, and the controller 403 together constitute a light emitting device of the projection device.
  • the combination of the main light source 405, the spectral filter 406, the color wheel 408, the driving device 409, and the shaping lens 410 is used to generate a periodic sequence of color light sequences, and project the color light sequence outward along the designed optical path, through the shaping lens 410. After the prism device 411, it is projected to the spatial light modulator 412.
  • the first compensation light source 404 can be a red laser light source, and the red laser light emitted by it is compensation light.
  • a drive 409 (which may be, for example, a motor) drives the color wheel 408 to rotate to effect periodic movement of the color wheel 408 relative to the excitation light that impinges on its surface.
  • other forms of color light generating means may be used in place of the color wheel 408, and the color light generating means is driven by the drive means 409 to effect periodic motion with respect to the excitation light, such as reciprocating vibration or oscillation.
  • the excitation light emitted by the primary light source 405 can excite a wavelength converting material (e.g., phosphor) to emit a short wavelength received laser light.
  • the main light source 405 can be, for example, a blue LED, an ultraviolet LED or an array thereof, or a blue LD, an ultraviolet LD, or an array thereof.
  • the primary light source 405 can also emit white light.
  • the main light source 405 generates blue light.
  • the color wheel 408 may be in the shape of a disk (e.g., a ring or a circle) or a rectangle.
  • 4 is a schematic structural view of a disc-shaped color wheel 408 of the present embodiment.
  • the color wheel 408 includes a red color segment region 001, a green color segment region 002, and a blue color segment region 003, and a red color segment region 001.
  • the green color segment area 002 and the blue color segment area 003 are arranged end to end in the circumferential direction of the color wheel 408 in the set order.
  • the color wheel 408 fixed on the rotating shaft is driven by the driving device 409 to rotate around the rotating shaft, since the color wheel 408 is disposed on the path propagating toward the excitation light, so that the excitation light is projected on the color wheel 408.
  • the spot trajectory forms a circular path.
  • the excitation light emitted by the main light source 405 is projected on the color wheel 408 through the spectral filter 406 to form a light spot, and the light wavelength conversion material in the region where the light spot is located converts the excitation light into a laser light corresponding to the light wavelength conversion material, due to the spot position.
  • the color light sequence of the periodic sequence of the laser light of various colors is emitted from the color wheel 408.
  • the embodiment is specifically a red, green and blue light sequence.
  • the shaping lens 410 is disposed on the optical path emitted by the laser light, receives the color light sequence including the laser light emitted from the color wheel 408, performs beam shaping, and performs a light path direction conversion process by the prism device 411, and then projects the color light sequence.
  • the color wheel 408 and the shaping lens 410 may be integrated together, that is, a shaping lens 410 is disposed on the light emitting surface of the color wheel 408 to achieve a function of adjusting an exit angle including a sequence of color lights of the laser light.
  • the spatial light modulator 412 is configured to receive the received laser light emitted by the color light generating device, modulate the received laser light according to the input image signal, and emit the image light.
  • the spatial light modulator 412 is a digital micromirror component (DMD, Digital). Mirror Device, Digital Micromirror Device).
  • the controller 403 is used as a main control and processing device of the projection device for processing data and controlling various components. Specifically, determining a periodic motion frequency of the driving device according to a frame rate of the display image, and controlling the driving device according to the motion frequency Do periodic exercises, etc.
  • the exit lens 413 is used to project image light onto the projection lens, which in turn projects the image light onto the screen to form an image. Or the exit lens 413 is disposed directly in the projection lens for projecting image light onto the screen to form an image.
  • the light emitting device includes a main light source 405, a first compensation light source 404, a spectral filter 406, a mirror 407, and a color wheel 408.
  • the main light source 405, the first compensation light source 404, and the color wheel 408 are all controlled by the controller 403.
  • the color wheel 408 absorbs the excitation light emitted by the main light source 405 to generate a first light of a red, green and blue light sequence, that is, the first light is a red primary light generated by the light emitting device. 101.
  • the color gamut regions of the triangles formed by the three primary colors on the color coordinate map are the first color gamut regions RGB
  • the vertices of the first color gamut regions formed by the red primary color lights are the first primary color coordinates.
  • R the vertex of the first color gamut region formed by the green primary color light is the second primary color coordinate G
  • the vertex of the first color gamut region formed by the blue primary color light is the third primary color coordinate B.
  • a line connecting the first primary color coordinate R and the third primary color coordinate B is a first primary color side RB, and a line connecting the second primary color coordinate G and the third primary color coordinate B is a second primary color side GB.
  • the first compensation light source 404 emits the first compensation light 200 and is reflected by the mirror 407 and the spectral filter 406, and then transmitted from the color wheel 408 (
  • the color wheel 408 can transmit the first compensation light 200)
  • the combined light of the first compensation light 200 and the first light is the second light
  • the color gamut area of the triangle formed by the second light on the color coordinate map is the second color gamut area.
  • R1GB, the second color gamut area R1GB is larger than the first color gamut area RGB.
  • the compensation light 200 is red light for compensating the red primary color light 101 of the first light.
  • those skilled in the art can also select green, blue, and other colors of light as compensation light as needed.
  • the second color gamut region R1GB is a controllable dynamic region, and the second color gamut region R1GB is formed by combining the first compensation light 200 and the first light, and the first compensation light 200 and the light of the first light
  • the strong ratio affects the size of the gamut region. Therefore, when the illuminating intensity of the first compensating light source 404 and/or the illuminating intensity of the main light source 405 are changed, the ratio of the first compensating light 200 to the first light is increased. When the change occurs, the size of the second color gamut area R1GB also changes.
  • the portion of the largest color gamut region R1'BG that the second light can form on the color coordinate map that is larger than the first color gamut region RGB is the third color gamut region R1'BR.
  • the ratio of the illuminating light intensity of the main light source 405 to the illuminating light intensity of the first compensating light source 404 is a certain value (ie, the ratio of the light intensity of the first compensating light 200 and the first light is a certain value, or the first compensation)
  • the second light can obtain a color gamut area having the largest area, and the controller 403 determines the color coordinates of all the pixels.
  • the third color gamut region R1'BR and/or the region R1'BG have been pre-stored in the controller 403. Specifically, the controller 403 prestores the third color gamut region R1'BR and/or the region R1'BG. By comparing the color coordinates of the current frame projection image with the pre-stored color coordinates, it is determined whether the color coordinates of the third color gamut region R1'BR are present in the respective color coordinates of the current frame projection image.
  • the controller 403 acquires the color coordinates of all the pixels of the current frame projection image to be projected, and determines whether the color coordinates of all the pixels are in the first color gamut region RGB.
  • Each pixel contains R, G, and B values, and the three values determine the color coordinate position of the pixel on the chromaticity diagram.
  • the main light source 405 controls the main light source 405 to turn on the light emitting device to emit the first light; meanwhile, controlling the first compensation light source 404 to turn on the light emitting device to emit the first compensation light 200,
  • the first compensation light 200 and the first light together constitute a second light containing three primary colors of light, and the second light emitted by the illumination device forms a second color gamut region R1GB.
  • the light sequence of the red primary color light 101, the green primary color light 102, and the blue primary color light 103 is emitted from the color wheel 408, and the first compensation light 200 is directly transmitted from the color wheel 408 through the controller 403.
  • the controller 403 controls the first compensation light source 404 to be turned on to emit the first compensation light 200. While the color wheel 408 produces the green primary color light 102 and the blue primary color light 103 of the first light, the first compensation light source 404 does not emit light, which maximizes power savings.
  • the illumination timing diagram of the illumination device after the excitation light 100 passes through the color wheel 408, generates a light sequence of the red primary color light 101, the green primary color light 102, and the blue primary color light 103.
  • the controller 403 controls the first compensation light source 404 to be turned on to emit the first compensation light 200, thereby ensuring that the first compensation light 200 is transmitted from the color wheel 408,
  • the red primary color light 101 of a light remains synchronized, at which time the first compensation light 200 and the red primary color light 101 of the first light together constitute the first primary color light of the second light.
  • FIG. 7 reflects the situation that the main light source 405 and the first compensation light source need to be turned on at the same time. If the controller 403 determines that the color coordinates of all the pixels are located in the first color gamut region, the first compensation light source 404 does not need to be turned on. .
  • the color coordinates of the red primary color light in the second light are different from the color coordinates of any one of the three primary color lights included in the first light. Since the first compensation light is different from the color coordinates of the primary color light to be compensated in the first light (ie, the red primary color light 101), the color coordinates of the primary color light in the second light formed by the combination of the two light and the first light are The color coordinates of the primary color light to be supplemented are different.
  • the first color segment region 001 on the color wheel 408 for generating the red primary color light 101 is provided with an inductive device, and when the inductive device detects the excitation light 100 on the first color segment region 001 At the time of illumination, an induced signal is generated and sent to the controller 403, and the controller 403 turns on the first compensation light source 404 based on the sensing signal. In this manner, the effect of the first compensating light source 404 emitting the first compensating light 200 during the generation of the red primary color light 101 by the color wheel 408 can also be achieved.
  • the controller 403 controls the illumination intensity of the main light source 405 and the illumination intensity of the first compensation light source 404 such that the second light reaches a preset white balance and/or brightness value.
  • the controller 403 adjusts the ratio of the luminous intensity of the main light source 405 to the luminous intensity of the first compensation light source 404, so that the second color gamut region R1GB satisfies the following effects:
  • the color coordinates of at least one of the pixels are on the first edge BR1.
  • the controller 403 by the adjustment of the controller 403, the combined light of the first compensation light 200 and the first light forms a second color gamut region R1GB, and this second color gamut region R1GB is just such that those do not fall in the first color.
  • the color coordinates of the pixels in the domain region RGB are all located in the third color gamut region R1BR, and the color coordinates (for example, A4) of at least one pixel are located on the first edge line BR1, and the color coordinates A3 are circled first. Compensates the interior of the area R1BR.
  • A3 and A4 respectively represent the color coordinates of two types of pixels, and the object of the present invention is to form a second color gamut region R1GB, which is ideal for all pixels of the current frame image.
  • the second gamut region R1GB needs to reach a minimum area, so the color coordinate A4 represents the color coordinates of the ideally located edge of the second gamut region R1GB (ie, the first edge BR1), and the color coordinate A3. It represents the color coordinates of the ideal state that cannot be located on the first edge BR1.
  • a vertex formed on the second color gamut region is a first coordinate R1; a second primary color coordinate G and a first primary color
  • the extension of the line connecting the coordinates R is the second line (ie R in the figure) R1’).
  • the implementation manner of making the second color gamut region R1GB satisfy the above effects is as follows: the color coordinates of the pixels of all or part of the current frame projection image in the third color gamut region R1'BR (taking A3 and A4 as an example), the third primary color
  • the extension line of the line connecting the coordinate B and the color coordinates intersects the second line (for example, the extension line A4R1 of the third primary color coordinate B and the line A4 intersects with RR1, the intersection point is R1), and the first primary color coordinate is taken from the intersection point.
  • the farthest point of R (or the point closest to the distance color coordinate R1') is the first coordinate (in Fig. 6, the intersection generated by A4 is to be found.
  • the extension line is The intersection of RR1 is closer to the first primary color coordinate R, so it does not meet the requirements). Since the range of the second gamut region needs to be determined by some solution, and the first coordinate thereof needs to be determined, the idea of the present implementation is to determine the second gamut region with the smallest area by the method of intersection. For example, for the connection between B and A3 and B and A4, the extension of their connection will intersect with RR1'. As can be clearly seen from Figure 6, the intersection of the extension of B and A4 with RR1' is R1. Farthest from R, it means that in all points outside the first gamut area (or points within all third gamut areas), point A4 falls on the side line of the second gamut area. The area of the second gamut region is minimized while ensuring that the second gamut region is capable of covering the color coordinates of all pixels of all current frame projection images.
  • the line connecting the third primary color coordinate B and the first coordinate R1 is defined as a first edge BR1; the connection between the third primary color coordinate B and the first primary color coordinate R is a first primary color edge. BR; first primary color edge BR and first edge B R1 constitutes the first angle RBR1.
  • the implementation manner that the second color gamut region satisfies the requirement is that the third primary color coordinate B is connected to the color coordinates of the pixels of all the current frame projection images in the third color gamut region R1'BR, thereby obtaining at least one connection (FIG.
  • connection BA3 and a connection BA4 are provided, the at least one connection forming at least one angle with the first primary color edge (the angle RBA3 and the angle RBA4 are exemplarily shown in FIG. 6);
  • the angle at which the angle value is the largest is the first angle, thereby determining the range of the second color gamut region R1GB and the position of the first coordinate R1. . Since the second gamut area needs to be determined, and the first coordinate thereof needs to be determined, the idea of the present implementation is to determine the second gamut area with the smallest area by the method of angle.
  • all pixels (and their color coordinates) of the current frame projection image referred to in the present invention should exclude individual abnormal pixel points (and its color coordinates), and individual abnormal pixel points.
  • the color coordinates may be in a position that is very remote from the first color gamut region, so there is no need to consider such pixel points.
  • the controller 403 adjusts the ratio of the illumination intensity of the main light source 405 to the illumination intensity of the first compensation light source 404, such that the second color gamut region R1GB satisfies the following effects: in the third color gamut region R1'BR Among the pixels within, at least one of the pixels has a color coordinate having a predetermined distance from the first edge BR1. When the predetermined distance is small enough to be considered to be zero, it is equivalent to the above-described effect that the color coordinates of at least one pixel are on the first side line BR1.
  • the first embodiment is to use the first color gamut area RGB and the third color gamut area R1'BR (the largest second color gamut area can also be pre-stored)
  • the range is pre-stored in the controller 403, so that the controller 403 can directly judge whether the color coordinates of all the pixels are in the first color gamut area RGB or a part is in the third color gamut area R1'BR.
  • the controller 403 may not pre-store the range of the third color gamut region R1'BR, as shown in FIG. 8, the extension line of the GR, the first primary color edge RB, and the customized edge.
  • the controller 403 only needs to determine the color coordinates of all the pixels.
  • the portion is at RBH, it is considered that some of the color coordinates of all the pixels are in the third color gamut region R1'BR. This is because, in practice, the range of gamut regions that light can form is limited. If the colored coordinates are at RBH, then for such color coordinates, only the third gamut region R1'BR can be used to cover them. It can be considered that some of the color coordinates of all the pixels are in the third color gamut region R1'BR.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides a light-emitting device of a projection device, including a main light source 405, a first compensation light source 404, a spectral filter 406, a mirror 407, and a color wheel 408.
  • the main light source 405, the first compensation light source 404, and the color wheel 408 are all controlled by the controller 403.
  • the color wheel 408 absorbs the excitation light 100 and generates a light sequence formed by the three primary colors of the red primary color light 101, the green primary color light 102, and the blue primary color light 103, i.e., the first light.
  • first compensation light source 404 generates compensation excitation light 201
  • the color wheel 408 absorbs the compensation excitation light 201 to generate the first compensation light 200 (in this case, the first compensation light) 200 and the three primary colors of the first light are both fluorescent).
  • Other technical features of this embodiment are the same as those of the first embodiment, and therefore will not be described again.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides a light emitting device of a projection device, including a main light source 405, a first compensation light source 404, a spectral filter 406, a mirror 407, and a color wheel 408.
  • the main light source 405, the first compensation light source 404, and the color wheel 408 are all controlled by the controller 403.
  • the color wheel 408 absorbs the excitation light 100 and generates a light sequence formed by the three primary colors of the red primary color light 101, the green primary color light 102, and the blue primary color light 103.
  • the difference between this embodiment and the first embodiment is that a spectroscopic filter 4060 and a diffusion sheet 4070 are disposed on the optical path behind the color wheel 408, and the diffusion sheet 4070 performs the first compensation light 200 generated by the first compensation light source 404 on the one hand. Reflection, on the other hand, also plays a role in decoherence.
  • the first compensation light 200 of the present embodiment does not pass through the color wheel 408 but merges with the light sequence thereafter.
  • Other technical features of this embodiment are the same as those of the first embodiment, and therefore will not be described again.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the embodiment provides a light emitting device of a projection device, including a main light source 405 , a first compensation light source 404 , a spectral filter 406 , a mirror 407 , and a color wheel 408 .
  • the main light source 405, the first compensation light source 404, and the color wheel 408 are all controlled by the controller 403.
  • the color wheel 408 absorbs the excitation light 100 and generates a combined light formed by the three primary colors of the red primary color light 101, the green primary color light 102, and the blue primary color light 103.
  • the color wheel 408 is a ring color wheel, as shown in FIG. 12, including a red color segment 121, a green color segment 122 and a blue color segment 123, and the excitation light 100 is irradiated to the corresponding On the color segment, the color wheel 403 absorbs the excitation light 100 and produces a corresponding primary color light. For example, when the excitation light 100 is irradiated to the red color segment 121, the color wheel generates red primary color light 101. In this embodiment, the excitation light 100 is simultaneously irradiated to three color segments.
  • the color wheel 408 can transmit the first compensation light 200 such that the combined light formed by the first compensation light 200 and the light sequence can form a first color gamut region.
  • Other technical features of this embodiment are the same as those of the first embodiment, and therefore will not be described again.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the embodiment provides a light emitting device of a projection device, including a main light source 405 , a first compensation light source 404 , a spectral filter 406 , a first mirror 407 , and a color wheel 408 .
  • a second compensation light source 504, a second mirror 507 is also included.
  • the main light source 405, the first compensation light source 404, the second compensation light source 504, and the color wheel 408 are all controlled by the controller 403.
  • the color wheel 408 absorbs the excitation light 100 and generates first light formed by the three primary colors of the red primary color light 101, the green primary color light 102, and the blue primary color light 103.
  • the first compensation light 200 emitted by the first compensation light source 404 is red light
  • the second compensation light 300 emitted by the second compensation light source is green light.
  • the color gamut region of the triangle formed on the color coordinate map of the combined light of the second compensation light and the first light is a fourth extended region, and the fourth extended region is larger than the first The gamut area.
  • the color coordinate of at least one of the pixels is on the side line of the fourth color gamut area, or has a predetermined distance from the edge of the fourth color gamut area, or has a predetermined distance from the second primary color side.
  • the difference between this embodiment and the first embodiment is that the two compensation light sources, that is, the first compensation light source 404 and the second compensation light source 504 are provided.
  • the controller 406 controls the first compensation light source 404. Turning on; when it is desired to compensate for the green primary light 102, the controller 406 controls the second compensated light source 504 to turn "on".
  • the main light source 405 is turned on; in the case where the color coordinate portion of all the pixels is located in the third color gamut region and no pixel is located in the fourth color gamut region
  • the main light source 405 and the first compensation light source 404 are turned on; in the case where the color coordinate portion of all the pixels is located in the fourth color gamut region and no pixels are located in the third color gamut region, the main light source 405 and the second compensation light source 504 are turned on; If the existing pixel is in the third color gamut region and the pixel is in the fourth color gamut region, the main light source 405, the first compensation light source 404, and the second compensation light source 504 are turned on.
  • the control mode of the controller 406 is the same as that of the first embodiment, and only needs to be considered to compensate for the green primary color light. Since the technical features are the same, they will not be described again.
  • the light-emitting timing chart of the light-emitting device after the excitation light 100 passes through the color wheel 408 , the light sequence of the red primary color light 101 , the green primary color light 102 , and the blue primary color light 103 is generated, and the controller 403 Controls the timing of the entire illuminator.
  • FIG. 14 reflects the case where the main light source 405, the first compensation light source 404, and the second compensation light source 504 need to be simultaneously turned on. If the controller 403 determines that the color coordinates of all the pixels are located in the first color gamut area, then The first compensation light source 404 and the second compensation light source 504 need to be turned on.
  • the controller 403 controls the first compensation light source 404 to be turned on to emit the first compensation light 200, and during the color wheel 408 to generate the green primary color light 102, the controller 403 controls the second compensation light source 504 to be turned on.
  • the second compensation light 300 is emitted; furthermore, after the first compensation light 200 is projected from the color wheel 408, it can be synchronized with the red primary color light 101, and after the second compensation light 300 is projected from the color wheel 408, The green primary light 102 remains synchronized.
  • the illuminating device includes the main light source, the first compensating light source, and the second compensating light source, the following practical situations may occur: (1) the main light source is only turned on without the compensation light; (2) only the first Activating one of the compensation light source and the second compensation light source, turning on the main light source and one of the compensation light sources, and adjusting the ratio of the luminous intensity of the two; (3) simultaneously requiring the first compensation light and the second compensation light, then turning on the main The light source, the first compensating light source and the second compensating light source, and adjusting the luminous intensity ratio of the three kinds of lights to meet the requirements to be met.
  • the ratio of the luminous intensity of the main light source to the luminous intensity of the first compensating light source needs to satisfy 2:3, and the ratio of the luminous intensity of the main light source to the luminous intensity of the second compensating light source needs to satisfy 4:5, then the final light intensity ratio is the main light source.
  • Luminous intensity: first compensating light source luminous intensity: The second compensation light source has an intensity of light 8:12:15.
  • the first compensation light is red light
  • the second compensation light is green light
  • the current frame projection image exists.
  • the pixels other than the RGB of the first color gamut area are illustrated by taking the pixel A4 as an example.
  • the distance from A4 to the side RB is smaller than the distance from the side GB, that is, A4 should be located in the third color gamut area, so it can be determined that the red color needs to be turned on.
  • Light compensated light source If the pixel is on the side of the side GB, the green compensation light should be turned on. If there are pixels near the edge GB and the edge RB, both the red compensation light source and the green compensation light source need to be turned on. This method of judging can also be applied to other embodiments of the invention.
  • the difference between this embodiment and the first embodiment is that the color wheel used is different.
  • the color wheel of the embodiment includes a blue color segment 003, an orange color segment 004, a green color segment 002, and a first Diffusion section 005.
  • the first compensation light source may be a red laser or a cyan laser (with a dominant wavelength between 510 nm and 530 nm, preferably 520 nm), the excitation light is blue light, and the color wheel moves to a blue color segment 003, an orange color segment 004, and a green light.
  • the main light source is turned on and the first compensation light source is turned off; when the color wheel moves to the first diffusion segment 005, the red laser or the cyan laser is turned on and the main light source is turned off, so that the color wheel emits timings of green, blue, orange, red/ The light of green light.
  • the orange light and the red light timing are mixed into a red primary color light (the red primary color light corresponds to a red primary color image in the image signal, such that the color coordinate of each pixel in the red primary color image is determined, according to each pixel in the red primary color image of one frame
  • the color gamut area to which the color coordinates belong determine whether to turn on the red laser source, or adjust the ratio of the orange light to the red laser, determine the ratio of the orange light to the red laser, and increase the intensity of the orange and red lasers in equal proportions to make the red
  • the base color light reaches the preset brightness, and after the red base color light reaches the preset brightness, the light intensity of the light source corresponding to the other primary color lights is changed according to the preset white balance), and the green and cyan light timings are mixed into the green base color light (green primary color)
  • the light corresponds to the green primary color image in the image signal).
  • 17 is a timing diagram of the light emitted by the light-emitting device.
  • the color wheel 408 absorbs the excitation light 400, a light sequence of the green primary color light 102, the blue primary color light 103, the orange primary color light 104, and the red/cyan light 500 is generated.
  • the color wheel 408 does not absorb the excitation light and does not generate primary light.
  • the color wheel includes a blue color segment 003, an orange color segment 004, and a green color segment.
  • a first diffusion section 005 and a second diffusion section 006 are further included, and the main light source is also turned off when the color wheel moves to the second diffusion section 006.
  • the first compensation light source that is, the red laser light source
  • the second compensation light source that is, the cyan laser light source
  • the timing is blue, turquoise, green, orange, and red.
  • the orange and red light timings are mixed into a red-based color light
  • the green and cyan light timings are mixed into a green-based color light.
  • the controller does not all be in the first gamut region at the position of the color coordinates of all the pixels by analyzing a certain frame image.
  • the compensation light source is turned on, and the compensation light source is not turned on when the positions of the color coordinates of all the pixels are in the first color gamut area, thereby achieving the energy saving effect.
  • at least one color coordinate is on a side line of the second color gamut area or has a predetermined distance from an edge of the second color gamut area, thereby achieving the maximum extent Energy saving.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种发光装置及其发光控制方法、投影设备。发光装置包括主光源(405),通过开启主光源(405)使得发光装置发射三种基色光,在色坐标图上形成的色域区域为第一色域区域;发光装置还包括用于发射补偿光(200,300)的补偿光源(404,504),补偿光(200,300)用于对三种基色光中的至少一种光进行补偿。若当前帧投影图像的所有像素的色坐标全部处于第一色域区域,则控制主光源(405)开启使发光装置发射三种基色光,并控制补偿光源(404,504)不发光;若存在色坐标位于第一色域区域之外的像素,则控制主光源(405)开启,并控制补偿光源(404,504)开启使发光装置发射补偿光(200,300)。在所有像素的色坐标都处于第一色域区域的情况下不开启补偿光源(404,504),在有像素位于第一色域区域之外的情况下才开启第一补偿光源(404),从而达到节能的效果。

Description

一种发光装置及其发光控制方法、投影设备 技术领域
本发明涉及投影技术领域,具体涉及一种发光装置及其发光控制方法、投影设备。
背景技术
如图 1 所示为现有技术的投影设备采用补偿光源之前与之后的色域结果示意图,如图 2 所示为现有技术的投影设备采用补偿光源之前与之后的色域范围对比示意图,图 2 是为便于说明图 1 而作的示意图,图 1 和图 2 的投影设备所采用的补偿光为红色激光。结合图 1 和图 2 可知,现有技术中,当投影设备所需的三基色中的红光为荧光时(例如采用颜色光产生装置,通过颜色光产生装置的荧光粉来产生三基色光序列),色域最小,即图 2 中 GBR 所示的范围;当三基色中的红光为激光时(即仅仅用红色激光来作为三基色中的红光,此时颜色光产生装置不产生红色的荧光),也能得到一定范围的色域,即图 2 中 GBR' 所示的范围;当三基色中的红光为红色荧光和红色激光的混合光时,可以得到最大的色域即图 2 中 GBR'' 所示的范围。即按现有技术,红光为荧光时,红光色坐标可以到 Rec.709 要求,通过混合红色激光后,色域可扩大到 DCI 要求,且因荧光与激光混合,可以消除激光带来的散斑效应。
技术问题
但是,对于现有技术,如果只采取红色荧光作为红色基色光,则对于某帧图像,色坐标落在 GBR 之外的像素的颜色就不能有效地显示。
同样,如果只采取红色激光作为红色基色光,则对于某帧图像,色坐标落在 GBR' 之外的像素的颜色就不能有效地显示。
而采用红色荧光和红色激光的混合光作为红色基色光的情况,对于某些图像,由于图片中所有像素都处于 GBR ,即并不需要使用到 RBR'' 区域,这样同时开启对应于红色荧光和红色激光的光源则会造成很大的电能浪费,不利于节省能源和开支,严重影响了投影设备产品的实用性。
技术解决方案
根据本发明的第一方面,提供一种发光装置的发光控制方法,发光装置包括主光源,发光装置在开启主光源时出射包含三基色光的第一光,第一光在色坐标图上形成第一色域区域; 发光装置还包括用于发射补偿光的补偿光源,发光装置在主光源和补偿光源均开启时出射包含三基色光的第二光,补偿光与第一光中的至少一种基色光合光形成第二光中的一种基色光,第二光包含的三基色光中至少有一种基色光的色坐标与第一光包含的三基色光中的任意一种基色光的色坐标均不同,第二光在色坐标图上形成第二色域区域;
发光控制方法包括如下过程:
获取将要进行投影的当前帧投影图像的所有像素的色坐标,判断所有像素的色坐标是否都处于第一色域区域;
若所有像素的色坐标全部处于第一色域区域,则控制主光源开启,并控制补偿光源不发光;
若存在色坐标位于第一色域区域之外的像素,则控制主光源和补偿光源均开启,使所有像素的色坐标均处于第二色域区域。
若存在色坐标位于第一色域区域之外的像素,则控制主光源和补偿光源均开启具体包括:调节主光源发光强度与补偿光源发光强度的比例,使所有像素的色坐标均处于第二色域区域内。
调节主光源发光强度与补偿光源发光强度的比例,使所有像素的色坐标均处于第二色域区域具体包括:调节主光源发光强度与补偿光源发光强度的比例,使所有像素的色坐标均处于第二色域区域,且至少有一个像素的色坐标处于第二色域区域的边线上。
控制主光源和补偿光源均开启包括:根据色坐标位于第一色域区域之外的像素的分布控制补偿光源发射第一补偿光和/或第二补偿光,第一补偿光与第一光中的第一基色光合光形成第二光中的第一基色光,第二补偿光与第一光中的第二基色光合光形成第二光中的第二基色光。
根据色坐标位于第一色域区域之外的像素的分布控制补偿光源发射第一补偿光和/或第二补偿光具体包括:当色坐标位于第一色域区域之外的像素中存在分布在第三色域区域中的像素时,控制补偿光源发射第一补偿光,第三色域区域为第一补偿光的色坐标、第一光中的第一基色光的色坐标以及第一光中的第三基色光的色坐标所围成的色域区域;当色坐标位于第一色域区域之外的像素中存在分布在第四色域区域中的像素时,控制补偿光源发射第二补偿光,第四色域区域为第二补偿光的色坐标、第一光中的第二基色光的色坐标以及第一光中的第三基色光的色坐标所围成的色域区域。
调节主光源发光强度与补偿光源发光强度的比例,使所有像素的色坐标均处于第二色域区域内具体包括:当色坐标位于第一色域区域之外的像素均分布在第三色域区域中时,调节主光源发光强度与补偿光源发射第一补偿光的发光强度的比例,使第一补偿光与第一光中的第一基色光的合光的色坐标为第一线与第二线的交点中与第一补偿光的色坐标距离最近的色坐标(或者是与第一光的第一基色光的色坐标距离最远的色坐标),第二色域区域为第一补偿光与第一光中的第一基色光的合光的色坐标、第一光中的第二基色光的色坐标以及第一光中的第三基色光的色坐标所围成的色域区域;当色坐标位于第一色域区域之外的像素均分布在第四色域区域中时,调节主光源发光强度与补偿光源发射第二补偿光的发光强度的比例,使第二补偿光与第一光中的第二基色光的合光的色坐标为第三线与第四线的交点中与第二补偿光的色坐标距离最近的色坐标,第二色域区域为第二补偿光与第一光中的第二基色光的合光的色坐标、第一光中的第一基色光的色坐标以及第一光中的第三基色光的色坐标所围成的色域区域;当色坐标位于第一色域区域之外的像素中即存在分布在第三色域区域中的像素,又存在分布在第四色域区域中的像素时,调节主光源发光强度与补偿光源发射第一补偿光的发光强度的比例,使第一补偿光与第一光中的第一基色光的合光的色坐标为第一线与第二线的交点中与第一补偿光的色坐标距离最近的色坐标,同时调节主光源发光强度与补偿光源发射第二补偿光的发光强度的比例,使第二补偿光与第一光中的第二基色光的合光的色坐标为第三线与第四线的交点中与第二补偿光的色坐标距离最近的色坐标,第二色域区域为第一补偿光与第一光中的第一基色光的合光的色坐标、第二补偿光与第一光中的第二基色光的合光的色坐标、以及第一光中的第三基色光的色坐标所围成的色域区域。其中第一线为第二光中的第三基色光的色坐标与分布在第三色域区域的像素的色坐标的连线的延长线,第二线为第一补偿光的色坐标与第一光中的第一基色光的色坐标的连线,第三线为第一光中的第三基色光的色坐标与分布在第四色域区域的像素的色坐标的连线的延长线,第四线为第二补偿光的色坐标与第一光中的第二基色光的色坐标的连线。
一种具体的实施方式中,第一光在色坐标图上形成三角形的第一色域区域;由第一光的第一基色光所形成的第一色域区域的顶点为第一基色坐标,由第一光的第二基色光所形成的第一色域区域的顶点为第二基色坐标,由第一光的第三基色光所形成的第一色域区域的顶点为第三基色坐标;第一基色坐标与第三基色坐标的连线为第一基色边;第一补偿光的色坐标、第一光中的第一基色光的色坐标以及第一光中的第三基色光的色坐标在色坐标图上围成三角形的第三色域区域;第一基色坐标与第一补偿光的色坐标的连线为第二线;对于第三色域区域内的所有或部分当前帧投影图像的像素的色坐标,第三基色坐标与这些色坐标的连线的延长线与第二线相交,在交点中取距离第一基色坐标最远的点(或者是取距离第一补偿光与第一光的第一基色光的合光的色坐标最近的点),调节主光源发光强度与第一补偿光源发光强度的比例,使得第一补偿光与第一光中的第一基色光的合光的色坐标落在该最远的点的位置处。
第一补偿光与第一光中的第一基色光的合光的色坐标离第一基色坐标越远,则第一补偿光源开启的亮度比例越大,反之第一补偿光源开启的亮度比例越小。
一种具体的实施方式中,第一光在色坐标图上形成三角形的第一色域区域;由第一光的第一基色光所形成的第一色域区域的顶点为第一基色坐标,由第一光的第二基色光所形成的第一色域区域的顶点为第二基色坐标,由第一光的第三基色光所形成的第一色域区域的顶点为第三基色坐标;第一基色坐标与第三基色坐标的连线为第一基色边;第一补偿光与第一光中的第一基色光的合光的色坐标连接第三基色坐标的连线为第五线;第三基色坐标与第三色域区域内的所有或部分当前帧投影图像的像素的色坐标相连,从而得到至少一条连线,该至少一条连线与第一基色边构成至少一个夹角;在该至少一个夹角中,取角度值最大的夹角,调节主光源发光强度与补偿光源发光强度的比例,使得第五线与第一基色边构成的夹角为该角度值最大的夹角。
第五线与第一基色边构成的夹角的值越大,则第一补偿光源开启的亮度比例越大,反之第一补偿光源开启的亮度比例越小。
发光装置以光序列的方式发射第一基色光、第二基色光和第三基色光,控制补偿光源开启并发射补偿光的方式为:在发光装置发射被补偿的基色光期间,控制补偿光源发射相应的补偿光,在发光装置发射其它光期间,控制补偿光源不发射相应的补偿光。具体地,在第一基色光为被补偿光的情况下,在发光装置发射第一基色光期间,控制第一补偿光源发射第一补偿光(如果存在第二补偿光源则同时控制第二补偿光源关闭),在发光装置发射第二基色光和第三基色光期间,控制第一补偿光源关闭。在第二基色光为被补偿光的情况下,在发光装置发射第二基色光期间,控制第二补偿光源发射第二补偿光,在发光装置发射第一基色光和第三基色光期间,控制第二补偿光源关闭。在第一基色光和第二基色光为被补偿光的情况下,在发光装置发射第一基色光期间,控制第一补偿光源发射第一补偿光,且控制第二补偿光源关闭;在发光装置发射第二基色光期间,控制第二补偿光源发射第二补偿光,且控制第一补偿光源关闭;在发光装置发射第三基色光期间,控制第一补偿光源和第二补偿光源关闭。
控制所述主光源开启,并控制补偿光源不发光还包括:调节第一光中的三基色光的比例,使得第一光达到预设的亮度和/或白平衡。控制主光源和补偿光源均开启还包括:调节第二光中的三基色光的比例,使得第二光达到预设的亮度和/或白平衡。
根据本发明的第二方面,提供一种发光装置,包括:主光源,用于发射激发光;补偿光源,用于发射补偿光;颜色光产生装置,用于在激发光的照射下产生包含三基色光的第一光,第一光在色坐标图上形成第一色域区域。
发光装置在主光源和补偿光源均开启时出射包含三基色光的第二光,补偿光与第一光中的至少一种基色光合光形成第二光中的一种基色光,第二光在色坐标图上形成第二色域区域;
发光装置还包括控制器,分别与主光源以及补偿光源连接,用于获取将要进行投影的当前帧投影图像的所有像素的色坐标,判断所有像素的色坐标是否都处于第一色域区域。若所有像素的色坐标全部处于第一色域区域,则控制主光源开启,并控制补偿光源不发光;若存在色坐标位于第一色域区域之外的像素,则控制主光源和补偿光源均开启,使所有像素的色坐标均处于第二色域区域。
控制器判断存在色坐标位于第一色域区域之外的像素,则控制主光源和补偿光源均开启,具体包括:控制器调节主光源发光强度与补偿光源发光强度的比例,使所有像素的色坐标均处于第二色域区域内。
控制器调节主光源发光强度与补偿光源发光强度的比例,使所有像素的色坐标均处于第二色域区域具体包括:控制器调节主光源发光强度与补偿光源发光强度的比例,使所有像素的色坐标均处于第二色域区域,且至少有一个像素的色坐标处于第二色域区域的边线上。
补偿光源包括第一补偿光源和/或第二补偿光源;第一补偿光源用于发射第一补偿光,第二补偿光源用于发射第二补偿光;
控制器控制主光源和补偿光源均开启包括:控制器根据色坐标位于第一色域区域之外的像素的分布控制补偿光源发射第一补偿光和/或第二补偿光,第一补偿光与第一光中的第一基色光合光形成第二光中的第一基色光,第二补偿光与第一光中的第二基色光合光形成第二光中的第二基色光。
在主光源和补偿光源均开启时,发光装置的颜色光产生装置出射包含三基色光的第二光,即颜色光产生装置在接受主光源发射的激发光照射后能够产生包含三基色光的第一光,补偿光源发射的补偿光可以被颜色光产生装置透射,因此,从颜色光产生装置出射的第二光由第一光和补偿光构成,第二光也包含三基色光,且补偿光与第一光中的至少一种基色光合光形成第二光中的一种基色光,第二光在色坐标图上形成第二色域区域。
具体地,在第一基色光为被补偿光的情况下,在颜色光产生装置出射第一基色光期间,控制第一补偿光源发射第一补偿光(如果存在第二补偿光源则同时控制第二补偿光源关闭),在颜色光产生装置出射第二基色光和第三基色光期间,控制第一补偿光源关闭。在第二基色光为被补偿光的情况下,在颜色光产生装置出射第二基色光期间,控制第二补偿光源发射第二补偿光,在颜色光产生装置出射第一基色光和第三基色光期间,控制第二补偿光源关闭。在第一基色光和第二基色光为被补偿光的情况下,在颜色光产生装置出射第一基色光期间,控制第一补偿光源发射第一补偿光,且控制第二补偿光源关闭;在颜色光产生装置出射第二基色光期间,控制第二补偿光源发射第二补偿光,且控制第一补偿光源关闭;在颜色光产生装置出射第三基色光期间,控制第一补偿光源和第二补偿光源关闭。
根据本发明的第三方面,提供一种投影设备,包括上述任意一种发光装置。
有益效果
本发明的有益效果是:本发明根据各帧图像的差异,通过分析某一帧图像,在当前帧图像的所有像素的色坐标部分位于第三色域区域的情况下才开启第一补偿光源,而在所有像素的色坐标都处于第一色域区域的情况下不开启第一补偿光源,从而达到节能的效果。
在本发明还包括第二补偿光源的实施方式中,通过分析某一帧图像,在当前帧图像的所有像素的色坐标部分位于第四色域区域的情况下才开启第二补偿光源,而在所有像素的色坐标都处于第一色域区域的情况下不开启第二补偿光源,更加显著地体现了本发明节能省电的优势。
附图说明
图 1 为现有技术的投影设备采用补偿光源之前与之后的色域结果示意图;
图 2 为现有技术的投影设备采用补偿光源之前与之后的色域范围对比示意图;
图 3 为实施例一的投影设备的结构示意图;
图 4 为实施例一的波长转换装置的结构示意图;
图 5 为实施例一的发光装置发射补偿光的原理示意图;
图 6 为实施例一的投影设备采用补偿光源之前与之后的色域范围对比图;
图 7 为实施例一的发光装置的发光时序图;
图 8 为实施例一的发光装置判断色坐标是否位于第三色域区域的原理示意图;
图 9 为实施例二的发光装置发射补偿光的原理示意图;
图 10 为实施例三的发光装置发射补偿光的原理示意图;
图 11 为实施例四的发光装置发射补偿光的原理示意图;
图 12 为实施例四的波长转换装置的结构示意图;
图 13 为实施例五的发光装置发射补偿光的原理示意图;
图 14 为实施例五的发光装置的发光时序图;
图 15 为实施例五的发光装置判断发射何种补偿光的原理示意图;
图 16 为实施例六的发光装置的一种波长转换装置的结构示意图;
图 17 为实施例六的发光装置的一种发光时序图;
图 18 为实施例六的发光装置的另一种波长转换装置的结构示意图。
本发明的最佳实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
如图3所示为本实施例的投影设备的结构示意图,投影设备包括主光源405、分光滤光片406、色轮408、驱动装置409、整形透镜410、棱镜装置411、空间光调制器(Spatial Light Modulators,SLM)412、出射透镜413、控制器403以及第一补偿光源404、反射镜407。其中,主光源405、分光滤光片406、第一补偿光源404、反射镜407、色轮408、驱动装置409、控制器403共同构成投影设备的发光装置。
主光源405、分光滤光片406、色轮408、驱动装置409、整形透镜410的组合用于产生周期性时序的色光序列,并将该色光序列沿设计的光路向外投射,经过整形透镜410和棱镜装置411后,投射到空间光调制器412。第一补偿光源404可以为红色激光光源,其发射的红色激光为补偿光。
驱动装置409(例如可以是马达)驱动色轮408旋转以实现色轮408相对于照射到其表面的激发光的周期性运动。在其他实施例中,可以用其他形式的颜色光产生装置来代替色轮408,通过驱动装置409驱动颜色光产生装置以实现相对于激发光的周期性运动,例如往复式振动或摆动。
主光源405发出的激发光能够激发波长转换材料(例如荧光粉)发出短波长受激光,主光源405例如可以采用蓝光LED、紫外LED或其阵列,或蓝光LD、紫外LD或其阵列。在有的实施例中,主光源405也可以发射白光。本实施例中主光源405产生蓝光。
色轮408可以是圆盘状(例如环形或圆形)或矩形等形状。如图4所示为本实施例的圆盘状色轮408的结构示意图,色轮408包括红光色段区域001、绿光色段区域002和蓝光色段区域003,红光色段区域001、绿光色段区域002和蓝光色段区域003按照设定的顺序沿色轮408的周长方向依次首尾相接排布。当投影设备处于工作状态时,固定于转轴上的色轮408由驱动装置409带动而绕转轴旋转,由于色轮408设置在朝向激发光传播的路径上,从而使得激发光在色轮408上投射的光斑轨迹形成一个圆形路径。主光源405发出的激发光经分光滤光片406后投射在色轮408上形成光斑,光斑所在区域的光波长转换材料将激发光转换为与光波长转换材料相对应的受激光,由于光斑位置与转轴相对固定,当转轴带动色轮408旋转时,多个绕转轴以某种角度分布的色段区域依次通过光斑照射的位置,各个色段区域的光波长转换材料将激发光转换为对应的受激光,各种颜色的受激光组成周期性时序的色光序列从色轮408射出,本实施例具体即为红、绿、蓝光序列。
整形透镜410设置在受激光出射的光路上,用于接收由色轮408出射的包括受激光的色光序列,对其进行光束整形,通过棱镜装置411进行光路方向转换的过程后,将色光序列投射到空间光调制器412上。色轮408和整形透镜410可以集成在一起,即在色轮408的出光面上设置整形透镜410从而实现调整包括受激光的色光序列的出射角度的功能。
空间光调制器412用于接收颜色光产生装置发射的受激光,根据输入图像信号对受激光进行调制并出射图像光。本实施例中,空间光调制器412为数字微镜元件(DMD,Digital Mirror Device,Digital Micromirror Device)。
控制器403作为投影设备的主要控制和处理器件,用于对数据进行处理和对各部件进行控制,具体为,根据显示图像的帧率确定驱动装置的周期性运动频率,根据运动频率控制驱动装置做周期性运动等。
出射透镜413用于将图像光投射至投影镜头,进而投影镜头将图像光投射到屏幕上以形成图像。或者出射透镜413直接设置在投影镜头之中,用于将图像光投射到屏幕上以形成图像。
以下结合图5和图6详细介绍本实施例的投影设备的发光装置的部分的控制原理。
如图5所示,发光装置包括主光源405、第一补偿光源404、分光滤光片406、反射镜407、色轮408。主光源405、第一补偿光源404、色轮408都受到控制器403的控制。
在开启主光源405而关闭第一补偿光源404的情况下,色轮408吸收主光源405发射的激发光后产生红绿蓝光序列的第一光,即第一光为发光装置产生的红色基色光101、绿色基色光102、蓝色基色光103的光序列。如图6所示,这三种基色光在色坐标图上形成的三角形的色域区域为第一色域区域RGB,由红色基色光所形成的第一色域区域的顶点为第一基色坐标R,由绿色基色光所形成的第一色域区域的顶点为第二基色坐标G,由蓝色基色光所形成的第一色域区域的顶点为第三基色坐标B。
第一基色坐标R与第三基色坐标B的连线为第一基色边RB,第二基色坐标G与第三基色坐标B的连线为第二基色边GB。
在同时开启主光源405和第一补偿光源404的情况下,第一补偿光源404发射第一补偿光200后经过反射镜407和分光滤光片406的反射作用,再从色轮408透射出去(色轮408可以透射第一补偿光200),第一补偿光200和第一光的合光为第二光,第二光在色坐标图上形成的三角形的色域区域为第二色域区域R1GB,第二色域区域R1GB大于第一色域区域RGB。本实施例中,补偿光200为红色光,用来对第一光的红色基色光101进行补偿。当然,本领域技术人员根据需要,还可以选择绿光、蓝光以及其他颜色的光作为补偿光。
第二色域区域R1GB是一个可控的动态区域,由于第二色域区域R1GB是第一补偿光200和第一光的合光所形成的,而第一补偿光200与第一光的光强比例会影响色域区域的大小,因此,当第一补偿光源404的发光强度和/或主光源405的发光强度发生变化时,则会使第一补偿光200与第一光的光强比例发生变化,则第二色域区域R1GB的大小也会随之而改变。
令第二光在色坐标图上所能形成的最大的色域区域R1’BG大出第一色域区域RGB的部分为第三色域区域R1’BR。具体地,当主光源405发光光强与第一补偿光源404发光光强的比例为某个值时(即第一补偿光200和第一光的光强比例为某个值时,或者第一补偿光200和第一光中的第一基色光的光强比例为某个值时),第二光可以得到面积最大的一个色域区域,而控制器403对所有像素的色坐标进行判断时所基于的正是这个最大的色域区域,也即基于的是第三色域区域R1’BR。第三色域区域R1’BR和/或区域R1’BG已经预存在控制器403中,具体地,控制器403中预存了第三色域区域R1’BR和/或区域R1’BG所涵盖的所有色坐标,通过将当前帧投影图像的色坐标与这些预存的色坐标进行对比,即可判断出当前帧投影图像的各个色坐标中有无处于第三色域区域R1’BR的色坐标。
以下详细描述发光控制方法的步骤。
控制器403获取将要进行投影的当前帧投影图像的所有像素的色坐标,判断所有像素的色坐标是否都处于第一色域区域RGB。每一个像素都包含R、G、B值,三个值决定了该像素在色度图上的色坐标位置。
若所有像素的色坐标全部处于第一色域区域,则控制主光源405开启使发光装置发射包含三基色光的第一光,并控制第一补偿光源404关闭。
若所有像素的色坐标部分处于第三色域区域R1’BR,则控制主光源405开启使发光装置发射第一光;同时,控制第一补偿光源404开启使发光装置发射第一补偿光200,第一补偿光200和第一光共同构成包含三基色光的第二光,发光装置发射的第二光形成第二色域区域R1GB。图5所示,色轮408处发出的是红色基色光101、绿色基色光102、蓝色基色光103的光序列,而第一补偿光200直接从色轮408透射出去,通过控制器403的作用,在色轮408产生第一光的红色基色光101期间,控制器403控制第一补偿光源404开启从而发射第一补偿光200。而在色轮408产生第一光的绿色基色光102和蓝色基色光103期间,第一补偿光源404不发光,这样可以最大程度节省电能。为了更好的理解,如图7所示为发光装置的发光时序图,激发光100经过色轮408后产生红色基色光101、绿色基色光102、蓝色基色光103的光序列,在色轮408产生第一光的红色基色光101期间,控制器403控制第一补偿光源404开启从而发射第一补偿光200,进而保证了第一补偿光200从色轮408处透射出去后,能够和第一光的红色基色光101保持同步,此时第一补偿光200和第一光的红色基色光101一起构成了第二光的第一基色光。需要指出,图7反映的是需要同时开启主光源405和第一补偿光源的情况,如果控制器403判断出所有像素的色坐标都位于第一色域区域,则不需要开启第一补偿光源404。第二光中的红基色光的色坐标与第一光包含的三基色光中的任意一种基色光的色坐标均不同。由于第一补偿光与第一光中的待补偿的基色光(即红色基色光101)的色坐标不同,从而两者合光形成的第二光中的基色光的色坐标与第一光中的待补充的基色光的色坐标不同。
在本发明的另外的实施例中,色轮408上用于产生红色基色光101的第一色段区域001上设置有感应器件,当感应器件检测到第一色段区域001上有激发光100照射时,产生感应信号并发送至控制器403,控制器403根据感应信号,开启第一补偿光源404。通过这种方式,也能达到在色轮408产生红色基色光101期间第一补偿光源404发射第一补偿光200的效果。
在主光源405和第一补偿光源404同时开启的期间,控制器403控制主光源405的发光强度以及第一补偿光源404的发光强度,使得第二光达到预设的白平衡和/或亮度值。
另外,在主光源405和第一补偿光源404同时开启的期间,控制器403调节主光源405发光强度与第一补偿光源404发光强度的比例,使得第二色域区域R1GB满足如下效果:处于第三色域区域R1’BR内的像素中,至少有一个像素的色坐标处于第一边线BR1上。如图6所示,通过控制器403的调节,第一补偿光200和第一光的合光形成了第二色域区域R1GB,这个第二色域区域R1GB刚好使得那些没有落在第一色域区域RGB内的像素的色坐标全部位于第三色域区域R1BR之中,且至少有一个像素的色坐标(例如A4)位于第一边线BR1上,而色坐标A3则被圈入第一补偿区域R1BR的内部。此处,本领域的技术人员应当理解,A3和A4分别代表两种类型的像素的色坐标,本发明的目的在于形成刚好能包含当前帧图像的所有像素的第二色域区域R1GB,理想状态下这个第二色域区域R1GB需要达到最小面积,因此色坐标A4代表了理想状态下那些坐落在第二色域区域R1GB的边线(即第一边线BR1)上的色坐标,而色坐标A3代表了理想状态下那些无法坐落于第一边线BR1上的色坐标。
参照图6,定义由第一补偿光对第一光中的第一基色光的补偿作用而在第二色域区域上所形成的顶点为第一坐标R1;第二基色坐标G与第一基色坐标R的连线的延长线为第二线(即图中的R R1’)。使得第二色域区域R1GB满足上述效果的实现方式如下:对第三色域区域R1’BR内的所有或部分当前帧投影图像的像素的色坐标(以A3和A4为例),第三基色坐标B与这些色坐标的连线的延长线与第二线相交(例如第三基色坐标B与A4的连线的延长线A4R1与RR1相交,交点为R1),在交点中取距离第一基色坐标R最远的点(或者取距离色坐标R1’最近的点)为第一坐标(图6中,由A4所产生的的交点是需要寻找的。而连接B和A3并延长,其延长线与RR1的交点距离第一基色坐标R较近,故不符合要求)。由于第二色域区域的范围需要通过一番求解才能确定下来,其第一坐标也就是需要确定的,本实现方式的构思在于通过交点的方法来确定面积最小的第二色域区域。例如对于B与A3以及B与A4的连线,它们连线的延长线都会与RR1’相交,从图6中可以明显地看出,B与A4连线的延长线与RR1’的交点R1是离R最远的,说明在所有的第一色域区域之外的点(或者说所有第三色域区域之内的点)中,将点A4落在第二色域区域的边线上就能使第二色域区域的面积最小,同时保证了第二色域区域能够涵盖所有的当前帧投影图像的所有像素的色坐标。
在本发明的另外的实施例中,定义第三基色坐标B与第一坐标R1的连线为第一边线BR1;第三基色坐标B与第一基色坐标R的连线为第一基色边BR;第一基色边BR与第一边线B R1构成第一夹角RBR1。使得第二色域区域满足要求的实现方式为:第三基色坐标B与第三色域区域R1’BR内的所有当前帧投影图像的像素的色坐标相连,从而得到至少一条连线(图6中示例性地给出了连线BA3和连线BA4),该至少一条连线与第一基色边构成至少一个夹角(图6中示例性地给出了夹角RBA3和夹角RBA4);在该至少一个夹角中(RBA3、RBA4),取角度值最大的夹角(即夹角RBA4)为第一夹角,从而确定出第二色域区域R1GB的范围及第一坐标R1的位置。由于第二色域区域是需要确定的,其第一坐标也就是需要确定的,本实现方式的构思在于通过夹角的方法来确定面积最小的第二色域区域。例如对于夹角RBA3和夹角RBA4,由于夹角RBA4比夹角RBA3大,说明在所有的第一色域区域之外的点(或者说所有第三色域区域之内的点)中,将点A4落在第二色域区域的边线上就能使第二色域区域的面积最小,同时保证了第二色域区域能够囊括所有的当前帧投影图像的所有像素的色坐标。
本领域技术人员应当理解,本发明所说的当前帧投影图像的所有像素(以及它们的色坐标),应当排除个别不正常的像素点(以及它的色坐标),个别不正常的像素点的色坐标可能处于离第一色域区域十分偏远的位置,因此不需要考虑这样的像素点。
在本发明的另外的实施例中,控制器403调节主光源405发光强度与第一补偿光源404发光强度的比例,使得第二色域区域R1GB满足如下效果:处于第三色域区域R1’BR内的像素中,至少有一个像素的色坐标与第一边线BR1具有预定距离。当预定距离足够小以至于可以认为取值为零时,则等同于上述“至少有一个像素的色坐标处于第一边线BR1上的效果。
对于“控制器403对所有像素的色坐标进行判断”的具体方式,本实施例是把第一色域区域RGB和第三色域区域R1’BR(还可以预存最大的第二色域区域)的范围预存在控制器403中,这样,控制器403可以直接判断所有像素的色坐标是都处于第一色域区域RGB,还是有一部分处于第三色域区域R1’BR。而在本发明另外的实施例中,控制器403里可以不预存第三色域区域R1’BR的范围,如图8所示,令GR的延长线、第一基色边RB以及自定义的边线BH形成一个区域RBH,RBH的范围要比第三色域区域R1’BR大(当然,也可以比第三色域区域R1’BR的范围小),控制器403只要判断出所有像素的色坐标部分处于RBH,则认为所有像素的色坐标中有一部分处于第三色域区域R1’BR内。这是因为,实践中,光所能形成的色域区域的范围时有限的,如果有色坐标处于RBH,则对于这样的色坐标,只能用第三色域区域R1’BR来涵盖它们,也就可以认为所有像素的色坐标中有一部分处于第三色域区域R1’BR内。
实施例二:
如图9所示,本实施例提供一种投影设备的发光装置,包括主光源405、第一补偿光源404、分光滤光片406、反射镜407、色轮408。主光源405、第一补偿光源404、色轮408都受到控制器403的控制。色轮408吸收激发光100并产生由红色基色光101、绿色基色光102和蓝色基色光103三种基色光所形成的光序列,即第一光。
本实施例与实施例一的区别点在于,第一补偿光源404产生的是补偿激发光201,色轮408吸收补偿激发光201从而产生第一补偿光200(在这种情况下第一补偿光200和第一光的三基色光都是荧光)。本实施例其他的技术特征与实施例一相同,故不再赘述。
实施例三:
如图10所示,本实施例提供一种投影设备的发光装置,包括主光源405、第一补偿光源404、分光滤光片406、反射镜407、色轮408。主光源405、第一补偿光源404、色轮408都受到控制器403的控制。色轮408吸收激发光100并产生由红色基色光101、绿色基色光102和蓝色基色光103三种基色光所形成的光序列。
本实施例与实施例一的区别点在于,在色轮408之后的光路上设置分光滤光片4060和扩散片4070,扩散片4070一方面对第一补偿光源404产生的第一补偿光200进行反射,另一方面还起到了消相干的作用。本实施例的第一补偿光200不用经过色轮408而是在其后与光序列汇合。本实施例其他的技术特征与实施例一相同,故不再赘述。
实施例四:
如图11所示,本实施例提供一种投影设备的发光装置,包括主光源405、第一补偿光源404、分光滤光片406、反射镜407、色轮408。主光源405、第一补偿光源404、色轮408都受到控制器403的控制。色轮408吸收激发光100并产生由红色基色光101、绿色基色光102和蓝色基色光103三种基色光所形成的合光。
本实施例与实施例一的区别点在于,色轮408为环形色轮,如图12所示,包括红光色段121、绿光色段122和蓝光色段123,激发光100照射到相应的色段上,则色轮403吸收激发光100并产生相应的基色光。例如,激发光100照射到红光色段121时,色轮产生红色基色光101。本实施例中,激发光100同时照射到三个色段。
色轮408能透过第一补偿光200,从而,第一补偿光200和光序列所形成的合光能够形成第一色域区域。本实施例其他的技术特征与实施例一相同,故不再赘述。
实施例五:
如图13所示,本实施例提供一种投影设备的发光装置,包括主光源405、第一补偿光源404、分光滤光片406、第一反射镜407、色轮408。还包括第二补偿光源504,第二反射镜507。主光源405、第一补偿光源404、第二补偿光源504、色轮408都受到控制器403的控制。色轮408吸收激发光100并产生由红色基色光101、绿色基色光102和蓝色基色光103三种基色光所形成的第一光。第一补偿光源404发射的第一补偿光200为红光,第二补偿光源发射的第二补偿光300为绿光。
与实施例一中第一补偿光的相关内容类似,第二补偿光和第一光的合光在色坐标图上形成的三角形的色域区域为第四扩展区域,第四扩展区域大于第一色域区域。
对于控制第二补偿光和第一光合光的方式,与实施例一类似,调节主光源发光强度与第二补偿光源发光强度的比例,使得第二扩展区域满足:处于第四色域区域内的像素中,至少有一个像素的色坐标处于第四色域区域的边线上,或者与第四色域区域的边线具有预定距离,或者与第二基色边具有预定距离。
本实施例与实施例一的区别点在于,具备两个补偿光源即第一补偿光源404和第二补偿光源504,在需要对红色基色光101进行补偿时,控制器406控制第一补偿光源404开启;在需要对绿色基色光102进行补偿时,控制器406控制第二补偿光源504开启。具体地,在所有像素的色坐标都位于第一色域区域的情况下,只开启主光源405;在所有像素的色坐标部分位于第三色域区域且没有像素位于第四色域区域的情况下,开启主光源405和第一补偿光源404;在所有像素的色坐标部分位于第四色域区域且没有像素位于第三色域区域的情况下,开启主光源405和第二补偿光源504;若既有像素位于第三色域区域,又有像素位于第四色域区域,则开启主光源405、第一补偿光源404和第二补偿光源504。
控制器406的控制方式与实施例一相同,仅仅是需要多考虑对绿色基色光进行补偿的情况,由于技术特征一致,故不再赘述。
为了更好的理解,如图14所示为发光装置的发光时序图,激发光100经过色轮408后产生红色基色光101、绿色基色光102、蓝色基色光103的光序列,控制器403控制着整个发光装置的时序。需要指出,图14反映的是需要同时开启主光源405、第一补偿光源404、第二补偿光源504的情况,如果控制器403判断出所有像素的色坐标都位于第一色域区域,则不需要开启第一补偿光源404和第二补偿光源504。在色轮408产生红色基色光101期间,控制器403控制第一补偿光源404开启从而发射第一补偿光200,在色轮408产生绿色基色光102期间,控制器403控制第二补偿光源504开启从而发射第二补偿光300;进而保证了第一补偿光200从色轮408出投射出去后,能够和红色基色光101保持同步,第二补偿光300从色轮408出投射出去后,能够和绿色基色光102保持同步。
由于发光装置同时包括主光源、第一补偿光源、第二补偿光源,则实际应用会出现以下几种可能的情况:(1)不需要补偿光,则只开启主光源;(2)只需要第一补偿光源和第二补偿光源的其中一种,则开启主光源和其中一种补偿光源,并调节二者发光强度比例;(3)同时需要第一补偿光和第二补偿光,则开启主光源、第一补偿光源和第二补偿光源,并且调节三种光的发光强度比例从而达到需要满足的要求。例如,主光源发光强度与第一补偿光源发光强度的比例需要满足2:3,主光源发光强度与第二补偿光源发光强度的比例需要满足4:5,那么,最终的光强比例为主光源发光强度:第一补偿光源发光强度: 第二补偿光源发光强度=8:12:15。
本实施例中,第一补偿光为红光,第二补偿光为绿光,这样就存在判断发射红光补偿光还是绿光补偿光的问题,如图15所示,当前帧投影图像存在位于第一色域区域RGB以外的像素,以像素A4为例来说明,A4到边RB的距离小于到边GB的距离,即A4应该位于第三色域区域内,因此可以判断出,需要开启红光补偿光源。如果像素点时位于边GB一侧,则应开启绿光补偿光。如果边GB和边RB附近都有像素点,则红光补偿光源和绿光补偿光源都需要开启。这种判断方法也可以运用到本发明的其它实施例中。
实施例六:
本实施例与实施例一的区别点在于所使用的色轮不同,如图16所示,本实施例的色轮包括蓝光色段003、橙光色段004、绿光色段002和第一扩散段005。
第一补偿光源可以为红激光或者青绿激光(主波长在510nm至530nm之间的,优选为520nm),激发光为蓝光,在色轮移动到蓝光色段003、橙光色段004、绿光色段002时主光源打开且第一补偿光源关闭;在色轮移动到第一扩散段005时红激光或者青绿激光打开且主光源关闭,使得色轮发出时序为绿、蓝、橙、红/青绿光的光。其中橙光和红光时序混合成红基色光(该红基色光对应图像信号中的红基色图像,这样,判断红基色图像中每个像素的色坐标,根据一帧红基色图像中各像素的色坐标所属的色域区域,决定是否开启红激光光源,或者调整橙光与红激光的比例,确定橙光与红激光的比例后,等比例的增强橙光与红激光的强度,可以使红基色光达到预设的亮度,红基色光达到预设的亮度后,根据预设的白平衡,改变其它基色光对应的光源的光强),绿和青绿光时序混合成绿基色光(绿基色光对应图像信号中的绿基色图像)。
图17反应了发光装置发射光的时序图,色轮408吸收激发光400后产生绿色基色光102、蓝色基色光103、橙色基色光104、红/青绿光500的光序列,其中,在产生红/青绿光500期间,由于主光源关闭,故色轮408不会吸收激发光进而不会产生基色光。
本实施例其他的技术特征与实施例一相同,故不再赘述。
另外,本领域技术人员应当理解,对于本实施例,可以在色轮上设置两个扩散段,如图18所示,色轮除包括蓝光色段003、橙光色段004、绿光色段002外,还包括第一扩散段005和第二扩散段006,在色轮移动到第二扩散段006也关闭主光源。在色轮移动到第一扩散段005时,第一补偿光源即红激光光源打开;在色轮移动到第二扩散段006时,第二补偿光源即青绿激光光源打开,使得色轮发射的光的时序的为蓝、青绿、绿、橙、红光。其中橙和红光时序混合成红基色光,绿和青绿光时序混合成绿基色光。发光装置具体的发光控制方法与上述原理一致,故不再赘述。
本发明所提供的发光装置及其控制方法,以及采用该发光装置所制作的投影系统,其控制器通过分析某一帧图像,在所有像素的色坐标的位置不都处于第一色域区域的情况下才开启补偿光源,而在所有像素的色坐标的位置都处于第一色域区域的情况下不开启补偿光源,从而达到节能的效果。进一步地,使得不位于第一色域区域BGO的色坐标中,至少有一个色坐标处于第二色域区域的边线上或者与第二色域区域的边线具有预定距离,从而在最大程度上实现节能。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (14)

1. 一种发光装置的发光控制方法,所述发光装置包括主光源,所述发光装置在开启所述主光源时出射包含三基色光的第一光,所述第一光在色坐标图上形成第一色域区域;
所述发光装置还包括用于发射补偿光的补偿光源,所述发光装置在所述主光源和所述补偿光源均开启时出射包含三基色光的第二光,所述补偿光与所述第一光中的至少一种基色光合光形成所述第二光中的一种基色光,所述第二光包含的三基色光中至少有一种基色光的色坐标与所述第一光包含的三基色光中的任意一种基色光的色坐标均不同,所述第二光在色坐标图上形成第二色域区域;
其特征在于,所述方法包括:
获取将要进行投影的当前帧投影图像的所有像素的色坐标,判断所述所有像素的色坐标是否都处于所述第一色域区域;
若所述所有像素的色坐标全部处于所述第一色域区域,则控制所述主光源开启,并控制所述补偿光源不发光;
若存在色坐标位于所述第一色域区域之外的像素,则控制所述主光源和所述补偿光源均开启,使所述所有像素的色坐标均处于所述第二色域区域。
2. 如权利要求1所述的方法,其特征在于,所述若存在色坐标位于所述第一色域区域之外的像素,则控制所述主光源和所述补偿光源均开启具体包括:
调节所述主光源发光强度与所述补偿光源发光强度的比例,使所述所有像素的色坐标均处于所述第二色域区域内。
3. 如权利要求2所述的方法,其特征在于,所述调节所述主光源发光强度与所述补偿光源发光强度的比例,使所述所有像素的色坐标均处于所述第二色域区域具体包括:
调节所述主光源发光强度与所述补偿光源发光强度的比例,使所述所有像素的色坐标均处于所述第二色域区域,且至少有一个像素的色坐标处于所述第二色域区域的边线上。
4. 如权利要求2所述的方法,其特征在于,所述控制所述主光源和所述补偿光源均开启包括:
根据色坐标位于所述第一色域区域之外的像素的分布控制所述补偿光源发射第一补偿光和/或第二补偿光,所述第一补偿光与所述第一光中的第一基色光合光形成所述第二光中的第一基色光,所述第二补偿光与所述第一光中的第二基色光合光形成所述第二光中的第二基色光。
5. 如权利要求4所述的方法,其特征在于,所述根据色坐标位于所述第一色域区域之外的像素的分布控制所述补偿光源发射第一补偿光和/或第二补偿光具体包括:
当所述色坐标位于所述第一色域区域之外的像素中存在分布在第三色域区域中的像素时,控制所述补偿光源发射第一补偿光,所述第三色域区域为所述第一补偿光的色坐标、所述第一光中的第一基色光的色坐标以及所述第一光中的第三基色光的色坐标所围成的色域区域;
当所述色坐标位于所述第一色域区域之外的像素中存在分布在第四色域区域中的像素时,控制所述补偿光源发射第二补偿光,所述第四色域区域为所述第二补偿光的色坐标、所述第一光中的第二基色光的色坐标以及所述第一光中的第三基色光的色坐标所围成的色域区域。
6. 如权利要求5所述的方法,其特征在于,所述调节所述主光源发光强度与所述补偿光源发光强度的比例,使所述所有像素的色坐标均处于所述第二色域区域内具体包括:
当所述色坐标位于所述第一色域区域之外的像素均分布在第三色域区域中时,调节所述主光源发光强度与所述补偿光源发射第一补偿光的发光强度的比例,使所述第一补偿光与所述第一光中的第一基色光的合光的色坐标为第一线与第二线的交点中与所述第一补偿光的色坐标距离最近的色坐标,所述第二色域区域为所述第一补偿光与所述第一光中的第一基色光的合光的色坐标、所述第一光中的第二基色光的色坐标以及所述第一光中的第三基色光的色坐标所围成的色域区域;
当所述色坐标位于所述第一色域区域之外的像素均分布在第四色域区域中时,调节所述主光源发光强度与所述补偿光源发射第二补偿光的发光强度的比例,使所述第二补偿光与所述第一光中的第二基色光的合光的色坐标为第三线与第四线的交点中与所述第二补偿光的色坐标距离最近的色坐标,所述第二色域区域为所述第二补偿光与所述第一光中的第二基色光的合光的色坐标、所述第一光中的第一基色光的色坐标以及所述第一光中的第三基色光的色坐标所围成的色域区域;
当所述色坐标位于所述第一色域区域之外的像素中即存在分布在第三色域区域中的像素,又存在分布在第四色域区域中的像素时,调节所述主光源发光强度与所述补偿光源发射第一补偿光的发光强度的比例,使所述第一补偿光与所述第一光中的第一基色光的合光的色坐标为第一线与第二线的交点中与所述第一补偿光的色坐标距离最近的色坐标,同时调节所述主光源发光强度与所述补偿光源发射第二补偿光的发光强度的比例,使所述第二补偿光与所述第一光中的第二基色光的合光的色坐标为第三线与第四线的交点中与所述第二补偿光的色坐标距离最近的色坐标,所述第二色域区域为所述第一补偿光与所述第一光中的第一基色光的合光的色坐标、所述第二补偿光与所述第一光中的第二基色光的合光的色坐标、以及所述第一光中的第三基色光的色坐标所围成的色域区域;
其中所述第一线为所述第二光中的第三基色光的色坐标与分布在第三色域区域的像素的色坐标的连线的延长线,所述第二线为所述第一补偿光的色坐标与所述第一光中的第一基色光的色坐标的连线,所述第三线为所述第一光中的第三基色光的色坐标与分布在第四色域区域的像素的色坐标的连线的延长线,所述第四线为所述第二补偿光的色坐标与所述第一光中的第二基色光的色坐标的连线。
7. 如权利要求1-6任一项所述的方法,其特征在于,所述发光装置以光序列的方式发射第一基色光、第二基色光和第三基色光,控制所述补偿光源开启并发射补偿光的方式为:在所述发光装置发射被补偿的基色光期间,控制所述补偿光源发射相应的补偿光,在所述发光装置发射其它光期间,控制所述补偿光源不发射相应的补偿光。
8. 如权利要求1-6任一项所述的方法,其特征在于,所述控制所述主光源开启,并控制所述补偿光源不发光还包括:调节所述第一光中的三基色光的比例,使得所述第一光达到预设的亮度和/或白平衡。
9. 如权利要求1-6任一项所述的方法,其特征在于,所述控制所述主光源和所述补偿光源均开启还包括:调节所述第二光中的三基色光的比例,使得所述第二光达到预设的亮度和/或白平衡。
10. 一种发光装置,其特征在于,包括:
主光源,用于发射激发光;
补偿光源,用于发射补偿光;
颜色光产生装置,用于在所述激发光的照射下产生包含三基色光的第一光,所述第一光在色坐标图上形成第一色域区域;
所述发光装置在所述主光源和所述补偿光源均开启时出射包含三基色光的第二光,所述补偿光与所述第一光中的至少一种基色光合光形成所述第二光中的一种基色光,所述第二光在色坐标图上形成第二色域区域;
控制器,分别与所述主光源以及所述补偿光源连接,用于获取将要进行投影的当前帧投影图像的所有像素的色坐标,判断所述所有像素的色坐标是否都处于所述第一色域区域;
若所述所有像素的色坐标全部处于所述第一色域区域,则控制所述主光源开启,并控制所述补偿光源不发光;
若存在色坐标位于所述第一色域区域之外的像素,则控制所述主光源和所述补偿光源均开启,使所述所有像素的色坐标均处于所述第二色域区域。
11. 如权利要求10所述的装置,其特征在于,所述控制器判断存在色坐标位于所述第一色域区域之外的像素,则控制所述主光源和所述补偿光源均开启,具体包括:
所述控制器调节所述主光源发光强度与所述补偿光源发光强度的比例,使所述所有像素的色坐标均处于所述第二色域区域内。
12. 如权利要求11所述的装置,其特征在于,所述控制器调节所述主光源发光强度与所述补偿光源发光强度的比例,使所述所有像素的色坐标均处于所述第二色域区域具体包括:
所述控制器调节所述主光源发光强度与所述补偿光源发光强度的比例,使所述所有像素的色坐标均处于所述第二色域区域,且至少有一个像素的色坐标处于所述第二色域区域的边线上。
13. 如权利要求10-12任一项所述的装置,其特征在于,
所述补偿光源包括第一补偿光源和/或第二补偿光源;所述第一补偿光源用于发射第一补偿光,所述第二补偿光源用于发射第二补偿光;
所述控制器控制所述主光源和所述补偿光源均开启包括:
所述控制器根据色坐标位于所述第一色域区域之外的像素的分布控制所述补偿光源发射第一补偿光和/或第二补偿光,所述第一补偿光与所述第一光中的第一基色光合光形成所述第二光中的第一基色光,所述第二补偿光与所述第一光中的第二基色光合光形成所述第二光中的第二基色光。
14. 一种投影设备,其特征在于,包括如权利要求10-13任一项所述的发光装置。
PCT/CN2016/081393 2015-05-14 2016-05-09 一种发光装置及其发光控制方法、投影设备 WO2016180298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510245671.9 2015-05-14
CN201510245671.9A CN106292142B (zh) 2015-05-14 2015-05-14 一种发光装置及其发光控制方法、投影设备

Publications (1)

Publication Number Publication Date
WO2016180298A1 true WO2016180298A1 (zh) 2016-11-17

Family

ID=57248634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081393 WO2016180298A1 (zh) 2015-05-14 2016-05-09 一种发光装置及其发光控制方法、投影设备

Country Status (2)

Country Link
CN (1) CN106292142B (zh)
WO (1) WO2016180298A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748474A (zh) * 2017-10-16 2018-03-02 广景视睿科技(深圳)有限公司 一种提高投影亮度的混色发光方法及投影装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279548B (zh) * 2017-01-06 2021-02-02 深圳光峰科技股份有限公司 投影系统
CN108535943B (zh) * 2017-03-03 2021-07-06 深圳光峰科技股份有限公司 一种光源装置及其投影显示系统
CN108628069B (zh) * 2017-03-22 2020-09-08 深圳光峰科技股份有限公司 投影系统
CN108810497B (zh) * 2017-05-02 2021-07-23 深圳光峰科技股份有限公司 投影系统、投影方法及图像数据处理方法
CN107037680B (zh) * 2017-05-08 2019-09-20 苏州佳世达光电有限公司 投影系统
CN108931878B (zh) * 2017-05-26 2021-07-23 深圳光峰科技股份有限公司 光源系统及显示设备
CN109324465B (zh) * 2017-07-31 2021-12-31 深圳光峰科技股份有限公司 显示设备及显示方法
CN109327689B (zh) * 2017-07-31 2021-11-09 深圳光峰科技股份有限公司 显示设备及显示方法
CN110007550B (zh) 2018-01-04 2021-11-05 深圳光峰科技股份有限公司 光源系统及投影设备
CN110045571B (zh) 2018-01-16 2022-05-24 中强光电股份有限公司 光源产生装置、投影装置以及其光源产生方法
CN110068982B (zh) 2018-01-23 2021-09-21 深圳光峰科技股份有限公司 投影装置及色域调整方法
CN110277040B (zh) * 2018-03-16 2023-08-29 深圳光峰科技股份有限公司 显示设备
CN110275376B (zh) 2018-03-16 2021-08-03 深圳光峰科技股份有限公司 显示设备及显示方法
CN110278421B (zh) * 2018-03-16 2022-04-15 深圳光峰科技股份有限公司 显示设备及显示方法
CN113934096B (zh) * 2018-04-19 2023-08-04 深圳光峰科技股份有限公司 光源系统、投影设备及色轮
CN108803220A (zh) * 2018-06-15 2018-11-13 成都九天光学技术有限公司 一种激光投影光源系统
CN110941135B (zh) * 2018-09-21 2022-05-13 深圳光峰科技股份有限公司 动态色域调节系统、方法及显示系统
CN109948184B (zh) * 2019-02-01 2022-11-08 东莞广亮山贸易有限公司 照明混光计算方法、装置、计算机设备及存储介质
CN111948887B (zh) * 2019-05-16 2022-06-03 无锡视美乐激光显示科技有限公司 投影显示光源控制系统
CN112147834B (zh) * 2019-06-28 2022-05-17 成都理想境界科技有限公司 一种光源、投影显示装置及光源调制方法
CN115174880B (zh) * 2022-09-08 2023-03-10 江西渊薮信息科技有限公司 一种提高色域的投影系统、投影仪及投影方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984478A (en) * 1998-07-29 1999-11-16 International Business Machines Corporation Dynamic optical compensation for color sequential projection display
US20110304659A1 (en) * 2010-06-15 2011-12-15 Acer Incorporated Dlp projector and color compensation method of bulb of dlp projector
CN102650813A (zh) * 2011-11-28 2012-08-29 深圳市光峰光电技术有限公司 光源系统、投影装置及其色平衡调整方法
CN104216209A (zh) * 2012-09-28 2014-12-17 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN104252094A (zh) * 2012-09-28 2014-12-31 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN204302654U (zh) * 2014-12-08 2015-04-29 深圳市绎立锐光科技开发有限公司 投影系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719359B (zh) * 2008-10-09 2012-02-29 华硕电脑股份有限公司 色彩分布调整法与色彩分布模块
CN105022218B (zh) * 2012-03-19 2017-06-20 深圳市光峰光电技术有限公司 照明装置和投影装置
KR101985313B1 (ko) * 2012-10-16 2019-06-03 삼성전자주식회사 디스플레이장치 및 그 제어방법
CN103327275B (zh) * 2013-05-08 2016-06-29 深圳市绎立锐光科技开发有限公司 显示均匀补偿方法、光调制装置、信号处理器和投影系统
CN103295553B (zh) * 2013-06-26 2015-02-18 青岛海信信芯科技有限公司 直下式背光的亮度补偿方法及显示装置
CN103489405B (zh) * 2013-09-30 2015-09-16 京东方科技集团股份有限公司 一种显示补偿方法、装置及显示补偿系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984478A (en) * 1998-07-29 1999-11-16 International Business Machines Corporation Dynamic optical compensation for color sequential projection display
US20110304659A1 (en) * 2010-06-15 2011-12-15 Acer Incorporated Dlp projector and color compensation method of bulb of dlp projector
CN102650813A (zh) * 2011-11-28 2012-08-29 深圳市光峰光电技术有限公司 光源系统、投影装置及其色平衡调整方法
CN104216209A (zh) * 2012-09-28 2014-12-17 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN104252094A (zh) * 2012-09-28 2014-12-31 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN204302654U (zh) * 2014-12-08 2015-04-29 深圳市绎立锐光科技开发有限公司 投影系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748474A (zh) * 2017-10-16 2018-03-02 广景视睿科技(深圳)有限公司 一种提高投影亮度的混色发光方法及投影装置
WO2019075992A1 (zh) * 2017-10-16 2019-04-25 广景视睿科技(深圳)有限公司 一种提高投影亮度的混色发光方法及投影装置
CN107748474B (zh) * 2017-10-16 2019-09-06 广景视睿科技(深圳)有限公司 一种提高投影亮度的混色发光方法及投影装置

Also Published As

Publication number Publication date
CN106292142A (zh) 2017-01-04
CN106292142B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2016180298A1 (zh) 一种发光装置及其发光控制方法、投影设备
KR101578829B1 (ko) 광원 장치, 투영 장치 및 투영 방법
EP2271120B1 (en) Light source device, video projector and video projection method
EP2290443B1 (en) Light source device, projection apparatus, and projection method
WO2016165569A1 (zh) 发光装置和投影系统
TWI584049B (zh) 合光控制系統
TWI446090B (zh) 投影裝置及驅動投影裝置的投影方法
WO2015149700A1 (zh) 一种光源系统及投影系统
WO2016161924A1 (zh) 光源系统和投影系统
WO2015161810A1 (zh) 光源系统、投影系统及方法
KR20050088218A (ko) 투사형 영상 표시 장치
WO2018010467A1 (zh) 发光装置及相关投影系统
WO2018126561A1 (zh) 投影系统
WO2018107634A1 (zh) 光源系统及投影装置
WO2007026885A1 (ja) レーザ画像形成装置およびカラー画像形成方法
CN108234976A (zh) 支持多种激光光源的dlp投影显示驱动系统
US20180192013A1 (en) Image display device and image display method
US10861364B2 (en) Projector and projection method
WO2018113226A1 (zh) 一种投影显示系统
JP2005181528A (ja) 発光ダイオード式投写装置
KR20110089763A (ko) 영상 프로젝터
WO2018170987A1 (zh) 投影系统
WO2016127814A1 (zh) 投影系统及其控制方法
US9635327B2 (en) Projector, color correction device, and projection method
WO2016066074A1 (zh) 3d投影显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792148

Country of ref document: EP

Kind code of ref document: A1