WO2019022044A1 - 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 - Google Patents

二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 Download PDF

Info

Publication number
WO2019022044A1
WO2019022044A1 PCT/JP2018/027613 JP2018027613W WO2019022044A1 WO 2019022044 A1 WO2019022044 A1 WO 2019022044A1 JP 2018027613 W JP2018027613 W JP 2018027613W WO 2019022044 A1 WO2019022044 A1 WO 2019022044A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
active material
electrode active
material containing
Prior art date
Application number
PCT/JP2018/027613
Other languages
English (en)
French (fr)
Inventor
陽祐 古池
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880049127.9A priority Critical patent/CN110959208B/zh
Priority to JP2019532620A priority patent/JP7024791B2/ja
Publication of WO2019022044A1 publication Critical patent/WO2019022044A1/ja
Priority to US16/751,504 priority patent/US11404722B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present technology relates to a negative electrode used for a secondary battery, a secondary battery using the negative electrode, a battery pack using the secondary battery, an electric vehicle, an electric power storage system, an electric tool, and an electronic device.
  • Secondary batteries are considered not only for electronic devices but also for other applications.
  • a battery pack detachably mounted on an electronic device or the like, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, and an electric tool such as an electric drill.
  • the secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode, and the negative electrode contains a negative electrode active material and the like involved in charge and discharge reactions. Since the configuration of the negative electrode has a great influence on the battery characteristics of the secondary battery, various studies have been made regarding the configuration of the negative electrode.
  • a negative temperature molten salt is contained in the negative electrode (see, for example, Patent Documents 1 to 4).
  • JP 2008-218385 A JP, 2009-193784, A JP, 2015-038870, A JP, 2016-048628, A
  • the present technology has been made in view of such problems, and an object thereof is to provide a negative electrode for a secondary battery, a secondary battery, a battery pack, an electric vehicle, an electric power storage system, and an electric motor that can obtain excellent battery characteristics. In providing tools and electronics.
  • the negative electrode for a secondary battery according to the present technology includes a first negative electrode active material containing a material containing carbon as a constituent element, a second negative electrode active material containing a material containing silicon as a constituent element, and a room temperature molten salt composition Is included.
  • the secondary battery of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the negative electrode has the same configuration as the above-described negative electrode for a secondary battery of the present technology.
  • Each of the battery pack, the electric vehicle, the electric power storage system, the electric power tool, and the electronic device of the present technology includes a secondary battery, and the secondary battery has the same configuration as that of the above-described secondary battery of the present technology. .
  • the negative electrode for a secondary battery or the secondary battery of the present technology, includes a first negative electrode active material containing a material containing carbon as a constituent element and a second negative electrode active material containing a material containing silicon as a constituent element And a cold molten salt composition. Therefore, excellent battery characteristics can be obtained. In addition, similar effects can be obtained in each of the battery pack, the electric vehicle, the electric power storage system, the electric tool, or the electronic device of the present technology.
  • effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 8 is a cross-sectional view of the spirally wound electrode body shown in FIG. 7 taken along line VIII-VIII. It is a perspective view showing the composition of the example of application of a rechargeable battery (battery pack: single battery). It is a block diagram showing the structure of the battery pack shown in FIG. It is a block diagram showing the composition of the example of application of a rechargeable battery (battery pack: group battery). It is a block diagram showing the composition of the example of application of a rechargeable battery (electric vehicle). It is a block diagram showing the composition of the example of application of a rechargeable battery (electric power storage system).
  • Negative electrode for secondary battery (first embodiment) 1-1. Configuration 1-2. Manufacturing method 1-3. Action and effect 2. Negative electrode for secondary battery (second embodiment) 2-1. Configuration 2-2. Manufacturing method 2-3. Action and effect 3. Modifications 4.
  • Negative Electrode for Secondary Battery First Embodiment, a negative electrode for a secondary battery according to a first embodiment of the present technology will be described.
  • the negative electrode for secondary battery (hereinafter, simply referred to as “negative electrode”) described here is, for example, a negative electrode using lithium as an electrode reactant, and is used for a secondary battery.
  • the electrode reactant is a substance involved in an electrode reaction (so-called charge-discharge reaction).
  • the type of secondary battery is not particularly limited, and is, for example, a lithium ion secondary battery.
  • FIG. 1 shows the cross-sectional configuration of the negative electrode.
  • FIG. 2 and FIG. 3 represents the cross-sectional configuration of each of the first negative electrode active material 200 and the second negative electrode active material 300.
  • the negative electrode includes a negative electrode current collector 1 and a negative electrode active material layer 2 provided on the negative electrode current collector 1.
  • the negative electrode active material layer 2 may be provided only on one side of the negative electrode current collector 1 or may be provided on both sides of the negative electrode current collector 1.
  • FIG. 1 shows, for example, the case where the negative electrode active material layer 2 is provided on both sides of the negative electrode current collector 1.
  • the negative electrode current collector 1 contains, for example, one or more of conductive materials.
  • the type of conductive material is not particularly limited, and may be, for example, a metal material such as copper, aluminum, nickel and stainless steel, and may be an alloy.
  • the negative electrode current collector 1 may be a single layer or a multilayer.
  • the surface of the negative electrode current collector 1 is preferably roughened. This is because the adhesion of the negative electrode active material layer 2 to the negative electrode current collector 1 is improved by utilizing the so-called anchor effect.
  • the surface of the negative electrode current collector 1 may be roughened at least in a region facing the negative electrode active material layer 2.
  • the method of roughening is not particularly limited, for example, there is a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, since fine particles are formed on the surface of the negative electrode current collector 1 using the electrolytic method in the electrolytic cell, irregularities are provided on the surface of the negative electrode current collector 1.
  • the copper foil produced using an electrolysis method is generally called an electrolytic copper foil.
  • the negative electrode active material layer 2 includes, for example, two types of negative electrode active materials (a first negative electrode active material 200 and a second negative electrode active material 300) capable of inserting and extracting lithium, and a normal temperature molten salt composition. It contains.
  • the negative electrode active material layer 2 may further contain one or more kinds of other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the negative electrode active material layer 2 may be a single layer or a multilayer.
  • the respective configurations of the first negative electrode active material 200 and the second negative electrode active material 300 include two types of embodiments. 2 shows the cross-sectional configuration of each of the first negative electrode active material 200 and the second negative electrode active material 300 in the first embodiment, and FIG. 3 shows the first negative electrode active material 200 and the second negative electrode in the second embodiment. Each cross-sectional structure of the active material 300 is shown.
  • each of the first negative electrode active material 200 and the second negative electrode active material 300 in the first embodiment is, for example, as follows.
  • the first negative electrode active material 200 is in the form of a plurality of particles.
  • the first negative electrode active material 200 contains one or more of carbon-based materials. This carbon-based material is a generic term for materials containing carbon as a constituent element.
  • the first negative electrode active material 200 contains the carbon-based material because the carbon-based material does not easily expand and contract at the time of lithium storage and lithium release. Thereby, since the crystal structure of the carbon-based material hardly changes, a high energy density can be stably obtained. In addition, since the carbon-based material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 2 is improved.
  • the type of the carbon-based material is not particularly limited, and is, for example, a carbon material.
  • This carbon material is a generic term for materials containing only carbon as a constituent element. However, since the purity of the carbon material is not necessarily limited to 100%, the carbon material may contain a trace amount of different elements.
  • the different element is one or more of elements other than carbon.
  • the carbon material is, for example, graphitizable carbon, non-graphitizable carbon, graphite and the like.
  • the spacing of the (002) plane relating to the non-graphitizable carbon is preferably 0.37 nm or more, and the spacing of the (002) plane relating to the graphite is preferably 0.34 nm or less.
  • the carbon material is, for example, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, carbon blacks and the like.
  • the cokes include pitch coke, needle coke and petroleum coke.
  • the organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and furan resin at an appropriate temperature.
  • the carbon material may be low crystalline carbon heat treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon.
  • the shape of the carbon material may be any of fibrous, spherical, granular and scaly.
  • the second negative electrode active material 300 is in the form of a plurality of particles.
  • the second negative electrode active material 300 contains one or more of silicon-based materials. This silicon-based material is a generic term for materials containing silicon as a constituent element.
  • the reason why the second negative electrode active material 300 contains a silicon-based material is that the silicon-based material has an excellent ability to insert and extract lithium, so that high energy density can be obtained.
  • the type of silicon-based material is not particularly limited. Therefore, the silicon-based material may be a single substance of silicon, an alloy of silicon, a compound of silicon, or two or more of them, or one or more of them. It may be a material containing at least a part of the phase of
  • the simple substance described here is a simple substance having a general meaning, and may contain a trace amount of impurities. That is, the purity of the single substance is not limited to 100%.
  • the alloy may be a material composed of two or more types of metal elements, or a material including one or more types of metal elements and one or more types of metalloid elements, or one or more types It may contain one or more non-metallic elements together with more than one kind of metallic element.
  • the definitions for each of the simple substance and the alloy described here are the same in the following.
  • the structure of the silicon-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexistence of two or more thereof.
  • the alloy of silicon is, for example, one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as constituent elements other than silicon or It contains two or more types.
  • the compound of silicon contains, for example, one or more of carbon, oxygen, and the like as a constituent element other than silicon.
  • the compound of silicon may contain, for example, one or more of a series of elements described for the alloy of silicon as a constituent element other than silicon.
  • alloys of silicon and compounds of silicon are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si , FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), LiSiO, etc. .
  • v regarding SiO v may be 0.2 ⁇ v ⁇ 1.4.
  • the reason why the negative electrode active material layer 2 contains both the first negative electrode active material 200 (carbon-based material) and the second negative electrode active material 300 (silicon-based material) is that high theoretical capacity (i.e. battery capacity) While being obtained, it is because it becomes difficult for an anode to expand and contract at the time of charge and discharge.
  • silicon-based materials have the advantage of high theoretical capacity, but have the concern of being easily expanded and shrunk during charge and discharge.
  • carbon-based materials have the concern of low theoretical capacity, but have the advantage of being less likely to expand and contract during charge and discharge. Therefore, by using the carbon-based material and the metal-based material in combination, expansion and contraction of the negative electrode during charge and discharge can be suppressed while securing a high theoretical capacity.
  • the mixing ratio (weight ratio) of the first negative electrode active material 200 and the second negative electrode active material 300 is not particularly limited. Specifically, the ratio of the weight of the second negative electrode active material 300 to the total weight of the first negative electrode active material 200 and the weight of the second negative electrode active material 300 (mixing ratio) is 1% by weight to 99%. It is weight%. This is because the advantage of using the first negative electrode active material 200 and the second negative electrode active material 300 in combination is obtained regardless of the mixing ratio.
  • the mixing ratio is preferably 50% by weight or less, and more preferably 30% by weight or less. This is because the content of the silicon-based material, which is the main cause of expansion and contraction of the negative electrode, is reduced, and thus the expansion and contraction of the negative electrode are sufficiently suppressed.
  • each of the first negative electrode active material 200 and the second negative electrode active material 300 in the second embodiment is, for example, as follows.
  • the configuration of the first negative electrode active material 200 is, for example, the same as the configuration of the first negative electrode active material 200 in the first aspect described above.
  • the second negative electrode active material 300 includes a central portion 301 and a covering portion 302 provided on the surface of the central portion 301.
  • the central portion 301 is, for example, in the form of particles and contains a silicon-based material. The details of the silicon-based material are as described above. That is, the central portion 301 has the same configuration as the second negative electrode active material 300 in the first embodiment.
  • the covering portion 302 is a protective layer that protects the central portion 301 by covering the surface of the central portion 301.
  • the covering portion 302 is provided on part or all of the surface of the central portion 301. For this reason, the covering portion 302 may cover the entire surface of the central portion 301 or may cover only a portion of the surface of the central portion 301. Of course, in the latter case, a plurality of covering portions 302 physically separated from each other may be present on the surface of the central portion 301.
  • the covering portion 302 contains any one or two or more kinds of covering materials.
  • the coating material is, for example, polyacrylate, polyacrylic acid, polyvinylidene fluoride and polyvinyl pyrrolidone.
  • the second negative electrode active material 300 includes the covering portion 302
  • the central portion 301 is protected by the covering portion 302, so that the electrolyte is decomposed on the surface of the central portion 301 containing the highly reactive silicon-based material. It is difficult to do.
  • the covering portion 302 also functions as a binder, the second negative electrode active materials 300 are easily bound to each other through the covering portion 302. In this case, if the negative electrode active material layer 2 contains a negative electrode binder, the binding property of the second negative electrode active material 300 is further improved.
  • the coating portion 302 contains a coating material because the coating formed by the coating material performs the same function as a so-called SEI (Solid Electrolyte Interphase) film.
  • SEI Solid Electrolyte Interphase
  • the type of polyacrylate is not particularly limited, and examples thereof include metal salts and onium salts.
  • the polyacrylate described herein is not limited to a compound in which all carboxyl groups (—COOH) contained in polyacrylic acid form a salt, and is contained in polyacrylic acid. It may be a compound in which a part of carboxyl groups form a salt. That is, the latter polyacrylate may contain one or more unreacted groups (carboxyl groups).
  • the type of metal ion contained in the metal salt is not particularly limited, and examples thereof include alkali metal ions and the like, and more specifically lithium ions, sodium ions and potassium ions.
  • the type of onium ion contained in the onium salt is not particularly limited, and examples thereof include ammonium ion and phosphonium ion.
  • Examples of polyacrylates are sodium polyacrylate and potassium polyacrylate and the like.
  • the polyacrylate may contain only metal ions in one molecule, may contain only onium ions, or may contain both metal ions and onium ions.
  • the proportion (occupied proportion) of the weight of the covering portion 302 to the total of the weight of the central portion 301 and the weight of the covering portion 302 is not particularly limited.
  • the weight of the former (molecule) covering portion 302 is the weight of the covering material
  • the weight of the latter (denominator) covering portion 302 is also the weight of the covering material.
  • the occupancy ratio is preferably not too large.
  • the thickness of the covering portion 302 is not particularly limited, but is preferably, for example, less than about 1 ⁇ m. It is because occlusion and release of lithium in the central portion 301 are less likely to be inhibited.
  • the thickness of the covering portion 302 described here is a so-called average thickness, and is calculated, for example, by the following procedure.
  • the cross section of the second negative electrode active material 300 (the central portion 301 and the covering portion 302) is observed using a microscope such as a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the magnification is adjusted so that about 1/3 of the entire image of the second negative electrode active material 300 can be observed. More specifically, when the average particle diameter (median diameter D50) of the second negative electrode active material 300 is about 20 ⁇ m, the magnification is about 2000 times.
  • the thickness of the covering portion 302 is measured at five points located at equal intervals. This interval is, for example, about 0.5 ⁇ m.
  • the average value of the thickness measured at five locations is calculated.
  • the coverage of the covering portion 302, that is, the rate at which the surface of the central portion 301 is covered by the covering portion 302 is not particularly limited, but is preferably, for example, 50% or more. This is because the protective effect of the central portion 301 by the covering portion 302 is sufficiently exhibited.
  • the coverage of the covering portion 302 described here is a so-called average coverage, and is calculated, for example, by the following procedure.
  • the cross section of the second negative electrode active material 300 (the central portion 301 and the covering portion 302) is observed using a microscope such as a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the magnification is adjusted so that about one third of the entire image of the second negative electrode active material 300 can be observed, and the cross section of the covering portion 302 is observed at any ten places (ten views). Details of the magnification are the same as, for example, the case of calculating the average thickness of the covering portion 302.
  • the coverage is calculated for each field of view based on the observation result (micrograph).
  • the second negative electrode active material 300 may not contain the covering portion 302. This is because the copolymer coats the surface of the central portion 301, and thus the copolymer performs the same function as the covering portion 302. The details of the copolymer will be described later.
  • Normal temperature molten salt composition The normal temperature molten salt composition is contained in the negative electrode active material layer 2 together with the first negative electrode active material 200 and the second negative electrode active material 300 described above. Therefore, the normal temperature molten salt composition is dispersed in the negative electrode active material layer 2 in the same manner as the first negative electrode active material 200 and the second negative electrode active material 300.
  • the second negative electrode active material in the negative electrode active material layer 2 is closer to the first negative electrode active material 200 (carbon-based material). It is distributed so as to be present in the vicinity of 300 (silicon-based material).
  • the amount of the normal temperature molten salt composition present in the vicinity of the first negative electrode active material 200 and the amount of the normal temperature molten salt composition existing in the vicinity of the second negative electrode active material 300 are compared.
  • the amount of the normal temperature molten salt composition in the vicinity of 300 is larger than the amount of the normal temperature molten salt composition in the vicinity of the first negative electrode active material 200.
  • the negative electrode active material layer 2 contains the normal temperature molten salt composition is that both the first negative electrode active material 200 (carbon-based material) and the second negative electrode active material 300 (silicon-based material) As described above, in the mixed system containing the above, the room temperature molten salt composition is more likely to be present in the vicinity of the second negative electrode active material 300 than in the vicinity of the first negative electrode active material 200. In this case, since the ion conductivity is preferentially improved in the vicinity of the second negative electrode active material 300, lithium is easily occluded and released in the second negative electrode active material 300.
  • the advantages of the silicon-based material are enhanced while the concerns of the silicon-based material described above are suppressed. Therefore, the charge / discharge reaction is likely to proceed smoothly and stably in the negative electrode, and the negative electrode in the charged state is thermally stable even when exposed to a high temperature environment.
  • the cold melt salt composition contains, for example, one or both of a cold melt salt and a copolymer.
  • the number of types of the room temperature molten salt may be one, or two or more. Similarly, only one type of copolymer may be used, or two or more types may be used.
  • the cold molten salt is a so-called ionic liquid and has excellent flame retardancy and high ionic conductivity.
  • the copolymer is a copolymer of a normal temperature molten salt and a polymer compound.
  • the type of the room temperature molten salt copolymerized with the polymer compound may be only one or two or more. Similarly, only one type or two or more types of the polymer compound copolymerized with the normal temperature molten salt may be used.
  • the cold molten salt contains one or more types of cations and one or more types of anions.
  • the type of cation is not particularly limited, and examples thereof include ammonium cation, phosphonium cation, sulfonium cation, imidazolium cation, pyridinium cation and pyrrolidinium cation. Among them, quaternary ammonium cations, quaternary phosphonium cations, tertiary sulfonium cations, imidazolium cations, pyridinium cations and pyrrolidinium cations are preferable. It is because while being able to obtain the outstanding thermal stability, a cold-fusion salt can be easily synthesized.
  • R is any of a monovalent aliphatic hydrocarbon group, a monovalent aromatic hydrocarbon group, a monovalent heterocyclic group, and the like. However, four R may be the same as each other, or may be different from each other. Of course, only some of the four R's may be the same as each other.
  • the quaternary phosphonium cation is represented by PR 4 + .
  • the details for the four R's are the same as described for the quaternary ammonium cation.
  • the tertiary sulfonium cation is represented by SR 3 + .
  • the details for the three R's are the same as described for the quaternary ammonium cation.
  • the imidazolium cation is represented by C 3 H 3 N 2 R 2 + .
  • the details for the two R's are the same as described for the quaternary ammonium cation.
  • the imidazolium cation is, for example, 1-ethyl-3-methylimidazolium ion and the like.
  • the pyridinium cation is represented by C 5 H 5 NR 2 + .
  • the details for the two R's are the same as described for the quaternary ammonium cation.
  • the pyrrolidinium cation is represented by C 4 H 8 NR 2 + .
  • the details for the two R's are the same as described for the quaternary ammonium cation.
  • the type of anion is not particularly limited.
  • the halide anion is, for example, a chloride anion (Cl ⁇ ) or the like.
  • bis (trifluoromethanesulfonyl) imide anion bis (fluorosulfonyl) imide anion, tetrafluoroborate anion, hexafluorophosphate anion and chloride anion are preferable. It is because while being able to obtain the outstanding thermal stability, a cold-fusion salt can be easily synthesized.
  • the copolymer is, for example, a graft copolymer obtained by graft polymerizing a normal temperature molten salt to a polymer compound.
  • this graft copolymer for example, one or more room temperature molten salts are introduced as side chains with respect to the polymer compound.
  • the type of the polymer compound is not particularly limited, but is, for example, the same as the type of the negative electrode binder (polymer compound) described later. This is because the thermal stability of the negative electrode binder is further improved since excellent thermal stability is obtained.
  • the polymer compound is, for example, polyacrylate, polyacrylic acid, polyimide, polyamic acid, polyamide imide, polytetrafluoroethylene, polyvinylidene fluoride and the like. Among them, polyacrylate, polyacrylic acid, polyimide and polyvinylidene fluoride are preferable.
  • the normal temperature molten salt composition preferably contains one or more of reactive groups that easily react with the second negative electrode active material 300 (silicon-based material). That is, when the normal temperature molten salt composition contains a normal temperature molten salt, it is preferable that the normal temperature molten salt contain a reactive group. In addition, when the normal temperature molten salt composition contains a copolymer, the normal temperature molten salt may contain a reactive group, or the polymer compound may contain a reactive group, or both of them react. It may contain a group. This is because the room temperature molten salt composition is fixed to the second negative electrode active material 300 because the room temperature molten salt composition reacts with the silicon-based material through the reactive group. As a result, the normal temperature molten salt composition is more likely to be present in the vicinity of the second negative electrode active material 300.
  • the type of reactive group is not particularly limited as long as it is a functional group that easily reacts with the silicon-based material, and examples thereof include an alkoxy group, a hydroxy group, an acryloyl group and a methacryloyl group. This is because the cold molten salt composition easily reacts with the silicon-based material sufficiently.
  • the content of the normal temperature molten salt composition in the negative electrode active material layer 2 is not particularly limited, and is, for example, 0.01% by weight to 5% by weight. This is because the capacity of each of the first negative electrode active material 200 and the second negative electrode active material 300 is secured, so that an advantage derived from the above-described normal temperature molten salt composition can be obtained while maintaining a high battery capacity.
  • Other materials are, for example, metal salts and silane coupling agents in addition to the above-described negative electrode binder and negative electrode conductive agent.
  • the negative electrode binder mainly bonds the first negative electrode active material 200, the second negative electrode active material 300, and the like.
  • the negative electrode binder contains, for example, one or more of a synthetic rubber and a polymer compound.
  • the synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber and ethylene propylene diene.
  • the high molecular compound is, for example, polyvinylidene fluoride, polyacrylate, polyacrylic acid and polyimide. Among them, polyvinylidene fluoride, styrene butadiene rubber, polyimide, polyacrylate and polyacrylic acid are preferable.
  • the negative electrode conductive agent mainly improves the electron conductivity of the negative electrode active material layer 2.
  • the negative electrode conductive agent contains, for example, one or more of conductive materials such as a carbon material.
  • the carbon material is, for example, graphite, carbon black, acetylene black, ketjen black, carbon fiber and carbon nanotube.
  • the negative electrode conductive agent is not limited to the carbon material as long as it is a conductive material, and may be a metal material, a conductive polymer, or the like.
  • the metal salt mainly improves the ion conductivity of the normal temperature molten salt composition and improves the ion conductivity of the negative electrode active material layer 2.
  • the type of metal salt is not particularly limited, but among them, a salt of an electrode reactant is preferable. That is, when lithium is used as the electrode reactant, the metal salt is preferably a lithium salt.
  • the type of lithium salt is not particularly limited as long as it is one or more of salts containing lithium ion as a cation. Details regarding the lithium salt are, for example, the same as details regarding the electrolyte salt described later.
  • the silane coupling agent mainly has a high affinity to the negative electrode binder, and thus bonds the first negative electrode active material 200 and the second negative electrode active material 300 to each other.
  • the silane coupling agent binds not only the first negative electrode active material 200 and the second negative electrode active material 300 described above, but also the negative electrode current collector 1 and the negative electrode conductive agent.
  • the type of silane coupling agent is not particularly limited as long as it is one or more of materials having high affinity to the negative electrode binder.
  • the silane coupling agent is, for example, a silane coupling agent containing an amino group, a silane coupling agent containing sulfur as a constituent element, and a silane coupling agent containing fluorine as a constituent element.
  • the silane coupling agent containing an amino group is, for example, 3-aminopropylmethyldiethoxysilane, 3-aminopropyltriethoxysilane and N, N'-bis [3-trimethoxysilyl] propylethylenediamine.
  • silane coupling agents containing sulfur as a constituent element include bis [3- (triethoxysilyl) propyl] tetrasulfide, bis [3- (triethoxysilyl) propyl] disulfide, 3-mercaptopropyltrimethoxysilane and 3-mercaptopropylmethyldimethoxysilane and the like.
  • the silane coupling agent containing fluorine as a constituent element is, for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) -trimethoxysilane, (heptadecafluoro-1,1,2,2-tetra) Hydrodecyl) -tris (dimethylamino) silane and (heptadecafluoro-1,1,2,2-tetrahydrodecyl) -triethoxysilane, and the like.
  • the negative electrode active material layer 2 may contain, for example, one or more other negative electrode active materials together with the first negative electrode active material 200 and the second negative electrode active material 300 described above. .
  • Another negative electrode active material is, for example, a metal-based material.
  • the metal-based material is a generic term for materials containing one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained. However, the above-described silicon-based materials are excluded from the metal-based materials described herein. It is.
  • the metal-based material may be a single element, an alloy, a compound, two or more of them, or at least a part of one or more of them. It may be a material.
  • the structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexistence of two or more thereof.
  • the metal element is, for example, a metal element capable of forming an alloy with lithium
  • the metalloid element is, for example, a metalloid element capable of forming an alloy with lithium
  • the metal element and the metalloid element are, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), germanium (Ge), tin (Sn), Lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd), platinum (Pt) and the like.
  • tin is preferred. Because the ability to insert and extract lithium is excellent, extremely high energy density can be obtained.
  • tin-based material may be a single substance of tin, an alloy of tin, a compound of tin, or two of them. It may be a material including at least a part of one or two or more of them.
  • the alloy of tin is, for example, one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than tin or the like It contains two or more types.
  • the compound of tin contains, for example, one or more of carbon, oxygen, and the like as a constituent element other than tin.
  • the compound of tin may contain, for example, one or more of the series of elements described for the alloy of tin as a constituent element other than tin.
  • alloys of tin and compounds of tin are SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO and Mg 2 Sn.
  • the tin-based material is, for example, a material containing a second component element and a third component element together with tin which is a first component element (hereinafter referred to as “tin-containing material”).
  • the second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), One or more selected from tantalum, tungsten, bismuth and silicon.
  • the third constituent element is, for example, one or more of boron, carbon, aluminum, phosphorus and the like. This is because high battery capacity and excellent cycle characteristics can be obtained.
  • the tin-containing material is preferably a material containing tin, cobalt and carbon as constituent elements (hereinafter referred to as “tin-cobalt carbon-containing material”).
  • tin-cobalt carbon-containing material for example, the content of carbon is 9.9% to 29.7% by mass, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20% to 70% by mass is there. This is because a high energy density can be obtained.
  • the tin-cobalt carbon-containing material has a phase containing tin, cobalt and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a phase capable of reacting with lithium (reactive phase), excellent properties are obtained due to the presence of the reactive phase.
  • the half-width (diffraction angle 2 ⁇ ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when the CuK ⁇ ray is used as the specific X-ray and the drawing speed is 1 ° / min. Is preferred. While lithium is occluded and released more smoothly, the reactivity with the electrolytic solution is reduced.
  • the tin-cobalt carbon-containing material may include a phase in which a single element or a part of each constituent element is contained.
  • This reaction phase contains, for example, the above-described series of constituent elements, and is considered to be low in crystallization or amorphization mainly due to the presence of carbon.
  • the tin-cobalt carbon-containing material it is preferable that at least a part of carbon which is a constituent element is bonded to a metal element or a metalloid element which is another constituent element. This is because aggregation of tin or the like or crystallization of tin is suppressed.
  • the bonding state of elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Al-K ⁇ rays or Mg-K ⁇ rays are used as soft X-rays.
  • a peak of a synthetic wave of carbon 1s orbital (C1s) appears in an energy region lower than 284.5 eV.
  • the energy calibration is performed so that the peak of 4f orbit (Au4f) of gold atom is obtained at 84.0 eV.
  • the energy of the peak of C1s resulting from the surface contamination carbon shall be 284.8 eV, and the peak shall be an energy standard.
  • the waveform of the C1s peak includes a peak attributable to surface contamination carbon and a peak attributable to carbon in the tin-cobalt carbon-containing material. Therefore, for example, by analyzing peaks using commercially available software, both peaks are separated. In the analysis of the waveform, the position of the main peak present on the lowest binding energy side is used as the energy reference (284.8 eV).
  • the tin-cobalt carbon-containing material is not limited to a material whose constituent elements are only tin, cobalt and carbon.
  • the tin-cobalt-carbon-containing material may be, for example, in addition to tin, cobalt and carbon, any of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium and bismuth etc. You may contain 1 type or 2 types or more as a constitutent element.
  • tin-cobalt-iron-carbon-containing materials materials containing tin, cobalt, iron and carbon as constituent elements (hereinafter referred to as "tin-cobalt-iron-carbon-containing materials") are also preferable.
  • the composition of this tin-cobalt-iron-carbon-containing material is optional.
  • the content of iron is set to be small, the content of carbon is 9.9% by mass to 29.7% by mass, and the content of iron is 0.3% by mass to 5.9% by mass
  • the content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass.
  • the content of iron when the content of iron is set to be large, the content of carbon is 11.9 mass% to 29.7 mass%, and the content ratio of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass, and the ratio of the content of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass.
  • high energy density can be obtained.
  • the physical properties (such as half width) of the tin-cobalt-iron-carbon-containing material are the same as the physical properties of the above-mentioned tin-cobalt-carbon-containing material.
  • negative electrode active materials are, for example, metal oxides and polymer compounds.
  • the metal oxide is, for example, iron oxide, ruthenium oxide and molybdenum oxide.
  • the polymer compounds are, for example, polyacetylene, polyaniline and polypyrrole.
  • This negative electrode is manufactured, for example, by the following procedure.
  • a negative electrode mixture is prepared.
  • a negative electrode active material containing the first negative electrode active material 200 and the second negative electrode active material 300, a room temperature molten salt composition, A negative electrode mixture is prepared by mixing a negative electrode binder, a negative electrode conductive agent, and the like as necessary.
  • the core portion 301 containing a silicon-based material, and a coating material containing one or more of polyacrylate, polyacrylic acid, polyvinylidene fluoride and polyvinylpyrrolidone.
  • a coating material a melt may be used or a non-melt may be used.
  • the lysate is, for example, a solution in which the coating material is dissolved by pure water or the like, and more specifically, for example, a polyacrylate aqueous solution and a polyacrylic acid aqueous solution.
  • the type of solvent is not particularly limited as long as it is any one or more types of optional solvents, and examples thereof include aqueous solvents and organic solvents capable of dissolving the coating material.
  • the aqueous solvent is, for example, pure water
  • the organic solvent is, for example, N-methyl-2-pyrrolidone.
  • a stirring device such as a stirrer may be used. The conditions such as the stirring time can be arbitrarily set. As a result, the central portion 301 is dispersed in the solvent and the coating material is dissolved by the solvent, whereby a dispersion liquid including the central portion 301 and the coating material is prepared.
  • the second negative electrode active material 300 is separated from the dispersion.
  • the separation method is not particularly limited, for example, the filtrate is recovered by filtering the dispersion. After this, the filtrate may be dried. The conditions such as the drying temperature and the drying time can be arbitrarily set.
  • the dispersion liquid since the covering portion 302 including the covering material is formed on the surface of the central portion 301, the second negative electrode active material 300 including the central portion 301 and the covering portion 302 is formed. Therefore, the second negative electrode active material 300 which is a filtrate is obtained by filtering the dispersion.
  • the dispersion may be sprayed after the dispersion is sprayed using a spray drying apparatus. Also in this case, since the covering portion 302 is formed on the surface of the central portion 301, the second negative electrode active material 300 can be obtained.
  • a negative electrode active material including the first negative electrode active material 200 and the second negative electrode active material 300 (the central portion 301 and the covering portion 302), a room temperature molten salt composition, and, if necessary, a negative electrode binder and negative electrode conduction
  • a negative electrode mixture is obtained by mixing it with an agent or the like.
  • the negative electrode mixture is charged into a solvent, and then the solvent is stirred to prepare a paste-like negative electrode mixture slurry.
  • the type of solvent is not particularly limited as long as it is any one or more types of optional solvents, and examples thereof include an aqueous solvent and an organic solvent. Details regarding the aqueous solvent and the organic solvent are as described above.
  • the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 1, and then the negative electrode mixture slurry is dried to form the negative electrode active material layer 2. Thereafter, the negative electrode active material layer 2 is compression molded using a roll press or the like, as necessary. In this case, the negative electrode active material layer 2 may be heated, or the compression molding may be repeated multiple times.
  • the negative electrode including the negative electrode current collector 1 and the negative electrode active material layer 2 is completed.
  • the negative electrode active material layer 2 includes the normal temperature molten salt composition together with the first negative electrode active material (carbon-based material) and the second negative electrode active material 300 (silicon-based material).
  • the normal temperature molten salt composition is more likely to be present in the vicinity of the silicon-based material than in the vicinity of the carbon-based material.
  • the ion conductivity is preferentially improved in the vicinity of the silicon-based material, lithium is easily absorbed and released in the silicon-based material.
  • the charge and discharge reaction tends to proceed smoothly and stably in the negative electrode, and since the negative electrode in the charged state is thermally stable even when exposed to a high temperature environment, excellent battery characteristics can be obtained.
  • the normal temperature molten salt composition contains one or both of the normal temperature molten salt and the copolymer, the normal temperature molten salt composition is sufficiently present in the vicinity of the silicon-based material, and hence the higher effect is achieved.
  • the normal temperature molten salt composition contains a copolymer, the thermal stability of the negative electrode binder is further improved by obtaining excellent thermal stability, and thus a higher effect can be obtained. be able to.
  • the room temperature molten salt contains a quaternary ammonium cation or the like as a cation, and the polymer compound contains a polyacrylate or the like, the room temperature molten salt composition is more likely to be present in the vicinity of the silicon material. Therefore, a higher effect can be obtained.
  • the normal temperature molten salt contains a bis (trifluoromethanesulfonyl) imide anion or the like as an anion
  • the normal temperature molten salt composition is more likely to be present in the vicinity of the silicon-based material, and thus higher effects can be obtained.
  • the normal temperature molten salt composition contains a reactive group such as an alkoxy group
  • the normal temperature molten salt composition easily reacts with the silicon-based material through the reactive group. Therefore, since the normal temperature molten salt composition is more likely to be present in the vicinity of the silicon-based material, higher effects can be obtained.
  • the negative electrode active material layer 2 contains a metal salt, the ion conductivity of the negative electrode active material layer 2 and the like is improved, so that higher effects can be obtained.
  • the negative electrode active material layer 2 contains a negative electrode binder
  • the negative electrode binder contains polyvinylidene fluoride or the like
  • the first negative electrode active material 200 and the second negative electrode active material 300 bind to the negative electrode. It binds well through the agent. Therefore, since lithium is easily and sufficiently easily absorbed and released in each of the first negative electrode active material 200 and the second negative electrode active material 300, higher effects can be obtained.
  • Negative Electrode for Secondary Battery (Second Embodiment)> Next, a negative electrode for a secondary battery according to a second embodiment of the present technology will be described. Below, the component of the negative electrode of 1st Embodiment already demonstrated is quoted at any time.
  • the negative electrode described here is the same as the negative electrode active material layer 2 described above except that the normal temperature molten salt composition is contained in the covering portion 302 instead of being dispersed in the negative electrode active material layer 2. It has the same configuration as the negative electrode of one embodiment (the second mode shown in FIG. 3).
  • the second negative electrode active material 300 includes a central portion 301 and a covering portion 302, and the covering portion 302 includes a cold-melting salt composition together with a covering material.
  • the covering portion 302 includes a cold-melting salt composition together with a covering material.
  • the covering portion 302 contains the normal temperature molten salt composition in the vicinity of the silicon-based material. Is more likely to exist. In this case, in particular, since the covering portion 302 containing the normal temperature molten salt composition is fixed on the surface of the central portion 301 containing the silicon based material, the normal temperature molten salt composition is firmly fixed to the silicon based material Be done. As a result, the normal temperature molten salt composition is more likely to be present in the vicinity of the silicon-based material than in the vicinity of the carbon-based material, and the state is likely to be maintained even if charge and discharge are repeated.
  • the normal temperature molten salt compound be bonded to the silicon-based material. More specifically, the cold molten salt composition is preferably bonded to the silicon-based material through the above-described reactive group. Because the normal temperature molten salt composition is more firmly fixed to the silicon-based material, the state in which a larger amount of the normal temperature molten salt composition is present in the vicinity of the silicon-based material is more easily maintained.
  • the normal temperature molten salt composition be bonded to the negative electrode binder. More specifically, the normal temperature molten salt composition is preferably bonded to the negative electrode binder via the above-described reactive group. When the cold-melted salt composition is bonded to the negative electrode binder, the cold-melted salt composition is easily maintained in a fixed state on the surface of the silicon-based material.
  • coated part 302 may contain the metal salt.
  • the details regarding the metal salt are as described above. This is because the same advantages as in the first embodiment in which the negative electrode active material layer 2 contains a metal salt can be obtained.
  • the covering portion 302 may include a conductive material.
  • the details regarding the conductive material are, for example, the same as the details regarding the negative electrode conductive agent described above. That is, the conductive material is, for example, a carbon nanotube. This is because the conductivity of the covering portion 302 is improved.
  • the negative electrode active material layer 2 may contain, for example, an additional normal temperature molten salt composition. That is, for example, the cold-melted salt composition may be dispersed in the negative electrode active material layer 2 in addition to being contained in the covering portion 302. This is because the amount of the room temperature molten salt composition in the vicinity of the second negative electrode active material 300 is increased, and hence the ion conductivity in the vicinity of the second negative electrode active material 300 is further improved.
  • the second negative electrode active material 300 may not contain the covering portion 302.
  • the copolymer performs the same function as the covering portion 302.
  • the covering portion 302 may include the normal temperature molten salt composition (copolymer) together with the covering material.
  • the weight of the central portion 301 and the weight of the covering portion 302 are the same as in the case where the covering portion 302 does not contain the normal temperature molten salt composition.
  • the weight of the former (molecular) coating portion 302 is the weight of the coating material
  • the weight of the latter (denominator) coating portion 302 is the weight of the coating material and normal temperature It is the sum of the weight of the molten salt composition and the weight of the conductive material.
  • This negative electrode is manufactured, for example, by the same procedure as the manufacturing procedure of the negative electrode in the first embodiment except that the formation procedure of the second negative electrode active material 300 is different. Hereinafter, the procedure for forming the second negative electrode active material 300 will be mentioned.
  • the core portion 301 containing a silicon-based material, the normal temperature molten salt composition, and the polyacrylate, polyacrylic acid, polyvinylidene fluoride and polyvinyl pyrrolidone are selected.
  • the mixture is poured into a solvent, and then the solvent is stirred.
  • the central portion 301 and the normal temperature molten salt composition are dispersed in a solvent, and the coating material is dissolved by the solvent, so that a dispersion containing the central portion 301, the normal temperature molten salt composition and the coating material is prepared. Be done.
  • the second negative electrode active material 300 is separated from the dispersion.
  • the covering portion 302 including the cold temperature molten salt composition and the covering material is formed on the surface of the central portion 301, so that the second negative electrode active material 300 including the central portion 301 and the covering portion 302 is formed.
  • the dispersion liquid is filtered to obtain a filtered second anode active material 300.
  • the dispersion may be dried.
  • the coated portion 302 may not be formed, or the coated portion 302 may be formed so as to include the copolymer together with the coating material. May be
  • the first negative electrode active material 200 and the second negative electrode active material 300 are included when preparing the negative electrode mixture.
  • the negative electrode active material, the additional normal temperature molten salt composition, and, if necessary, the negative electrode binder and the negative electrode conductive agent may be mixed.
  • the negative electrode active material layer 2 includes the first negative electrode active material 200 (carbon-based material) and the second negative electrode active material 300 (the central portion 301 and the covering portion 302 containing silicon-based material).
  • the coating portion 302 contains a cold molten salt composition.
  • the normal temperature molten salt composition is more likely to be present in the vicinity of the silicon-based material than in the vicinity of the carbon-based material.
  • the lithium is easily absorbed and released in the silicon-based material.
  • the charge and discharge reaction tends to proceed smoothly and stably in the negative electrode, and since the negative electrode in the charged state is thermally stable even when exposed to a high temperature environment, excellent battery characteristics can be obtained.
  • the normal temperature molten salt composition is fixed on the surface of the silicon-based material.
  • the normal temperature molten salt composition is firmly fixed. Therefore, the state in which the normal temperature molten salt composition is present more in the vicinity of the silicon-based material than in the vicinity of the carbon-based material is likely to be maintained even when charging and discharging are repeated. You can get it.
  • the normal temperature molten salt composition when the normal temperature molten salt composition is bonded to the silicon-based material, the normal temperature molten salt composition is more firmly fixed to the silicon-based material, so that higher effects can be obtained.
  • the state in which the room temperature molten salt composition is fixed to the surface of the silicon-based material is easily maintained, so that higher effects can be obtained. it can.
  • the covering portion 302 contains a metal salt, the ion conductivity of the negative electrode active material layer 2 and the like can be improved, so that a higher effect can be obtained.
  • the first negative electrode active material 200 has the same configuration as the second negative electrode active material 300 (central portion 301 and covering portion 302) of the second embodiment. May be included.
  • the first negative electrode active material 200 includes, for example, the central portion 201 corresponding to the central portion 301 and the covering portion 202 corresponding to the covering portion 302.
  • the configuration of the central portion 201 is similar to that of the central portion 301, for example, except that a carbon-based material is included instead of the silicon-based material.
  • the configuration of the covering portion 202 is, for example, the same as the configuration of the covering portion 302 except that it does not contain the normal temperature molten salt composition. That is, the covering portion 202 contains a covering material.
  • the first negative electrode active material 200 uses, for example, a carbon-based material instead of a silicon-based material as a forming material of the central portion 201, and does not use a room-temperature molten salt composition as a forming material of the covering portion 202.
  • the second negative electrode active material 300 is manufactured according to the same procedure as the second negative electrode active material 300.
  • the second negative electrode active material 300 having the configuration described in the first embodiment or the second embodiment can achieve the same effect.
  • the binding property of the first negative electrode active material 200 can be improved.
  • FIG. 5 shows a cross-sectional configuration of the secondary battery
  • FIG. 6 is an enlarged view of a part of the cross-sectional configuration of the wound electrode body 20 shown in FIG.
  • the secondary battery described here is, for example, a lithium ion secondary battery in which a battery capacity (capacity of the negative electrode 22) is obtained by utilizing a lithium absorption phenomenon and a lithium release phenomenon.
  • This secondary battery is a cylindrical secondary battery in which a wound electrode body 20 which is a battery element is housed inside a hollow cylindrical battery can 11 as shown in FIG.
  • the secondary battery includes, for example, a pair of insulating plates 12 and 13 and a wound electrode body 20 inside the battery can 11.
  • the wound electrode body 20 is formed, for example, by laminating the positive electrode 21 and the negative electrode 22 via the separator 23 and then winding the positive electrode 21, the negative electrode 22, and the separator 23.
  • the wound electrode body 20 is impregnated with an electrolytic solution which is a liquid electrolyte.
  • the battery can 11 has, for example, a hollow structure in which one end is closed and the other end is open, and, for example, any one or more of iron, aluminum, and their alloys, etc. Contains. For example, nickel or the like may be plated on the surface of the battery can 11.
  • Each of the pair of insulating plates 12 and 13 is disposed so as to sandwich the wound electrode body 20 and extend perpendicularly to the winding circumferential surface.
  • the battery cover 14 contains, for example, the same material as the material of the battery can 11.
  • Each of the safety valve mechanism 15 and the heat sensitive resistance element 16 is provided inside the battery cover 14, and the safety valve mechanism 15 is electrically connected to the battery cover 14 via the heat sensitive resistance element 16.
  • the disc plate 15A is reversed. Thereby, the electrical connection between the battery cover 14 and the wound electrode body 20 is cut off.
  • the resistance of the heat sensitive resistance element 16 increases as the temperature rises.
  • the gasket 17 contains, for example, an insulating material, and the surface of the gasket 17 may be coated with, for example, asphalt.
  • a center pin 24 is inserted into the winding center 20C of the winding electrode body 20.
  • the positive electrode lead 25 is attached to the positive electrode 21, and the negative electrode lead 26 is attached to the negative electrode 22.
  • the positive electrode lead 25 contains, for example, a conductive material such as aluminum.
  • the positive electrode lead 25 is, for example, attached to the safety valve mechanism 15 and thus electrically connected to the battery cover 14.
  • the negative electrode lead 26 contains, for example, a conductive material such as nickel. For example, since the negative electrode lead 26 is attached to the battery can 11, the negative electrode lead 26 is electrically connected to the battery can 11.
  • the positive electrode 21 includes a positive electrode current collector 21A and two positive electrode active material layers 21B provided on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may be provided on one side of the positive electrode current collector 21A.
  • the positive electrode current collector 21A contains, for example, one or more of conductive materials.
  • the type of conductive material is not particularly limited, and is, for example, a metal material such as aluminum, nickel and stainless steel.
  • the positive electrode current collector 21A may be a single layer or a multilayer.
  • the positive electrode active material layer 21B contains, as a positive electrode active material, any one or two or more kinds of positive electrode materials capable of inserting and extracting lithium. However, the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode material is, for example, a lithium-containing compound. This is because a high energy density can be obtained.
  • the type of lithium-containing compound is not particularly limited, and examples thereof include lithium-containing composite oxides and lithium-containing phosphoric acid compounds.
  • the lithium-containing composite oxide is an oxide containing lithium and one or more other elements as constituent elements, and has, for example, a crystal structure of any of layered rock salt type and spinel type.
  • the lithium-containing phosphoric acid compound is a phosphoric acid compound containing lithium and one or more other elements as constituent elements, and has, for example, a crystal structure such as an olivine type.
  • other elements are elements other than lithium.
  • the type of the other element is not particularly limited as long as it is any one type or two or more types of arbitrary elements.
  • the other elements are preferably elements belonging to Groups 2 to 15 in the long period periodic table. More specifically, the other elements are more preferably nickel (Ni), cobalt (Co), manganese (Mn) and iron (Fe). This is because a high voltage can be obtained.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, a compound represented by each of the following formulas (1) to (3).
  • Li a Mn (1-bc) Ni b M 1 c O (2-d) F e (1)
  • M1 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc)
  • a to e is 0.8
  • the following conditions are satisfied: a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, (b + c) ⁇ 1, ⁇ 0.1 ⁇ d ⁇ 0.2 and 0 ⁇ e ⁇ 0.1.
  • the composition of lithium varies depending on the charge and discharge state, and a is a value of a completely discharged state.
  • M2 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d is 0.8 ⁇ a ⁇ 1.2, 0.005 ⁇ b ⁇ 0.5, ⁇ 0.1 ⁇ c ⁇ 0.2 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium depends on the charge and discharge state Differently, a is the value of the fully discharged state)
  • Li a Co (1-b) M3 b O (2-c) F d (3) M3 represents nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d is 0.8 ⁇ a 1.2, 0 ⁇ b ⁇ 0.5, ⁇ 0.1 ⁇ c ⁇ 0.2 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium differs depending on the charge / discharge state, a is the value of the completely discharged state)
  • lithium-containing composite oxide having a layered rock salt type crystal structure LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and the like.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese and aluminum as constituent elements
  • the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
  • the lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (4).
  • Li a Mn (2-b) M 4 b O c F d (4) (M4 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d are 0.9 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.6, 3.7 ⁇ c ⁇ 4.1 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium varies depending on the charge / discharge state, a Is the value of the completely discharged state.)
  • lithium-containing composite oxide having a spinel type crystal structure is LiMn 2 O 4 or the like.
  • the lithium-containing phosphoric acid compound having an olivine type crystal structure is, for example, a compound represented by the following formula (5).
  • Li a M5PO 4 (5) (M5 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium) At least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W) and zirconium (Zr), a is 0.9 ⁇ a ⁇ 1.1, provided that the composition of lithium varies depending on the charge and discharge state, and a is a value of a completely discharged state)
  • lithium-containing phosphoric acid compound having an olivine type crystal structure LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4 and LiFe 0.3 Mn 0.7 PO 4 and the like.
  • the compound etc. which are represented by following formula (6) may be sufficient as lithium containing complex oxide.
  • the positive electrode material may be, for example, an oxide, a disulfide, a chalcogenide and a conductive polymer.
  • the oxides are, for example, titanium oxide, vanadium oxide and manganese dioxide.
  • Examples of the disulfide include titanium disulfide and molybdenum sulfide.
  • the chalcogenide is, for example, niobium selenide or the like.
  • the conductive polymer is, for example, sulfur, polyaniline and polythiophene.
  • Positive electrode binder and positive electrode conductive agent The details of the positive electrode binder are the same as, for example, the details of the negative electrode binder. Further, details regarding the positive electrode conductive agent are, for example, the same as details regarding the negative electrode conductive agent.
  • the negative electrode 22 has the same configuration as the above-described negative electrode of the present technology. Specifically, for example, as shown in FIG. 6, the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B.
  • the configuration of the negative electrode current collector 22A is the same as the configuration of the negative electrode current collector 1
  • the configuration of the negative electrode active material layer 22B is the same as the configuration of the negative electrode active material layer 2.
  • the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 21 in order to prevent lithium metal from unintentionally depositing on the surface of the negative electrode 22 during charging. That is, the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is preferably larger than the electrochemical equivalent of the positive electrode 21.
  • lithium can be occluded and released in order to prevent lithium metal from being unintentionally deposited on the surface of the negative electrode 22 during charging.
  • the electrochemical equivalent of certain negative electrode materials is greater than the electrochemical equivalent of the positive electrode.
  • the open circuit voltage (namely, battery voltage) at the time of complete charge is the discharge amount of lithium per unit mass using the same positive electrode active material compared with the case where it is 4.20V.
  • the amount of the positive electrode active material and the amount of the negative electrode active material are mutually adjusted in consideration of the fact that This gives a high energy density.
  • the separator 23 is disposed between the positive electrode 21 and the negative electrode 22, and allows lithium ions to pass while preventing a short circuit of the current caused by the contact of the both electrodes.
  • the separator 23 contains, for example, one or more types of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more types of porous films.
  • Synthetic resins are, for example, polytetrafluoroethylene, polypropylene and polyethylene.
  • the separator 23 may include, for example, the above-described porous film (base layer) and a polymer compound layer provided on one side or both sides of the base layer. This is because the adhesion of the separator 23 to each of the positive electrode 21 and the negative electrode 22 is improved, so distortion of the wound electrode body 20 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, resistance does not easily increase even if charge and discharge are repeated, and battery swelling is suppressed. Be done.
  • the polymer compound layer contains, for example, a polymer compound such as polyvinylidene fluoride. It is because it is excellent in physical strength and electrochemically stable. However, the polymer compound may be other than polyvinylidene fluoride.
  • a solution in which the polymer compound is dissolved in an organic solvent or the like is applied to the base material layer, and then the base material layer is dried. In addition, after a base material layer is immersed in a solution, the base material layer may be dried.
  • the polymer compound layer may contain, for example, one or more of insulating particles such as inorganic particles. This is because the separator 23 is less likely to be oxidized, and the safety of the secondary battery is improved.
  • insulating particles such as inorganic particles.
  • the types of inorganic particles are, for example, aluminum oxide and aluminum nitride.
  • the wound electrode body 20 is impregnated with the electrolytic solution.
  • the electrolytic solution contains, for example, a solvent and an electrolyte salt. However, the electrolytic solution may further contain any one or more of other materials such as additives.
  • the solvent contains any one or more non-aqueous solvents such as an organic solvent.
  • the electrolyte containing a non-aqueous solvent is a so-called non-aqueous electrolyte.
  • Nonaqueous solvents are, for example, cyclic carbonates, chain carbonates, lactones, chain carboxylic esters and nitrile (mononitrile) compounds. This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
  • Cyclic carbonates are, for example, ethylene carbonate, propylene carbonate and butylene carbonate.
  • the chain carbonate is, for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate.
  • Lactones are, for example, ⁇ -butyrolactone and ⁇ -valerolactone.
  • the chain carboxylic acid ester is, for example, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate and ethyl trimethylacetate.
  • the nitrile compound is, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • non-aqueous solvents are, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 And 4-dioxane, N, N-dimethylformamide, N-methyl pyrrolidinone, N-methyl oxazolidinone, N, N'-dimethyl imidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide and the like. It is because the same advantage is obtained.
  • any one or two or more kinds of cyclic carbonates and chain carbonates are preferable, and one or two or more kinds of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like are preferable.
  • the above is more preferable. This is because high battery capacity, excellent cycle characteristics and excellent storage characteristics can be obtained.
  • high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, relative permittivity ⁇ ⁇ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity
  • high viscosity solvents such as ethylene carbonate and propylene carbonate (for example, relative permittivity ⁇ ⁇ 30)
  • low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity
  • ⁇ 1 mPa ⁇ s is more preferred. This is because the dissociative nature of the electrolyte salt and the mobility of the ions are improved.
  • the non-aqueous solvent is, for example, unsaturated cyclic carbonate, halogenated carbonate, sulfonic acid ester, acid anhydride, dicyano compound (dinitrile compound), diisocyanate compound, phosphoric acid ester, unsaturated chain compound and the like. . This is because the chemical stability of the electrolytic solution is improved.
  • Unsaturated cyclic carbonate is a generic term for cyclic carbonates having one or more unsaturated bonds (carbon-carbon double bonds).
  • the unsaturated cyclic carbonate is, for example, vinylene carbonate, vinyl ethylene carbonate and methylene ethylene carbonate.
  • the content of the unsaturated cyclic carbonate in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 10% by weight.
  • the halogenated carbonate is a generic term for cyclic or chain carbonates containing one or more halogen elements as constituent elements.
  • the number of the two or more halogen elements may be only one or two or more.
  • Cyclic halogenated carbonates are, for example, 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • the chain halogenated carbonates are, for example, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate and difluoromethyl methyl carbonate.
  • the content of the halogenated carbonate in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 50% by weight.
  • Sulfonic acid esters are, for example, monosulfonic acid esters and disulfonic acid esters.
  • the content of sulfonic acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 10% by weight.
  • the monosulfonic acid ester may be a cyclic monosulfonic acid ester or a linear monosulfonic acid ester.
  • Cyclic monosulfonic acid esters are, for example, sultones such as 1,3-propane sultone and 1,3-propene sultone.
  • the linear monosulfonic acid ester is, for example, a compound in which a cyclic monosulfonic acid ester is cleaved halfway.
  • the disulfonic acid ester may be a cyclic disulfonic acid ester or a linear disulfonic acid ester.
  • the acid anhydride is, for example, carboxylic acid anhydride, disulfonic acid anhydride and carboxylic acid sulfonic acid anhydride.
  • Carboxylic anhydrides are, for example, succinic anhydride, glutaric anhydride and maleic anhydride.
  • disulfonic anhydride include anhydrous ethanedisulfonic acid and anhydrous propanedisulfonic acid.
  • Carboxylic acid sulfonic acid anhydrides are, for example, sulfobenzoic anhydride, sulfopropionic anhydride and sulfobutyric anhydride.
  • the content of the acid anhydride in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the dinitrile compound is, for example, a compound represented by NC-R1-CN (R1 is any of an alkylene group and an arylene group).
  • the dinitrile compounds are, for example, succinonitrile (NC-C 2 H 4 -CN ), glutaronitrile (NC-C 3 H 6 -CN ), adiponitrile (NC-C 4 H 8 -CN ) and phthalonitrile ( NC-C 6 H 4 -CN) and the like.
  • the content of the dinitrile compound in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the diisocyanate compound is, for example, a compound represented by OCN-R2-NCO (R2 is any of an alkylene group and an arylene group).
  • the diisocyanate compound is, for example, hexamethylene diisocyanate (OCN-C 6 H 12 -NCO).
  • the content of the diisocyanate compound in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the phosphoric acid ester is, for example, trimethyl phosphate and triethyl phosphate.
  • the content of phosphoric acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the unsaturated chain compound is a generic term for chain compounds having one or more carbon-carbon triple bonds.
  • -OS ( O) 2 -CH 3 ) and the like.
  • the content of the chain compound having a carbon-carbon triple bond in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the electrolyte salt contains, for example, any one or more of lithium salts.
  • the electrolyte salt may contain, for example, a salt other than a lithium salt.
  • the salt other than lithium is, for example, a salt of a light metal other than lithium.
  • the lithium salt is, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoride arsenate (LiAsF 6 ), tetraphenyl Lithium borate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), bis (fluorosulfonyl) imide lithium (LiN (SO 2 F) ) 2 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), dilithium hexafluorosilicate (Li 2 SiF 6 ), lithium chloride ( Such as LiCl)
  • the content of the electrolyte salt is not particularly limited, but preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. It is because high ion conductivity is obtained.
  • the secondary battery operates, for example, as follows.
  • lithium ions are released from the positive electrode 21 and the lithium ions are stored in the negative electrode 22 through the electrolytic solution.
  • lithium ions are released from the negative electrode 22 and the lithium ions are occluded by the positive electrode 21 through the electrolytic solution.
  • the secondary battery is manufactured, for example, by the following procedure.
  • the positive electrode 21 In the case of producing the positive electrode 21, first, a positive electrode active material, and if necessary, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to form a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to form a paste-like positive electrode mixture slurry. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 21B. Thereafter, as required, the positive electrode active material layer 21B is compression molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated or compression molding may be repeated multiple times.
  • the negative electrode active material layer 22B is formed on both surfaces of the negative electrode current collector 22A by the same procedure as the manufacturing procedure of the negative electrode of the present technology described above.
  • the positive electrode lead 25 is attached to the positive electrode current collector 21A using a welding method or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A using a welding method or the like. Subsequently, the positive electrode 21 and the negative electrode 22 are stacked via the separator 23, and then the positive electrode 21, the negative electrode 22, and the separator 23 are wound to form the wound electrode body 20. Subsequently, the center pin 24 is inserted into the winding center 20C of the winding electrode body 20.
  • the wound electrode body 20 is housed inside the battery can 11 while the wound electrode body 20 is sandwiched by the pair of insulating plates 12 and 13.
  • the tip end of the positive electrode lead 25 is attached to the safety valve mechanism 15 using a welding method or the like
  • the tip end of the negative electrode lead 26 is attached to the battery can 11 using a welding method or the like.
  • the electrolyte solution is injected into the inside of the battery can 11 to impregnate the wound electrode body 20 with the electrolyte solution.
  • the battery cover 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are crimped to the open end of the battery can 11 through the gasket 17.
  • the wound electrode body 20 is enclosed inside the battery can 11, and thus the cylindrical secondary battery is completed.
  • the negative electrode 22 has the same configuration as that of the above-described negative electrode of the present technology, as described above, the charge / discharge reaction in the negative electrode 22 tends to proceed smoothly and stably. As a result, the charged negative electrode 22 is thermally stable even when exposed to a high temperature environment. Therefore, excellent battery characteristics can be obtained.
  • the other functions and effects of the cylindrical secondary battery are similar to the functions and effects of the negative electrode of the present technology.
  • FIG. 7 shows a perspective view of another secondary battery
  • FIG. 8 shows a cross-sectional view of the spirally wound electrode body 30 taken along line VIII-VIII shown in FIG.
  • FIG. 7 shows a state which spaced apart the winding electrode body 30 and the exterior member 40.
  • this secondary battery is a laminate in which a wound electrode body 30 as a battery element is housed inside a flexible (or flexible) film-like package member 40. It is a film type secondary battery (lithium ion secondary battery).
  • the secondary battery includes, for example, the wound electrode body 30 inside the exterior member 40.
  • the wound electrode body 30 for example, after the positive electrode 33 and the negative electrode 34 are stacked on each other through the separator 35 and the electrolyte layer 36, the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are wound. It is formed by The electrolyte layer 36 is disposed, for example, between the positive electrode 33 and the separator 35, and is disposed between the negative electrode 34 and the separator 35.
  • the positive electrode lead 31 is attached to the positive electrode 33, and the negative electrode lead 32 is attached to the negative electrode 34.
  • the outermost periphery of the wound electrode body 30 is protected by a protective tape 37.
  • the positive electrode lead 31 and the negative electrode lead 32 is, for example, derived from the inside to the outside of the package member 40 in the same direction.
  • the positive electrode lead 31 contains, for example, one or more of conductive materials such as aluminum (Al).
  • the negative electrode lead 32 contains, for example, one or more of conductive materials such as copper (Cu), nickel (Ni), and stainless steel. These conductive materials are, for example, sheet-like or mesh-like.
  • the exterior member 40 is, for example, a single sheet of film foldable in the direction of the arrow R shown in FIG. 7, and the exterior member 40 is provided with a recess 40 U for accommodating the wound electrode body 30.
  • the exterior member 40 is, for example, a laminate film in which a fusion bonding layer, a metal layer, and a surface protective layer are laminated in this order.
  • a fusion bonding layer in which a fusion bonding layer, a metal layer, and a surface protective layer are laminated in this order.
  • the fusion layer is, for example, any one or more of films such as polyethylene and polypropylene.
  • the metal layer is, for example, one or more of aluminum foils and the like.
  • the surface protective layer is, for example, any one or more kinds of films such as nylon and polyethylene terephthalate.
  • the exterior member 40 is preferably an aluminum laminated film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 40 may be a laminated film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • an adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31 in order to prevent the outside air from entering. Further, for example, the above-described adhesive film 41 is inserted between the exterior member 40 and the negative electrode lead 32.
  • the adhesive film 41 contains a material having adhesiveness to both of the positive electrode lead 31 and the negative electrode lead 32.
  • the material having the adhesiveness is, for example, a polyolefin resin, and more specifically, any one or more of polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
  • the positive electrode 33 includes a positive electrode current collector 33A and a positive electrode active material layer 33B.
  • the negative electrode 34 includes, for example, a negative electrode current collector 34A and a negative electrode active material layer 34B, as shown in FIG.
  • the configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A and the negative electrode active material layer 34B are, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A and the negative electrode
  • the structure is similar to that of each active material layer 22B.
  • the configuration of the separator 35 is, for example, the same as the configuration of the separator 23.
  • the electrolyte layer 36 contains an electrolytic solution and a polymer compound. Since the electrolyte layer 36 described here is a so-called gel electrolyte, in the electrolyte layer 36, the electrolytic solution is held by the polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) can be obtained, and leakage of the electrolyte can be prevented.
  • the electrolyte layer 36 may further contain one or more of other materials such as additives.
  • the polymer compound is, for example, polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl And one or more of methyl acid, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene, polycarbonate and the like.
  • the polymer compound may be a copolymer.
  • the copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
  • the homopolymer is preferably polyvinylidene fluoride, and the copolymer is preferably a copolymer of vinylidene fluoride and hexafluoropyrene. It is because it is electrochemically stable.
  • the "solvent" contained in the electrolytic solution is a broad concept including not only liquid materials but also materials having ion conductivity capable of dissociating electrolyte salts. . Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the solvent.
  • an electrolytic solution may be used as it is.
  • the electrolytic solution is impregnated into the wound electrode body 30 (the positive electrode 33, the negative electrode 34, and the separator 35).
  • the secondary battery operates, for example, as follows.
  • lithium ions are released from the positive electrode 33, and the lithium ions are occluded in the negative electrode 34 via the electrolyte layer 36.
  • lithium ions are released from the negative electrode 34, and the lithium ions are stored in the positive electrode 33 via the electrolyte layer 36.
  • the secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
  • a positive electrode active material In the case of producing the positive electrode 33, first, a positive electrode active material, and if necessary, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to form a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to prepare a paste-like positive electrode mixture slurry. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 33A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 33B. After that, the positive electrode active material layer 33B may be compression molded using a roll press machine or the like, as necessary. In this case, the positive electrode active material layer 33B may be heated, or the compression molding may be repeated multiple times.
  • the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A by the same procedure as the manufacturing procedure of the negative electrode of the present technology described above.
  • the electrolytic solution, the polymer compound, the organic solvent and the like are mixed, and then the mixture is stirred to prepare a sol-like precursor solution.
  • the precursor solution is applied to the positive electrode 33, and then the precursor solution is dried to form the electrolyte layer 36, and the precursor solution is applied to the negative electrode 34, and then the precursor solution is dried to form the electrolyte layer 36.
  • the positive electrode lead 31 is connected to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is connected to the negative electrode current collector 34A using a welding method or the like.
  • the positive electrode 33 on which the electrolyte layer 16 is formed and the negative electrode 34 on which the electrolyte layer 16 is formed are wound around each other through the separator 35, and then the positive electrode 33, the negative electrode 34, the separator 35 and the electrolyte layer 36 are wound.
  • the protective tape 37 is attached to the outermost periphery of the wound electrode body 30.
  • the exterior member 40 is folded so as to sandwich the wound electrode body 30. Finally, the outer peripheral edge portions of the exterior member 40 are adhered to each other using a heat fusion method or the like, so that the wound electrode body 30 is housed inside the exterior member 40.
  • the adhesive film 41 is inserted between the positive electrode lead 31 and the package member 40, and the adhesive film 42 is inserted between the negative electrode lead 32 and the package member 40.
  • the wound electrode body 30 is enclosed in the exterior member 40, and thus the secondary battery is completed.
  • each of the positive electrode 33 and the negative electrode 34 is manufactured according to the same procedure as the first procedure described above, and then the positive electrode lead 31 is connected to the positive electrode 33 using a welding method etc.
  • the negative electrode lead 32 is connected to 34.
  • the positive electrode 33 and the negative electrode 34 are stacked on each other through the separator 35, and then the positive electrode 33, the negative electrode 34, and the separator 35 are wound to form a wound body which is a precursor of the wound electrode body 30.
  • the protective tape 37 is attached to the outermost periphery of the wound body.
  • the exterior member 40 is folded so as to sandwich the wound body, and then the remaining outer peripheral edge excluding one outer peripheral edge of the exterior member 40 is adhered using a heat fusion method or the like. , The wound body is housed inside the bag-like exterior member 40.
  • the mixture is stirred to prepare an electrolyte.
  • the composition is prepared.
  • the composition for electrolyte is injected into the inside of the bag-like exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like.
  • a polymer compound is formed by thermally polymerizing the monomers in the composition for electrolyte.
  • the electrolytic solution is held by the polymer compound, whereby the electrolyte layer 36 is formed.
  • the wound electrode body 30 is enclosed inside the exterior member 40.
  • a wound body is produced by the same procedure as the above-described second procedure except that a separator 35 in which two polymer compound layers are formed on both sides of a porous membrane (base material layer) is used. . Subsequently, the wound body is housed inside the bag-like exterior member 40. Subsequently, an electrolytic solution is injected into the inside of the exterior member 40, and then the opening of the exterior member 40 is sealed using a heat fusion method or the like. Finally, by heating the exterior member 30 while applying a weight to the exterior member 40, the separator 35 is brought into close contact with the positive electrode 33 via the polymer compound layer, and the separator is attached to the negative electrode 34 via the polymer compound layer. Attach 35.
  • the electrolytic solution is impregnated into the polymer compound layer, and the polymer compound layer is gelated, whereby the electrolytic solution is held by the polymer compound, whereby the electrolyte layer 36 is formed.
  • the wound electrode body 30 is enclosed inside the exterior member 40.
  • the secondary battery is less likely to swell than in the first procedure. Further, in the third procedure, compared to the second procedure, since the solvent and the monomer (raw material of the polymer compound) and the like are less likely to remain in the electrolyte layer 36, the step of forming the polymer compound is well controlled. . Thereby, each of the positive electrode 33, the negative electrode 34, and the separator 35 is sufficiently in close contact with the electrolyte layer 36.
  • Secondary batteries include machines, devices, instruments, devices and systems (aggregates of multiple devices) where secondary batteries can be used as a power source for driving or a power storage source for storing electric power, etc.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power supply is a power supply that is preferentially used regardless of the presence or absence of other power supplies.
  • the auxiliary power source may be, for example, a power source used instead of the main power source, or a power source switched from the main power source as needed.
  • the type of main power supply is not limited to the secondary battery.
  • the application of the secondary battery is, for example, as follows. They are electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, laptop computers, cordless phones, headphone stereos, portable radios, portable TVs, and portable information terminals. It is a portable household appliance such as an electric shaver. Storage devices such as backup power supplies and memory cards. It is a power tool such as a power drill and a power saw. It is a battery pack installed in a notebook computer as a removable power supply. Medical electronics such as pacemakers and hearing aids. It is an electric vehicle such as an electric car (including a hybrid car). It is a power storage system such as a household battery system for storing power in preparation for an emergency or the like. Of course, applications of the secondary battery may be applications other than the above.
  • the battery pack is a power supply using a secondary battery.
  • the battery pack may use a single cell or an assembled battery as described later.
  • the electric vehicle is a vehicle that operates (travels) using a secondary battery as a driving power source, and as described above, may be a car (such as a hybrid car) equipped with a driving source other than the secondary battery.
  • the power storage system is a system using a secondary battery as a power storage source.
  • the electric power tool is a tool in which a movable portion (for example, a drill or the like) moves using a secondary battery as a power source for driving.
  • the electronic device is a device that exhibits various functions as a power source (power supply source) for driving a secondary battery.
  • FIG. 9 shows a perspective view of a battery pack using single cells.
  • FIG. 10 shows a block configuration of the battery pack shown in FIG. FIG. 9 shows the battery pack in a disassembled state.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted, for example, on an electronic device represented by a smartphone.
  • the battery pack includes a power supply 111 which is a laminated film type secondary battery, and a circuit board 116 connected to the power supply 111.
  • the positive electrode lead 112 and the negative electrode lead 113 are attached to the power source 111.
  • a pair of adhesive tapes 118 and 119 is attached to both sides of the power supply 111.
  • a protection circuit (PCM: Protection Circuit) is formed on the circuit board 116.
  • the circuit board 116 is connected to the positive electrode 112 through the tab 114 and connected to the negative electrode lead 113 through the tab 115. Further, the circuit board 116 is connected to the connector-attached lead wire 117 for external connection.
  • the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
  • the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG.
  • the circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124.
  • the power source 111 can be connected to the outside through the positive electrode terminal 125 and the negative electrode terminal 127, so the power source 111 is charged and discharged through the positive electrode terminal 125 and the negative electrode terminal 127.
  • the temperature detection unit 124 detects a temperature using a temperature detection terminal (so-called T terminal) 126.
  • the control unit 121 controls the operation of the entire battery pack (including the usage state of the power supply 111).
  • the control unit 121 includes, for example, a central processing unit (CPU) and a memory.
  • the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. Further, for example, when a large current flows during charging, the control unit 121 cuts off the charging current by disconnecting the switch unit 122.
  • the control unit 121 disconnects the switch unit 122 to prevent the discharge current from flowing in the current path of the power supply 111. Further, for example, when a large current flows at the time of discharge, the control unit 121 cuts off the discharge current by disconnecting the switch unit 122.
  • the overcharge detection voltage is not particularly limited, but is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is, for example, 2.4V ⁇ 0.1 V.
  • the switch unit 122 switches the use state of the power supply 111, that is, the presence or absence of connection between the power supply 111 and an external device, in accordance with an instruction from the control unit 121.
  • the switch unit 122 includes, for example, a charge control switch and a discharge control switch.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the temperature detection unit 124 measures the temperature of the power supply 111 and outputs the measurement result of the temperature to the control unit 121.
  • the temperature detection unit 124 includes, for example, a temperature detection element such as a thermistor.
  • the measurement result of the temperature measured by the temperature detection unit 124 is used, for example, when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
  • the circuit board 116 may not have the PTC element 123. In this case, the circuit board 116 may be additionally provided with a PTC element.
  • FIG. 11 shows a block configuration of a battery pack using a battery pack.
  • the battery pack includes, for example, a control unit 61, a power supply 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 in a housing 60. , A memory 68, a temperature detection element 69, a current detection resistor 70, and a positive electrode terminal 71 and a negative electrode terminal 72.
  • the housing 60 contains, for example, a plastic material or the like.
  • the controller 61 controls the operation of the entire battery pack (including the use state of the power supply 62).
  • the control unit 61 includes, for example, a CPU.
  • the power source 62 is a battery pack including two or more secondary batteries, and the connection form of the two or more secondary batteries may be in series, in parallel, or a combination of both.
  • the power supply 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the use state of the power supply 62, that is, the presence or absence of connection between the power supply 62 and an external device, in accordance with an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, and a discharging diode.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the current measuring unit 64 measures the current using the current detection resistor 70, and outputs the measurement result of the current to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69, and outputs the measurement result of the temperature to the control unit 61.
  • the measurement result of the temperature is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power supply 62, and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
  • the switch control unit 67 controls the operation of the switch unit 63 in accordance with the signals input from each of the current measurement unit 64 and the voltage detection unit 66.
  • the switch control unit 67 disconnects the switch unit 63 (charge control switch) to prevent the charging current from flowing in the current path of the power supply 62.
  • the power supply 62 can only discharge via the discharge diode. Note that, for example, when a large current flows during charging, the switch control unit 67 cuts off the charging current.
  • the switch control unit 67 disconnects the switch unit 63 (discharge control switch) to prevent the discharge current from flowing in the current path of the power supply 62.
  • the power source 62 can only charge via the charging diode.
  • the switch control unit 67 cuts off the discharge current, for example, when a large current flows during discharge.
  • the overcharge detection voltage is not particularly limited, but is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is, for example, 2.4V ⁇ 0.1 V.
  • the memory 68 includes, for example, an EEPROM which is a non-volatile memory.
  • EEPROM electrically erasable programmable read-only memory
  • the temperature detection element 69 measures the temperature of the power supply 62, and outputs the measurement result of the temperature to the control unit 61.
  • the temperature detection element 69 includes, for example, a thermistor.
  • Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (for example, a laptop personal computer) operated by using a battery pack, an external device (for example, a charger or the like) used for charging the battery pack, It is a terminal to be connected.
  • the power source 62 is charged and discharged via the positive electrode terminal 71 and the negative electrode terminal 72.
  • FIG. 12 shows a block configuration of a hybrid vehicle which is an example of the electric vehicle.
  • the electric vehicle includes, for example, a control unit 74, an engine 75, a power supply 76, a driving motor 77, a differential gear 78, a generator 79, and a transmission 80 in a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric-powered vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • the electrically powered vehicle can travel, for example, using one of the engine 75 and the motor 77 as a drive source.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential 78 as a driving unit, the transmission 80 and the clutch 81.
  • Ru Since the rotational power of engine 75 is transmitted to generator 79, generator 79 generates AC power using the rotational power, and the AC power is converted to DC power through inverter 83. Therefore, the DC power is stored in the power supply 76.
  • the motor 77 which is a conversion unit is used as a power source
  • the electric power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82.
  • 77 drives.
  • the driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheel 86 and the rear wheel 88 via, for example, the differential 78 as a driving unit, the transmission 80 and the clutch 81.
  • the resistance at the time of deceleration is transmitted to the motor 77 as a rotational force, so that the motor 77 generates alternating current power using the rotational force. Good. Since this AC power is converted to DC power via inverter 82, it is preferable that the DC regenerative power be stored in power supply 76.
  • Control unit 74 controls the operation of the entire electric vehicle.
  • the control unit 74 includes, for example, a CPU.
  • the power source 76 includes one or more secondary batteries.
  • the power supply 76 may be connected to an external power supply and may store power by receiving power supply from the external power supply.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the opening degree of the throttle valve (throttle opening degree).
  • the various sensors 84 include, for example, one or more of a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power supply 76 and the motor 77 without using the engine 75.
  • FIG. 13 shows a block configuration of the power storage system.
  • the power storage system includes, for example, a control unit 90, a power supply 91, a smart meter 92, and a power hub 93 inside a house 89 such as a home or a commercial building.
  • the power supply 91 can be connected to, for example, the electric device 94 installed inside the house 89 and to the electric vehicle 96 stopped outside the house 89. Also, the power supply 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93, and is connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
  • the electric device 94 includes, for example, one or more types of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, a water heater, and the like.
  • the in-house generator 95 includes, for example, one or more of a solar power generator, a wind power generator, and the like.
  • the electric vehicle 96 includes, for example, any one or more of an electric car, an electric bike, a hybrid car and the like.
  • the centralized power system 97 includes, for example, any one or two or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, a wind power plant and the like.
  • the control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91).
  • the control unit 90 includes, for example, a CPU.
  • the power supply 91 includes one or more secondary batteries.
  • the smart meter 92 is, for example, a network compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Along with this, the smart meter 92 enables highly efficient and stable energy supply by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside, for example.
  • the power storage system for example, power is stored in the power supply 91 from the centralized power system 97 which is an external power supply via the smart meter 92 and the power hub 93, and from a private generator 95 which is an independent power supply via the power hub 93.
  • power is stored in the power supply 91.
  • the electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 according to the instruction of the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged.
  • the power storage system is a system that enables storage and supply of power in the house 89 using the power supply 91.
  • the power stored in the power supply 91 can be used as needed. For this reason, for example, it is possible to store the power from the centralized power system 97 in the power supply 91 at midnight, when the electricity charge is low, and use the power accumulated in the power supply 91 during the day when the electricity charge is high. it can.
  • the above-mentioned electric power storage system may be installed for every one house (one household), and may be installed for every two or more houses (plural households).
  • FIG. 14 shows a block configuration of the power tool.
  • the power tool described here is, for example, a power drill.
  • the power tool includes, for example, a control unit 99 and a power supply 100 inside a tool body 98.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the tool body 98 contains, for example, a plastic material or the like.
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100).
  • the control unit 99 includes, for example, a CPU.
  • the power supply 100 includes one or more secondary batteries.
  • the control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to the operation of the operation switch.
  • the counter electrode 53 accommodated inside the exterior can 52 and the test electrode 51 accommodated inside the exterior cup 54 are stacked via the separator 55 and the exterior can 52 and the exterior cup 54 And are crimped through the gasket 56.
  • Each of the test electrode 51, the counter electrode 53, and the separator 55 is impregnated with an electrolytic solution.
  • An active material layer was formed.
  • the positive electrode active material layer was compression molded using a hand press, and then the positive electrode active material layer was vacuum dried. In this case, the volume density of the positive electrode active material layer was set to 3.6 g / cm 3 .
  • a silicon-based material an aqueous solution of a coating material (polyacrylate sodium polyacrylate (SPA)), and a solvent (pure water) were mixed.
  • a single substance of silicon (Si) an alloy of silicon (SiTi 0.3 ) and a compound of silicon (SiO) were used.
  • drying temperature 120 ° C.
  • the occupation ratio (% by weight) of the coating material is as shown in Tables 1 and 2.
  • MCMB meocarbon microbeads
  • a negative electrode mixture slurry including the first negative electrode active material, the second negative electrode active material, the negative electrode binder, the normal temperature molten salt composition, and the like was prepared.
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • a solvent an organic solvent (N-methyl-2-pyrrolidone) is used when polyvinylidene fluoride is used as the negative electrode binder, and an aqueous solvent (pure water is used when styrene butadiene rubber is used as the negative electrode binder was used.
  • Fibrous carbon and scale-like graphite were used as the negative electrode conductive agent.
  • the mixing ratio of fibrous carbon is 1% by weight, and the mixing ratio of flaky graphite is 0.5% by weight.
  • a normal temperature molten salt composition a normal temperature molten salt and a copolymer were used.
  • the following 18 kinds of normal temperature molten salts salt A to salt R
  • the following 3 kinds of copolymers weight A to weight C
  • polyvinylidene fluoride Kleha KF KF polymer KF # 9200 manufactured by Kureha Co., Ltd. was used
  • polyacrylate acrylic polymer Aron A-20L manufactured by Toagosei Co., Ltd. was used.
  • Salt A AOEMA ⁇ BF 4 ((2-acryloyloxyethyl) trimethyl ammonium tetrafluoroborate having an acryloyl group as a reactive group)
  • B AOEMA TFSI ((2-acryloyloxyethyl) trimethylammonium bis (trifluoromethanesulfonyl) imide having an acryloyl group as a reactive group
  • C BDP TFSI (tributyldodecylphosphonium bis (trifluoromethanesulfonyl) imide salt
  • D MOA.TFSI (methyltrioctylammonium bis (trifluoromethanesulfonyl) imide salt
  • E MSPBA.TFSI ((3-trimethoxysilylpropyl) tributylammonium bis (trifluoromethanesulfonyl) imide having an alkoxy group as a reactive group) ) Salt
  • Heavy B Sodium polyacrylate and OHEMA.TFSI having a hydroxy group as a reactive group (N-oleyl-N, N-di Copolymer with (2-hydroxyethyl) -N-methylammonium bis (trifluoromethanesulfonyl) imide
  • Heavy C sodium polyacrylate and MSPBA ⁇ BF 4 ((3-trimethoxysilyl) having an alkoxy group as a reactive group Copolymer with (propyl) tributylammonium tetrafluoroborate)
  • lithium tetrafluoroborate LiBF 4
  • lithium trifluoromethanesulfonate LiTFSI
  • the content of the metal salt is the content relative to the normal temperature molten salt composition.
  • a material layer was formed.
  • the negative electrode active material layer was compression molded using a hand press, and then the negative electrode active material layer was vacuum dried. In this case, the volume density of the negative electrode active material layer was 1.8 g / cm 3 .
  • the configuration of the negative electrode active material layer formed using the negative electrode mixture slurry is as shown in Tables 3 and 4.
  • test electrode 51 was punched out in the form of pellets
  • counter electrode 53 was punched out in the form of pellets.
  • the exterior can 52 and the exterior cup 54 were crimped via the gasket 56.
  • the secondary battery was charged and discharged for one cycle in a normal temperature environment (23 ° C.). Subsequently, the discharge capacity of the second cycle and the discharge capacity of the fourth cycle were measured by charging and discharging the secondary battery for three cycles in the same environment.
  • constant current charging is performed until the voltage reaches 4.3 V at a current of 0.2 C
  • constant voltage charging is performed until the current reaches 0.025 C at a voltage of 4.3 V did.
  • constant current discharge was performed until the voltage reached 2.5 V at a predetermined current.
  • the current at the time of discharge in the first and second cycles is 0.2 C
  • the current at the time of discharge in the third cycle is 0.5 C
  • the current at the time of discharge in the fourth cycle is 2 C.
  • 0.2C is a current value that discharges the battery capacity (theoretical capacity) in 5 hours
  • 0.025C is a current value that discharges the battery capacity in 40 hours
  • 0.5C is a current value that discharges the battery capacity in 2 hours
  • a coin-type secondary battery (counter electrode lithium metal) which is a secondary battery for the test shown in FIG. 16 is first used as a first simple-type secondary battery to be used to measure the calorific value.
  • a secondary battery was manufactured.
  • a coin-type secondary battery which is a test secondary battery shown in FIG. 16, is used as a second simple type secondary battery used to measure the calorific value.
  • the test electrode 51 described above (the negative electrode active material is the first negative electrode active material and the second negative electrode active material) is used as the test electrode 51, and lithium metal is used as the counter electrode 53.
  • each of the two simplified secondary batteries described above was charged.
  • the charge conditions were the same as the charge conditions when the above-described load characteristics were examined.
  • the test electrode 51 (including the positive electrode active material) in the charged state is recovered from the first simple type secondary battery, and the test electrode 51 in the charged state from the second simple type secondary battery. (Including the first negative electrode active material and the second negative electrode active material) was recovered.
  • the electrode sample was housed inside a gold-plated sample pan for thermal analysis made of SUS, and then the DSC sample was obtained by thermally analyzing the electrode sample using DSC to obtain a DSC curve.
  • the temperature rising rate was 20 ° C./min.
  • the maximum value (mW) of the peak around 270 ° C. was determined based on the DSC curve, and then the calorific value (mW / mAh) was calculated by dividing the maximum value by the charge capacity (mAh).
  • the "charge capacity” described here is the charge capacity of the second cycle at the time of the load test described above. Further, in Tables 3 and 4, values obtained by normalizing the calorific value as 100% when the normal temperature molten salt composition is not used (Experimental Example 1-27) are shown as the calorific value.
  • a coin-type secondary battery (lithium ion secondary battery) shown in FIG. 15 was produced by the same procedure as that described below.
  • the silicon-based material In the case of producing the test electrode 51, first, the silicon-based material, the aqueous solution of the coating material, the room temperature molten salt composition, the metal salt (lithium tetrafluoride borate) and the conductive material (if necessary) Single-walled carbon nanotubes (CNT), TUBALL (registered trademark) manufactured by OCSiAl, and a solvent were mixed.
  • a silicon single substance (Si) and a silicon compound (SiO) were used.
  • polyvinyl pyrrolidone PVP
  • polyvinylidene fluoride PVDF
  • sodium polyacrylate SPA
  • drying temperature 120 ° C.
  • the content of the normal temperature molten salt composition is a ratio of the weight of the normal temperature molten salt composition to the total of the weight of the central portion and the weight of the covering portion
  • the content of the conductive material is the weight of the central portion It is a ratio of the weight of the conductive material to the total of the weight of the coated portion.
  • the weight of the coated portion described here is the same as the weight of the coated portion used to calculate the occupancy ratio of the coated material, the weight of the coated material, the weight of the cold molten salt composition, and the weight of the conductive material. It is the sum.
  • the content of the metal salt is the content relative to the normal temperature molten salt composition.
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • SPA sodium polyacrylate
  • PI polyimide
  • an organic solvent N-methyl-2-pyrrolidone
  • styrene butadiene rubber sodium polyacrylate and polyimide are used as the negative electrode binder
  • An aqueous solvent pure water was used for the
  • Fibrous carbon and scale-like graphite were used as the negative electrode conductive agent.
  • the mixing ratio of fibrous carbon is 1% by weight, and the mixing ratio of flaky graphite is 0.5% by weight.
  • a normal temperature molten salt composition a normal temperature molten salt and a copolymer were used.
  • the above-mentioned two kinds of copolymers (weight A and weight) are used together with the above-mentioned two kinds of normal temperature molten salts (salt I and salt P) and the following one kind of normal temperature molten salt (salt S).
  • B) was used.
  • the above-mentioned normal temperature molten salt (salt A) was used as an additional normal temperature molten salt composition.
  • the mixing ratio (% by weight) of each of the first negative electrode active material, the second negative electrode active material, the negative electrode binder and the additional normal temperature molten salt composition is as shown in Tables 5 and 6.
  • the configurations of the negative electrode active material layer formed using the negative electrode mixture slurry are as shown in Tables 7 and 8.
  • the coated portion or the like contained the normal temperature molten salt composition.
  • the covering portion contains a metal salt and a conductive material (Examples 2-6 and 2-7)
  • the capacity retention rate is further increased.
  • an additional normal temperature molten salt composition was used (Experimental Example 2-7)
  • the calorific value was further reduced.
  • the coated portion contains the cold molten salt composition together with the coating material (Experimental Example 2-14)
  • the calorific value is greatly reduced while maintaining a high capacity retention rate.
  • the present invention is not limited thereto.
  • a square secondary battery may be used.
  • the battery element may have another structure such as a laminated structure.
  • the lithium ion secondary battery it is not restricted to this.
  • the capacity of the negative electrode active material capable of absorbing and desorbing lithium smaller than that of the positive electrode, the phenomenon of lithium occlusion and the phenomenon of precipitation of lithium and the phenomenon of precipitation of lithium and dissolution of lithium
  • the capacity of the negative electrode is obtained based on the sum of the capacity and the capacity resulting from the phenomenon.
  • the electrode active material may be, for example, any other group 1 element in the long period type periodic table such as sodium or potassium, an element of the group 2 in the long period type periodic table such as magnesium and calcium, or others such as aluminum It may be a light metal of
  • the electrolyte solution for a secondary battery of the present technology is not limited to the secondary battery, and may be applied to other electrochemical devices.
  • Other electrochemical devices are, for example, capacitors.
  • the present technology can also be configured as follows.
  • a secondary battery comprising an electrolyte
  • the room temperature molten salt composition includes at least one of a room temperature molten salt and a copolymer of the room temperature molten salt and a polymer compound
  • the room temperature molten salt contains at least one of quaternary ammonium cation, quaternary phosphonium cation, tertiary sulfonium cation, imidazolium cation, pyridinium cation and pyrrolidinium cation
  • the polymer compound includes at least one of polyacrylate, polyacrylic acid, polyimide and polyvinylidene fluoride.
  • the cold molten salt includes at least one of bis (trifluoromethanesulfonyl) imide anion, bis (fluorosulfonyl) imide anion, tetrafluoroborate anion, hexafluorophosphate anion and chloride anion.
  • the room temperature molten salt composition comprises at least one of an alkoxy group, a hydroxy group, an acryloyl group and a methacryloyl group, The secondary battery according to any one of the above (1) to (3).
  • the negative electrode further comprises a metal salt, The secondary battery according to any one of the above (1) to (4).
  • the negative electrode further comprises a negative electrode binder,
  • the negative electrode binder contains at least one of polyvinylidene fluoride, styrene butadiene rubber, polyimide, polyacrylate and polyacrylic acid.
  • the secondary battery according to any one of the above (1) to (5).
  • the second negative electrode active material is A central portion containing a material containing the silicon as a constituent element; Any of the above (1) to (6), which is provided on the surface of the central portion, and a coated portion containing at least one of polyacrylate, polyacrylic acid, polyvinylidene fluoride and polyvinyl pyrrolidone.
  • the covering portion contains the normal temperature molten salt composition, The secondary battery as described in said (7).
  • the cold molten salt composition is bonded to a material containing the silicon as a constituent element, The secondary battery as described in said (8).
  • the negative electrode further contains a metal salt, The covering portion contains the metal salt, The secondary battery as described in said (8) or (9).
  • the negative electrode further comprises a negative electrode binder, The negative electrode binder comprises at least one of polyvinylidene fluoride, styrene butadiene rubber, polyimide, polyacrylate and polyacrylic acid, The cold molten salt composition is combined with the negative electrode binder, The secondary battery according to any one of the above (8) to (10).
  • the secondary battery Being a lithium ion secondary battery, The secondary battery according to any one of the above (1) to (11). (13) A first negative electrode active material containing a material containing carbon as a constituent element; A second negative electrode active material containing a material containing silicon as a constituent element; A negative electrode for a secondary battery, comprising: a normal temperature molten salt composition; (14) The secondary battery according to any one of the above (1) to (12); A control unit that controls the operation of the secondary battery; A switch unit that switches the operation of the secondary battery according to an instruction of the control unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、正極と、炭素を構成元素として含む材料を含有する第1負極活物質とケイ素を構成元素として含む材料を含有する第2負極活物質と常温溶融塩組成物とを含む負極と、電解液とを備える。

Description

二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
 本技術は、二次電池に用いられる負極、その負極を用いた二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。
 携帯電話機などの多様な電子機器が広く普及しており、その電子機器の小型化、軽量化および長寿命化が要望されている。そこで、電源として、小型かつ軽量であると共に高エネルギー密度を得ることが可能な二次電池の開発が進められている。
 二次電池は、電子機器に限らず、他の用途への適用も検討されている。一例を挙げると、電子機器などに着脱可能に搭載される電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、および電動ドリルなどの電動工具である。
 この二次電池は、正極および負極と共に電解液を備えており、その負極は、充放電反応に関与する負極活物質などを含んでいる。負極の構成は、二次電池の電池特性に大きな影響を及ぼすため、その負極の構成に関しては、さまざまな検討がなされている。
 具体的には、優れたサイクル特性などを得るために、負極に常温溶融塩が含有されている(例えば、特許文献1~4参照。)。
特開2008-218385号公報 特開2009-193784号公報 特開2015-038870号公報 特開2016-048628号公報
 二次電池が搭載される電子機器などは、益々、高性能化および多機能化している。これに伴い、電子機器などの使用頻度は増加していると共に、その電子機器などの使用環境は拡大している。そこで、二次電池の電池特性に関しては、未だ改善の余地がある。
 本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能である二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することにある。
 本技術の二次電池用負極は、炭素を構成元素として含む材料を含有する第1負極活物質と、ケイ素を構成元素として含む材料を含有する第2負極活物質と、常温溶融塩組成物とを含むものである。
 本技術の二次電池は、正極と負極と電解液とを備え、その負極が上記した本技術の二次電池用負極と同様の構成を有するものである。
 本技術の電池パック、電動車両、電力貯蔵システム、電動工具および電子機器のそれぞれは、二次電池を備え、その二次電池が上記した本技術の二次電池と同様の構成を有するものである。
 本技術の二次電池用負極または二次電池によれば、負極は、炭素を構成元素として含む材料を含有する第1負極活物質およびケイ素を構成元素として含む材料を含有する第2負極活物質と共に、常温溶融塩組成物を含んでいる。よって、優れた電池特性を得ることができる。また、本技術の電池パック、電動車両、電力貯蔵システム、電動工具または電子機器のそれぞれにおいても、同様の効果を得ることができる。
 なお、ここに記載された効果は、必ずしも限定されるわけではなく、本技術中に記載されたいずれの効果であってもよい。
本技術の第1実施形態における二次電池用負極の構成を表す断面図である。 第1負極活物質および第2負極活物質のそれぞれの構成(第1態様)を表す断面図である。 第1負極活物質および第2負極活物質のそれぞれの構成(第2態様)を表す断面図である。 第1負極活物質および第2負極活物質のそれぞれの構成に関する変形例を表す断面図である。 本技術の一実施形態の二次電池(円筒型)の構成を表す断面図である。 図5に示した巻回電極体の一部の構成を表す断面図である。 本技術の一実施形態の他の二次電池(ラミネートフィルム型)の構成を表す斜視図である。 図7に示した巻回電極体のVIII-VIII線に沿った断面図である。 二次電池の適用例(電池パック:単電池)の構成を表す斜視図である。 図9に示した電池パックの構成を表すブロック図である。 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。 二次電池の適用例(電動車両)の構成を表すブロック図である。 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。 二次電池の適用例(電動工具)の構成を表すブロック図である。 試験用の二次電池(コイン型)の構成を表す断面図である。 他の試験用の二次電池(コイン型)の構成を表す断面図である。
 以下、本技術の実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池用負極(第1実施形態)
  1-1.構成
  1-2.製造方法
  1-3.作用および効果
 2.二次電池用負極(第2実施形態)
  2-1.構成
  2-2.製造方法
  2-3.作用および効果
 3.変形例
 4.二次電池
  4-1.リチウムイオン二次電池(円筒型)
  4-2.リチウムイオン二次電池(ラミネートフィルム型)
 5.二次電池の用途
  5-1.電池パック(単電池)
  5-2.電池パック(組電池)
  5-3.電動車両
  5-4.電力貯蔵システム
  5-5.電動工具
<1.二次電池用負極(第1実施形態)>
 まず、本技術の第1実施形態の二次電池用負極に関して説明する。
 ここで説明する二次電池用負極(以下、単に「負極」と呼称する。)は、例えば、電極反応物質としてリチウムを用いた負極であり、二次電池に用いられる。この電極反応物質は、電極反応(いわゆる充放電反応)に関与する物質である。二次電池の種類は、特に限定されないが、例えば、リチウムイオン二次電池などである。
<1-1.構成>
 まず、負極の構成に関して説明する。
 図1は、負極の断面構成を表している。図2および図3のそれぞれは、第1負極活物質200および第2負極活物質300のそれぞれの断面構成を表している。
 この負極は、例えば、図1に示したように、負極集電体1と、その負極集電体1の上に設けられた負極活物質層2とを含んでいる。
 なお、負極活物質層2は、負極集電体1の片面だけに設けられていてもよいし、負極集電体1の両面に設けられていてもよい。図1では、例えば、負極活物質層2が負極集電体1の両面に設けられている場合を示している。
[負極集電体]
 負極集電体1は、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、銅、アルミニウム、ニッケルおよびステンレスなどの金属材料であり、合金でもよい。この負極集電体1は、単層でもよいし、多層でもよい。
 負極集電体1の表面は、粗面化されていることが好ましい。いわゆるアンカー効果を利用して、負極集電体1に対する負極活物質層2の密着性が向上するからである。この場合には、少なくとも負極活物質層2と対向する領域において、負極集電体1の表面が粗面化されていればよい。粗面化の方法は、特に限定されないが、例えば、電解処理を利用して微粒子を形成する方法などである。電解処理では、電解槽中において電解法を用いて負極集電体1の表面に微粒子が形成されるため、その負極集電体1の表面に凹凸が設けられる。電解法を用いて作製された銅箔は、一般的に、電解銅箔と呼ばれている。
[負極活物質層]
 負極活物質層2は、例えば、リチウムを吸蔵および放出することが可能である2種類の負極活物質(第1負極活物質200および第2負極活物質300)と、常温溶融塩組成物とを含んでいる。
 ただし、負極活物質層2は、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。この負極活物質層2は、単層でもよいし、多層でもよい。
 第1負極活物質200および第2負極活物質300のそれぞれの構成に関しては、2種類の態様が挙げられる。図2では、第1態様における第1負極活物質200および第2負極活物質300のそれぞれの断面構成を示していると共に、図3では、第2態様における第1負極活物質200および第2負極活物質300のそれぞれの断面構成を示している。
(第1態様における第1負極活物質および第2負極活物質)
 第1態様における第1負極活物質200および第2負極活物質300のそれぞれの構成は、例えば、以下の通りである。
(第1負極活物質)
 第1負極活物質200は、例えば、図2に示したように、複数の粒子状である。この第1負極活物質200は、炭素系材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素系材料は、炭素を構成元素として含む材料の総称である。
 第1負極活物質200が炭素系材料を含んでいるのは、リチウムの吸蔵時およびリチウムの放出時において炭素系材料が膨張収縮しにくいからである。これにより、炭素系材料の結晶構造が変化しにくいため、高いエネルギー密度が安定に得られる。しかも、炭素系材料は負極導電剤としても機能するため、負極活物質層2の導電性が向上する。
 炭素系材料の種類は、特に限定されないが、例えば、炭素材料である。この炭素材料は、炭素だけを構成元素として含む材料の総称である。ただし、炭素材料の純度は、必ずしも100%に限られないため、その炭素材料は、微量の異種元素を含んでいてもよい。この異種元素は、炭素以外の元素のうちのいずれか1種類または2種類以上である。
 具体的には、炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素に関する(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛に関する(002)面の面間隔は、0.34nm以下であることが好ましい。
 より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類は、ピッチコークス、ニードルコークスおよび石油コークスなどを含む。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)された焼成物である。この他、炭素材料は、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状および鱗片状のうちのいずれでもよい。
(第2負極活物質)
 第2負極活物質300は、例えば、図2に示したように、複数の粒子状である。この第2負極活物質300は、ケイ素系材料のうちのいずれか1種類または2種類以上を含んでいる。このケイ素系材料は、ケイ素を構成元素として含む材料の総称である。
 第2負極活物質300がケイ素系材料を含んでいるのは、そのケイ素系材料が優れたリチウムの吸蔵放出能力を有しているため、高いエネルギー密度が得られるからである。
 ケイ素系材料の種類は、特に限定されない。このため、ケイ素系材料は、ケイ素の単体でもよいし、ケイ素の合金でもよいし、ケイ素の化合物でもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に含む材料でもよい。
 ここで説明する単体は、あくまで一般的な意味合いでの単体であるため、微量の不純物を含んでいてもよい。すなわち、単体の純度は、100%に限られない。また、合金は、2種類以上の金属元素からなる材料でもよいし、1種類または2種類以上の金属元素と1種類または2種類以上の半金属元素とを含む材料でもよいし、1種類または2種類以上の金属元素と共に1種類または2種類以上の非金属元素を含んでいてもよい。ここで説明した単体および合金のそれぞれに関する定義は、以降においても同様である。ケイ素系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 ケイ素の合金の具体例およびケイ素の化合物の具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、およびLiSiOなどである。なお、SiOに関するvは、0.2<v<1.4でもよい。
 ここで、負極活物質層2が第1負極活物質200(炭素系材料)および第2負極活物質300(ケイ素系材料)の双方を含んでいるのは、高い理論容量(すなわち電池容量)が得られると共に、充放電時において負極が膨張および収縮しにくくなるからである。
 詳細には、ケイ素系材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張および収縮しやすいという懸念点を有する。これに対して、炭素系材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張および収縮しにくいという利点を有する。よって、炭素系材料と金属系材料とを併用することにより、高い理論容量が担保されながら、充放電時における負極の膨張および収縮が抑制される。
 第1負極活物質200と第2負極活物質300との混合比(重量比)は、特に限定されない。具体的には、第1負極活物質200の重量と第2負極活物質300の重量との総和に対して第2負極活物質300の重量が占める割合(混合割合)は、1重量%~99重量%である。混合比に依存せずに、上記した第1負極活物質200と第2負極活物質300とを併用する利点が得られるからである。
 中でも、混合割合は、50重量%以下であることが好ましく、30重量%以下であることがより好ましい。負極の膨張および収縮を生じさせる主要な原因であるケイ素系材料の含有量が少なくなるため、その負極の膨張および収縮が十分に抑制されるからである。
(第2態様における第1負極活物質および第2負極活物質)
 第2態様における第1負極活物質200および第2負極活物質300のそれぞれの構成は、例えば、以下の通りである。
(第1負極活物質)
 第1負極活物質200の構成は、例えば、上記した第1態様における第1負極活物質200の構成と同様である。
(第2負極活物質)
 第2負極活物質300は、例えば、図3に示したように、中心部301と、その中心部301の表面に設けられた被覆部302とを含んでいる。
(中心部)
 中心部301は、例えば、粒子状であり、ケイ素系材料を含んでいる。ケイ素系材料に関する詳細は、上記した通りである。すなわち、中心部301は、第1態様における第2負極活物質300と同様の構成を有している。
(被覆部)
 被覆部302は、中心部301の表面を被覆することにより、その中心部301を保護する保護層である。この被覆部302は、中心部301の表面のうちの一部または全部に設けられている。このため、被覆部302は、中心部301の表面のうちの全部を被覆していてもよいし、その中心部301のうちの表面のうちの一部だけを被覆していてもよい。もちろん、後者の場合には、互いに物理的に分離された複数の被覆部302が中心部301の表面に存在していてもよい。
 この被覆部302は、被覆材料のうちのいずれか1種類または2種類以上を含んでいる。この被覆材料は、例えば、ポリアクリル酸塩、ポリアクリル酸、ポリフッ化ビニリデンおよびポリビニルピロリドンなどである。
 第2負極活物質300が被覆部302を含んでいるのは、その被覆部302により中心部301が保護されるため、高反応性のケイ素系材料を含む中心部301の表面において電解液が分解しにくくなるからである。また、被覆部302は結着剤としても機能するため、その被覆部302を介して第2負極活物質300同士が互いに結着されやすくなるからである。この場合には、負極活物質層2が負極結着剤を含んでいれば、第2負極活物質300の結着性がより向上する。
 被覆部302が被覆材料を含んでいるのは、その被覆材料により形成される被膜がいわゆるSEI(Solid Electrolyte Interphase)膜と同様の機能を果たすからである。これにより、中心部301の表面に被覆部302が設けられていても、中心部301においてリチウムが吸蔵および放出されることを阻害せずに、被覆部302により中心部301の表面が保護される。この場合には、特に、放電末期においても、被覆材料により形成された被膜が存在することに起因して、SEI膜が分解しにくくなる。これにより、放電末期においても、被覆部302による中心部301の保護状態が維持されやすくなる。
 ポリアクリル酸塩の種類は、特に限定されないが、例えば、金属塩およびオニウム塩などである。ただし、ここで説明するポリアクリル酸塩は、ポリアクリル酸中に含まれている全てのカルボキシル基(-COOH)が塩を形成している化合物に限らず、ポリアクリル酸中に含まれている一部のカルボキシル基が塩を形成している化合物でもよい。すなわち、後者のポリアクリル酸塩は、1個または2個以上の未反応基(カルボキシル基)を含んでいてもよい。
 金属塩に含まれる金属イオンの種類は、特に限定されないが、例えば、アルカリ金属イオンなどであり、より具体的には、リチウムイオン、ナトリウムイオンおよびカリウムイオンなどである。オニウム塩に含まれるオニウムイオンの種類は、特に限定されないが、例えば、アンモニウムイオンおよびホスホニウムイオンなどである。ポリアクリル酸塩の具体例は、ポリアクリル酸ナトリウムおよびポリアクリル酸カリウムなどである。
 なお、ポリアクリル酸塩は、1つの分子中に、金属イオンだけを含んでいてもよいし、オニウムイオンだけを含んでいてもよいし、金属イオンおよびオニウムイオンの双方を含んでいてもよい。
 中心部301の重量と被覆部302の重量との総和に対して被覆部302の重量が占める割合(占有割合)は、特に限定されない。この占有割合は、占有割合(重量%)=[被覆部302の重量/(中心部301の重量+被覆部302の重量)]×100という計算式により算出される。この計算式中において、前者(分子)の被覆部302の重量は、被覆材料の重量であると共に、後者(分母)の被覆部302の重量も、被覆材料の重量である。ただし、占有割合は、あまり大きすぎないことが好ましい。被覆部302による中心部301の被覆量を適度に抑えることにより、その中心部301の表面におけるイオン伝導性を担保するためである。これにより、中心部301の表面が被覆部302により被覆されていても、その中心部301においてリチウムを吸蔵および放出しやすくなる。
 被覆部302の厚さは、特に限定されないが、例えば、約1μm未満であることが好ましい。中心部301におけるリチウムの吸蔵および放出がより阻害されにくくなるからである。
 ここで説明する被覆部302の厚さは、いわゆる平均厚さであり、例えば、以下の手順により算出される。最初に、電界放射型走査型電子顕微鏡(FE-SEM)などの顕微鏡を用いて、第2負極活物質300(中心部301および被覆部302)の断面を観察する。この場合には、第2負極活物質300の全体像のうちの約1/3を観察できるように倍率を調整する。より具体的には、第2負極活物質300の平均粒径(メジアン径D50)が約20μmである場合には、倍率を約2000倍とする。続いて、観察結果(顕微鏡写真)に基づいて、等間隔で位置する5箇所において被覆部302の厚さを測定する。この間隔は、例えば、約0.5μmである。最後に、5箇所において測定された厚さの平均値を算出する。
 被覆部302の被覆率、すなわち被覆部302により中心部301の表面が被覆されている割合は、特に限定されないが、例えば、50%以上であることが好ましい。被覆部302による中心部301の保護効果が十分に発揮されるからである。
 ここで説明する被覆部302の被覆率は、いわゆる平均被覆率であり、例えば、以下の手順により算出される。最初に、電界放射型走査型電子顕微鏡(FE-SEM)などの顕微鏡を用いて、第2負極活物質300(中心部301および被覆部302)の断面を観察する。この場合には、第2負極活物質300の全体像のうちの約1/3を観察できるように倍率を調整すると共に、任意の10箇所(10視野)において被覆部302の断面を観察する。倍率に関する詳細は、例えば、被覆部302の平均厚さを算出する場合と同様である。続いて、観察結果(顕微鏡写真)に基づいて、視野ごとに被覆率を算出する。この場合には、中心部301の全体像の外縁(輪郭)の長さL1を測定すると共に、その中心部301のうちの被覆部302により被覆されている部分の外縁の長さL2を測定したのち、被覆率=(L2/L1)×100を算出する。最後に、10視野において算出された被覆率の平均値を算出する。
 ただし、常温溶融塩組成物が後述する共重合体を含んでいる場合には、第2負極活物質300は被覆部302を含んでいなくてもよい。共重合体が中心部301の表面を被覆するため、その共重合体が被覆部302と同様の機能を果たすからである。なお、共重合体の詳細に関しては、後述する。
(常温溶融塩組成物)
 常温溶融塩組成物は、上記した第1負極活物質200および第2負極活物質300と共に負極活物質層2中に含まれている。このため、常温溶融塩組成物は、第1負極活物質200および第2負極活物質300と同様に、負極活物質層2中において分散されている。
 ただし、常温溶融塩組成物は、ケイ素系材料に対して高い親和性を有するため、負極活物質層2中において、第1負極活物質200(炭素系材料)の近傍よりも第2負極活物質300(ケイ素系材料)の近傍に多く存在するように分布している。
 すなわち、第1負極活物質200の近傍に常温溶融塩組成物が存在する量と、第2負極活物質300の近傍に常温溶融塩組成物が存在する量とを比較すると、第2負極活物質300の近傍における常温溶融塩組成物の存在量は、第1負極活物質200の近傍における常温溶融塩組成物の存在量よりも大きくなっている。
 負極活物質層2が常温溶融塩組成物を含んでいるのは、その負極活物質層2が第1負極活物質200(炭素系材料)および第2負極活物質300(ケイ素系材料)の双方を含んでいる混合系において、上記したように、その常温溶融塩組成物が第1負極活物質200の近傍よりも第2負極活物質300の近傍に存在しやすくなるからである。この場合には、第2負極活物質300の近傍においてイオン伝導性が優先的に向上するため、その第2負極活物質300においてリチウムが吸蔵および放出されやすくなる。これにより、炭素系材料とケイ素系材料とを併用した混合系において、上記したケイ素系材料の懸念点が抑制されながら、そのケイ素系材料の利点が増強される。よって、負極において充放電反応が円滑かつ安定に進行しやすくなると共に、充電状態の負極が高温環境中に晒されても熱的に安定になる。
 常温溶融塩組成物は、例えば、常温溶融塩および共重合体のうちの一方または双方を含んでいる。常温溶融塩の種類は、1種類だけでもよいし、2種類以上でもよい。同様に、共重合体の種類は、1種類だけでもよいし、2種類以上でもよい。
 常温溶融塩は、いわゆるイオン液体であり、優れた難燃性および高いイオン伝導性を有している。共重合体は、常温溶融塩と高分子化合物との共重合体である。高分子化合物と共重合される常温溶融塩の種類は、1種類だけでもよいし、2種類以上でもよい。同様に、常温溶融塩と共重合される高分子化合物の種類は、1種類だけでもよいし、2種類以上でもよい。
 常温溶融塩は、1種類または2種類以上のカチオンと、1種類または2種類以上のアニオンとを含んでいる。
 カチオンの種類は、特に限定されないが、例えば、アンモニウムカチオン、ホスホニウムカチオン、スルホニウムカチオン、イミダゾリウムカチオン、ピリジニウムカチオンおよびピロリジニウムカチオンなどである。中でも、第四級アンモニウムカチオン、第四級ホスホニウムカチオン、第三級スルホニウムカチオン、イミダゾリウムカチオン、ピリジニウムカチオンおよびピロリジニウムカチオンが好ましい。優れた熱安定性が得られると共に、常温溶融塩を容易に合成可能だからである。
 第四級アンモニウムカチオンは、NR4 +で表される。Rは、1価の脂肪族炭化水素基、1価の芳香族炭化水素基および1価の複素環基などのうちのいずれかである。ただし、4つのRは、互いに同じ基でもよいし、互いに異なる基でもよい。もちろん、4つのRのうちの一部だけが互いに同じ基でもよい。
 第四級ホスホニウムカチオンは、PR4 +で表される。4つのRに関する詳細は、第四級アンモニウムカチオンに関して説明した場合と同様である。
 第三級スルホニウムカチオンは、SR3 +で表される。3つのRに関する詳細は、第四級アンモニウムカチオンに関して説明した場合と同様である。
 イミダゾリウムカチオンは、C2 +で表される。2つのRに関する詳細は、第四級アンモニウムカチオンに関して説明した場合と同様である。このイミダゾリウムカチオンは、例えば、1-エチル-3-メチルイミダゾリウムイオンなどである。
 ピリジニウムカチオンは、CNR2 +で表される。2つのRに関する詳細は、第四級アンモニウムカチオンに関して説明した場合と同様である。
 ピロリジニウムカチオンは、CNR2 +で表される。2つのRに関する詳細は、第四級アンモニウムカチオンに関して説明した場合と同様である。
 アニオンの種類は、特に限定されないが、例えば、ビス(トリフルオロメタンスルホニル)イミドアニオン(CF-S(=O)-N-S(=O)-CF)、ビス(フルオロスルホニル)イミドアニオン(F-S(=O)-N-S(=O)-F)、テトラフルオロボレートアニオン(BF4 -)、ヘキサフルオロホスフェートアニオン(PF6 -)およびハロゲン化物アニオンなどであり、そのハロゲン化物アニオンは、例えば、クロライドアニオン(Cl)などである。中でも、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフェートアニオンおよびクロライドアニオンが好ましい。優れた熱安定性が得られると共に、常温溶融塩を容易に合成可能だからである。
 共重合体は、例えば、高分子化合物に対して常温溶融塩がグラフト重合されたグラフト共重合体である。このグラフト共重合体では、例えば、高分子化合物に対して1個または2個以上の常温溶融塩が側鎖として導入される。高分子化合物の種類は、特に限定されないが、例えば、後述する負極結着剤(高分子化合物)の種類と同様である。優れた熱安定性が得られるため、負極結着剤の熱安定性がより向上するからである。高分子化合物は、例えば、ポリアクリル酸塩、ポリアクリル酸、ポリイミド、ポリアミック酸、ポリアミドイミド、ポリテトラフルオロエチレンおよびポリフッ化ビニリデンなどである。中でも、ポリアクリル酸塩、ポリアクリル酸、ポリイミドおよびポリフッ化ビニリデンなどが好ましい。
 特に、常温溶融塩組成物は、第2負極活物質300(ケイ素系材料)と反応しやすい反応基のうちのいずれか1種類または2種類以上を含んでいることが好ましい。すなわち、常温溶融塩組成物が常温溶融塩を含んでいる場合には、その常温溶融塩は反応基を含んでいることが好ましい。また、常温溶融塩組成物が共重合体を含んでいる場合には、常温溶融塩が反応基を含んでいてもよいし、高分子化合物が反応基を含んでいてもよいし、双方が反応基を含んでいてもよい。常温溶融塩組成物が反応基を介してケイ素系材料と反応するため、その常温溶融塩組成物が第2負極活物質300に定着するからである。これにより、常温溶融塩組成物が第2負極活物質300の近傍により存在しやすくなる。
 反応基の種類は、ケイ素系材料と反応しやすい官能基であれば、特に限定されないが、例えば、アルコキシ基、ヒドロキシ基、アクリロイル基およびメタクリロイル基などである。常温溶融塩組成物がケイ素系材料と十分に反応しやすくなるからである。
 負極活物質層2中における常温溶融塩組成物の含有量は、特に限定されないが、例えば、0.01重量%~5重量%である。第1負極活物質200および第2負極活物質300のそれぞれの含容量が担保されるため、高い電池容量を維持しながら、上記した常温溶融塩組成物に起因する利点が得られるからである。
(他の材料)
 他の材料は、例えば、上記した負極結着剤および負極導電剤の他、金属塩およびシランカップリング剤などである。
(負極結着剤)
 負極結着剤は、主に、第1負極活物質200および第2負極活物質300などを結着させる。この負極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデン、ポリアクリル酸塩、ポリアクリル酸およびポリイミドなどである。中でも、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリイミド、ポリアクリル酸塩およびポリアクリル酸などが好ましい。
(負極導電剤)
 負極導電剤は、主に、負極活物質層2の電子伝導性を向上させる。この負極導電剤は、例えば、炭素材料などの導電性材料うちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンファイバーおよびカーボンナノチューブなどである。ただし、負極導電剤は、導電性材料であれば、炭素材料に限られず、金属材料および導電性高分子などでもよい。
(金属塩)
 金属塩は、主に、常温溶融塩組成物のイオン伝導性を向上させると共に、負極活物質層2のイオン伝導性を向上させる。金属塩の種類は、特に限定されないが、中でも、電極反応物質の塩であることが好ましい。すなわち、電極反応物質としてリチウムを用いる場合には、金属塩はリチウム塩であることが好ましい。リチウム塩の種類は、カチオンとしてリチウムイオンを含む塩のうちのいずれか1種類または2種類以上であれば、特に限定されない。リチウム塩に関する詳細は、例えば、後述する電解質塩に関する詳細と同様である。
(シランカップリング剤)
 シランカップリング剤は、主に、負極結着剤に対して高い親和性を有するため、第1負極活物質200および第2負極活物質300などを互いに結着させる。なお、シランカップリング剤は、上記した第1負極活物質200および第2負極活物質300の他、負極集電体1および負極導電剤なども結着させる。
 シランカップリング剤の種類は、負極結着剤に対して高い親和性を有する材料のうちのいずれか1種類または2種類以上であれば、特に限定されない。具体的には、シランカップリング剤は、例えば、アミノ基を含むシランカップリング剤、硫黄を構成元素として含むシランカップリング剤、およびフッ素を構成元素として含むシランカップリング剤などである。アミノ基を含むシランカップリング剤は、例えば、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルトリエトキシシランおよびN,N’-ビス[3-トリメトキシシリル]プロピルエチレンジアミンなどである。硫黄を構成元素として含むシランカップリング剤は、例えば、ビス[3-(トリエトキシシリル)プロピル]テトラスルファイド、ビス[3-(トリエトキシシリル)プロピル]ジスルファイド、3-メルカプトプロピルトリメトキシシランおよび3-メルカプトプロピルメチルジメトキシシランなどである。フッ素を構成元素として含むシランカップリング剤は、例えば、(ヘプタデカフルオロ-1,1,2,2-テトラハイドロデシル)-トリメトキシシラン、(ヘプタデカフルオロ-1,1,2,2-テトラハイドロデシル)-トリス(ジメチルアミノ)シランおよび(ヘプタデカフルオロ-1,1,2,2-テトラハイドロデシル)-トリエトキシシランなどである。
(他の負極活物質)
 なお、負極活物質層2は、例えば、上記した第1負極活物質200および第2負極活物質300と共に、他の負極活物質のうちのいずれか1種類または2種類以上を含んでいてもよい。
 他の負極活物質は、例えば、金属系材料である。この金属系材料は、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。高いエネルギー密度が得られるからである。ただし、上記したケイ素系材料は、ここで説明する金属系材料から除かれる。である。
 この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に含む材料でもよい。金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
 金属元素は、例えば、リチウムと合金を形成することが可能な金属元素であると共に、半金属元素は、例えば、リチウムと合金を形成することが可能な半金属元素である。具体的には、金属元素および半金属元素は、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。
 中でも、スズが好ましい。リチウムを吸蔵および放出する能力が優れているため、著しく高いエネルギー密度が得られるからである。
 スズを構成元素として含む材料(以下、単に「スズ系材料」と呼称する。)は、スズの単体でもよいし、スズの合金でもよいし、スズの化合物でもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に含む材料でもよい。
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 スズの合金およびスズの化合物の具体例は、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。
 特に、スズ系材料は、例えば、第1構成元素であるスズと共に第2構成元素および第3構成元素を含む材料(以下、「スズ含有材料」と呼称する。)であることが好ましい。第2構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、セシウム(Ce)、ハフニウム(Hf)、タンタル、タングステン、ビスマスおよびケイ素などのうちのいずれか1種類または2種類以上である。第3構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリンなどのうちのいずれか1種類または2種類以上である。高い電池容量および優れたサイクル特性などが得られるからである。
 中でも、スズ含有材料は、スズとコバルトと炭素とを構成元素として含む材料(以下、「スズコバルト炭素含有材料」と呼称する。)であることが好ましい。このスズコバルト炭素含有材料では、例えば、炭素の含有量が9.9質量%~29.7質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%~70質量%である。高いエネルギー密度が得られるからである。
 スズコバルト炭素含有材料は、スズとコバルトと炭素とを含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応することが可能な相(反応相)であるため、その反応相の存在に起因して優れた特性が得られる。この反応相のX線回折により得られる回折ピークの半値幅(回折角2θ)は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合において、1°以上であることが好ましい。リチウムがより円滑に吸蔵および放出されると共に、電解液との反応性が低減するからである。なお、スズコバルト炭素含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部が含まれている相を含む場合もある。
 X線回折により得られた回折ピークがリチウムと反応することが可能な反応相に対応する回折ピークであるか否かに関しては、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断できる。例えば、リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応する回折ピークである。この場合には、例えば、低結晶性または非晶質の反応相に起因する回折ピークが2θ=20°~50°の範囲に検出される。この反応相は、例えば、上記した一連の構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化していると考えられる。
 スズコバルト炭素含有材料では、構成元素である炭素のうちの少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズなどの凝集またはスズの結晶化が抑制されるからである。元素の結合状態に関しては、例えば、X線光電子分光法(XPS)を用いて確認可能である。市販の装置では、例えば、軟X線としてAl-Kα線またはMg-Kα線などが用いられる。炭素のうちの少なくとも一部が金属元素または半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低いエネルギー領域に現れる。なお、金原子の4f軌道(Au4f)のピークは、84.0eVに得られるようにエネルギー較正されているとする。この際、通常、物質の表面には表面汚染炭素が存在しているため、その表面汚染炭素に起因するC1sのピークのエネルギーを284.8eVとして、そのピークをエネルギー基準とする。XPS測定において、C1sのピークの波形は、表面汚染炭素に起因するピークとスズコバルト炭素含有材料中の炭素に起因するピークとを含んでいる。このため、例えば、市販のソフトウエアを用いてピークを解析することにより、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
 このスズコバルト炭素含有材料は、構成元素がスズ、コバルトおよび炭素だけである材料に限られない。このスズコバルト炭素含有材料は、例えば、スズ、コバルトおよび炭素に加えて、さらにケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスなどのうちのいずれか1種類または2種類以上を構成元素として含んでいてもよい。
 スズコバルト炭素含有材料の他、スズとコバルトと鉄と炭素とを構成元素として含む材料(以下、「スズコバルト鉄炭素含有材料」と呼称する。)も好ましい。このスズコバルト鉄炭素含有材料の組成は、任意である。一例を挙げると、鉄の含有量を少なめに設定する場合は、炭素の含有量が9.9質量%~29.7質量%、鉄の含有量が0.3質量%~5.9質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が30質量%~70質量%である。また、鉄の含有量を多めに設定する場合は、炭素の含有量が11.9質量%~29.7質量%、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))が26.4質量%~48.5質量%、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))が9.9質量%~79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。なお、スズコバルト鉄炭素含有材料の物性(半値幅など)は、上記したスズコバルト炭素含有材料の物性と同様である。
 また、他の負極活物質は、例えば、金属酸化物および高分子化合物などである。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。
<1-2.製造方法>
 次に、負極の製造方法に関して説明する。この負極は、例えば、以下の手順により製造される。
 最初に、負極合剤を準備する。
 第1態様における第1負極活物質200および第2負極活物質300を用いる場合には、第1負極活物質200および第2負極活物質300を含む負極活物質と、常温溶融塩組成物と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤とする。
 第2態様における第1負極活物質200および第2負極活物質300を用いる場合には、以下の手順により、第2負極活物質300を作製したのち、負極合剤を得る。
 この場合には、最初に、ケイ素系材料を含む中心部301と、ポリアクリル酸塩、ポリアクリル酸、ポリフッ化ビニリデンおよびポリビニルピロリドンのうちのいずれか1種類または2種類以上を含む被覆材料とを混合する。被覆材料としては、溶解物を用いてもよいし、非溶解物を用いてもよい。この溶解物は、例えば、純水などにより被覆材料が溶解された溶液であり、より具体的には、例えば、ポリアクリル酸塩水溶液およびポリアクリル酸水溶液などである。
 続いて、溶媒に混合物を投入したのち、その溶媒を撹拌する。溶媒の種類は、任意の溶媒のうちのいずれか1種類または2種類以上であれば、特に限定されないが、例えば、被覆材料を溶解可能な水性溶媒および有機溶剤などである。水性溶媒は、例えば、純水などであると共に、有機溶剤は、例えば、N-メチル-2-ピロリドンなどである。溶媒を撹拌する場合には、例えば、スターラなどの撹拌装置を用いてもよい。撹拌時間などの条件に関しては、任意に設定可能である。これにより、溶媒中に中心部301が分散されると共に、その溶媒により被覆材料が溶解されるため、中心部301および被覆材料を含む分散液が調製される。
 続いて、分散液中から第2負極活物質300を分離する。分離方法は、特に限定されないが、例えば、分散液を濾過することにより、濾過物を回収する。こののち、濾過物を乾燥させてもよい。乾燥温度および乾燥時間などの条件に関しては、任意に設定可能である。分散液中では、被覆材料を含む被覆部302が中心部301の表面に形成されるため、その中心部301および被覆部302を含む第2負極活物質300が形成される。よって、分散液を濾過することにより、濾過物である第2負極活物質300が得られる。
 なお、分散液を濾過する代わりに、スプレードライ装置を用いて分散液を噴霧したのち、その分散液を乾燥させてもよい。この場合においても、中心部301の表面に被覆部302が形成されるため、第2負極活物質300が得られる。
 最後に、第1負極活物質200および第2負極活物質300(中心部301および被覆部302)を含む負極活物質と、常温溶融塩組成物と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤とする。
 なお、上記したように、常温溶融塩組成物として共重合体を用いる場合には、被覆部302を形成しなくてもよい。
 続いて、溶媒に負極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製する。溶媒の種類は、任意の溶媒のうちのいずれか1種類または2種類以上であれば、特に限定されないが、例えば、水性溶媒および有機溶剤などである。水性溶媒および有機溶剤に関する詳細は、上記した通りである。
 最後に、負極集電体1の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層2を形成する。こののち、必要に応じて、ロールプレス機などを用いて負極活物質層2を圧縮成型する。この場合には、負極活物質層2を加熱してもよいし、圧縮成型を複数回繰り返してもよい。
 これにより、負極集電体1および負極活物質層2を含む負極が完成する。
<1-3.作用および効果>
 本実施形態の負極によれば、負極活物質層2が第1負極活物質(炭素系材料)および第2負極活物質300(ケイ素系材料)と共に常温溶融塩組成物を含んでいる。この場合には、上記したように、炭素系材料とケイ素系材料との混合系において、常温溶融塩組成物が炭素系材料の近傍よりもケイ素系材料の近傍に存在しやすくなる。これにより、ケイ素系材料の近傍においてイオン伝導性が優先的に向上するため、そのケイ素系材料においてリチウムが吸蔵および放出されやすくなる。よって、負極において充放電反応が円滑かつ安定に進行しやすくなると共に、充電状態の負極が高温環境中に晒されても熱的に安定になるため、優れた電池特性を得ることができる。
 特に、常温溶融塩組成物が常温溶融塩および共重合体のうちの一方または双方を含んでいれば、常温溶融塩組成物がケイ素系材料の近傍に十分に存在しやすくなるため、より高い効果を得ることができる。この場合には、常温溶融塩組成物が共重合体を含んでいれば、優れた熱安定性が得られることにより、負極結着剤の熱安定性がより向上するため、さらに高い効果を得ることができる。また、常温溶融塩がカチオンとして第四級アンモニウムカチオンなどを含んでおり、高分子化合物がポリアクリル酸塩などを含んでいれば、常温溶融塩組成物がケイ素系材料の近傍により存在しやすくなるため、さらに高い効果を得ることができる。
 また、常温溶融塩がアニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンなどを含んでいれば、常温溶融塩組成物がケイ素系材料の近傍により存在しやすくなるため、より高い効果を得ることができる。
 また、常温溶融塩組成物がアルコキシ基などの反応基を含んでいれば、その常温溶融塩組成物が反応基を介してケイ素系材料と反応しやすくなる。よって、常温溶融塩組成物がケイ素系材料の近傍により存在しやすくなるため、より高い効果を得ることができる。
 また、負極活物質層2が金属塩を含んでいれば、その負極活物質層2などのイオン伝導性が向上するため、より高い効果を得ることができる。
 また、負極活物質層2が負極結着剤を含んでおり、その負極結着剤がポリフッ化ビニリデンなどを含んでいれば、第1負極活物質200および第2負極活物質300が負極結着剤を介して十分に結着される。よって、第1負極活物質200および第2負極活物質300のそれぞれにおいてリチウムが円滑かつ十分に吸蔵および放出されやすくなるため、より高い効果を得ることができる。
<2.二次電池用負極(第2実施形態)>
 次に、本技術の第2実施形態の二次電池用負極に関して説明する。以下では、既に説明した第1実施形態の負極の構成要素を随時引用する。
<2-1.構成>
 ここで説明する負極は、常温溶融塩組成物が負極活物質層2中に分散されている代わりに、その常温溶融塩組成物が被覆部302に含まれていることを除いて、上記した第1実施形態の負極(図3に示した第2態様)と同様の構成を有している。
 具体的には、第2負極活物質300は、図3に示したように、中心部301および被覆部302を含んでおり、その被覆部302は、被覆材料と共に常温溶融塩組成物を含んでいる。被覆材料および常温溶融塩組成物のそれぞれに関する詳細は、上記した通りである。
 被覆部302が常温溶融塩組成物を含んでいるのは、負極活物質層2が常温溶融塩組成物を含んでいる第1実施形態と同様に、ケイ素系材料の近傍に常温溶融塩組成物が存在しやすくなるからである。この場合には、特に、ケイ素系材料を含む中心部301の表面に常温溶融塩組成物を含む被覆部302が定着されるため、そのケイ素系材料に対して常温溶融塩組成物が強固に固定される。これにより、炭素系材料の近傍よりもケイ素系材料の近傍に常温溶融塩組成物がより多く存在しやすくなると共に、その状態は充放電を繰り返しても維持されやすくなる。
 この場合には、常温溶融組塩成物はケイ素系材料と結合していることが好ましい。より具体的には、常温溶融塩組成物は、上記した反応基を介してケイ素系材料と結合していることが好ましい。ケイ素系材料に対して常温溶融塩組成物がより強固に固定されるため、そのケイ素系材料の近傍に常温溶融塩組成物がより多く存在している状態はより維持されやすくなるからである。
 また、常温溶融塩組成物は、負極結着剤と結合していることが好ましい。より具体的には、常温溶融塩組成物は、上記した反応基を介して負極結着剤と結合していることが好ましい。常温溶融塩組成物が負極結着剤と結合することにより、その常温溶融塩組成物がケイ素系材料の表面に定着された状態は維持されやすくなるからである。
 なお、被覆部302は、金属塩を含んでいてもよい。金属塩に関する詳細は、上記した通りである。負極活物質層2が金属塩を含んでいる第1実施形態と同様の利点が得られるからである。
 また、被覆部302は、導電性材料を含んでいてもよい。導電性材料に関する詳細は、例えば、上記した負極導電剤に関する詳細と同様である。すなわち、導電性材料は、例えば、カーボンナノチューブなどである。被覆部302の導電性が向上するからである。
 ここで、負極活物質層2は、例えば、追加の常温溶融塩組成物を含んでいてもよい。すなわち、常温溶融塩組成物は、例えば、被覆部302に含まれているだけでなく、負極活物質層2中に分散されていてもよい。第2負極活物質300の近傍における常温溶融塩組成物の存在量が増加するため、その第2負極活物質300の近傍におけるイオン伝導性がより向上するからである。
 ただし、常温溶融塩組成物が共重合体を含んでいる場合には、第2負極活物質300は被覆部302を含んでいなくてもよい。上記したように、共重合体が被覆部302と同様の機能を果たすからである。
 もちろん、第2負極活物質300が中心部301および被覆部302を含んでいる場合には、その被覆部302が被覆材料と共に常温溶融塩組成物(共重合体)を含んでいてもよい。
 被覆部302が常温溶融塩組成物を含んでいる場合における占有割合は、上記した被覆部302が常温溶融塩組成物を含んでいない場合と同様に、中心部301の重量と被覆部302の重量との総和に対して被覆部302の重量が占める割合である。すなわち、占有割合は、占有割合(重量%)=[被覆部302の重量/(中心部301の重量+被覆部302の重量)]×100という計算式により算出される。ただし、上記した計算式中において、前者(分子)の被覆部302の重量は、被覆材料の重量であるのに対して、後者(分母)の被覆部302の重量は、被覆材料の重量と常温溶融塩組成物の重量と導電性材料の重量との総和である。
<2-2.製造方法>
 この負極は、例えば、第2負極活物質300の形成手順が異なることを除いて、第1実施形態における負極の作製手順と同様の手順により製造される。以下では、第2負極活物質300の形成手順に関して言及する。
 第2負極活物質300を形成する場合には、最初に、ケイ素系材料を含む中心部301と、常温溶融塩組成物と、ポリアクリル酸塩、ポリアクリル酸、ポリフッ化ビニリデンおよびポリビニルピロリドンのうちのいずれか1種類または2種類以上を含む被覆材料とを混合する。続いて、溶媒に混合物を投入したのち、その溶媒を撹拌する。これにより、溶媒中に中心部301および常温溶融塩組成物が分散されると共に、その溶媒により被覆材料が溶解されるため、中心部301、常温溶融塩組成物および被覆材料を含む分散液が調製される。最後に、分散液中から第2負極活物質300を分離する。分散液中では、常温溶融塩組成物および被覆材料を含む被覆部302が中心部301の表面に形成されるため、その中心部301および被覆部302を含む第2負極活物質300が形成される。分散液を濾過することにより、濾過物である第2負極活物質300が得られる。もちろん、第2負極活物質300を得るためには、上記したように、スプレードライ装置を用いて分散液を噴霧したのち、その分散液を乾燥させてもよい。
 なお、上記したように、常温溶融塩組成物として共重合体を用いる場合には、被覆部302を形成しなくてもよいし、被覆材料と共に共重合体を含むように被覆部302を形成してもよい。
 また、上記した追加の常温溶融塩組成物を用いる場合には、負極合剤を調製する際に、第1負極活物質200および第2負極活物質300(中心部301および被覆部302)を含む負極活物質と、追加の常温溶融塩組成物と、必要に応じて負極結着剤および負極導電剤などとを混合してもよい。
<2-3.作用および効果>
 本実施形態の負極によれば、負極活物質層2が第1負極活物質200(炭素系材料)および第2負極活物質300(ケイ素系材料を含む中心部301および被覆部302)を含んでおり、その被覆部302が常温溶融塩組成物を含んでいる。この場合には、第1実施形態と同様に、炭素系材料とケイ素系材料との混合系において、常温溶融塩組成物が炭素系材料の近傍よりもケイ素系材料の近傍に存在しやすくなるため、そのケイ素系材料においてリチウムが吸蔵および放出されやすくなる。よって、負極において充放電反応が円滑かつ安定に進行しやすくなると共に、充電状態の負極が高温環境中に晒されても熱的に安定になるため、優れた電池特性を得ることができる。
 特に、中心部301の表面に設けられた被覆部302が常温溶融塩組成物を含んでいることにより、ケイ素系材料の表面に常温溶融塩組成物が定着されるため、そのケイ素系材料に対して常温溶融塩組成物が強固に固定される。よって、炭素系材料の近傍よりもケイ素系材料の近傍に常温溶融塩組成物がより多く存在している状態は充放電を繰り返しても維持されやすくなるため、第1実施形態よりも高い効果を得ることができる。
 また、常温溶融塩組成物がケイ素系材料と結合していれば、そのケイ素系材料に対して常温溶融塩組成物がより強固に固定されるため、より高い効果を得ることができる。
 また、常温溶融塩組成物が負極結着剤と結合していれば、その常温溶融塩組成物がケイ素系材料の表面に定着された状態は維持されやすくなるため、より高い効果を得ることができる。
 また、被覆部302が金属塩を含んでいれば、負極活物質層2などのイオン伝導性が向上するため、より高い効果を得ることができる。
 本実施形態の負極に関するこれ以外の作用および効果は、第1実施形態の負極の作用および効果と同様である。
<3.変形例>
 本技術の負極の構成に関しては、適宜、変更可能である。
 具体的には、例えば、図3に対応する図4に示したように、第1負極活物質200が第2態様の第2負極活物質300(中心部301および被覆部302)と同様の構成を有していてもよい。
 すなわち、第1負極活物質200は、例えば、中心部301に対応する中心部201と、被覆部302に対応する被覆部202とを含んでいる。中心部201の構成は、例えば、ケイ素系材料の代わりに炭素系材料を含んでいることを除いて、中心部301の構成と同様である。被覆部202の構成は、例えば、常温溶融塩組成物を含んでいないことを除いて、被覆部302の構成と同様である。すなわち、被覆部202は、被覆材料を含んでいる。
 この第1負極活物質200は、例えば、中心部201の形成材料としてケイ素系材料の代わりに炭素系材料を用いると共に、被覆部202の形成材料として常温溶融塩組成物を用いないことを除いて、第2負極活物質300の作製手順と同様の手順により作製される。
 この場合においても、第2負極活物質300が第1実施形態または第2実施形態において説明された構成を有していることにより、同様の効果を得ることができる。この場合には、特に、第1負極活物質200同士が被覆部202を介して互いに結着されやすくなるため、その第1負極活物質200の結着性を向上させることができる。
<4.二次電池>
 次に、上記した本技術の負極を用いた二次電池に関して説明する。以下では、既に説明した本技術の負極の構成要素を随時引用する。
<4-1.リチウムイオン二次電池(円筒型)>
 図5は、二次電池の断面構成を表しており、図6は、図5に示した巻回電極体20の断面構成のうちの一部を拡大している。
 ここで説明する二次電池は、例えば、リチウムの吸蔵現象およびリチウムの放出現象を利用して電池容量(負極22の容量)が得られるリチウムイオン二次電池である。
[構成]
 この二次電池は、図5に示したように、中空円筒状の電池缶11の内部に、電池素子である巻回電極体20が収納された円筒型の二次電池である。
 具体的には、二次電池は、例えば、電池缶11の内部に、一対の絶縁板12,13と、巻回電極体20とを備えている。この巻回電極体20は、例えば、セパレータ23を介して正極21と負極22とが積層されたのち、その正極21、負極22およびセパレータ23が巻回されることにより形成されている。巻回電極体20には、液状の電解質である電解液が含浸されている。
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、例えば、鉄、アルミニウムおよびそれらの合金などのうちのいずれか1種類または2種類以上を含んでいる。電池缶11の表面には、例えば、ニッケルなどが鍍金されていてもよい。一対の絶縁板12,13のそれぞれは、互いに巻回電極体20を挟むと共にその巻回周面に対して垂直に延在するように配置されている。
 電池缶11の開放端部には、電池蓋14と、安全弁機構15と、熱感抵抗素子(PTC素子)16とがガスケット17を介してかしめられているため、その電池缶11は密閉されている。電池蓋14は、例えば、電池缶11の形成材料と同様の材料を含んでいる。安全弁機構15および熱感抵抗素子16のそれぞれは、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡または外部加熱などに起因して電池缶11の内圧が一定以上になると、ディスク板15Aが反転する。これにより、電池蓋14と巻回電極体20との電気的接続が切断される。大電流に起因する異常な発熱を防止するために、熱感抵抗素子16の抵抗は、温度の上昇に応じて増加する。ガスケット17は、例えば、絶縁材料を含んでおり、そのガスケット17の表面には、例えば、アスファルトなどが塗布されていてもよい。
 巻回電極体20の巻回中心20Cには、例えば、センターピン24が挿入されている。ただし、センターピン24は、巻回中心20Cに挿入されていなくてもよい。正極21には、正極リード25が取り付けられていると共に、負極22には、負極リード26が取り付けられている。正極リード25は、例えば、アルミニウムなどの導電性材料を含んでいる。この正極リード25は、例えば、安全弁機構15に取り付けられているため、電池蓋14と電気的に接続されている。負極リード26は、例えば、ニッケルなどの導電性材料を含んでいる。この負極リード26は、例えば、電池缶11に取り付けられているため、その電池缶11と電気的に接続されている。
(正極)
 正極21は、例えば、図6に示したように、正極集電体21Aと、その正極集電体21Aの両面に設けられた2つの正極活物質層21Bとを含んでいる。ただし、正極集電体21Aの片面に1つの正極活物質層21Bだけが設けられていてもよい。
(正極集電体)
 正極集電体21Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、アルミニウム、ニッケルおよびステンレスなどの金属材料である。この正極集電体21Aは、単層でもよいし、多層でもよい。
(正極活物質層)
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵および放出することが可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
(正極活物質(正極材料))
 正極材料は、例えば、リチウム含有化合物である。高いエネルギー密度が得られるからである。リチウム含有化合物の種類は、特に限定されないが、例えば、リチウム含有複合酸化物およびリチウム含有リン酸化合物などである。
 リチウム含有複合酸化物は、リチウムと1種類または2種類以上の他元素とを構成元素として含む酸化物であり、例えば、層状岩塩型およびスピネル型などのうちのいずれかの結晶構造を有している。リチウム含有リン酸化合物は、リチウムと1種類または2種類以上の他元素とを構成元素として含むリン酸化合物であり、例えば、オリビン型などの結晶構造を有している。なお、他元素は、リチウム以外の元素である。
 他元素の種類は、任意の元素のうちのいずれか1種類または2種類以上であれば、特に限定されない。中でも、他元素は、長周期型周期表における2族~15族に属する元素であることが好ましい。より具体的には、他元素は、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)および鉄(Fe)などであることがより好ましい。高い電圧が得られるからである。
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(1)~式(3)のそれぞれで表される化合物などである。
 LiMn(1-b-c) NiM1(2-d)  ・・・(1)
(M1は、コバルト(Co)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~eは、0.8≦a≦1.2、0<b<0.5、0≦c≦0.5、(b+c)<1、-0.1≦d≦0.2および0≦e≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 LiNi(1-b) M2(2-c)  ・・・(2)
(M2は、コバルト(Co)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0.005≦b≦0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 LiCo(1-b) M3(2-c)  ・・・(3)
(M3は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0≦b<0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物がニッケル、コバルト、マンガンおよびアルミニウムを構成元素として含む場合には、そのニッケルの原子比率は、50原子%以上であることが好ましい。高いエネルギー密度が得られるからである。
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(4)で表される化合物などである。
 LiMn(2-b) M4 ・・・(4)
(M4は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.9≦a≦1.1、0≦b≦0.6、3.7≦c≦4.1および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 スピネル型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiMnなどである。
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、下記の式(5)で表される化合物などである。
 LiM5PO ・・・(5)
(M5は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)のうちの少なくとも1種である。aは、0.9≦a≦1.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 オリビン型の結晶構造を有するリチウム含有リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 なお、リチウム含有複合酸化物は、下記の式(6)で表される化合物などでもよい。
 (LiMnO(LiMnO1-x  ・・・(6)
(xは、0≦x≦1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、xは完全放電状態の値である。)
(他の正極材料)
 この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物および導電性高分子などでもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。
(正極結着剤および正極導電剤)
 正極結着剤に関する詳細は、例えば、負極結着剤に関する詳細と同様である。また、正極導電剤に関する詳細は、例えば、負極導電剤に関する詳細と同様である。
(負極)
 負極22は、上記した本技術の負極と同様の構成を有している。具体的には、負極22は、例えば、図6に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。負極集電体22Aの構成は、負極集電体1の構成と同様であると共に、負極活物質層22Bの構成は、負極活物質層2の構成と同様である。
 この負極22では、充電途中において意図せずにリチウム金属が負極22の表面に析出することを防止するために、負極材料の充電可能な容量は、正極21の放電容量よりも大きいことが好ましい。すなわち、リチウムを吸蔵および放出することが可能である負極材料の電気化学当量は、正極21の電気化学当量よりも大きいことが好ましい。
 特に、ここで説明する二次電池では、上記したように、充電途中において負極22の表面にリチウム金属が意図せずに析出することを防止するために、リチウムを吸蔵および放出することが可能である負極材料の電気化学当量は、正極の電気化学当量よりも大きい。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなることを考慮して、正極活物質の量と負極活物質の量とが互いに調整されている。これにより、高いエネルギー密度が得られる。
[セパレータ]
 セパレータ23は、例えば、図6に示したように、正極21と負極22との間に配置されており、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させる。
 このセパレータ23は、例えば、合成樹脂およびセラミックなどの多孔質膜のうちのいずれか1種類または2種類以上を含んでおり、2種類以上の多孔質膜の積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどである。
 特に、セパレータ23は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極21および負極22のそれぞれに対するセパレータ23の密着性が向上するため、巻回電極体20の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても抵抗が上昇しにくくなると共に、電池膨れが抑制される。
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。ただし、高分子化合物は、ポリフッ化ビニリデン以外でもよい。この高分子化合物層を形成する場合には、例えば、有機溶剤などに高分子化合物が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。なお、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。
 なお、高分子化合物層は、例えば、無機粒子などの絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。セパレータ23が酸化されにくくなるため、二次電池の安全性が向上するからである。無機粒子の種類は、例えば、酸化アルミニウムおよび窒化アルミニウムなどである。
(電解液)
 巻回電極体20には、上記したように、電解液が含浸されている。この電解液は、例えば、溶媒および電解質塩を含んでいる。ただし、電解液は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 溶媒は、有機溶媒などの非水溶媒のうちのいずれか1種類または2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。
 非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリル(モノニトリル)化合物などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどである。鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。ニトリル化合物は、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。
 この他、非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどでもよい。同様の利点が得られるからである。
 中でも、環状炭酸エステルおよび鎖状炭酸エステルのうちのいずれか1種類または2種類以上が好ましく、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどのうちのいずれか1種類または2種類以上がより好ましい。高い電池容量、優れたサイクル特性および優れた保存特性などが得られるからである。この場合には、炭酸エチレンおよび炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルおよび炭酸ジエチルなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがさらに好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
 また、非水溶媒は、例えば、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)、ジイソシアネート化合物、リン酸エステルおよび不飽和鎖状化合物などである。電解液の化学的安定性が向上するからである。
 不飽和環状炭酸エステルは、1個または2個以上の不飽和結合(炭素間二重結合)を有する環状炭酸エステルの総称である。この不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。非水溶媒中における不飽和環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。
 ハロゲン化炭酸エステルは、1個または2個以上のハロゲン元素を構成元素として含む環状または鎖状の炭酸エステルの総称である。ハロゲン化炭酸エステルが2個以上のハロゲン元素を構成元素として含む場合、その2個以上のハロゲン元素の種類は、1種類だけでもよいし、2種類以上でもよい。環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。非水溶媒中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~50重量%である。
 スルホン酸エステルは、例えば、モノスルホン酸エステルおよびジスルホン酸エステルなどである。非水溶媒中におけるスルホン酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。
 モノスルホン酸エステルは、環状モノスルホン酸エステルでもよいし、鎖状モノスルホン酸エステルでもよい。環状モノスルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどのスルトンである。鎖状モノスルホン酸エステルは、例えば、環状モノスルホン酸エステルが途中で切断された化合物などである。ジスルホン酸エステルは、環状ジスルホン酸エステルでもよいし、鎖状ジスルホン酸エステルでもよい。
 酸無水物は、例えば、カルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸および無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。非水溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 ジニトリル化合物は、例えば、NC-R1-CN(R1は、アルキレン基およびアリーレン基のうちのいずれかである。)で表される化合物である。このジニトリル化合物は、例えば、スクシノニトリル(NC-C-CN)、グルタロニトリル(NC-C-CN)、アジポニトリル(NC-C-CN)およびフタロニトリル(NC-C-CN)などである。非水溶媒中におけるジニトリル化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 ジイソシアネート化合物は、例えば、OCN-R2-NCO(R2は、アルキレン基およびアリーレン基のうちのいずれかである。)で表される化合物である。このジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネート(OCN-C12-NCO)などである。非水溶媒中におけるジイソシアネート化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。非水溶媒中におけるリン酸エステルの含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 不飽和鎖状化合物は、1個または2個以上の炭素間三重結合を有する鎖状の化合物の総称である。この炭素間三重結合を有する鎖状化合物は、例えば、炭酸プロパルギルメチル(CH≡C-CH-O-C(=O)-O-CH)およびメチルスルホン酸プロパルギル(CH≡C-CH-O-S(=O)-CH)などである。非水溶媒中における炭素間三重結合を有する鎖状化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 電解質塩は、例えば、リチウム塩のうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の塩を含んでいてもよい。このリチウム以外の塩は、例えば、リチウム以外の軽金属の塩などである。
 リチウム塩は、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(フルオロスルホニル)イミドリチウム(LiN(SOF))、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)および臭化リチウム(LiBr)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kg~3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。
[動作]
 この二次電池は、例えば、以下のように動作する。
 充電時には、正極21からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極22に吸蔵される。一方、放電時には、負極22からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極21に吸蔵される。
[製造方法]
 この二次電池は、例えば、以下の手順により製造される。
 正極21を作製する場合には、最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させることにより、ペースト状の正極合剤スラリーとする。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成する。こののち、必要に応じて、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
 負極22を作製する場合には、上記した本技術の負極の作製手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。
 二次電池を組み立てる場合には、溶接法などを用いて正極集電体21Aに正極リード25を取り付けると共に、溶接法などを用いて負極集電体22Aに負極リード26を取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回電極体20を形成する。続いて、巻回電極体20の巻回中心20Cにセンターピン24を挿入する。
 続いて、一対の絶縁板12,13により巻回電極体20を挟みながら、その巻回電極体20を電池缶11の内部に収納する。この場合には、溶接法などを用いて正極リード25の先端部を安全弁機構15に取り付けると共に、溶接法などを用いて負極リード26の先端部を電池缶11に取り付ける。続いて、電池缶11の内部に電解液を注入することにより、その電解液を巻回電極体20に含浸させる。最後に、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめる。これにより、電池缶11の内部に巻回電極体20が封入されるため、円筒型の二次電池が完成する。
[作用および効果]
 この円筒型の二次電池によれば、負極22が上記した本技術の負極と同様の構成を有しているので、上記したように、負極22において充放電反応が円滑かつ安定に進行しやすくなると共に、充電状態の負極22が高温環境中に晒されても熱的に安定になる。よって、優れた電池特性を得ることができる。
 円筒型の二次電池に関するこれ以外の作用および効果は、本技術の負極に関する作用および効果と同様である。
<4-2.リチウムイオン二次電池(ラミネートフィルム型)>
 図7は、他の二次電池の斜視構成を表しており、図8は、図7に示したVIII-VIII線に沿った巻回電極体30の断面構成を表している。なお、図7では、巻回電極体30と外装部材40とを互いに離間させた状態を示している。
 以下の説明では、既に説明した円筒型の二次電池の構成要素を随時引用する。
[構成]
 この二次電池は、例えば、図7に示したように、柔軟性(または可撓性)を有するフィルム状の外装部材40の内部に、電池素子である巻回電極体30が収納されたラミネートフィルム型の二次電池(リチウムイオン二次電池)である。
 具体的には、二次電池は、例えば、外装部材40の内部に巻回電極体30を備えている。巻回電極体30は、例えば、セパレータ35および電解質層36を介して正極33と負極34とが互いに積層されたのち、その正極33、負極34、セパレータ35および電解質層36が巻回されることにより形成されている。この電解質層36は、例えば、正極33とセパレータ35との間に配置されていると共に、負極34とセパレータ35との間に配置されている。正極33には、正極リード31が取り付けられていると共に、負極34には、負極リード32が取り付けられている。巻回電極体30の最外周部は、保護テープ37により保護されている。
 正極リード31および負極リード32のそれぞれは、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウム(Al)などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。負極リード32は、例えば、銅(Cu)、ニッケル(Ni)およびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。これらの導電性材料は、例えば、薄板状または網目状である。
 外装部材40は、例えば、図7に示した矢印Rの方向に折り畳み可能な1枚のフィルムであり、その外装部材40には、巻回電極体30を収納するための窪み40Uが設けられている。この外装部材40は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。二次電池の製造工程では、例えば、融着層同士が巻回電極体30を介して対向するように外装部材40が折り畳まれたのち、その融着層の外周縁部同士が融着される。ただし、2枚のラミネートフィルムが接着剤などを介して貼り合わされていてもよい。融着層は、例えば、ポリエチレンおよびポリプロピレンなどのフィルムのうちのいずれか1種類または2種類以上である。金属層は、例えば、アルミニウム箔などのうちのいずれか1種類または2種類以上である。表面保護層は、例えば、ナイロンおよびポリエチレンテレフタレートなどのフィルムのうちのいずれか1種類または2種類以上である。
 中でも、外装部材40は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。ただし、外装部材40は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルムでもよいし、金属フィルムでもよい。
 外装部材40と正極リード31との間には、例えば、外気の侵入を防止するために密着フィルム41が挿入されている。また、外装部材40と負極リード32との間には、例えば、上記した密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32の双方に対して密着性を有する材料を含んでいる。この密着性を有する材料は、例えば、ポリオレフィン樹脂などであり、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどのうちのいずれか1種類または2種類以上である。
(正極、負極およびセパレータ)
 正極33は、例えば、図8に示したように、正極集電体33Aおよび正極活物質層33Bを含んでいる。負極34は、例えば、図8に示したように、負極集電体34Aおよび負極活物質層34Bを含んでいる。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bのそれぞれの構成は、例えば、正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bのそれぞれの構成と同様である。また、セパレータ35の構成は、例えば、セパレータ23の構成と同様である。
(電解質層)
 電解質層36は、電解液と、高分子化合物とを含んでいる。ここで説明する電解質層36は、いわゆるゲル状の電解質であるため、その電解質層36中では、電解液が高分子化合物により保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。なお、電解質層36は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 高分子化合物は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよびポリカーボネートなどのうちのいずれか1種類または2種類以上を含んでいる。この他、高分子化合物は、共重合体でもよい。この共重合体は、例えば、フッ化ビニリデンとヘキサフルオロピレンとの共重合体などである。中でも、単独重合体は、ポリフッ化ビニリデンであることが好ましいと共に、共重合体は、フッ化ビニリデンとヘキサフルオロピレンとの共重合体であることが好ましい。電気化学的に安定だからである。
 ゲル状の電解質である電解質層36において、電解液に含まれる「溶媒」とは、液状の材料だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料も含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
 なお、電解質層36の代わりに電解液をそのまま用いてもよい。この場合には、電解液が巻回電極体30(正極33、負極34およびセパレータ35)に含浸される。
[動作]
 この二次電池は、例えば、以下のように動作する。
 充電時には、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。一方、放電時には、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。
[製造方法]
 ゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。
[第1手順]
 正極33を作製する場合には、最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体33Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成する。こののち、必要に応じて、ロールプレス機などを用いて正極活物質層33Bを圧縮成型してもよい。この場合には、正極活物質層33Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
 負極34を作製する場合には、上記した本技術の負極の作製手順と同様の手順により、負極集電体34Aの両面に負極活物質層34Bを形成する。
 電解質層36を形成する場合には、電解液と、高分子化合物と、有機溶剤などとを混合したのち、その混合物を撹拌することにより、ゾル状の前駆溶液を調製する。この前駆溶液を正極33に塗布したのち、その前駆溶液を乾燥させることにより、電解質層36を形成すると共に、前駆溶液を負極34に塗布したのち、その前駆溶液を乾燥させることにより、電解質層36を形成する。
 二次電池を組み立てる場合には、最初に、溶接法などを用いて正極集電体33Aに正極リード31を接続させると共に、溶接法などを用いて負極集電体34Aに負極リード32を接続させる。続いて、セパレータ35を介して、電解質層16が形成された正極33と電解質層16が形成された負極34とを互いに巻回させたのち、その正極33、負極34、セパレータ35および電解質層36を巻回させることにより、巻回電極体30を形成する。こののち、巻回電極体30の最外周部に保護テープ37を貼り付ける。続いて、巻回電極体30が窪み40Uに収納された状態において、その巻回電極体30を挟むように外装部材40を折り畳む。最後に、熱融着法などを用いて外装部材40の外周縁部同士を接着させることにより、その外装部材40の内部に巻回電極体30を収納する。この場合には、正極リード31と外装部材40との間に密着フィルム41を挿入すると共に、負極リード32と外装部材40との間に密着フィルム42を挿入する。
 これにより、外装部材40の内部に巻回電極体30が封入されるため、二次電池が完成する。
[第2手順]
 最初に、上記した第1手順と同様の手順により、正極33および負極34のそれぞれを作製したのち、溶接法などを用いて正極33に正極リード31を接続させると共に、溶接法などを用いて負極34に負極リード32を接続させる。続いて、セパレータ35を介して正極33と負極34と互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回電極体30の前駆体である巻回体を作製する。こののち、巻回体の最外周部に保護テープ37を貼り付ける。
 続いて、巻回体を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部を接着させることにより、袋状の外装部材40の内部に巻回体を収納する。
 続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを混合したのち、その混合物を撹拌することにより、電解質用組成物を調製する。続いて、袋状の外装部材40の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材40を密封する。
 最後に、電解質用組成物中のモノマーを熱重合させることにより、高分子化合物を形成する。これにより、電解液が高分子化合物により保持されるため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入される。
[第3手順]
 最初に、多孔質膜(基材層)の両面に2つの高分子化合物層が形成されたセパレータ35を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製する。続いて、袋状の外装部材40の内部に巻回体を収納する。続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。最後に、外装部材40に加重をかけながら、その外装部材30を加熱することにより、正極33に高分子化合物層を介してセパレータ35を密着させると共に、負極34に高分子化合物層を介してセパレータ35を密着させる。これにより、電解液が高分子化合物層に含浸すると共に、その高分子化合物層がゲル化することにより、電解液が高分子化合物により保持されるため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入される。
 この第3手順では、第1手順と比較して、二次電池が膨れにくくなる。また、第3手順では、第2手順と比較して、溶媒およびモノマー(高分子化合物の原料)などが電解質層36中に残存しにくくなるため、高分子化合物の形成工程が良好に制御される。これにより、正極33、負極34およびセパレータ35のそれぞれが電解質層36に対して十分に密着される。
[作用および効果]
 このラミネートフィルム型の二次電池によれば、負極34が上記した本技術の負極と同様の構成を有しているので、円筒型の二次電池の場合と同様に、優れた電池特性を得ることができる。ラミネートフィルム型の二次電池に関するこれ以外の作用および効果は、本技術の負極に関する作用および効果と同様である。
<5.二次電池の用途>
 次に、上記した二次電池の適用例に関して説明する。
 二次電池の用途は、駆動用の電源または電力蓄積用の電力貯蔵源などとして二次電池を利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、上記以外の用途でもよい。
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。これらの用途では優れた電池特性が要求されるため、本技術の二次電池を用いることにより、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源である。この電池パックは、後述するように、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用することが可能である。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。なお、以下で説明する適用例の構成は、あくまで一例であるため、その適用例の構成は、適宜変更可能である。
<5-1.電池パック(単電池)>
 図9は、単電池を用いた電池パックの斜視構成を表している。図10は、図9に示した電池パックのブロック構成を表している。なお、図9では、電池パックが分解された状態を示している。
 ここで説明する電池パックは、1個二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、例えば、スマートフォンに代表される電子機器などに搭載される。この電池パックは、例えば、図9に示したように、ラミネートフィルム型の二次電池である電源111と、その電源111に接続される回路基板116とを備えている。この電源111には、正極リード112および負極リード113が取り付けられている。
 電源111の両側面には、一対の粘着テープ118,119が貼り付けられている。回路基板116には、保護回路(PCM:Protection・Circuit・Module )が形成されている。この回路基板116は、タブ114を介して正極112に接続されていると共に、タブ115を介して負極リード113に接続されている。また、回路基板116は、外部接続用のコネクタ付きリード線117に接続されている。なお、回路基板116が電源111に接続された状態において、その回路基板116は、ラベル120および絶縁シート121により保護されている。このラベル120が貼り付けられることにより、回路基板116および絶縁シート121などは固定されている。
 また、電池パックは、例えば、図10に示したように、電源111と、回路基板116とを備えている。回路基板116は、例えば、制御部121と、スイッチ部122と、PTC素子123と、温度検出部124とを備えている。電源111は、正極端子125および負極端子127を介して外部と接続されることが可能であるため、その電源111は、正極端子125および負極端子127を介して充放電される。温度検出部124は、温度検出端子(いわゆるT端子)126を用いて温度を検出する。
 制御部121は、電池パック全体の動作(電源111の使用状態を含む)を制御する。この制御部121は、例えば、中央演算処理装置(CPU)およびメモリなどを含んでいる。
 この制御部121は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に充電電流が流れないようにする。また、制御部121は、例えば、充電時において大電流が流れると、スイッチ部122を切断させることにより、充電電流を遮断する。
 一方、制御部121は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に放電電流が流れないようにする。また、制御部121は、例えば、放電時において大電流が流れると、スイッチ部122を切断させることにより、放電電流を遮断する。
 なお、過充電検出電圧は、特に限定されないが、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、例えば、2.4V±0.1Vである。
 スイッチ部122は、制御部121の指示に応じて、電源111の使用状態、すなわち電源111と外部機器との接続の有無を切り換える。このスイッチ部122は、例えば、充電制御スイッチおよび放電制御スイッチなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。なお、充放電電流は、例えば、スイッチ部122のON抵抗に基づいて検出される。
 温度検出部124は、電源111の温度を測定すると共に、その温度の測定結果を制御部121に出力する。この温度検出部124は、例えば、サーミスタなどの温度検出素子を含んでいる。なお、温度検出部124により測定される温度の測定結果は、異常発熱時において制御部121が充放電制御を行う場合、残容量の算出時において制御部121が補正処理を行う場合などに用いられる。
 なお、回路基板116は、PTC素子123を備えていなくてもよい。この場合には、別途、回路基板116にPTC素子が付設されていてもよい。
<5-2.電池パック(組電池)>
 図11は、組電池を用いた電池パックのブロック構成を表している。
 この電池パックは、例えば、筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。この筐体60は、例えば、プラスチック材料などを含んでいる。
 制御部61は、電池パック全体の動作(電源62の使用状態を含む。)を制御する。この制御部61は、例えば、CPUなどを含んでいる。電源62は、2個以上の二次電池を含む組電池であり、その2個以上の二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6個の二次電池を含んでいる。
 スイッチ部63は、制御部61の指示に応じて、電源62の使用状態、すなわち電源62と外部機器との接続の有無を切り換える。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。
 電流測定部64は、電流検出抵抗70を用いて電流を測定すると共に、その電流の測定結果を制御部61に出力する。温度検出部65は、温度検出素子69を用いて温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度の測定結果は、例えば、異常発熱時において制御部61が充放電制御を行う場合、残容量の算出時において制御部61が補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定すると共に、アナログ-デジタル変換された電圧の測定結果を制御部61に供給する。
 スイッチ制御部67は、電流測定部64および電圧検出部66のそれぞれから入力される信号に応じて、スイッチ部63の動作を制御する。
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部63(充電制御スイッチ)を切断することにより、電源62の電流経路に充電電流が流れないようにする。これにより、電源62では、放電用ダイオードを介して放電だけが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れると、充電電流を遮断する。
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部63(放電制御スイッチ)を切断することにより、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電だけが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れると、放電電流を遮断する。
 なお、過充電検出電圧は、特に限定されないが、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、例えば、2.4V±0.1Vである。
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどを含んでいる。このメモリ68には、例えば、制御部61により演算された数値、製造工程段階において測定された二次電池の情報(例えば、初期状態の内部抵抗など)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握できる。
 温度検出素子69は、電源62の温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度検出素子69は、例えば、サーミスタなどを含んでいる。
 正極端子71および負極端子72のそれぞれは、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62は、正極端子71および負極端子72を介して充放電される。
<5-3.電動車両>
 図12は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。
 この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。
 この電動車両は、例えば、エンジン75およびモータ77のうちのいずれか一方を駆動源として用いて走行することが可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合には、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して、エンジン75の駆動力(回転力)が前輪86および後輪88に伝達される。なお、エンジン75の回転力が発電機79に伝達されるため、その回転力を利用して発電機79が交流電力を発生すると共に、その交流電力がインバータ83を介して直流電力に変換されるため、その直流電力が電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合には、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換されるため、その交流電力を利用してモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86および後輪88に伝達される。
 なお、制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達されるため、その回転力を利用してモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換されるため、その直流回生電力は電源76に蓄積されることが好ましい。
 制御部74は、電動車両全体の動作を制御する。この制御部74は、例えば、CPUなどを含んでいる。電源76は、1個または2個以上の二次電池を含んでいる。この電源76は、外部電源と接続されていると共に、その外部電源から電力供給を受けることにより、電力を蓄積させてもよい。各種センサ84は、例えば、エンジン75の回転数を制御すると共に、スロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサおよびエンジン回転数センサなどのうちのいずれか1種類または2種類以上を含んでいる。
 なお、電動車両がハイブリッド自動車である場合を例に挙げたが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。
<5-4.電力貯蔵システム>
 図13は、電力貯蔵システムのブロック構成を表している。
 この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続されることが可能である。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続されることが可能である。
 なお、電気機器94は、例えば、1種類または2種類以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのうちのいずれか1種類または2種類以上を含んでいる。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などのうちのいずれか1種類または2種類以上を含んでいる。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などのうちのいずれか1種類または2種類以上を含んでいる。
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御する。この制御部90は、例えば、CPUなどを含んでいる。電源91は、1個または2個以上の二次電池を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信することが可能である。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋89における電力の需要と供給とのバランスを制御することにより、高効率で安定したエネルギー供給を可能とする。
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である自家発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて電気機器94および電動車両96に供給されるため、その電気機器94が稼働可能になると共に、その電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。
 電源91に蓄積された電力は、必要に応じて使用することが可能である。このため、例えば、電気使用料が安い深夜において、集中型電力系統97から電源91に電力を蓄積しておき、電気使用料が高い日中において、その電源91に蓄積された電力を用いることができる。
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。
<5-5.電動工具>
 図14は、電動工具のブロック構成を表している。
 ここで説明する電動工具は、例えば、電動ドリルである。この電動工具は、例えば、工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。
 工具本体98は、例えば、プラスチック材料などを含んでいる。制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御する。この制御部99は、例えば、CPUなどを含んでいる。電源100は、1個または2個以上の二次電池を含んでいる。この制御部99は、動作スイッチの操作に応じて、電源100からドリル部101に電力を供給する。
 本技術の実施例に関して説明する。
(実験例1-1~1-29)
 まず、上記した第1実施形態の負極を用いた二次電池を作製すると共に、その二次電池の電池特性を評価した。
[二次電池の作製]
 以下の手順により、試験用の二次電池として、図15に示したコイン型の二次電池(リチウムイオン二次電池)を作製した。
 この二次電池では、外装缶52の内部に収容された対極53と外装カップ54の内部に収容された試験極51とがセパレータ55を介して積層されていると共に、外装缶52と外装カップ54とがガスケット56を介してかしめられている。試験極51、対極53およびセパレータ55のそれぞれには、電解液が含浸されている。
(対極の作製)
 対極53を作製する場合には、最初に、正極活物質(コバルト酸リチウム(LiCoO))98質量部と、正極結着剤(ポリフッ化ビニリデン)1質量部と、正極導電剤(ケッチェンブラック)1質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)と正極合剤とを混合したのち、自転公転式ミキサを用いて混合物を撹拌(混練)することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体(15μm厚のアルミニウム箔)の片面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥(乾燥温度=120℃)させることにより、正極活物質層を形成した。最後に、ハンドプレス機を用いて正極活物質層を圧縮成形したのち、その正極活物質層を真空乾燥させた。この場合には、正極活物質層の体積密度を3.6g/cmとした。
(試験極の作製)
 試験極51を作製する場合には、最初に、ケイ素系材料と、被覆材料(ポリアクリル酸塩であるポリアクリル酸ナトリウム(SPA))の水溶液と、溶媒(純水)とを混合した。ケイ素系材料(メジアン径D50=3μm)としては、ケイ素の単体(Si)、ケイ素の合金(SiTi0.3 )およびケイ素の化合物(SiO)を用いた。続いて、スターラを用いて混合物を撹拌(撹拌時間=1時間)することにより、ケイ素系材料および被覆材料を含む分散液を得た。続いて、スプレードライ装置(藤崎電気株式会社製)を用いて分散液を噴霧したのち、その分散液を乾燥(乾燥温度=120℃)させた。これにより、ケイ素系材料を含む中心部の表面が被覆材料を含む被覆部により被覆されたため、第2負極活物質が得られた。被覆材料の占有割合(重量%)は、表1および表2に示した通りである。
 続いて、第1負極活物質(炭素系材料であるメソカーボンマイクロビーズ(MCMB),メジアン径D50=21μm)と、上記した第2負極活物質と、負極結着剤と、負極導電剤と、常温溶融塩組成物と、必要に応じて金属塩と、溶媒とを混合したのち、自公転式ミキサを用いて混合物を撹拌(撹拌時間=15分間)した。これにより、第1負極活物質、第2負極活物質、負極結着剤および常温溶融塩組成物などを含む負極合剤スラリーが調製された。
 負極結着剤としては、ポリフッ化ビニリデン(PVDF)およびスチレンブタジエンゴム(SBR)を用いた。溶媒としては、負極結着剤としてポリフッ化ビニリデンを用いる場合には有機溶剤(N-メチル-2-ピロリドン)を用いると共に、負極結着剤としてスチレンブタジエンゴムを用いる場合には水性溶媒(純水)を用いた。
 負極導電剤としては、繊維状カーボンおよび鱗片状黒鉛を用いた。この場合には、繊維状カーボンの混合比を1重量%、鱗片状黒鉛の混合比を0.5重量%とした。
 常温溶融塩組成物としては、常温溶融塩および共重合体を用いた。この場合には、下記の18種類の常温溶融塩(塩A~塩R)を用いると共に、下記の3種類の共重合体(重A~重C)を用いた。なお、ポリフッ化ビニリデンとしては、株式会社クレハ製のクレハKFポリマーKF#9200を用いると共に、ポリアクリル酸塩としては、東亞合成株式会社製のアクリルポリマー アロンA-20Lを用いた。

 塩A:AOEMA・BF(反応基としてアクリロイル基を有する(2-アクリロイルオキシエチル)トリメチルアンモニウム・テトラフルオロボレート)
 塩B:AOEMA・TFSI(反応基としてアクリロイル基を有する(2-アクリロイルオキシエチル)トリメチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド
 塩C:BDP・TFSI(トリブチルドデシルホスホニウム・ビス(トリフルオロメタンスルホニル)イミド
 塩D:MOA・TFSI(メチルトリオクチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド
 塩E:MSPBA・TFSI(反応基としてアルコキシ基を有する(3-トリメトキシシリルプロピル)トリブチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド)
 塩F:ODMMSPA・Cl(反応基としてアルコキシ基を有するオクタデシルジメチル(3-トリメトキシシリルプロピル)アンモニウム・クロライド)
 塩G:EMI・TFSI(1-エチル-3-メチルイミダゾリウム・ビス(トリフルオロメチルスルホニル)イミド)
 塩H:BMP・TFSI(トリブチルメチルホスホニウム・ビス(トリフルオロメタンスルホニル)イミド)
 塩I:EMMP・TFSI(トリエチルメトキシメチルホスホニウム・ビス(トリフルオロメタンスルホニル)イミド)
 塩J:EBP・TFSI(トリエチルブチルホスホニウム・ビス(トリフルオロメタンスルホニル)イミド)
 塩K:BDP・FSI(トリブチルドデシルホスホニウム・ビス(フルオロスルホニル)イミド)
 塩L:BP・PF(テトラブチルホスホニウム・ヘキサフルオロホスフェート
 塩M:HDP・Cl(トリヘキシル(テトラデシル)ホスホニウム・クロライド
 塩N:ES・TFSI(トリエチルスルホニウム・ビス(トリフルオロメタンスルホニル)イミド)
 塩O:EVI・FSI(1-エチル-3-ビニルイミダゾリウム・ビス(フルオロスルホニル)イミド)
 塩P:EMI・FSI(1-エチル-3-メチルイミダゾリウム・ビス(フルオロスルホニル)イミド)
 塩Q:MEMPry・TFSI(N-(2-メトキシエチル)-N-メチルピロリジニウム・ビス(トリフルオロメタンスルホニル)イミド)
 塩R:HMPy・TFSI(1-ヘキシル-4-メチルピリジニウム・ビス(トリフルオロメタンスルホニル)イミド)
 重A:ポリフッ化ビニリデンと反応基としてアクリロイル基を有するAOEMA・TFSIとの共重合体
 重B:ポリアクリル酸ナトリウムと反応基としてヒドロキシ基を有するOHEMA・TFSI(N-オレイル-N,N-ジ(2-ヒドロキシエチル)-N-メチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミドとの共重合体
 重C:ポリアクリル酸ナトリウムと反応基としてアルコキシ基を有するMSPBA・BF((3-トリメトキシシリルプロピル)トリブチルアンモニウム・テトラフルオロボレート)との共重合体
 金属塩としては、四フッ化ホウ酸リチウム(LiBF)およびトリフルオロメタンスルホン酸リチウム(LiTFSI)を用いた。
 第1負極活物質、第2負極活物質、負極結着剤および常温溶融塩組成物のそれぞれの混合比(重量%)と、金属塩の含有量(mol/dm=(mol/l))とは、表1および表2に示した通りである。この金属塩の含有量は、常温溶融塩組成物に対する含有量である。
 表1および表2に示したように、常温溶融塩組成物として共重合体(重A~重C)を用いる場合には、反応基を有する共重合体がケイ素系材料と結合することにより、その共重合体が被覆部と同様の機能を果たすため、被覆材料を用いなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 続いて、コーティング装置を用いて負極集電体(12μm厚の銅箔)の片面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥(乾燥温度=120℃)させることにより、負極物質層を形成した。最後に、ハンドプレス機を用いて負極活物質層を圧縮成形したのち、その負極活物質層を真空乾燥させた。この場合には、負極活物質層の体積密度を1.8g/cmとした。
 負極合剤スラリーを用いて形成された負極活物質層の構成は、表3および表4に示した通りである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(電解液の調製)
 電解液を調製する場合には、溶媒(炭酸エチレンおよび炭酸プロピレン)と電解質塩(六フッ化リン酸リチウム)とを混合したのち、その混合物を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン=50:50とした。また、電解質塩の含有量を溶媒に対して1mol/dmとした。
(二次電池の組み立て)
 二次電池を組み立てる場合には、最初に、試験極51をペレット状に打ち抜くと共に、対極53をペレット状に打ち抜いた。続いて、電解液が含浸されたセパレータ55(微多孔性ポリエチレンフィルム,厚さ=5μm)を介して試験極51および対極53を積層させることにより、積層体を得た。最後に、外装カップ54の内部に積層物を収容したのち、ガスケット56を介して外装缶52および外装カップ54をかしめた。
 これにより、外装缶52および外装カップ54の内部に試験極51、対極53、セパレータ55および電解液などが収納されたため、コイン型の二次電池が完成した。
[電池特性の評価]
 二次電池の電池特性として負荷特性および発熱特性を調べたところ、表3および表4に示した結果が得られた。
(負荷特性)
 負荷特性を調べる場合には、図15に示したコイン型の二次電池を用いて負荷試験を行うことにより、容量維持率(%)を求めた。
 この場合には、最初に、電池状態を安定化させるために、常温環境中(23℃)において二次電池を1サイクル充放電させた。続いて、同環境中において二次電池を3サイクル充放電させることにより、2サイクル目の放電容量および4サイクル目の放電容量を測定した。
 1サイクル目~4サイクル目の充電時には、0.2Cの電流で電圧が4.3Vに到達するまで定電流充電したのち、4.3Vの電圧で電流が0.025Cに到達するまで定電圧充電した。1サイクル目~4サイクル目の放電時には、所定の電流で電圧が2.5Vに到達するまで定電流放電した。この場合には、1サイクル目および2サイクル目の放電時における電流を0.2C、3サイクル目における放電時の電流を0.5C、4サイクル目における放電時の電流を2Cとした。0.2Cは電池容量(理論容量)を5時間で放電しきる電流値、0.025Cは電池容量を40時間で放電しきる電流値、0.5Cは電池容量を2時間で放電しきる電流値、2Cは電池容量(理論容量)を0.5時間で放電しきる電流値である。
 最後に、容量維持率(%)=(4サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。ただし、表3および表4では、容量維持率の値として、常温溶融塩組成物を用いなかった場合(実験例1-27)の容量維持率の値を100%として規格化した値を示している。
(発熱特性)
 発熱特性を調べる場合には、以下の手順により、示差走査熱量計(DSC)を用いて二次電池の充電容量当たりにおける発熱量(mW/mAh,以下、単に「発熱量」と呼称する。)を求めた。
 この場合には、最初に、発熱量の測定に用いられる1つ目の簡易型の二次電池として、図16に示した試験用の二次電池であるコイン型の二次電池(対極リチウム金属二次電池)を作製した。この簡易型の二次電池を作製する場合には、試験極51として上記した対極53(正極活物質はコバルト酸リチウム)を用いたと共に、対極53としてリチウム金属板(厚さ=1mm)を用いたことを除いて、図15に示したコイン型の二次電池の作製手順と同様の手順を経た。
 続いて、発熱量の測定に用いられる2つ目の簡易型の二次電池として、図16に示した試験用の二次電池であるコイン型の二次電池(対極リチウム金属二次電池)を作製した。この簡易型の二次電池を作製する場合には、試験極51として上記した試験極51(負極活物質は第1負極活物質および第2負極活物質)を用いたと共に、対極53としてリチウム金属板(厚さ=1mm)を用いたことを除いて、同様の作製手順を経た。
 続いて、上記した2つの簡易型の二次電池のそれぞれを充電させた。充電条件は、上記した負荷特性を調べた場合の充電条件と同様にした。続いて、1つ目の簡易型の二次電池から充電状態の試験極51(正極活物質を含む。)を回収すると共に、2つ目の簡易型の二次電池から充電状態の試験極51(第1負極活物質および第2負極活物質を含む。)を回収した。続いて、2つの試験極51の間にセパレータ(微多孔性ポリエチレンフィルム,厚さ=5μm)を挟むことにより、その2つの試験極51がセパレータを介して互いに積層された電極サンプルを作製した。続いて、金鍍金されたSUS製の熱分析用サンプルパンの内部に電極サンプルを収容したのち、DSCを用いて電極サンプルを熱分析することにより、DSC曲線を取得した。この熱分析では、昇温速度を20℃/分とした。
 最後に、DSC曲線に基づいて270℃近傍のピークの最大値(mW)を求めたのち、その最大値を充電容量(mAh)で割ることにより、発熱量(mW/mAh)を算出した。ただし、ここで説明する「充電容量」とは、上記した負荷試験時における2サイクル目の充電容量である。また、表3および表4では、発熱量の値として、常温溶融塩組成物を用いなかった場合(実験例1-27)の発熱量の値を100%として規格化した値を示している。
[考察]
 表3および表4に示したように、容量維持率および発熱量のそれぞれは、常温溶融塩組成物の有無などに応じて大きく変動した。
 具体的には、炭素系材料とケイ素系材料との混合系において常温溶融塩組成物を用いた場合(実験例1-1~1-26)には、その混合系において常温溶融塩組成物を用いなかった場合(実験例1-27,1-28)と比較して、容量維持率が増加すると共に、発熱量が減少した。
 特に、炭素系材料とケイ素系材料との混合系において常温溶融塩組成物(常温溶融塩)を用いた場合(実験例1-1~1-21)には、その常温溶融塩組成物が反応基を有していると(実験例1-1~1-3,1-6,1-7)、発熱量がより減少した。
 なお、炭素系材料の単独系において常温溶融塩組成物を用いた場合(実験例1-29)には、炭素系材料とケイ素系材料との混合系において常温溶融塩組成物を用いなかった場合(実験例1-27)と比較して、容量維持率は大幅に増加したが、発熱量は大幅に増加した。
(実験例2-1~2-16)
 次に、上記した第2実施形態の負極を用いた二次電池を作製すると共に、その二次電池の電池特性を評価した。
[二次電池の作製]
 以下で説明することを除いて同様の手順により、図15に示したコイン型の二次電池(リチウムイオン二次電池)を作製した。
 試験極51を作製する場合には、最初に、ケイ素系材料と、被覆材料の水溶液と、常温溶融塩組成物と、必要に応じて金属塩(四フッ化ホウ酸リチウム)および導電性材料(シングルウォールカーボンナノチューブ(CNT),OCSiAl社製のTUBALL(登録商標))と、溶媒とを混合した。ケイ素系材料(メジアン径D50=3μm)としては、ケイ素の単体(Si)およびケイ素の化合物(SiO)を用いた。被覆材料として、ポリビニルピロリドン(PVP)、ポリフッ化ビニリデン(PVDF)およびポリアクリル酸塩であるポリアクリル酸ナトリウム(SPA)を用いた。溶媒としては、被覆材料としてポリビニルピロリドンおよびポリフッ化ビニリデンを用いる場合には有機溶剤(N-メチル-2-ピロリドン)を用いると共に、被覆材料としてポリアクリル酸ナトリウムを用いる場合には水性溶媒(純水)を用いた。続いて、スターラを用いて混合物を撹拌(撹拌時間=1時間)することにより、ケイ素系材料、被覆材料および常温溶融塩組成物などを含む分散液を得た。続いて、スプレードライ装置を用いて分散液を噴霧したのち、その分散液を乾燥(乾燥温度=120℃)させた。これにより、ケイ素系材料を含む中心部の表面が被覆材料および常温溶融塩組成物などを含む被覆部により被覆されたため、第2負極活物質が得られた。
 常温溶融塩組成物および導電性材料のそれぞれの含有量(重量%)と、金属塩の含有量(mol/dm=(mol/l))と、被覆材料の占有割合(重量%)とは、表5および表6に示した通りである。この常温溶融塩組成物の含有量は、中心部の重量と被覆部の重量との総和に対する常温溶融塩組成物の重量の割合であると共に、導電性材料の含有量は、中心部の重量と被覆部の重量との総和に対する導電性材料の重量の割合である。ここで説明した被覆部の重量は、被覆材料の占有割合を算出するために用いられる被覆部の重量と同様に、被覆材料の重量と常温溶融塩組成物の重量と導電性材料の重量との総和である。金属塩の含有量は、常温溶融塩組成物に対する含有量である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 続いて、第1負極活物質と、上記した第2負極活物質と、負極結着剤と、負極導電剤と、必要に応じて追加の常温溶融塩組成物と、溶媒とを混合したのち、自公転式ミキサを用いて混合物を撹拌(撹拌時間=15分間)した。第1負極活物質(メジアン径D50=21μm)としては、炭素材料であるメソカーボンマイクロビーズ(MCMB)および天然黒鉛(NGr)を用いた。これにより、第1負極活物質、第2負極活物質および負極結着剤などを含む負極合剤スラリーが得られた。
 負極結着剤としては、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸ナトリウム(SPA)およびポリイミド(PI)を用いた。溶媒としては、負極結着剤としてポリフッ化ビニリデンを用いる場合には有機溶剤(N-メチル-2-ピロリドン)を用いると共に、負極結着剤としてスチレンブタジエンゴム、ポリアクリル酸ナトリウムおよびポリイミドを用いる場合には水性溶媒(純水)を用いた。
 負極導電剤としては、繊維状カーボンおよび鱗片状黒鉛を用いた。この場合には、繊維状カーボンの混合比を1重量%、鱗片状黒鉛の混合比を0.5重量%とした。
 常温溶融塩組成物としては、常温溶融塩および共重合体を用いた。この場合には、上記した2種類の常温溶融塩(塩Iおよび塩P)および下記の1種類の常温溶融塩(塩S)を用いると共に、上記した2種類の共重合体(重Aおよび重B)を用いた。追加の常温溶融塩組成物としては、上記した常温溶融塩(塩A)を用いた。

 塩S:OHEMA・TFSI(反応基としてヒドロキシ基を有するN-オレイル-N,N-ジ(2-ヒドロキシエチル)-N-メチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミド)
 第1負極活物質、第2負極活物質、負極結着剤および追加の常温溶融塩組成物のそれぞれの混合比(重量%)は、表5および表6に示した通りである。
 表5および表6に示したように、常温溶融塩組成物として共重合体(重Aおよび重B)を用いる場合には、反応基を有する共重合体がケイ素系材料と結合することにより、その共重合体が被覆部と同様の機能を果たすため、必要に応じて、被覆材料を用いなかった。
 負極合剤スラリーを用いて形成された負極活物質層の構成は、表7および表8に示した通りである。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
[電池特性の評価]
 二次電池の電池特性として負荷特性および発熱特性を調べたところ、表7および表8に示した結果が得られた。負荷特性および発熱特性のそれぞれを調べる手順は、上記した通りである。ただし、表7および表8では、表3および表4と同様に、容量維持率の値として規格化された値を示していると共に、発熱量の値として規格化された値を示している。
[考察]
 表7および表8に示したように、被覆部などが常温溶融塩組成物を含んでいても(実験例2-1~2-14)、その被覆部などが常温溶融塩組成物を含んでいない場合(実験例2-15,2-16)と比較して、容量維持率が増加すると共に、発熱量が減少した。
 特に、被覆部などが常温溶融塩組成物を含んでいる場合には、以下の傾向が得られた。第1に、被覆部が金属塩および導電性材料を含んでいると(実験例2-6,2-7)には、容量維持率がより増加した。第2に、追加の常温溶融塩組成物を用いると(実験例2-7)、発熱量がより減少した。第3に、被覆部が被覆材料と共に常温溶融塩組成物を含んでいると(実験例2-14)、高い容量維持率を維持しながら、発熱量が大幅に減少した。
[総括]
 表1~表8に示したように、負極が第1負極活物質(炭素系材料)および第2負極活物質(ケイ素系材料)と共に常温溶融塩組成物を含んでいると、負荷特性および発熱特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。
 以上、実施形態および実施例を挙げながら本技術を説明したが、その本技術に関しては、実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。
 具体的には、円筒型の二次電池、ラミネートフィルム型の二次電池およびコイン型の二次電池に関して説明したが、これに限られない。例えば、角型の二次電池などでもよい。
 また、電池素子が巻回構造を有する場合に関して説明したが、これに限られない。例えば、電池素子が積層構造などの他の構造を有していてもよい。
 また、リチウムイオン二次電池に関して説明したが、これに限られない。例えば、リチウムを吸蔵および放出することが可能な負極活物質の容量を正極の容量よりも小さくすることにより、リチウムの吸蔵現象およびリチウムの放出現象に起因する容量とリチウムの析出現象およびリチウムの溶解現象に起因する容量との和に基づいて負極の容量が得られる二次電池でもよい。
 また、電極反応物質としてリチウムを用いた二次電池に関して説明したが、これに限られない。電極活物質は、例えば、ナトリウムおよびカリウムどの長周期型周期表における他の1族の元素でもよいし、マグネシウムおよびカルシウムなどの長周期型周期表における2族の元素でもよいし、アルミニウムなどの他の軽金属でもよい。
 また、例えば、本技術の二次電池用電解液は、二次電池に限定されず、他の電気化学デバイスに適用されてもよい。他の電気化学デバイスは、例えば、キャパシタなどである。
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は、以下のような構成を取ることも可能である。
(1)
 正極と、
 炭素を構成元素として含む材料を含有する第1負極活物質と、ケイ素を構成元素として含む材料を含有する第2負極活物質と、常温溶融塩組成物と、を含む負極と、
 電解液と
 を備えた、二次電池。
(2)
 前記常温溶融塩組成物は、常温溶融塩および前記常温溶融塩と高分子化合物との共重合体のうちの少なくとも一方を含み、
 前記常温溶融塩は、第四級アンモニウムカチオン、第四級ホスホニウムカチオン、第三級スルホニウムカチオン、イミダゾリウムカチオン、ピリジニウムカチオンおよびピロリジニウムカチオンのうちの少なくとも1種を含み、
 前記高分子化合物は、ポリアクリル酸塩、ポリアクリル酸、ポリイミドおよびポリフッ化ビニリデンのうちの少なくとも1種を含む、
 上記(1)に記載の二次電池。
(3)
 前記常温溶融塩は、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフェートアニオンおよびクロライドアニオンのうちの少なくとも1種を含む、
 上記(1)または(2)に記載の二次電池。
(4)
 前記常温溶融塩組成物は、アルコキシ基、ヒドロキシ基、アクリロイル基およびメタクリロイル基のうちの少なくとも1種を含む、
 上記(1)ないし(3)のいずれかに記載の二次電池。
(5)
 前記負極は、さらに、金属塩を含む、
 上記(1)ないし(4)のいずれかに記載の二次電池。
(6)
 前記負極は、さらに、負極結着剤を含み、
 前記負極結着剤は、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリイミド、ポリアクリル酸塩およびポリアクリル酸のうちの少なくとも1種を含む、
 上記(1)ないし(5)のいずれかに記載の二次電池。
(7)
 前記第2負極活物質は、
 前記ケイ素を構成元素として含む材料を含有する中心部と、
 前記中心部の表面に設けられると共に、ポリアクリル酸塩、ポリアクリル酸、ポリフッ化ビニリデンおよびポリビニルピロリドンのうちの少なくとも1種を含有する被覆部と
 を含む、上記(1)ないし(6)のいずれかに記載の二次電池。
(8)
 前記被覆部は、前記常温溶融塩組成物を含有する、
 上記(7)に記載の二次電池。
(9)
 前記常温溶融塩組成物は、前記ケイ素を構成元素として含む材料と結合している、
 上記(8)に記載の二次電池。
(10)
 前記負極は、さらに、金属塩を含み、
 前記被覆部は、前記金属塩を含有する、
 上記(8)または(9)に記載の二次電池。
(11)
 前記負極は、さらに、負極結着剤を含み、
 前記負極結着剤は、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリイミド、ポリアクリル酸塩およびポリアクリル酸のうちの少なくとも1種を含み、
 前記常温溶融塩組成物は、前記負極結着剤と結合している、
 上記(8)ないし(10)のいずれかに記載の二次電池。
(12)
 リチウムイオン二次電池である、
 上記(1)ないし(11)のいずれかに記載の二次電池。
(13)
 炭素を構成元素として含む材料を含有する第1負極活物質と、
 ケイ素を構成元素として含む材料を含有する第2負極活物質と、
 常温溶融塩組成物と
 を含む、二次電池用負極。
(14)
 上記(1)ないし(12)のいずれかに記載の二次電池と、
 前記二次電池の動作を制御する制御部と、
 前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
 を備えた、電池パック。
(15)
 上記(1)ないし(12)のいずれかに記載の二次電池と、
 前記二次電池から供給された電力を駆動力に変換する変換部と、
 前記駆動力に応じて駆動する駆動部と、
 前記二次電池の動作を制御する制御部と
 を備えた、電動車両。
(16)
 上記(1)ないし(12)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される1または2以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(17)
 上記(1)ないし(12)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される可動部と
 を備えた、電動工具。
(18)
 上記(1)ないし(12)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。

Claims (18)

  1.  正極と、
     炭素を構成元素として含む材料を含有する第1負極活物質と、ケイ素を構成元素として含む材料を含有する第2負極活物質と、常温溶融塩組成物と、を含む負極と、
     電解液と
     を備えた、二次電池。
  2.  前記常温溶融塩組成物は、常温溶融塩および前記常温溶融塩と高分子化合物との共重合体のうちの少なくとも一方を含み、
     前記常温溶融塩は、第四級アンモニウムカチオン、第四級ホスホニウムカチオン、第三級スルホニウムカチオン、イミダゾリウムカチオン、ピリジニウムカチオンおよびピロリジニウムカチオンのうちの少なくとも1種を含み、
     前記高分子化合物は、ポリアクリル酸塩、ポリアクリル酸、ポリイミドおよびポリフッ化ビニリデンのうちの少なくとも1種を含む、
     請求項1記載の二次電池。
  3.  前記常温溶融塩は、ビス(トリフルオロメタンスルホニル)イミドアニオン、ビス(フルオロスルホニル)イミドアニオン、テトラフルオロボレートアニオン、ヘキサフルオロホスフェートアニオンおよびクロライドアニオンのうちの少なくとも1種を含む、
     請求項1記載の二次電池。
  4.  前記常温溶融塩組成物は、アルコキシ基、ヒドロキシ基、アクリロイル基およびメタクリロイル基のうちの少なくとも1種を含む、
     請求項1記載の二次電池。
  5.  前記負極は、さらに、金属塩を含む、
     請求項1記載の二次電池。
  6.  前記負極は、さらに、負極結着剤を含み、
     前記負極結着剤は、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリイミド、ポリアクリル酸塩およびポリアクリル酸のうちの少なくとも1種を含む、
     請求項1記載の二次電池。
  7.  前記第2負極活物質は、
     前記ケイ素を構成元素として含む材料を含有する中心部と、
     前記中心部の表面に設けられると共に、ポリアクリル酸塩、ポリアクリル酸、ポリフッ化ビニリデンおよびポリビニルピロリドンのうちの少なくとも1種を含有する被覆部と
     を含む、請求項1記載の二次電池。
  8.  前記被覆部は、前記常温溶融塩組成物を含有する、
     請求項7記載の二次電池。
  9.  前記常温溶融塩組成物は、前記ケイ素を構成元素として含む材料と結合している、
     請求項8記載の二次電池。
  10.  前記負極は、さらに、金属塩を含み、
     前記被覆部は、前記金属塩を含有する、
     請求項8記載の二次電池。
  11.  前記負極は、さらに、負極結着剤を含み、
     前記負極結着剤は、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリイミド、ポリアクリル酸塩およびポリアクリル酸のうちの少なくとも1種を含み、
     前記常温溶融塩組成物は、前記負極結着剤と結合している、
     請求項8記載の二次電池。
  12.  リチウムイオン二次電池である、
     請求項1記載の二次電池。
  13.  炭素を構成元素として含む材料を含有する第1負極活物質と、
     ケイ素を構成元素として含む材料を含有する第2負極活物質と、
     常温溶融塩組成物と
     を含む、二次電池用負極。
  14.  二次電池と、
     前記二次電池の動作を制御する制御部と、
     前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
     を備え、
     前記二次電池は、
     正極と、
     炭素を構成元素として含む材料を含有する第1負極活物質と、ケイ素を構成元素として含む材料を含有する第2負極活物質と、常温溶融塩組成物と、を含む負極と、
     電解液と
     を備えた、電池パック。
  15.  二次電池と、
     前記二次電池から供給された電力を駆動力に変換する変換部と、
     前記駆動力に応じて駆動する駆動部と、
     前記二次電池の動作を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     炭素を構成元素として含む材料を含有する第1負極活物質と、ケイ素を構成元素として含む材料を含有する第2負極活物質と、常温溶融塩組成物と、を含む負極と、
     電解液と
     を備えた、電動車両。
  16.  二次電池と、
     前記二次電池から電力を供給される1または2以上の電気機器と、
     前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     炭素を構成元素として含む材料を含有する第1負極活物質と、ケイ素を構成元素として含む材料を含有する第2負極活物質と、常温溶融塩組成物と、を含む負極と、
     電解液と
     を備えた、電力貯蔵システム。
  17.  二次電池と、
     前記二次電池から電力を供給される可動部と
     を備え、
     前記二次電池は、
     正極と、
     炭素を構成元素として含む材料を含有する第1負極活物質と、ケイ素を構成元素として含む材料を含有する第2負極活物質と、常温溶融塩組成物と、を含む負極と、
     電解液と
     を備えた、電動工具。
  18.  二次電池を電力供給源として備え、
     前記二次電池は、
     正極と、
     炭素を構成元素として含む材料を含有する第1負極活物質と、ケイ素を構成元素として含む材料を含有する第2負極活物質と、常温溶融塩組成物と、を含む負極と、
     電解液と
     を備えた、電子機器。
PCT/JP2018/027613 2017-07-24 2018-07-24 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 WO2019022044A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880049127.9A CN110959208B (zh) 2017-07-24 2018-07-24 二次电池用负极、二次电池、电池包、电动车辆、电力储存系统、电动工具以及电子设备
JP2019532620A JP7024791B2 (ja) 2017-07-24 2018-07-24 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US16/751,504 US11404722B2 (en) 2017-07-24 2020-01-24 Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-142937 2017-07-24
JP2017142937 2017-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/751,504 Continuation US11404722B2 (en) 2017-07-24 2020-01-24 Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device

Publications (1)

Publication Number Publication Date
WO2019022044A1 true WO2019022044A1 (ja) 2019-01-31

Family

ID=65041202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027613 WO2019022044A1 (ja) 2017-07-24 2018-07-24 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Country Status (4)

Country Link
US (1) US11404722B2 (ja)
JP (1) JP7024791B2 (ja)
CN (1) CN110959208B (ja)
WO (1) WO2019022044A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210083273A1 (en) * 2017-10-16 2021-03-18 Lg Chem, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
WO2023170457A1 (en) 2022-03-11 2023-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Estimating obstacle materials from floor plans

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218385A (ja) * 2006-09-19 2008-09-18 Sony Corp 電極およびその形成方法ならびに電池
JP2013168254A (ja) * 2012-02-14 2013-08-29 Sony Corp 電池、バッテリユニット、バッテリモジュール、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2014139920A (ja) * 2012-12-18 2014-07-31 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極及びその製造方法、ならびにリチウムイオン二次電池
JP2015090845A (ja) * 2013-11-07 2015-05-11 Tdk株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2015525437A (ja) * 2012-05-25 2015-09-03 ネグゼオン・リミテッドNexeon Ltd 複合粒子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077107A (ja) 2004-09-09 2006-03-23 Japan Carlit Co Ltd:The ゲル状電解質及びその製造方法
US7964299B2 (en) * 2005-10-18 2011-06-21 Enerdel, Inc. Method of recycling a battery
WO2008035707A1 (fr) 2006-09-19 2008-03-27 Sony Corporation Electrode, procede de fabrication associe et batterie
JP4930403B2 (ja) 2008-02-13 2012-05-16 ソニー株式会社 非水電解質電池およびその製造方法
US8158304B2 (en) * 2008-07-22 2012-04-17 Institute Of Nuclear Energy Research Formulation of nano-scale electrolyte suspensions and its application process for fabrication of solid oxide fuel cell-membrane electrode assembly (SOFC-MEA)
JP5141572B2 (ja) * 2009-01-22 2013-02-13 ソニー株式会社 非水電解液二次電池
JP5626531B2 (ja) 2011-04-19 2014-11-19 ダイソー株式会社 非水電解質二次電池
JP2014060143A (ja) * 2012-08-22 2014-04-03 Sony Corp 正極活物質、正極および電池、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
KR20140079281A (ko) * 2012-12-18 2014-06-26 신에쓰 가가꾸 고교 가부시끼가이샤 비수전해질 2차전지용 부극과 그 제조방법 및 리튬 이온 2차전지
JP6410021B2 (ja) 2013-07-19 2018-10-24 パイオトレック株式会社 正極および/または負極に使用する導電性を有する結合剤
US10629912B2 (en) * 2013-11-29 2020-04-21 Murata Manufacturing Co., Ltd. Electrode and battery
JP6706461B2 (ja) * 2014-07-18 2020-06-10 株式会社村田製作所 二次電池用負極活物質、二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2016048628A (ja) 2014-08-27 2016-04-07 株式会社豊田自動織機 シリコン材料−炭素層−カチオン性ポリマー層複合体
JP6239476B2 (ja) * 2014-09-25 2017-11-29 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
WO2018146865A1 (ja) * 2017-02-09 2018-08-16 株式会社村田製作所 二次電池、電池パック、電動車両、電動工具および電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218385A (ja) * 2006-09-19 2008-09-18 Sony Corp 電極およびその形成方法ならびに電池
JP2013168254A (ja) * 2012-02-14 2013-08-29 Sony Corp 電池、バッテリユニット、バッテリモジュール、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2015525437A (ja) * 2012-05-25 2015-09-03 ネグゼオン・リミテッドNexeon Ltd 複合粒子
JP2014139920A (ja) * 2012-12-18 2014-07-31 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極及びその製造方法、ならびにリチウムイオン二次電池
JP2015090845A (ja) * 2013-11-07 2015-05-11 Tdk株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210083273A1 (en) * 2017-10-16 2021-03-18 Lg Chem, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
US11837718B2 (en) * 2017-10-16 2023-12-05 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
WO2023170457A1 (en) 2022-03-11 2023-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Estimating obstacle materials from floor plans

Also Published As

Publication number Publication date
JP7024791B2 (ja) 2022-02-24
US11404722B2 (en) 2022-08-02
US20200161701A1 (en) 2020-05-21
CN110959208B (zh) 2023-12-08
JPWO2019022044A1 (ja) 2020-07-02
CN110959208A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
JP6908058B2 (ja) 二次電池、電池パック、電動車両、電動工具および電子機器
WO2017026269A1 (ja) 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US11329277B2 (en) Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device
US11695119B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
WO2017026268A1 (ja) 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP7056638B2 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6516021B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6536690B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US11404722B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device
US20190348670A1 (en) Anode for secondary battery, secondary battery, battery pack, electric motor vehicle, power storage system, electric tool, and electronic device
WO2019013027A1 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6597793B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6257087B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6849066B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2019017029A1 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837638

Country of ref document: EP

Kind code of ref document: A1