WO2016066074A1 - 3d投影显示系统 - Google Patents

3d投影显示系统 Download PDF

Info

Publication number
WO2016066074A1
WO2016066074A1 PCT/CN2015/092888 CN2015092888W WO2016066074A1 WO 2016066074 A1 WO2016066074 A1 WO 2016066074A1 CN 2015092888 W CN2015092888 W CN 2015092888W WO 2016066074 A1 WO2016066074 A1 WO 2016066074A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
band
wavelength
wavelength band
Prior art date
Application number
PCT/CN2015/092888
Other languages
English (en)
French (fr)
Inventor
郭祖强
王则钦
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2016066074A1 publication Critical patent/WO2016066074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing

Definitions

  • the present invention relates to the field of 3D projection technology, and in particular to a 3D projection display system.
  • the display technology can restore the height of the display content realistically.
  • the basic principle is that the left and right eyes independently receive different images and superimpose the brain to form a stereoscopic display effect.
  • Current 3D In the display the spectral separation technology has become an important technical means.
  • the basic principle of the spectral separation technology is: placing a high-speed rotating RGB color separation wheel inside the projector to provide different RGB color configurations for the left and right eyes.
  • RGB color-separating glasses allow the left and right eyes to see different images, resulting in a three-dimensional effect.
  • RGB represents three primary colors: red (Red), green (Green), and blue (Blue).
  • the existing color difference type 3D is a kind of spectral separation technology, and the color filter glasses are red / The blue filter, that is, the left eye receives a red image, and the right eye receives a blue image, and vice versa.
  • This technology is simple in structure and low in cost, but the 3D effect is poor.
  • a 3D display technology - 6P 3D (six primary colors) laser source The technology has gradually developed.
  • the light source is two sets of red, green and blue semiconductor lasers with staggered bands.
  • the left and right eyes respectively receive a set of red, green and blue primary colors to form 3D. Display.
  • This method uses pure laser as the light source, which has the advantages of good color and wide color gamut, but its cost is high, and the technique of dissipating speckle is difficult. At the same time, due to the different color gamut of the left and right eyes, color correction is needed in practical applications, thereby reducing color saturation. Degree and light efficiency.
  • the existing 6P laser source 3D display technology scheme is shown in Figure 1, 101 is a 6P light source, and its spectral distribution is shown in Figure 2, the solid line in Figure 2 is the spectrum of the left-eye laser source, and the dotted line is the spectrum of the right-eye laser source.
  • 101 emits three primary colors of the left eye, including R left, G left, B left, through the color separation device
  • R is assigned to the Digital Micromirror Device (DMD) 103
  • G is assigned to the DMD104.
  • B is assigned to the DMD105, and after the light combining device 106 is combined, the image of the left eye reaches the lens 108 after the lens 107, and the left and right lenses of the lens 108 are plated as shown in FIG.
  • DMD Digital Micromirror Device
  • the left eye receives the left eye image, while the right eye has no image; similarly, in the right eye timing, 101
  • the right eye three primary colors are emitted, including R right, G right, and B right.
  • R is rightly assigned to DMD103
  • G is rightly assigned to DMD104
  • B is rightly assigned to
  • the DMD105 After passing through the color separation device 102, R is rightly assigned to DMD103, G is rightly assigned to DMD104, and B is rightly assigned to
  • the light combining device 106 is combined, the right eye image reaches the lens 108 after the lens 107, the right eye receives the right eye image, and the left eye has no image, three DMDs.
  • the timing of processing the primary color light is as shown in FIG. 4, and the left and right eye timing images form a stereoscopic display effect by superimposing the human eye
  • each DMD A primary color light is processed on the left and right eyes, and the left eye timing and the right eye timing are sequentially performed to form an image in which the left and right eyes alternate, and the human eye is superimposed to form a 3D image.
  • the above 6P laser light source 3D The display technology selects two sets of red, green and blue lasers, and cooperates with the left and right eye filters of the glasses to obtain left and right eye images in turn, and forms a stereoscopic display through superposition of human eyes.
  • the scheme has the advantages of wide color gamut, but the cost is high, the green laser is not easy to obtain, the dissipating speckle technique is difficult, and the color gamut of the light received by the left and right eyes is greatly different. As shown As shown in Fig. 5, since the color gamut of the left and right eyes is different, color correction is required in practical applications, thereby reducing color saturation and light efficiency.
  • the main object of the present invention is to provide a 3D projection display system to solve the problem that the color gamut of the light received by the left and right eyes is greatly different in the prior art.
  • a 3D projection display system includes: a light source for outputting time series light, the time series light including first time light and second time light, wherein the first time light includes a second color light and a first wavelength band First color light, the second time light includes a third color light and a first color light of a second wavelength band, wherein the first color light, the second color light, and the third color light respectively
  • the second color light includes a third band of light, a fourth band of light, and a fifth band of light, and the third color of light includes a sixth band of light and a seventh band of light.
  • the optical splitting device is disposed in the transmission optical path of the time series light, and is configured to divide the time series light into a first light transmitted along the first optical channel and a second light transmitted along the second optical channel Light and third light transmitted along the third optical channel, wherein the second color light comprises a third band of light, a fourth band of light, and a fifth band of light, the third color of light comprising a band of wavelengths Sixth band light, seventh band light An eighth band light, the first light comprising a first color light of the first wavelength band and a first color light of the second wavelength band, the second light comprising the fourth wavelength band light and the seventh Band light, the third light includes the third band light, the fifth band light, the sixth band light, and the eighth band light, and the spectroscopic combining device is further configured to a light, the second light, and the third light generate a first set of three primary colors and a second set of three primary colors, wherein the first set of three primary colors and the second set of three primary colors are different Two sets of
  • a color separation color combining film is provided on the spectroscopic light combining device, the color separation color combining film includes a reflective film and a double band pass filter film, and the reflective film is used to reflect the first of the first wavelength band Color light and first color light of the second wavelength band, the dual band pass filter film for reflecting the fourth band light and the seventh band light, and transmitting the third band light, the a fifth band light, the sixth band light, and the eighth band light, wherein the time series light generates the first set of three primary colors and the light through the reflective film and the dual band pass filter film The second group of three primary colors is described.
  • the wavelength of the fourth band of light is smaller than the wavelength of the fifth band of light, and is greater than the wavelength of the third band of light; the wavelength of the seventh band of light is smaller than the wavelength of the eighth band of light, and is greater than the sixth band of light. The wavelength.
  • the spectroscopic light combining device includes: a first prism, a second prism, and a third prism, wherein the first prism, the second prism, and the third prism are sequentially arranged, and the time series light sequentially passes through the a first prism, the second prism, and the third prism, wherein the reflective film is disposed between the first prism and the second prism, and the second prism is disposed between the second prism and the third prism There is the double band pass filter film.
  • the light modulator includes: a first digital micromirror device, a second digital micromirror device, and a third digital micromirror device, wherein the first digital micromirror device is disposed at the reflective film Modulating the first color light of the first wavelength band and the first color light of the second wavelength band in a direction of the first color light of the first wavelength band and the first color light of the second wavelength band
  • the second digital micromirror device is disposed in a direction in which the dual band pass filter reflects the fourth band light and the seventh band light for the fourth band light and the The seventh band light is modulated
  • the third digital micromirror device is disposed in an outgoing direction of the third band light, the fifth band light, the sixth band light, and the eighth band light
  • the third band light, the fifth band light, the sixth band light, and the eighth band light are modulated.
  • the reflective film is further configured to reflect a part of a wavelength band of the third band light, and the dual band pass filter film transmits another part of the band of the third band light; or the reflective film is further used for Reflecting a portion of the band of the eighth band of light, the dual band pass filter film transmits another portion of the band of the eighth band of light.
  • the light source includes: a laser light source for emitting first color light of the first wavelength band and first color light of the second wavelength band; and a color wheel disposed at a first color of the first wavelength band a phosphor is disposed on the color wheel, and the phosphor includes a second color phosphor and a third color phosphor, wherein the second a color phosphor for generating the second color light under excitation of a first color light of the first wavelength band, the third color phosphor being used for excitation of a first color light of the second wavelength band Generating the third color light; the second color phosphor transmits a portion of the first color light of the first wavelength band, and the third color phosphor transmits a portion of the first color light of the second wavelength band.
  • the light source includes: a first laser light source for emitting the first color light of the first wavelength band; and a second laser light source for emitting the first color light of the first wavelength band and the second a first color wheel of the band; a first color wheel disposed in a light emission direction of the first laser light source, wherein the first color wheel is provided with a second color phosphor and a third color phosphor, a color wheel for generating the second color light and the third color light under excitation of the first color light of the first wavelength band; and a second color wheel for light emission of the second laser light source In the direction, the second color wheel is provided with scattering powder, and the second color wheel is used for scattering depolarization of the first color light of the first wavelength band and the first color light of the second wavelength band.
  • the second laser light source emits a switching frequency of the first color light of the first wavelength band and the first color light of the second wavelength band and the second color phosphor and the first color wheel
  • the switching frequency of the third color phosphor is the same
  • first laser source and the second laser source each use a semiconductor laser.
  • the light source includes: a laser light source for emitting the first color light of the first wavelength band and the first color light of the second wavelength band; and an LED light source for transmitting the third wavelength band, The second color light of the fourth band and the fifth band, the LED light source is further configured to emit the third color light including the sixth band, the seventh band, and the eighth band.
  • the 3D projection display system according to claim 7, wherein the 3D projection display system further comprises:
  • a first focusing lens disposed between the first laser source and the first color wheel for focusing a first color light emitted by the first laser source onto the first color wheel;
  • a second focusing lens disposed between the second laser source and the second color wheel for focusing the first color light emitted by the second laser source onto the second color wheel.
  • the 3D projection display system further includes: a first collecting lens disposed in a light output direction of the first color wheel; and a second collecting lens disposed in a light output direction of the second color wheel; a first mirror for reflecting the first color light of the first wavelength band collected by the second collecting lens; a light combining device for reflecting the first color light of the first wavelength band and the The first color light of the second wavelength band transmits the second color light and the third color light to obtain mixed light.
  • the 3D projection display system further includes: a square bar disposed in a direction of emission of the mixed light for performing uniformization processing on the mixed light; a relay lens, light disposed on the square bar a second mirror disposed in a light output direction of the relay lens for reflecting light output by the relay lens; a total reflection prism for reflecting light of the second mirror Total reflection onto the prism plated with the color separation film.
  • the 3D projection display system further includes: a projection lens for receiving the light modulator to control outputting the first set of three primary colors of light and the second set of three primary colors of light; and glasses, the glasses comprising a left eyeglass lens and a right eyeglass lens, wherein the left eyeglass lens is for transmitting the first set of three primary color lights, and the right eyeglass lens is for transmitting the second set of three primary color lights.
  • the first color light is blue light
  • the second color light is green light
  • the third color light is red light
  • the first color light is green light
  • the second color light is In the case of red light
  • the third color light is blue light
  • the first color light is red light
  • the second color light is blue light
  • the third color light is green light.
  • the light transmitted by the reflective film is further split by the double band pass filter film.
  • the time series light generates a first set of three primary colors and a second set of three primary colors through the reflective film and the dual band pass filter film, wherein the first set of three primary colors and the first The two sets of three primary colors are two sets of primary colors received by different eyes, and the first set of three primary colors includes first color light, fourth band light and seventh band light of the first band, and the second group of three primary colors light includes The first color light, the third band light, the fifth band light, the sixth band light, and the eighth band light of the two bands.
  • the color gamuts of the first group of three primary colors and the second group of three primary colors are relatively close, which solves the problem that the color gamut of the light received by the left and right eyes is large in the prior art, and the light received by the left and right eyes of the human body is achieved.
  • the gamut is close to the effect.
  • FIG. 1 is a schematic structural view of a 3D projection display system according to the prior art
  • FIG. 2 is a schematic diagram of a spectral distribution curve of a 3D projection display system according to the prior art
  • FIG. 3 is a schematic diagram of a filter curve of a 3D projection display system according to the prior art
  • Figure 5 is a schematic diagram showing the spectral distribution of a 3D projection display system according to the prior art
  • FIG. 6 is a schematic structural diagram of a 3D projection display system according to a first embodiment of the present invention.
  • 7a to 7c are schematic diagrams of spectra of time series light according to an embodiment of the present invention.
  • Figure 8 is a schematic structural view of a prism and a DMD according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a preferred 3D projection display system according to a second embodiment of the present invention.
  • Figure 10 is a schematic view showing the color wheel of the 3D projection display system shown in Figure 9;
  • Figure 11 is a light timing diagram showing the color wheel output of the 3D projection display system shown in Figure 9;
  • Figure 12 is a graph showing the reflection of the color separation film of the 3D projection display system shown in Figure 9;
  • Figure 13 is a timing chart showing the left and right eyes of the 3D projection display system shown in Figure 9;
  • Figure 14 is a timing chart showing DMD processing of the 3D projection display system shown in Figure 9;
  • Figure 15 is a schematic diagram showing the spectral distribution of the 3D projection display system shown in Figure 9;
  • Figure 16 is a block diagram showing the structure of a 3D projection display system in accordance with a third embodiment of the present invention.
  • Figure 17 is a schematic view showing the color wheel of the 3D projection display system shown in Figure 16;
  • Figure 18 is a light timing diagram showing the color wheel output of the 3D projection display system shown in Figure 16;
  • Figure 19 is a reflection graph of a preferred color separation color film according to an embodiment of the present invention.
  • FIG. 20 is a spectral diagram of a color separation film of a 3D projection display system according to an embodiment of the present invention.
  • 21 is a left and right eye timing diagram of a 3D projection display system in accordance with an embodiment of the present invention.
  • 22 is a timing diagram of DMD processing of a 3D projection display system according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of the spectral distribution of a 3D projection display system in accordance with an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a 3D projection display system in accordance with a first embodiment of the present invention.
  • the 3D The projection display system includes a light source 601, a beam splitting unit 602, and a light modulator 603.
  • the timing light includes first timing light and second timing light, wherein the first timing light includes a second color light and a first color light of a first wavelength band, and the second timing light includes a third color light And a first color light of the second wavelength band, wherein the first color light, the second color light, and the third color light are respectively different color primary colors, and the second color light includes a third wavelength band and a fourth wavelength light And the fifth band light, the third color light includes a sixth band of light, a seventh band of light, and an eighth band of light.
  • the light source 601 can be an LED light source or a laser light source, and the light source 601
  • the first time series light and the second time series light are output at different times.
  • the first band and the second band are different bands, and the first color light, the second color light, and the third color light are respectively different color primary colors, which may be blue light, green light, red light, or green light. , red and blue, or red, blue and green.
  • Optical splitting device 602 disposed in the transmission optical path of the time series light, configured to divide the time series light into the first light transmitted along the first optical channel, the second light transmitted along the second optical channel, and the third light transmitted along the third optical channel, where
  • the second color light includes a third band of light, a fourth band of light, and a fifth band of light
  • the third color of light includes a sixth band of light, a seventh band of light, and an eighth band of light
  • the first light comprising The first color light of the first wavelength band and the first color light of the second wavelength band
  • the second light includes the fourth band light and the seventh band light
  • the third light includes the third band light, the fifth band light, and the sixth band light
  • the optical combining device is further configured to generate a first group of three primary colors and a second group of three primary colors according to the first light, the second light, and the third light, wherein the first group of three primary colors and the first The two sets of three primary colors are two sets of primary colors received by different eyes, and the
  • the first time series light includes a second color light and a first color light of the first wavelength band
  • the second time series light includes a third color light and a first color light of the second wavelength band
  • the first color light is blue , including the first band of blue light B1 And the second band of blue light B2
  • the second color light is green light, including the third band light G2, the fourth band light G1, and the fifth band light G3
  • the third color light is red light, including the sixth band light R2 , the seventh band light R1 and the eighth band light R3.
  • the solid line indicates the first time series light
  • the broken line indicates the second time series light.
  • the first color light is red light, including red light R1 of the first wavelength band and red light R2 of the second wavelength band
  • the second color light is blue light B
  • the third color light is green light G.
  • the first color light is green light, including green light G1 of the first wavelength band and green light G2 of the second wavelength band
  • the second color light is red light R
  • the third color light is blue light B.
  • the second color light includes a third band of light having a continuous band, a fourth band of light, and a fifth band of light, wherein the third band of light has a third band, the fourth band of light has a fourth band, and the fifth band of light has a fifth band
  • the band, the third band, the fourth band, and the fifth band may be continuous bands.
  • the maximum wavelength of the third band is equal to the minimum wavelength of the fourth band
  • the maximum wavelength of the fourth band is equal to the minimum wavelength of the fifth band.
  • the maximum wavelength of the fifth band is equal to the minimum wavelength of the fourth band
  • the maximum wavelength of the fourth band is equal to the minimum wavelength of the third band.
  • the third color light includes a sixth band light, a seventh band light, and an eighth band light, wherein the sixth band light, the seventh band light, and the eighth band light are sequentially combined with the third band light and the fourth band light.
  • the wavelength of the fourth band light is smaller than the wavelength of the fifth band light and larger than the wavelength of the third band light
  • the wavelength of the seventh band light is smaller than the wavelength of the eighth band light and larger than the sixth band The wavelength of light.
  • the color separation film includes a reflection film and a double band pass filter film, and the reflection film is used for reflecting the first color light of the first wavelength band and the first color light of the second wavelength band, and the double band pass filter
  • the light film is configured to reflect the fourth band light and the seventh band light, and transmit the third band light, the fifth band light, the sixth band light, and the eighth band light, wherein the time series light passes through the reflective film and the double band pass filter
  • the film generates a first set of three primary colors and a second set of three primary colors, wherein the first set of three primary colors and the second set of three primary colors are two sets of primary colors received by different eyes, and the first set of three primary colors includes a first color light, a fourth wavelength light, and a seventh wavelength light of a wavelength band, and the second group of three primary color lights includes a first color light, a third wavelength band light, a fifth band light, a sixth band light, and a second band Eight-
  • Optical splitting device 602 A three-piece Philips prism may be employed, wherein the reflective film is for reflecting the first color light, including the first color light of the first wavelength band and the second wavelength band, and the second color light and the third color light.
  • the dual band pass filter is for reflecting the fourth band light and the seventh band light, and transmits the third band light, the fifth band light, the sixth band light, and the eighth band light.
  • the time-series light can be reflected by the reflective film first, and then the light transmitted by the reflective film is split by the double-band pass filter film.
  • the first time-series light is first reflected by the reflective film to the first wavelength band.
  • One color light transmits the second color light, and the second color light reflects the fourth wavelength band through the double band pass filter film, and transmits the third band light and the fifth band light, thereby sequentially obtaining the first after the splitting
  • the first color light of the band, the fourth band light, and the third band light and the fifth band light; the second time series light is transmitted along the same path, and the first color light and the seventh band light of the second wavelength band after the splitting are sequentially obtained.
  • sixth band light and eighth band light are sequentially obtained.
  • the time series light can also be split by the double band pass filter film, and then the light transmitted by the double band pass filter film is split by the reflection film, and the reflection film has the characteristic of reflecting the first color light and transmitting the other color light.
  • the first time-series light first reflects the fourth-wavelength light through the double-band pass filter film, and transmits the first color light, the third wavelength band light, and the fifth wavelength band light of the first wavelength band, and then reflects the first light through the reflective film.
  • the first color light of the band transmits the third band light and the fifth band light, thereby sequentially obtaining the split fourth band light, the first band first color light, and the third band light and the fifth band light; the second timing The light is transmitted along the same path, and the seventh-band light after the splitting is sequentially obtained. / First color light of the second band and sixth band light and eighth band light.
  • the time-series light is split to generate at least two sets of three primary colors, including a first set of three primary colors and a second set of three primary colors, and the first set of three primary colors includes a first color of the first band, a fourth band of light, and a first band of light.
  • the seven-band light, the second set of three primary colors includes the first color light, the third band light, the fifth band light, the sixth band light, and the eighth band light of the second band.
  • the first set of three primary colors and the second set of three primary colors are two sets of primary colors received by different eyes, wherein the first set of three primary colors is the three primary colors received by the first eye of the human eye, and the second set of three The primary color light is the three primary colors received by the second eye of the human eye.
  • the first set of three primary colors of light may be the primary color light that the left eyeglass of the glasses 605 can transmit
  • the second set of three primary colors of light may be the glasses 605.
  • the primary color of the right spectacle lens is transmissive.
  • the fourth band of light is the light of the intermediate band intercepted from the second color of light
  • the seventh band of light is the light of the intermediate band intercepted by the third color of light, so that the first group of three
  • the color gamut of the primary color light and the second set of three primary color lights are relatively close, so that the color gamut of the light received by the two eyes of the human body is relatively close.
  • the light modulator 603 is configured to modulate the first set of three primary colors and the second set of three primary colors, and reflect the modulated light to the optical splitting device 602. After the light splitting and combining device 602 is combined, the light is output.
  • Light modulator 603 It may be a digital micromirror device for image modulating the first set of three primary colors and the second set of three primary colors, and the modulated light is then reflected onto the optical splitting device 602 through the optical splitting device 602. After the combined light is output, since the time-series light includes the first time-series light and the second time-series light that are output at different timings, the light that has been merged by the beam splitting and combining device 602 still includes two time-series light.
  • the time series light generates a first set of three primary colors of light and a second set of three primary colors of light by the optical splitting means, wherein the first set of three primary colors of light and the second set of three primary colors of light are two different eyes accepted by the eye.
  • the color gamuts of the first group of three primary colors and the second group of three primary colors are relatively close, which solves the problem that the color gamut of the light received by the left and right eyes is large in the prior art, and the light received by the left and right eyes of the human body is achieved.
  • the gamut is close to the effect.
  • the 3D projection display system of the embodiment of the invention further includes: a projection lens 604 and glasses 605, and a projection lens 604
  • the receiving light modulator controls the output of the first set of three primary colors and the second set of three primary colors.
  • Glasses 605 A left eyeglass lens and a right eyeglass lens are included, wherein the left eyeglass lens is for transmitting a first set of three primary color lights and the right eyeglass lens is for transmitting a second set of three primary color lights.
  • Projection lens 604 The received light is imaged, with the glasses making the left eyeglass to generate a left eye image and the right eyeglass generating a right eye image to form a 3D image.
  • the optical splitting device 602 The first prism, the second prism and the third prism are arranged in sequence (from right to left in FIG. 8 ), and the mixed light sequentially passes through the first prism, the second prism and the third prism. As shown in Figure 8. The direction of the arrow in the split light combining device 602 is shown. A reflective film is disposed between the first prism and the second prism, and a double band pass filter film is disposed between the second prism and the third prism.
  • the above prisms can be used with Philips Prism.
  • a reflective film is disposed between two faces adjacent to the first prism and the second prism, and a reflective film 607 is disposed between the two faces adjacent to the first prism and the second prism.
  • the reflective film 607 is used for reflecting the first color light
  • the surface of the second prism and the third prism is provided with a double band pass filter film 608 and a double band pass filter film 608. And configured to reflect the fourth band light in the second color light, and transmit the third band light and the fifth band light in the second color light, and reflect the seventh band light in the third color light, and transmit the third color The sixth band of light and the eighth band of light.
  • a reflective film 607 and a double band pass filter 608 are sequentially disposed between the three prisms, combined with the spectrum of the light source, and the reflective film 607 can reflect blue light, double band pass filter 608 It can be used to reflect light in the middle band portion of green and red light, and to transmit light in other parts of green light and red light.
  • the light of each color after being split is modulated by the light modulator, and then reflected to the beam splitting device 602.
  • the light is combined by the color separation film, and output to the projection lens for imaging.
  • a three-piece prism is used as the light combining and illuminating device, so that the three prisms of the split light after the different prisms are emitted do not need to adopt different components for the light splitting and the light combining processing, and the structure is simple.
  • the optical modulator may include: a first digital micromirror device (ie, DMD6031) a second digital micromirror device (ie, DMD6032) and a third digital micromirror device (ie, DMD6033), wherein the DMD6031 is disposed on the reflective film 607 Reflecting the direction of the first color light, that is, the light exiting direction of the first prism, for modulating the first light, that is, the first color light of the first wavelength band and the first color light of the second wavelength band; DMD6032 is set in the double Band pass filter 608 is reflected in the direction of the fourth band light and the seventh band light, that is, the light exiting direction of the second prism, for modulating the second light, that is, the fourth band light and the seventh band light; DMD6033 is set in the double band pass Filter film 608 Transmitting the third light, that is, the third band light, the fifth band light, the sixth band light, and the eighth
  • Will DMD6031, DMD6032 and DMD6033 The outgoing directions of the light of the first prism, the second prism, and the third prism are sequentially disposed for receiving the primary color light emitted from the prism to facilitate modulation thereof. Specifically, it may be that the two kinds of blue light of the timing are reflected to On the DMD6031, the second prism uses a green band and a red band dual bandpass filter. Both green and red light are partially reflected and partially transmitted, forming two sets of time series of green and red light distributed to the DMD6032 and On the DMD6033.
  • Figure 9 is a block diagram showing the structure of a 3D projection display system in accordance with a second embodiment of the present invention.
  • 3D of this embodiment The projection display system can be a preferred embodiment of the 3D projection display system of the above embodiment.
  • the light source includes: a first laser light source 901 for emitting first color light of the first wavelength band; and a second laser light source 902 And transmitting a first color light of the first wavelength band and a first color light of the second wavelength band;
  • the first color wheel 905 is disposed in a light emission direction of the first laser light source, and the first color wheel 905 Having a second color phosphor and a third color phosphor, the first color wheel 905 is configured to generate a timed second color light and a third color light under excitation of the first color light of the first wavelength band;
  • the second color Wheel 906 The second color wheel 906 is provided with a scattering powder, and the second color wheel 906 is used for the second laser source 902.
  • the first color light of the emitted second wavelength band is scatter-depolarized, wherein the second laser light source 902
  • the switching frequency of the first color light emitting the first wavelength band and the first color light of the second wavelength band is the same as the switching frequency of the second color phosphor and the third color phosphor on the first color wheel.
  • the wavelength of the set of light output by the second laser light source is similar to the wavelength of the light output by the first laser light source, that is, the first color light of the first wavelength band.
  • first laser source 901 and the second laser source 902 each use a semiconductor laser, wherein the second laser source The 902 includes two sets of semiconductor lasers in different wavelength bands. a semiconductor laser of the second laser source 902 and the first laser source 901 The semiconductor lasers are the same laser. This facilitates the selection of the laser.
  • the 3D projection display system further includes: a first focus lens 903 disposed at the first laser light source 901 And a first color wheel 905 for focusing the first color light emitted by the first laser light source 901 onto the first color wheel 905; and a second focusing lens 904 disposed at the second laser light source 902 Between the second color wheel 906 and the second color wheel 906, the first color light emitted by the second laser light source 902 is focused onto the second color wheel 906.
  • the 3D projection display system further includes: a first collecting lens 917 disposed on the first color wheel 905 a second collecting lens 918 disposed in a light output direction of the second color wheel 906; a first mirror 910 for reflecting the second collecting lens 918 The first color light of the first band collected; the light combining device 909, the light combining device 909 The first color light of the first wavelength band and the first color light of the second wavelength band are reflected, and the second color light and the third color light are transmitted to obtain mixed light.
  • the first color light output by the second color wheel 906 passes through the first collecting lens 917.
  • the first mirror 910 is configured to reflect the first color light onto the light combining device 909, and the second color light and the third color light output by the first color wheel 905 pass through the first collecting lens.
  • 917 reaches the light unit 909, the light unit 909
  • the first color light, the second color light, and the third color light are combined by reflecting the first color light and transmitting the second color light and the third color light to obtain time series light.
  • the 3D projection display system also includes: square bar 911 And disposed in the emission direction of the mixed light for performing uniformization processing on the mixed light; the relay lens 912 is disposed in a light output direction of the square bar 911; and the second mirror 913 is disposed on the relay lens 912
  • the light output direction is used to reflect the light output from the relay lens 912; the total reflection prism 914 is configured to totally reflect the light reflected by the second mirror 913 onto the prism 915 plated with the color separation film.
  • the embodiment of the present invention is described by taking the first color light as blue light, the second color light as green light, and the second color light as red light as an example.
  • the 3D projection display system includes a first laser source 901 and a second laser source 902. Both are blue semiconductor lasers, and the light emitted by the first laser light source 901 passes through the first focus lens 903 and is focused to the first color wheel 905, and the second laser light source 902 The emitted light passes through the second focus lens 904 and is focused to the second color wheel 906, the first color wheel 905 and the second color wheel 906, as shown in Fig. 10, the first color wheel 905.
  • the second laser source 902 includes two sets of blue lasers of different wavelengths.
  • the first laser source 901 For the blue laser with the same band, the second laser source 902 performs two kinds of blue light switching at the same frequency as the switching frequency of the green and red lights on the first color wheel 905.
  • the light timing of the two sets of light sources output from the color wheel is as shown in FIG. As shown, green G and blue B1 are synchronized, and red R and blue B2 are synchronized.
  • the light output from the first color wheel 905 passes through the first collecting lens 907 to the light combining device 909 from the second color wheel 906.
  • the output light is reflected by the first mirror 910 and reaches the light combining device 909.
  • the light combining device 909 transmits the green light and the red light, and reflects the blue light, thereby combining the two beams into a square bar.
  • the relay lens 912 is passed, and the mirror 913 reaches the TIR prism 914, and the TIR prism 914 is totally reflected and incident on the color separation prism 915.
  • the color separation prism 915 consists of three prisms. The three prisms are placed with DMD916, DMD917 and DMD918.
  • the three prisms are respectively plated with color separation film 919 and 920.
  • the reflection curves of the color separation film 919 and 920 are shown in Fig. 12.
  • the solid line in the figure represents the spectrum of the first time series
  • the dotted line represents the spectrum of the second time series
  • the reflection film 919 reflects the blue light.
  • 920 is a double bandpass film, partially reflected by green and red light, partially transmitted.
  • the spectrum diagram is shown in Figure 13.
  • the green light is divided into G1 and G2+G3
  • red light is divided into R1 and R2+R3.
  • the reflected light is combined and finally imaged through the lens 921.
  • the timing of processing light on three DMDs is shown in Figure 14, and 13 glasses shown 922
  • the filter coating is combined to obtain the timing of the left and right eye color light, wherein the gray portion represents the left eye primary color light and the white portion represents the right eye primary color light.
  • the left eye primary color light is included in each time sequence.
  • the light source of the embodiment of the invention comprises a laser light source and an LED a light source, wherein the laser light source is configured to emit the first color light of the first wavelength band and the first color light of the second wavelength band; the LED light source is configured to emit the second color light including the third wavelength band, the fourth wavelength band, and the fifth wavelength band, led
  • the light source is also for emitting a third color light comprising a sixth band, a seventh band, and an eighth band.
  • Figure 16 is a block diagram showing the structure of a 3D projection display system in accordance with a third embodiment of the present invention.
  • 3D of this embodiment The projection display system can be a preferred embodiment of the 3D projection display system of the above embodiment.
  • the light source comprises a laser source 901 and a color wheel 905.
  • the laser light source 901 and the color wheel 905 of this embodiment It functions differently from the laser light source 901 and the color wheel 905 shown in FIG. A detailed description will be given below.
  • Laser light source 901 A laser may be employed for emitting the first color light of the first wavelength band and the first color light of the second wavelength band.
  • the first color light of the first wavelength band and the first color light of the second wavelength band are used as excitation light for exciting the color wheel 905 Generate two kinds of timing light.
  • the laser light source 901 is for outputting the first color light of the first wavelength band and the first color light of the second wavelength band at different timings.
  • the color wheel 905 is disposed in the emission direction of the first color light, and the color wheel 905 Providing a phosphor, the phosphor may include a second color phosphor and a third color phosphor, wherein the second color phosphor is used to generate the second color light under excitation of the first color light of the first wavelength band, The third color phosphor is used to generate the third color light under the excitation of the first color light of the second wavelength band; the second color phosphor transmits the first color light of the first wavelength band, and the third color phosphor transmission portion is the second color The first color of the band.
  • Color wheel 905 A first time series light is generated for excitation of the first color light of the first wavelength band, and a second time series light is generated for excitation of the first color light of the second wavelength band.
  • the color wheel 905 may be one or more, and accordingly, the laser light source 901 may also be one or more groups, wherein, when the color wheel 905 For one time, two phosphors, that is, a phosphor of a second color light and a phosphor of a third color light are provided on the color wheel 905, wherein the laser light source 901 Emulating a first color light of two sets of wavelengths, wherein a portion of the first color light of the first wavelength band excites the phosphor of the second color light, outputs a second color light, and the other portion is still the first color light of the first wavelength band Obtaining a first time series light; a part of the first color light of the second wavelength band exciting the phosphor of the third color light, outputting the third color light, and the other part is still the first color light of the second wavelength band, obtaining the second time series light .
  • the color wheel 905 For two, one of the color wheels can be provided with two phosphors, one phosphor of the second color, the other end of the phosphor of the third color, and the other color wheel can be provided with a whole section of the scattering powder. Accordingly, the laser light source 901 Also for two, two laser sources 901 respectively emit two sets of first color lights for respectively exciting the two color wheels 905.
  • a laser light source is used to excite the phosphor to generate time-sequential light, as opposed to using an LED
  • the light source has high brightness and high luminous efficiency.
  • the invention uses the laser light source to excite the color wheel to generate the time series light, thereby avoiding the disadvantage of the poor quality of the traditional color difference type 3D image. Since the light source for emitting one color light is used, compared with the existing 6P pure laser light source 3D The cost of the 3D projection display system is reduced, and the structure is simple and the cost is easy to control.
  • Figure 16 shows a 3D projection display system of the embodiment of the present invention and 3D shown in Figure 9
  • the difference between a projection display system is that two sets of light sources are replaced with a set of light sources.
  • the first color light is blue light
  • the second color light is green light
  • the third color light is red light
  • the color wheel 905 is the third color wheel, as shown in Figure 17.
  • the blue light B1 emitted by the first color laser of the first wavelength is incident on the green phosphor, and some of it is absorbed and converted into green light. Absorbed is still blue light B1; the blue light emitted by the first color laser of the second wavelength band B2 is incident on the red phosphor, partially absorbed into red light, partially unabsorbed or still blue B2 .
  • the switching speed of the blue laser in the two sets of bands is consistent with the switching speed of the green and red light on the color wheel.
  • the timing light output of the color wheel is shown in Figure 18, and the rest of the components of the 3D projection display system and Figure 9 The same components shown have the same function.
  • the two sets of light sources are reduced to a set of light sources, saving system space and cost.
  • the reflective film is further configured to reflect a portion of the band of the third band of light, and the dual band pass filter film transmits the other portion of the band of the third band of light.
  • the first color light is blue light
  • the second color light is green light
  • the third color light is red light
  • the third wavelength band light is a green light short wavelength portion of the light, for example, after the splitting, the spectrum is Schematic diagram shown in Figure 20
  • the green light includes the green light of the third band (including G2 and G3), the green light G1 of the fourth band, and the fifth band G4, and the red light includes the red light R2 of the sixth band and the red light of the seventh band.
  • the dual band pass filter is used to reflect the fourth band of green light and the seventh band of red light and transmit the remaining light.
  • the third band light may also be a long wavelength portion of green light.
  • the third wavelength band light may be short-wavelength or long-wavelength portion of blue light; when the first color light is In the green light, the second color light is red light, and when the third color light is blue light, the third wavelength band light may be short-wavelength or long-wavelength portion of red light; other cases are similar to the above, and are not described herein again.
  • the reflective film is further configured to reflect a portion of the band of the third band of light, and the dual band pass filter film transmits another portion of the band of the third band of light to facilitate both the left eye base color and the light in each time sequence.
  • the dual band pass filter film transmits another portion of the band of the third band of light to facilitate both the left eye base color and the light in each time sequence.
  • There is a base color light of the right eye which can ensure that the intensity of light intensity change of each eye is slowed down, and the degree of fatigue of the eyes is reduced.
  • the color separation film 607 and 608 on the prism 603 become as shown in FIG.
  • the anti-blue light film moves toward the green light direction and reflects a part of the green light.
  • the green light band pass band moves to a long wavelength band for a distance, and the red light band pass band does not change.
  • the first time-series light and the second time-series light spectrum obtained after the splitting are as shown in FIG.
  • the light of each band after the splitting is incident on the three DMDs, combined with the left and right glasses filters shown in Fig. 21, and the timing is as shown in Fig. 22
  • the gray part represents the left eye base color light
  • the white part represents the right eye base color light.
  • This method is used to make both the left eye base color light and the right eye base color light in each time sequence, thereby ensuring the light intensity change of each eye.
  • the intensity is slowed down, reducing the degree of eye fatigue.
  • the spectral distribution map is as shown 23 is shown.
  • the left-eye blue light is combined with a part of the green light, so that the left-eye blue laser that the human eye feels purple is acceptable to the human eye.
  • REC.709 The blue light is close, and it is also closer to the right-eye blue laser.
  • the double-pass filter coating is used to make the left and right eye green and red light close, and the left and right eye gamuts are close, and both have reached REC.709 standard More than 110% makes the stereo display color more realistic and has high luminous efficiency.
  • the first color light of the embodiment of the invention is blue light
  • the second color light is green light
  • the third color light is red light
  • the light source adopts a blue semiconductor laser. Since the light source of the embodiment of the invention is a blue semiconductor laser, the structure is simple and the cost is easy to control. 6P type 3D selects two sets of red, green and blue semiconductor lasers, which have high cost, complicated system, and low efficiency of red and green lasers. It is difficult to eliminate the speckle technique by pure laser light source. More importantly, the present invention makes the left and right eye gamuts close. The 3D effect is realistic and the light effect is high.
  • the first color light is green light
  • the second color light is red light
  • the third color light is blue light
  • the red light includes the third band light and the fourth band light and The fifth band light
  • the blue light includes the sixth band light, the seventh band light, and the eighth band light.
  • a part of the third band of red light can be used to supplement the green light of the first band.
  • G1 you can also use part of the eighth band of blue light to supplement the green light of the second band.
  • the first color light is red light
  • the second color light is blue light
  • the third color light is green light.
  • an embodiment of the present invention provides a 3D projection display system including a light source, a color wheel, an optical relay system, a light combining system, and a TIR.
  • Prism, color separation prism, three DMD and projection lens, the light source and the color wheel are combined into two groups, the light source 1 excites the segment color wheel 1 to generate time-series green and red light, the light source 2 It consists of two bands of blue semiconductor lasers, which alternately switch the excitation color wheel 2 Two kinds of blue light that generate timing, one blue light is synchronized with the above green light, and the other blue light is synchronized with the red light; the optical relay system directs the light emitted by the color wheel to the light combining system, and the light combining system will Time series of blue and green light and blue and red light, after The TIR prism is incident on the color separation and coloring prism; the color separation and coloring prism is a three-piece Philips prism, and the first prism is plated with an anti-blue film to reflect the two kinds
  • the second prism adopts a green band and a red band double band pass filter film, and both green and red light are partially reflected and partially transmitted, forming two sets of time series of green and red light distributed to DMD2 and DMD3.
  • the left, right, red, green, and blue primary colors are formed, and the left and right eye images are generated through the projection lens, and the filter glasses are matched to finally realize the 3D display.
  • the invention adopts a semiconductor laser light source to excite the color wheel to generate mixed light, and the Philips prism double band pass coating film generates three primary colors of red, green and blue, which makes the left and right eye three primary colors complete, avoiding the traditional color difference type.
  • the present invention makes the left and right eye gamuts close, 3D The effect is realistic and the light effect is high. In short, the present invention provides a 3D display system which is simpler, more practical and better in effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种3D投影显示系统,包括:光源(601),用于输出时序光,时序光包括第一时序光和第二时序光,其中,第一时序光包括第二颜色光和第一波段的第一颜色光,第二时序光包括第三颜色光和第二波段的第一颜色光;分光合光装置(602),设置在时序光的传输光路中,用于将时序光分成沿第一光通道传输的第一光、沿第二光通道传输的第二光和沿第三光通道传输的第三光,还用于根据第一光、第二光和第三光生成第一组三基色光和第二组三基色光,其中,第一组三基色光和第二组三基色光为不同眼睛所接收的两组基色光;以及光调制器(603),用于对第一组三基色光和第二组三基色光进行调制。采用这种结构,达到了使人体左右眼接收的光的色域接近的效果。

Description

3D投影显示系统 技术领域
本发明涉及 3D 投影技术领域,具体而言,涉及一种 3D 投影显示系统。
背景技术
目前, 3D 显示技术已经广泛应用于电影院、家庭影院等场所, 3D 显示技术能够将显示内容的高度逼真地还原,其基本原理为左右眼分别独立的接收不同的图像,经过大脑的叠加,形成立体显示效果。当前 3D 显示中,光谱分离技术成为一种重要的技术手段,光谱分离技术的基本原理为:投影机内部放置高速转动的 RGB 分色色轮,为左右眼提供不同的 RGB 色彩配置,通过 RGB 分色眼镜,让左右眼看到不同的画面,从而形成立体效果。其中, RGB 表示三基色:红色( Red )、绿色( Green )和蓝色( Blue )。
技术问题
现有的色差式 3D 即为光谱分离技术的一种,其滤色眼镜采用红 / 蓝滤光片,即左眼接收红色图像,右眼接收蓝色图像,反之亦可。此技术结构简单,成本低,但 3D 效果较差。现阶段,一种 3D 显示技术 -6P (六基色)激光光源的 3D 技术逐渐发展起来,其光源为波段错开的两组红、绿、蓝半导体激光器,通过眼镜上左右眼不同的滤光片,左右眼各接收一组红、绿、蓝三基色光,从而形成 3D 显示。该方式采用纯激光作为光源,具有色彩好,色域广的优点,但其成本较高,消散斑技术难度大,同时由于左右眼色域不同,实际应用中需要进行色彩校正,从而降低了色彩饱和度以及光效。
现有的 6P 激光光源 3D 显示技术的方案如图 1 所示, 101 为 6P 光源,其光谱分布如图 2 所示,图 2 中实线为左眼激光光源光谱,虚线为右眼激光光源光谱。在左眼时序, 101 发出左眼三基色光,包含 R 左、 G 左、 B 左,经过分色装置 102 后, R 左分配到数字微镜器件( Digital Micromirror Device ,简称为 DMD ) 103 、 G 左分配到 DMD104 、 B 左分配到 DMD105 上,通过合色装置 106 合光后,在镜头 107 后成左眼图像到达眼镜 108 处,眼镜 108 左右镜片镀有如图 3 所示滤光曲线的滤光片,图 3 中,红色曲线为眼镜左眼滤光片,绿色曲线为眼镜右眼滤光片。由此左眼接收到左眼图像,而右眼无图像;同理,在右眼时序, 101 发出右眼三基色光,包含 R 右、 G 右、 B 右,经过分色装置 102 后, R 右分配到 DMD103 、 G 右分配到 DMD104 、 B 右分配到 DMD105 上,通过合色装置 106 合光后,在镜头 107 后成右眼图像到达眼镜 108 处,右眼接收到右眼图像,而左眼无图像,三个 DMD 上处理基色光的时序如图 4 所示,左右眼时序图像通过人眼的叠加形成立体显示效果。
在图 4 中,每个 DMD 上处理左右眼的一种基色光,左眼时序与右眼时序依次进行,形成左右眼交替的图像,人眼叠加形成 3D 图像。
上述 6P 激光光源 3D 显示技术通过选用两组红、绿、蓝激光器,配合眼镜左右眼滤光片,依次得到左右眼图像,通过人眼的叠加形成立体显示。该方案具有色域广的优点,但其成本较高,绿色激光器不易得到,消散斑技术难度大,左右眼接收的光的色域区别较大。如图 5 所示,由于左右眼的色域区别较大,在实际应用中需要进行色彩校正,从而降低了色彩饱和度以及光效。
针对现有技术中左右眼接收的光的色域区别较大的问题,目前尚未提出有效的解决方案。
技术解决方案
本发明的主要目的在于提供一种3D投影显示系统,以解决现有技术中左右眼接收的光的色域区别较大的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种3D投影显示系统。根据本发明的3D投影显示系统包括:光源,用于输出时序光,所述时序光包括第一时序光和第二时序光,其中,所述第一时序光包括第二颜色光和第一波段的第一颜色光,所述第二时序光包括第三颜色光和第二波段的第一颜色光,其中,所述第一颜色光、所述第二颜色光和所述第三颜色光分别为不同颜色基色光,所述第二颜色光包括波段连续的第三波段光、第四波段光和第五波段光,所述第三颜色光包括波段连续的第六波段光、第七波段光和第八波段光;分光合光装置,设置在所述时序光的传输光路中,用于将所述时序光分成沿第一光通道传输的第一光、沿第二光通道传输的第二光和沿第三光通道传输的第三光,其中,所述第二颜色光包括波段连续的第三波段光、第四波段光和第五波段光,所述第三颜色光包括波段连续的第六波段光、第七波段光和第八波段光,所述第一光包括所述第一波段的第一颜色光和所述第二波段的第一颜色光,所述第二光包括所述第四波段光和所述第七波段光,所述第三光包括所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光,所述分光合光装置还用于根据所述第一光、所述第二光和所述第三光生成第一组三基色光和第二组三基色光,其中,所述第一组三基色光和所述第二组三基色光为不同眼睛所接收的两组基色光,所述第一组三基色光包括所述第一波段的第一颜色光、第四波段光和第七波段光,所述第二组三基色光包括所述第二波段的第一颜色光、所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光;以及光调制器,用于对所述第一组三基色光和第二组三基色光进行调制,并将调制后的光反射至所述分光合光装置,经过所述分光合光装置合光后输出。
进一步地,在所述分光合光装置上设有分色合色膜,所述分色合色膜包括反射膜和双带通滤光膜,所述反射膜用于反射所述第一波段的第一颜色光和所述第二波段的第一颜色光,所述双带通滤光膜用于反射所述第四波段光和所述第七波段光,并透射所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光,其中,所述时序光通过所述反射膜和所述双带通滤光膜生成所述第一组三基色光和所述第二组三基色光。
进一步地,所述第四波段光的波长小于第五波段光的波长,且大于第三波段光的波长;所述第七波段光的波长小于第八波段光的波长,且大于第六波段光的波长。
进一步地,所述分光合光装置包括:第一棱镜、第二棱镜和第三棱镜,所述第一棱镜、所述第二棱镜和所述第三棱镜依次顺序排列,所述时序光依次通过所述第一棱镜、所述第二棱镜和所述第三棱镜,其中,所述第一棱镜与所述第二棱镜之间设有所述反射膜,所述第二棱镜与所述第三棱镜之间设有所述双带通滤光膜。
进一步地,所述光调制器包括:第一数字微镜器件、第二数字微镜器件和第三数字微镜器件,其中,所述第一数字微镜器件设置在所述反射膜反射出所述第一波段的第一颜色光和所述第二波段的第一颜色光的方向上,用于对所述第一波段的第一颜色光和所述第二波段的第一颜色光进行调制,所述第二数字微镜器件设置在所述双带通滤光膜反射出所述第四波段光和所述第七波段光的方向上,用于对所述第四波段光和所述第七波段光进行调制,所述第三数字微镜器件设置在所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光的出射方向上,用于对所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光进行调制。
进一步地,所述反射膜还用于反射所述第三波段光的一部分波段,所述双带通滤光膜透射所述第三波段光的另一部分波段;或者,所述反射膜还用于反射所述第八波段光的一部分波段,所述双带通滤光膜透射所述第八波段光的另一部分波段。
进一步地,所述光源包括:激光光源,用于发射所述第一波段的第一颜色光和所述第二波段的第一颜色光;色轮,设置在所述第一波段的第一颜色光和所述第二波段的第一颜色光的发射方向上,所述色轮上设有荧光粉,所述荧光粉包括第二颜色荧光粉和第三颜色荧光粉,其中,所述第二颜色荧光粉用于在所述第一波段的第一颜色光的激发下生成所述第二颜色光,所述第三颜色荧光粉用于在所述第二波段的第一颜色光的激发下生成所述第三颜色光;所述第二颜色荧光粉透射部分所述第一波段的第一颜色光,所述第三颜色荧光粉透射部分所述第二波段的第一颜色光。
进一步地,所述光源包括:第一激光光源,用于发射所述第一波段的第一颜色光;第二激光光源,用于发射所述第一波段的第一颜色光和所述第二波段的第一颜色光;第一色轮,设置在所述第一激光光源的光发射方向上,所述第一色轮上设有第二颜色荧光粉和第三颜色荧光粉,所述第一色轮用于在所述第一波段的第一颜色光的激发下产生所述第二颜色光和所述第三颜色光;第二色轮,设置在所述第二激光光源的光发射方向上,所述第二色轮上设有散射粉,所述第二色轮用于对所述第一波段的第一颜色光和所述第二波段的第一颜色光进行散射消偏振,其中,所述第二激光光源发射所述第一波段的第一颜色光和所述第二波段的第一颜色光的切换频率与所述第一色轮上所述第二颜色荧光粉和所述第三颜色荧光粉的切换频率相同。
进一步地,所述第一激光光源和所述第二激光光源均采用半导体激光器。
进一步地,所述光源包括:激光光源,用于发射所述第一波段的第一颜色光和所述第二波段的第一颜色光;LED光源,用于发射包含所述第三波段、第四波段和第五波段的第二颜色光,所述LED光源还用于发射包含所述第六波段、第七波段和第八波段的第三颜色光。
10. 根据权利要求7所述的3D投影显示系统,其特征在于,所述3D投影显示系统还包括:
第一聚焦透镜,设置在所述第一激光光源和所述第一色轮之间,用于将所述第一激光光源发射的第一颜色光聚焦到所述第一色轮上;
第二聚焦透镜,设置在所述第二激光光源和所述第二色轮之间,用于将所述第二激光光源发射的第一颜色光聚焦到所述第二色轮上。
进一步地,所述3D投影显示系统还包括:第一收集透镜,设置在所述第一色轮的光输出方向上;第二收集透镜,设置在所述第二色轮的光输出方向上;第一反射镜,用于反射所述第二收集透镜收集的第一波段的第一颜色光;合光装置,所述合光装置用于反射所述第一波段的第一颜色光和所述第二波段的第一颜色光,并透射所述第二颜色光和所述第三颜色光,得到混合光。
进一步地,所述3D投影显示系统还包括:方棒,设置在所述混合光的发射方向上,用于对所述混合光进行匀光处理;中继透镜,设置在所述方棒的光输出方向上;第二反射镜,设置在所述中继透镜的光输出方向上,用于反射所述中继透镜输出的光;全反射棱镜,用于将所述第二反射镜反射的光全反射到镀有所述分色合色膜的棱镜上。
进一步地,所述3D投影显示系统还包括:投影镜头,用于接收所述光调制器控制输出所述第一组三基色光和所述第二组三基色光;以及眼镜,所述眼镜包括左眼镜片和右眼镜片,其中,所述左眼镜片用于透射所述第一组三基色光,所述右眼镜片用于透射所述第二组三基色光。
进一步地,所述第一颜色光为蓝光,所述第二颜色光为绿光,所述第三颜色光为红光;或者,所述第一颜色光为绿光,所述第二颜色光为红光,所述第三颜色光为蓝光;或者,所述第一颜色光为红光,所述第二颜色光为蓝光,所述第三颜色光为绿光。
进一步地,所述时序光先经过所述反射膜进行反射分光后,所述反射膜透射的光再经过所述双带通滤光膜进行分光。
有益效果
根据本发明实施例,在分光合光装置中,时序光通过反射膜和双带通滤光膜生成第一组三基色光和第二组三基色光,其中,第一组三基色光和第二组三基色光为不同眼睛所接受的两组基色光,第一组三基色光包括第一波段的第一颜色光、第四波段光和第七波段光,第二组三基色光包括第二波段的第一颜色光、第三波段光、第五波段光、第六波段光和第八波段光。从而使得第一组三基色光和第二组三基色光的色域比较接近,解决了现有技术中左右眼接收的光的色域区别较大的问题,达到了使得人体左右眼接收的光的色域接近的效果。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图 1 是根据现有技术的 3D 投影显示系统的结构示意图;
图 2 是根据现有技术的 3D 投影显示系统的光谱分布曲线示意图;
图 3 是根据现有技术的 3D 投影显示系统的滤光曲线示意图;
图 4 是根据现有技术的 3D 投影显示系统的基色光的时序图;
图 5 是根据现有技术的 3D 投影显示系统的光谱分布示意图;
图 6 是根据本发明第一实施例的 3D 投影显示系统的结构示意图;
图 7a 至图 7c 是根据本发明实施例的时序光的光谱示意图;
图 8 是根据本发明实施例的棱镜和 DMD 的结构示意图;
图 9 是根据本发明第二实施例优选的 3D 投影显示系统的结构示意图;
图 10 是示出了图 9 所示的 3D 投影显示系统的色轮示意图;
图 11 是示出了图 9 所示的 3D 投影显示系统的色轮输出的光时序图;
图 12 是示出了图 9 所示的 3D 投影显示系统的分色合色膜的反射曲线图;
图 13 是示出了图 9 所示的 3D 投影显示系统的左右眼时序图;
图 14 是示出了图 9 所示的 3D 投影显示系统的 DMD 处理时序图;
图 15 是示出了图 9 所示的 3D 投影显示系统的光谱分布示意图;
图 16 是根据本发明第三实施例的 3D 投影显示系统的结构示意图;
图 17 是示出了图 16 所示的 3D 投影显示系统的色轮示意图;
图 18 是示出了图 16 所示的 3D 投影显示系统的色轮输出的光时序图;
图 19 是根据本发明实施例的一种优选的分色合色膜的反射曲线图;
图 20 是根据本发明实施例的 3D 投影显示系统的分色合色膜分光后的光谱图;
图 21 是根据本发明实施例的 3D 投影显示系统的左右眼时序图;
图 22 是根据本发明实施例的 3D 投影显示系统的 DMD 处理时序图;以及
图 23 是根据本发明实施例的 3D 投影显示系统的光谱分布示意图。
本发明的最佳实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语'第一'、'第二'等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语'包括'和'具有'以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列元器件的系统、产品或设备不必限于清楚地列出的那些元器件,而是可包括没有清楚地列出的或对于这些系统、产品或设备固有的其它元器件。
图 6 是根据本发明第一实施例的 3D 投影显示系统的结构示意图。如图 6 所示,该 3D 投影显示系统包括:光源 601 、分光合光装置 602 和光调制器 603 。
光源 601 用于输出时序光,该时序光包括第一时序光和第二时序光,其中,第一时序光包括第二颜色光和第一波段的第一颜色光,第二时序光包括第三颜色光和第二波段的第一颜色光,其中,第一颜色光、第二颜色光和第三颜色光分别为不同颜色基色光,第二颜色光包括波段连续的第三波段光、第四波段光和第五波段光,第三颜色光包括波段连续的第六波段光、第七波段光和第八波段光。
光源 601 可以是 LED 光源也可以激光光源,光源 601 在不同的时刻输出第一时序光和第二时序光。第一波段与第二波段为不同的波段,第一颜色光、第二颜色光和第三颜色光分别为不同颜色基色光,可以是依次为蓝光、绿光和红光,也可以是绿光、红光和蓝光,还可以是红光、蓝光和绿光。
分光合光装置 602 设置在时序光的传输光路中,用于将时序光分成沿第一光通道传输的第一光、沿第二光通道传输的第二光和沿第三光通道传输的第三光,其中,第二颜色光包括波段连续的第三波段光、第四波段光和第五波段光,第三颜色光包括波段连续的第六波段光、第七波段光和第八波段光,第一光包括第一波段的第一颜色光和第二波段的第一颜色光,第二光包括第四波段光和第七波段光,第三光包括第三波段光、第五波段光、第六波段光和第八波段光,分光合光装置还用于根据第一光、第二光和第三光生成第一组三基色光和第二组三基色光,其中,第一组三基色光和第二组三基色光为不同眼睛所接收的两组基色光,第一组三基色光包括第一波段的第一颜色光、第四波段光和第七波段光,第二组三基色光包括第二波段的第一颜色光、第三波段光、第五波段光、第六波段光和第八波段光。
如图 7a 至 7c 所示,图 7a 至 7c 所示的坐标系中,纵坐标表示光强度,横坐标表示波长。如图 7a 所示,第一时序光包括第二颜色光和第一波段的第一颜色光,第二时序光包括第三颜色光和第二波段的第一颜色光,其中,第一颜色光为蓝色,包括第一波段的蓝光 B1 和第二波段的蓝光 B2 ;第二颜色光为绿光,包括第三波段光 G2 、第四波段光 G1 和第五波段光 G3 ;第三颜色光为红光,包括第六波段光 R2 、第七波段光 R1 和第八波段光 R3 。
图 7b 和图 7c 中,实线表示第一时序光,虚线表示第二时序光。如图 7b 所示,第一颜色光为红光,包括第一波段的红光 R1 和第二波段的红光 R2 ,第二颜色光为蓝光 B ,第三颜色光为绿光 G 。如图 7c 所示,第一颜色光为绿光,包括第一波段的绿光 G1 和第二波段的绿光 G2 ,第二颜色光为红光 R ,第三颜色光为蓝光 B 。
第二颜色光包括波段连续的第三波段光、第四波段光和第五波段光,其中,第三波段光具有第三波段,第四波段光具有第四波段,第五波段光具有第五波段,第三波段、第四波段和第五波段可以是连续波段,例如,第三波段的最大波长与第四波段的最小波长相等,第四波段的最大波长与第五波段的最小波长相等,或者第五波段的最大波长与第四波段的最小波长相等,第四波段的最大波长与第三波段的最小波长相等。第三颜色光包括波段连续的第六波段光、第七波段光和第八波段光,其中,第六波段光、第七波段光和第八波段光依次与第三波段光、第四波段光和第五波段光相似,即第四波段光的波长小于第五波段光的波长,且大于第三波段光的波长;第七波段光的波长小于第八波段光的波长,且大于第六波段光的波长。
具体地,可以在分光合光装置 602 上设有分色合色膜,分色合色膜包括反射膜和双带通滤光膜,反射膜用于反射第一波段的第一颜色光和第二波段的第一颜色光,双带通滤光膜用于反射第四波段光和第七波段光,并透射第三波段光、第五波段光、第六波段光和第八波段光,其中,时序光通过反射膜和双带通滤光膜生成第一组三基色光和第二组三基色光,其中,第一组三基色光和第二组三基色光为不同眼睛所接受的两组基色光,第一组三基色光包括第一波段的第一颜色光、第四波段光和第七波段光,第二组三基色光包括第二波段的第一颜色光、第三波段光、第五波段光、第六波段光和第八波段光。
分光合光装置 602 可以采用三片式飞利浦棱镜,其中,反射膜用于反射第一颜色光,包括第一波段和第二波段的第一颜色光,透射第二颜色光和第三颜色光。双带通滤光膜则用于反射第四波段光和第七波段光,并透射第三波段光、第五波段光、第六波段光和第八波段光。
时序光可以先经过反射膜反射出第一颜色光后,再将反射膜透射出的光经过双带通滤光膜进行分光,例如,第一时序光先经过反射膜反射出第一波段的第一颜色光,透射出第二颜色光,第二颜色光经过双带通滤光膜反射出第四波段光,并透射出第三波段光和第五波段光,从而依次得到分光后的第一波段的第一颜色光、第四波段光以及第三波段光和第五波段光;第二时序光沿相同的路径传输,依次得到分光后的第二波段的第一颜色光、第七波段光以及第六波段光和第八波段光。
时序光也可以先经过双带通滤光膜进行分光后,再将双带通滤光膜透射出的光经过反射膜进行分光,该反射膜具有反射第一颜色光,透射其他颜色光的特性。例如,第一时序光先经过双带通滤光膜反射出第四波段光,并透射出第一波段的第一颜色光、第三波段光和第五波段光,再经过反射膜反射第一波段的第一颜色光透射第三波段光和第五波段光,从而依次得到分光后的第四波段光、第一波段的第一颜色光以及第三波段光和第五波段光;第二时序光沿相同的路径传输,依次得到分光后的第七波段光 / 第二波段的第一颜色光以及第六波段光和第八波段光。
时序光经过分光后生成至少两组三基色光,包括第一组三基色光和第二组三基色光,第一组三基色光包括第一波段的第一颜色光、第四波段光和第七波段光,第二组三基色光包括第二波段的第一颜色光、第三波段光、第五波段光、第六波段光和第八波段光。第一组三基色光和第二组三基色光为不同眼睛所接收的两组基色光,其中,第一组三基色光为人眼的第一只眼睛所接收的三基色光,第二组三基色光为人眼的第二只眼睛所接收的三基色光。
第一组三基色光可以是眼镜 605 的左眼镜片所能够透射的基色光,第二组三基色光可以是眼镜 605 的右眼镜片所能够透射的基色光。由于第一组三基色光中,第四波段光为从第二颜色光中截取的中间波段的光,第七波段光为从第三颜色光中截取的中间波段的光,使得第一组三基色光和第二组三基色光的色域比较接近,进而使得人体两只眼睛所接收到的光的色域比较接近。
光调制器 603 用于对第一组三基色光和第二组三基色光进行调制,并将调制后的光反射至分光合光装置 602 ,经过分光合光装置 602 合光后输出。
光调制器 603 可以是数字微镜器件,用于对第一组三基色光和第二组三基色光进行图像调制,再调制后的光再反射到分光合光装置 602 上,经过分光合光装置 602 进行合光后输出,由于时序光包括在不同时刻输出的第一时序光和第二时序光,因此,经过分光合光装置 602 合光后的光依然包括两个时序的光。
根据本发明实施例,时序光通过分光合光装置生成第一组三基色光和第二组三基色光,其中,第一组三基色光和第二组三基色光为不同眼睛所接受的两组基色光,第一组三基色光包括第一波段的第一颜色光、第四波段光和第七波段光,第二组三基色光包括第二波段的第一颜色光、第三波段光、第五波段光、第六波段光和第八波段光。从而使得第一组三基色光和第二组三基色光的色域比较接近,解决了现有技术中左右眼接收的光的色域区别较大的问题,达到了使得人体左右眼接收的光的色域接近的效果。
本发明实施例的 3D 投影显示系统还包括:投影镜头 604 和眼镜 605 ,投影镜头 604 用于接收光调制器控制输出第一组三基色光和第二组三基色光。眼镜 605 包括左眼镜片和右眼镜片,其中,左眼镜片用于透射第一组三基色光,右眼镜片用于透射第二组三基色光。投影镜头 604 对接收到的光进行成像,配合眼镜使得左眼镜片生成左眼图像,右眼镜片生成右眼图像,从而形成 3D 成像。
优选地,如图 8 所示,分光合光装置 602 包括:第一棱镜、第二棱镜和第三棱镜,第一棱镜、第二棱镜和第三棱镜依次顺序排列(图 8 中从右向左),混合光依次通过第一棱镜、第二棱镜和第三棱镜,如图 8 所示的分光合光装置 602 中箭头方向。第一棱镜与第二棱镜之间设有反射膜,第二棱镜与第三棱镜之间设有双带通滤光膜。上述棱镜可以采用 Philips 棱镜。
第一棱镜与第二棱镜相邻的两个面之间设有反射膜,第一棱镜与第二棱镜相邻的两个面之间设有反射膜 607 ,反射膜 607 用于反射第一颜色光,第二棱镜与第三棱镜相贴合的面上设有双带通滤光膜 608 ,双带通滤光膜 608 用于反射第二颜色光中的第四波段光,并透射第二颜色光中的第三波段光和第五波段光,以及反射第三颜色光中的第七波段光,并透射第三颜色光中的第六波段光和第八波段光。
具体地,三片棱镜之间依次设有反射膜 607 和双带通滤光膜 608 ,与光源光谱相结合,反射膜 607 可以反射蓝光,双带通滤光膜 608 可以用于反射绿光和红光的中间波段部分的光,透射绿光和红光其他部分的光。分光后的各颜色光在经过光调制器调制后,再反射到分光合光装置 602 上经过分色合色膜进行合光,输出至投影镜头成像。
根据本发明实施例,采用三片式棱镜作为分光合光装置,从而使得不同棱镜出射分光后的三部分光,无需采用不同的部件来进行分光和合光处理,结构简单。
如图 8 所示,本发明实施例中,光调制器可以包括:第一数字微镜器件(即 DMD6031 )、第二数字微镜器件(即 DMD6032 )和第三数字微镜器件(即 DMD6033 ),其中, DMD6031 设置在反射膜 607 反射出第一颜色光的方向上即第一棱镜的光出射方向上,用于对第一光即第一波段的第一颜色光和第二波段的第一颜色光进行调制; DMD6032 设置在双带通滤光膜 608 反射出第四波段光和第七波段光的方向上即第二棱镜的光出射方向上,用于对第二光即第四波段光和第七波段光进行调制; DMD6033 设置在双带通滤光膜 608 透射出第三光即第三波段光、第五波段光、第六波段光和第八波段光的方向上即第三棱镜的光出射方向上,也即是第三波段光、第五波段光、第六波段光和第八波段光的方向上的出射方向上,用于对透射的第三波段光、第五波段光、第六波段光和第八波段光进行调制。
将 DMD6031 、 DMD6032 和 DMD6033 依次设置在第一棱镜、第二棱镜和第三棱镜的光的出射方向,用于接收从棱镜中发射出来的基色光,以便于对其进行调制。具体地,可以是将时序的两种蓝光反射到 DMD6031 上,第二棱镜采用绿光波段和红光波段双带通滤光膜,绿光和红光均发生部分反射和部分透射,形成两组时序的绿光和红光分配到 DMD6032 和 DMD6033 上。
图 9 是根据本发明第二实施例的 3D 投影显示系统的结构示意图。该实施例的 3D 投影显示系统可以作为上述实施例的 3D 投影显示系统的一种优选实施方式。
如图 9 所示,光源包括:第一激光光源 901 ,用于发射第一波段的第一颜色光;第二激光光源 902 ,用于发射第一波段的第一颜色光和第二波段的第一颜色光;第一色轮 905 ,设置在第一激光光源的光发射方向上,第一色轮 905 上设有第二颜色荧光粉和第三颜色荧光粉,第一色轮 905 用于在第一波段的第一颜色光的激发下产生时序的第二颜色光和第三颜色光;第二色轮 906 设置在第二激光光源的光发射方向上,第二色轮 906 上设有散射粉,第二色轮 906 用于对第二激光光源 902 发射的第二波段的第一颜色光进行散射消偏振,其中,第二激光光源 902 发射第一波段的第一颜色光和第二波段的第一颜色光的切换频率与第一色轮上第二颜色荧光粉和第三颜色荧光粉的切换频率相同。
根据本发明实施例,为了方便激光光源的选取,第二激光光源输出的一组光的波长与第一激光光源输出的光波长相近,即第一波段的第一颜色光。
进一步地,第一激光光源 901 和第二激光光源 902 均采用半导体激光器,其中,第二激光光源 902 包括两组不同波段的半导体激光器。第二激光光源 902 中的一个半导体激光器与第一激光光源 901 中的半导体激光器为相同的激光器。这样,方便激光器的选取。
如图 9 所示, 3D 投影显示系统还包括:第一聚焦透镜 903 ,设置在第一激光光源 901 和第一色轮 905 之间,用于将第一激光光源 901 发射的第一颜色光聚焦到第一色轮 905 上;第二聚焦透镜 904 ,设置在第二激光光源 902 和第二色轮 906 之间,用于将第二激光光源 902 发射的第一颜色光聚焦到第二色轮 906 上。
如图 9 所示, 3D 投影显示系统还包括:第一收集透镜 917 ,设置在第一色轮 905 的光输出方向上;第二收集透镜 918 ,设置在第二色轮 906 的光输出方向上;第一反射镜 910 ,用于反射第二收集透镜 918 收集的第一波段的第一颜色光;合光装置 909 ,合光装置 909 用于反射第一波段的第一颜色光和第二波段的第一颜色光,并透射第二颜色光和第三颜色光,得到混合光。其中,第二色轮 906 输出的第一颜色光经过第一收集透镜 917 到达第一反射镜 910 ,第一反射镜 910 用于将第一颜色光反射到合光装置 909 上,第一色轮 905 输出的第二颜色光和第三颜色光经过第一收集透镜 917 达到合光装置 909 ,合光装置 909 通过反射第一颜色光,并透射第二颜色光和第三颜色光来对第一颜色光、第二颜色光和第三颜色光进行合光,得到时序光。
如图 9 所示, 3D 投影显示系统还包括:方棒 911 ,设置在混合光的发射方向上,用于对混合光进行匀光处理;中继透镜 912 ,设置在方棒 911 的光输出方向上;第二反射镜 913 ,设置在中继透镜 912 的光输出方向上,用于反射中继透镜 912 输出的光;全反射棱镜 914 ,用于将第二反射镜 913 反射的光全反射到镀有分色合色膜的棱镜 915 上。
具体地,以第一颜色光为蓝光,第二颜色光为绿光,第二颜色光为红光为例,对本发明实施例进行描述。
如图 9 所示,该 3D 投影显示系统包括第一激光光源 901 与第二激光光源 902 ,二者均为蓝光半导体激光器,第一激光光源 901 发出的光经过第一聚焦透镜 903 后聚焦到第一色轮 905 处,第二激光光源 902 发出的光经过第二聚焦透镜 904 后聚焦到第二色轮 906 处,第一色轮 905 和第二色轮 906 ,如图 10 所示,第一色轮 905 设有两段荧光粉,分别为绿色荧光粉和红色荧光粉,受第一激光光源 901 激发产生时序的绿色荧光和红色荧光,第二色轮 906 设有整段的散射粉,将第二激光光源 902 发出的蓝色激光进行散射消偏振,第二激光光源 902 包含两组不同波段的蓝光激光器,为了方便,其中一组可选取与第一激光光源 901 波段相同的蓝光激光器,第二激光光源 902 以与第一色轮 905 上绿光和红光切换频率相同的频率进行两种蓝光的切换,两组光源从色轮输出的光时序如图 11 所示,绿光 G 和蓝光 B1 同步,红光 R 和蓝光 B2 同步。
从第一色轮 905 输出的光经过第一收集透镜 907 到达合光装置 909 处,从第二色轮 906 输出的光经过第一反射镜 910 反射后到达合光装置 909 处,合光装置 909 具有透射绿光和红光,反射蓝光的作用,由此两束光合成一束进入到方棒 911 ,匀光后经中继透镜 912 ,反射镜 913 到达 TIR 棱镜 914 处, TIR 棱镜 914 对其发生全反射,入射到分色合色棱镜 915 ,分色合色棱镜 915 包含三片棱镜,三片棱镜后放置有 DMD916 、 DMD917 、 DMD918 ,三片棱镜之间分别镀有分色合色膜 919 和 920 ,与光源光谱相结合,分色合色膜 919 与 920 反射曲线如图 12 所示,图中实线代表第一时序的光谱,虚线代表第二时序的光谱,反射膜 919 反射蓝光, 920 为双带通膜层,绿光和红光部分反射,部分透射。
经过分光后,其光谱示意图如图 13 所示,在双带通滤光膜 920 作用下,绿光分成 G1 和 G2+G3 ,红光分成 R1 和 R2+R3 。经过 DMD 调制后反射合光,通过镜头 921 最终成像。三个 DMD 上处理光的时序如图 14 所示,与图 13 所示的眼镜 922 滤光片镀膜相结合,得到其左右眼基色光时序,其中灰色部分代表左眼基色光,白色部分代表右眼基色光,采用此本发明实施例,使得每一时序内既有左眼基色光,又有右眼基色光,从而能保证每只眼睛光强变化强度趋缓,降低眼睛的疲劳程度。同时由于采用双带通滤光镀膜,左右眼三基色色坐标基本一致,色域接近,都基本达到 REC.709 标准,如图 15 所示,此方法使得立体显示颜色逼真,在算法处理上不需进行过多校正,光效高。
可选地,本发明实施例的光源包括激光光源和 LED 光源,其中,激光光源用于发射第一波段的第一颜色光和第二波段的第一颜色光; LED 光源用于发射包含第三波段、第四波段和第五波段的第二颜色光, LED 光源还用于发射包含第六波段、第七波段和第八波段的第三颜色光。
图 16 是根据本发明第三实施例的 3D 投影显示系统的结构示意图。该实施例的 3D 投影显示系统可以作为上述实施例的 3D 投影显示系统的一种优选实施方式。
本发明实施例中,光源包括激光光源 901 和色轮 905 。该实施例的激光光源 901 和色轮 905 与图 9 所示的激光光源 901 和色轮 905 功能不同。下面将进行详细描述。
激光光源 901 可以采用激光器,用于发射第一波段的第一颜色光和第二波段的第一颜色光。第一波段的第一颜色光和第二波段的第一颜色光作为激发光,用于激发色轮 905 产生两种时序光。具体地,激光光源 901 用于在不同时刻输出第一波段的第一颜色光和第二波段的第一颜色光。
色轮 905 设置在第一颜色光的发射方向上,色轮 905 上设有荧光粉,该荧光粉可以包括第二颜色荧光粉和第三颜色荧光粉,其中,第二颜色荧光粉用于在第一波段的第一颜色光的激发下生成第二颜色光,第三颜色荧光粉用于在第二波段的第一颜色光的激发下生成第三颜色光;第二颜色荧光粉透射部分第一波段的第一颜色光,第三颜色荧光粉透射部分第二波段的第一颜色光。
色轮 905 用于在第一波段的第一颜色光的激发下生成第一时序光,以及在第二波段的第一颜色光的激发下生成第二时序光。
色轮 905 可以是一个或者多个,相应地,激光光源 901 也可以是一组或者多组,其中,当色轮 905 为一个时,在色轮 905 上设有两段荧光粉即第二颜色光的荧光粉和第三颜色光的荧光粉,其中,激光光源 901 发射出两组波段的第一颜色光,其中,第一波段的第一颜色光的一部分激发第二颜色光的荧光粉,输出第二颜色光,另一部分仍为第一波段的第一颜色光,得到第一时序光;第二波段的第一颜色光的一部分激发第三颜色光的荧光粉,输出第三颜色光,另一部分仍为第二波段的第一颜色光,得到第二时序光。
当色轮 905 为两个时,其中一个色轮可以设有两段荧光粉,一段第二颜色的荧光粉,另一端为第三颜色的荧光粉,另一个色轮上可以设有整段的散射粉。相应地,激光光源 901 也为两个,两个激光光源 901 分别发射两组第一颜色光,分别用于激发上述两个色轮 905 。
根据本发明实施例,采用激光光源激发荧光粉产生时序光,相对于采用 LED 光源,其亮度高,光效高。
另外,区别于现有的色差式 3D 以及现有的 6P 纯激光光源 3D ,本发明采用激光光源激发色轮生成时序光,避免了传统色差式 3D 图像质量差的缺点,由于采用用于发射一种颜色光的光源,相对于现有的 6P 纯激光光源 3D ,降低了 3D 投影显示系统的成本,并且结构简单,成本易控制。
图 16 所示本发明实施例的 3D 投影显示系统与图 9 所示的 3D 投影显示系统的区别在于,将两组光源替换为一组光源。
具体地,以第一颜色光为蓝光,第二颜色光为绿光,第三颜色光为红光为例,光源 901 为两组不同波段的半导体蓝光激光器,色轮 905 即第三色轮,如图 17 所示,设有两段荧光粉,分别为绿色荧光粉和红色荧光粉,第一波段的第一颜色光激光器发射的蓝光 B1 入射到绿色荧光粉上,部分被吸收转化为绿光,部分未被吸收仍为蓝光 B1 ;第二波段的第一颜色光激光器发射的蓝光 B2 入射到红色荧光粉上,部分被吸收转化为红光,部分未被吸收仍为蓝光 B2 。两组波段的蓝光激光器切换速度与色轮上绿光和红光切换速度保持一致,色轮输出的时序光如图 18 所示, 3D 投影显示系统其余部分元器件与图 9 所示的相同元器件的功能相同。
根据本发明实施例,将两组光源简化为一组光源,节省了系统空间和成本。
可选地,反射膜还用于反射第三波段光的一部分波段,双带通滤光膜透射第三波段光的另一部分波段。
具体地,以第一颜色光为蓝光,第二颜色光为绿光,第三颜色光为红光,其中,第三波段光为绿光短波长部分的光为例,经过分光后,其光谱示意图如图 20 所示,将绿光包括第三波段的绿光(包括 G2 和 G3 )、第四波段的绿光 G1 和第五波段 G4 ,红光包括第六波段的红光 R2 、第七波段的红光 R1 和第八波段的红光 R3 ,其中,反射膜用于反射第一波段的蓝光 B1 、第二波段的蓝光 B2 和绿光 G2 ,双带通滤光膜用于反射第四波段绿光和第七波段的红光,并透射剩下的光。
需要说明的是,上述举例中,第三波段光也可以是绿光的长波长部分。另外,当第一颜色光为红光,第二颜色光为蓝光,第三颜色光为绿光时,第三波段光可以是蓝光的短波长或者长波长部分的光;当第一颜色光为绿光,第二颜色光为红光,第三颜色光为蓝光时,第三波段光可以是红光的短波长或者长波长部分的光;其他情况与上述情况类似,这里不再赘述。
根据本发明实施例,反射膜还用于反射第三波段光的一部分波段,双带通滤光膜透射第三波段光的另一部分波段,以便于在每个时序内既有左眼基色光又有右眼基色光,从而能保证每只眼睛光强变化强度趋缓,降低眼睛的疲劳程度。
具体地,棱镜 603 上的分色合色膜 607 和 608 变为如图 19 所示,反蓝光膜向绿光方向移动,反射一部分绿光,相对应,绿光带通波段向长波段方向移动一段距离,红光带通波段不变。得到分光后的第一时序光与第二时序光光谱如图 20 所示,分光后的各波段光入射到三个 DMD 上,与图 21 所示的左右眼镜滤光片相结合,得到其时序如图 22 所示,灰色部分代表左眼基色光,白色部分代表右眼基色光,采用此方法使得每一时序内既有左眼基色光,又有右眼基色光,从而能保证每只眼睛光强变化强度趋缓,降低眼睛的疲劳程度。具体地,光谱分布图如图 23 所示。
本实施例将左眼蓝光与部分绿光结合,使得人眼感觉偏紫的左眼蓝激光向人眼接受的 REC.709 蓝光接近,同时也与右眼蓝激光更接近,在绿光和红光部分,由于采用了双带通滤光镀膜,使得左右眼绿光和红光接近,左右眼色域接近,并且都达到了 REC.709 标准的 110% 以上,使得立体显示颜色更加逼真,并且具有高光效。
优选地,本发明实施例的第一颜色光为蓝光,第二颜色光为绿光,第三颜色光为红光。相应地,光源采用蓝光半导体激光器,由于本发明实施例的光源为蓝光半导体激光器,结构简单,成本易控制,而 6P 式 3D 选用两组红绿蓝半导体激光器,其成本高,系统复杂,并且红绿激光器效率低,纯激光光源消散斑技术难度大,更为重要的是,本发明使得左右眼色域接近, 3D 效果逼真,光效高。
作为上述方式的一种替代方式,第一颜色光为绿光,第二颜色光为红光,第三颜色光为蓝光,在此种方式下红光包含第三波段光、第四波段光和第五波段光,蓝光包括第六波段光、第七波段光和第八波段光。该方案下可以使用红光的第三波段光的一部分来补充第一波段的绿光 G1 ,同时也可以选用蓝光第八波段的一部分来补充第二波段的绿光 G2 。作为上述方式的另一种替代方式,第一颜色光为红光,第二颜色光为蓝光,第三颜色光为绿光。
综上,本发明实施例提供了一种 3D 投影显示系统,其包含光源、色轮、光中继系统、合光系统、 TIR 棱镜、分色合色棱镜、三片 DMD 以及投影镜头,光源与色轮相结合分成两组,光源 1 激发分段色轮 1 产生时序的绿光和红光,光源 2 由两种波段的蓝光半导体激光器组成,二者交替开关激发色轮 2 产生时序的两种蓝光,一种蓝光与上述绿光同步,另一种蓝光与上述红光同步;光中继系统将色轮出射的光准直导引到合光系统处,合光系统将时序的蓝光与绿光以及蓝光与红光合色,经过 TIR 棱镜后入射到分色合色棱镜;分色合色棱镜为三片式 Philips 棱镜,第一片棱镜镀反蓝膜,将时序的两种蓝光反射到 DMD1 上,第二片棱镜采用绿光波段和红光波段双带通滤光膜,绿光和红光均发生部分反射和部分透射,形成两组时序的绿光和红光分配到 DMD2 和 DMD3 上,由此形成左右眼红、绿、蓝三基色光,经过投影镜头生成左右眼图像,配合滤光片眼镜,最终实现 3D 显示。
区别于传统的色差式 3D 以及现有的 6P 纯激光光源 3D ,本发明采用半导体激光光源激发色轮生成混合光,通过 Philips 棱镜双带通镀膜生成左右眼红、绿、蓝三基色,该方式使得左右眼三基色完备,避免了传统色差式 3D 图像质量差的缺点,同时其光源为蓝光半导体激光器,结构简单,成本易控制,而 6P 式 3D 选用两组红绿蓝半导体激光器,其成本高,系统复杂,并且红绿激光器效率低,纯激光光源消散斑技术难度大,更为重要的是,本发明使得左右眼色域接近, 3D 效果逼真,光效高,总之,本发明提供了一种更为简单实用并且效果较好的 3D 显示系统。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

1. 一种3D投影显示系统,其特征在于,包括:
光源,用于输出时序光,所述时序光包括第一时序光和第二时序光,其中,所述第一时序光包括第二颜色光和第一波段的第一颜色光,所述第二时序光包括第三颜色光和第二波段的第一颜色光,其中,所述第一颜色光、所述第二颜色光和所述第三颜色光分别为不同颜色基色光;
分光合光装置,设置在所述时序光的传输光路中,用于将所述时序光分成沿第一光通道传输的第一光、沿第二光通道传输的第二光和沿第三光通道传输的第三光,其中,所述第二颜色光包括波段连续的第三波段光、第四波段光和第五波段光,所述第三颜色光包括波段连续的第六波段光、第七波段光和第八波段光,所述第一光包括所述第一波段的第一颜色光和所述第二波段的第一颜色光,所述第二光包括所述第四波段光和所述第七波段光,所述第三光包括所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光,所述分光合光装置还用于根据所述第一光、所述第二光和所述第三光生成第一组三基色光和第二组三基色光,其中,所述第一组三基色光和所述第二组三基色光为不同眼睛所接收的两组基色光,所述第一组三基色光包括所述第一波段的第一颜色光、第四波段光和第七波段光,所述第二组三基色光包括所述第二波段的第一颜色光、所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光;以及
光调制器,用于对所述第一组三基色光和第二组三基色光进行调制,并将调制后的光反射至所述分光合光装置,经过所述分光合光装置合光后输出。
2. 根据权利要求1所述的3D投影显示系统,其特征在于,在所述分光合光装置上设有分色合色膜,所述分色合色膜包括反射膜和双带通滤光膜,所述反射膜用于反射所述第一波段的第一颜色光和所述第二波段的第一颜色光,所述双带通滤光膜用于反射所述第四波段光和所述第七波段光,并透射所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光,其中,所述时序光通过所述反射膜和所述双带通滤光膜生成所述第一组三基色光和所述第二组三基色光。
3. 根据权利要求1所述的3D投影显示系统,其特征在于,所述第四波段光的波长小于第五波段光的波长,且大于第三波段光的波长;所述第七波段光的波长小于第八波段光的波长,且大于第六波段光的波长。
4. 根据权利要求2所述的3D投影显示系统,其特征在于,所述分光合光装置包括:第一棱镜、第二棱镜和第三棱镜,所述第一棱镜、所述第二棱镜和所述第三棱镜依次顺序排列,所述时序光依次通过所述第一棱镜、所述第二棱镜和所述第三棱镜,其中,
所述第一棱镜与所述第二棱镜之间设有所述反射膜,
所述第二棱镜与所述第三棱镜之间设有所述双带通滤光膜。
5. 根据权利要求2所述的3D投影显示系统,其特征在于,所述光调制器包括:第一数字微镜器件、第二数字微镜器件和第三数字微镜器件,其中,
所述第一数字微镜器件设置在所述反射膜反射出所述第一波段的第一颜色光和所述第二波段的第一颜色光的方向上,用于对所述第一波段的第一颜色光和所述第二波段的第一颜色光进行调制,
所述第二数字微镜器件设置在所述双带通滤光膜反射出所述第四波段光和所述第七波段光的方向上,用于对所述第四波段光和所述第七波段光进行调制,
所述第三数字微镜器件设置在所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光的出射方向上,用于对所述第三波段光、所述第五波段光、所述第六波段光和所述第八波段光进行调制。
6. 根据权利要求2所述的3D投影显示系统,其特征在于,所述反射膜还用于反射所述第三波段光的一部分波段,所述双带通滤光膜透射所述第三波段光的另一部分波段;或者,所述反射膜还用于反射所述第八波段光的一部分波段,所述双带通滤光膜透射所述第八波段光的另一部分波段。
7. 根据权利要求1所述的3D投影显示系统,其特征在于,所述光源包括:
激光光源,用于发射所述第一波段的第一颜色光和所述第二波段的第一颜色光;
色轮,设置在所述第一波段的第一颜色光和所述第二波段的第一颜色光的发射方向上,所述色轮上设有荧光粉,所述荧光粉包括第二颜色荧光粉和第三颜色荧光粉,其中,所述第二颜色荧光粉用于在所述第一波段的第一颜色光的激发下生成所述第二颜色光,所述第三颜色荧光粉用于在所述第二波段的第一颜色光的激发下生成所述第三颜色光;所述第二颜色荧光粉透射部分所述第一波段的第一颜色光,所述第三颜色荧光粉透射部分所述第二波段的第一颜色光。
8. 根据权利要求2所述的3D投影显示系统,其特征在于,所述光源包括:
第一激光光源,用于发射所述第一波段的第一颜色光;
第二激光光源,用于发射所述第一波段的第一颜色光和所述第二波段的第一颜色光;
第一色轮,设置在所述第一激光光源的光发射方向上,所述第一色轮上设有第二颜色荧光粉和第三颜色荧光粉,所述第一色轮用于在所述第一波段的第一颜色光的激发下产生所述第二颜色光和所述第三颜色光;
第二色轮,设置在所述第二激光光源的光发射方向上,所述第二色轮上设有散射粉,所述第二色轮用于对所述第一波段的第一颜色光和所述第二波段的第一颜色光进行散射消偏振,
其中,所述第二激光光源发射所述第一波段的第一颜色光和所述第二波段的第一颜色光的切换频率与所述第一色轮上所述第二颜色荧光粉和所述第三颜色荧光粉的切换频率相同。
9. 根据权利要求8所述的3D投影显示系统,其特征在于,所述第一激光光源和所述第二激光光源均采用半导体激光器。
10. 根据权利要求1所述的3D投影显示系统,其特征在于,所述光源包括:
激光光源,用于发射所述第一波段的第一颜色光和所述第二波段的第一颜色光;
LED光源,用于发射包含所述第三波段、第四波段和第五波段的第二颜色光,所述LED光源还用于发射包含所述第六波段、第七波段和第八波段的第三颜色光。
11. 根据权利要求8所述的3D投影显示系统,其特征在于,所述3D投影显示系统还包括:
第一聚焦透镜,设置在所述第一激光光源和所述第一色轮之间,用于将所述第一激光光源发射的第一颜色光聚焦到所述第一色轮上;
第二聚焦透镜,设置在所述第二激光光源和所述第二色轮之间,用于将所述第二激光光源发射的第一颜色光聚焦到所述第二色轮上。
12. 根据权利要求8所述的3D投影显示系统,其特征在于,所述3D投影显示系统还包括:
第一收集透镜,设置在所述第一色轮的光输出方向上;
第二收集透镜,设置在所述第二色轮的光输出方向上;
第一反射镜,用于反射所述第二收集透镜收集的第一波段的第一颜色光;
合光装置,所述合光装置用于反射所述第一波段的第一颜色光和所述第二波段的第一颜色光,并透射所述第二颜色光和所述第三颜色光,得到混合光。
13. 根据权利要求12所述的3D投影显示系统,其特征在于,所述3D投影显示系统还包括:
方棒,设置在所述混合光的发射方向上,用于对所述混合光进行匀光处理;
中继透镜,设置在所述方棒的光输出方向上;
第二反射镜,设置在所述中继透镜的光输出方向上,用于反射所述中继透镜输出的光;
全反射棱镜,用于将所述第二反射镜反射的光全反射到镀有所述分色合色膜的棱镜上。
14. 根据权利要求1所述的3D投影显示系统,其特征在于,所述3D投影显示系统还包括:
投影镜头,用于接收所述光调制器控制输出所述第一组三基色光和所述第二组三基色光;以及
眼镜,所述眼镜包括左眼镜片和右眼镜片,其中,所述左眼镜片用于透射所述第一组三基色光,所述右眼镜片用于透射所述第二组三基色光。
15. 根据权利要求1至14中任一项所述的3D投影显示系统,其特征在于,
所述第一颜色光为蓝光,所述第二颜色光为绿光,所述第三颜色光为红光;或者
所述第一颜色光为绿光,所述第二颜色光为红光,所述第三颜色光为蓝光;或者
所述第一颜色光为红光,所述第二颜色光为蓝光,所述第三颜色光为绿光。
16. 根据权利要求13所述的3D投影显示系统,其特征在于,所述时序光先经过所述反射膜进行反射分光后,所述反射膜透射的光再经过所述双带通滤光膜进行分光。
PCT/CN2015/092888 2014-10-28 2015-10-27 3d投影显示系统 WO2016066074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410589403.4A CN105629486B (zh) 2014-10-28 2014-10-28 3d投影显示系统
CN201410589403.4 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016066074A1 true WO2016066074A1 (zh) 2016-05-06

Family

ID=55856607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092888 WO2016066074A1 (zh) 2014-10-28 2015-10-27 3d投影显示系统

Country Status (2)

Country Link
CN (1) CN105629486B (zh)
WO (1) WO2016066074A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI752258B (zh) * 2018-02-27 2022-01-11 日商牛尾電機股份有限公司 光源裝置、投影機

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112241100B (zh) * 2019-07-16 2024-02-20 深圳光峰科技股份有限公司 一种照明系统的颜色校正方法及照明系统
CN112815273A (zh) * 2020-12-31 2021-05-18 万民 一种发光设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286635A (ja) * 2009-06-11 2010-12-24 Sony Corp 立体映像表示装置および立体映像表示方法
CN101986204A (zh) * 2009-07-29 2011-03-16 上海华博数码科技有限公司 一种基于多通道组合滤光的色彩分割三维立体投影装置
CN102289140A (zh) * 2010-06-16 2011-12-21 索尼公司 照明器件和图像显示装置
CN103424837A (zh) * 2012-05-18 2013-12-04 台达电子工业股份有限公司 荧光剂色轮及其所适用的光源系统
US20140132934A1 (en) * 2012-11-14 2014-05-15 Max Mayer 6-color multi-channel image engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080856A1 (ja) * 2011-11-28 2013-06-06 シャープ株式会社 3d表示装置、及び3d表示システム
CN103713455B (zh) * 2012-09-28 2016-12-21 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
TWI457600B (zh) * 2012-12-05 2014-10-21 Delta Electronics Inc 用於一立體投影裝置的光源系統
CN203745788U (zh) * 2014-01-03 2014-07-30 深圳市亿思达显示科技有限公司 一种双激光光源系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286635A (ja) * 2009-06-11 2010-12-24 Sony Corp 立体映像表示装置および立体映像表示方法
CN101986204A (zh) * 2009-07-29 2011-03-16 上海华博数码科技有限公司 一种基于多通道组合滤光的色彩分割三维立体投影装置
CN102289140A (zh) * 2010-06-16 2011-12-21 索尼公司 照明器件和图像显示装置
CN103424837A (zh) * 2012-05-18 2013-12-04 台达电子工业股份有限公司 荧光剂色轮及其所适用的光源系统
US20140132934A1 (en) * 2012-11-14 2014-05-15 Max Mayer 6-color multi-channel image engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI752258B (zh) * 2018-02-27 2022-01-11 日商牛尾電機股份有限公司 光源裝置、投影機

Also Published As

Publication number Publication date
CN105629486B (zh) 2019-03-29
CN105629486A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2016165569A1 (zh) 发光装置和投影系统
CN105022212B (zh) 光源系统、投影系统及方法
WO2015149700A1 (zh) 一种光源系统及投影系统
US7261423B2 (en) Combined light source for projection display
JP7108840B2 (ja) 光源装置及び投写型立体表示装置
WO2016180298A1 (zh) 一种发光装置及其发光控制方法、投影设备
WO2016161924A1 (zh) 光源系统和投影系统
WO2015161821A1 (zh) 一种光源系统及投影显示装置
JP2011118415A (ja) カラー画像を撮像するための装置
JP2004206046A (ja) 液晶プロジェクタ
CN101965736A (zh) 使用多线性机电调制器的立体显示器
JP3055683B2 (ja) 電子画像表示投射装置
WO2016037521A1 (zh) 立体图像投影装置和立体显示的眼镜
CN105988270B (zh) 用于3d图像显示的硅基液晶投影系统
WO2016066074A1 (zh) 3d投影显示系统
JP2010286635A (ja) 立体映像表示装置および立体映像表示方法
US20150301346A1 (en) Light source module for stereoscopic display, imaging device for stereoscopic display and stereoscopic display system
US9529247B2 (en) Projector including polarization separation element and rotating prism
WO2018113226A1 (zh) 一种投影显示系统
CN203909462U (zh) 基于激光光源的双投影机3d投影装置及3d投影系统
US10104352B2 (en) Projector and image display method
CN109426052A (zh) 投影系统
WO2016045470A1 (zh) 立体投影系统
WO2018086349A1 (zh) 一种3d投影镜头及投影设备
WO2018129827A1 (zh) 投影显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856130

Country of ref document: EP

Kind code of ref document: A1