WO2019021755A1 - 光学体 - Google Patents

光学体 Download PDF

Info

Publication number
WO2019021755A1
WO2019021755A1 PCT/JP2018/025115 JP2018025115W WO2019021755A1 WO 2019021755 A1 WO2019021755 A1 WO 2019021755A1 JP 2018025115 W JP2018025115 W JP 2018025115W WO 2019021755 A1 WO2019021755 A1 WO 2019021755A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical
optical layer
meth
optical body
Prior art date
Application number
PCT/JP2018/025115
Other languages
English (en)
French (fr)
Inventor
俊紀 白岩
智弘 西川
栄治 太田
勉 長浜
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2019021755A1 publication Critical patent/WO2019021755A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors

Definitions

  • the present invention relates to an optical body.
  • the optical body described in Patent Document 1 is an optical body 100 to be attached to an adherend (external support 107) such as window glass, wall, etc., and includes an inorganic layer 101 and an inorganic layer.
  • a first optical layer 102 formed on one surface (a surface opposite to the external support 107) of the optical fiber 101 and a second optical layer 102 formed on the other surface (a surface on the external support 107 side) of the inorganic layer 101
  • the optical body 100 has sufficient transparency.
  • the second base material 105 formed between the outer support 107 such as window glass and wall and the second optical layer 103 is omitted. (See, for example, Patent Document 2).
  • the present invention omits the second base material 105 formed between the outer support 107 and the second optical layer 103 in the optical body of FIG. 11, and the second optical layer 103 and the adhesive layer 106 are omitted. And the adhesive layer 106 is attached to the external support 107, the interlayer adhesion (especially the inorganic layer 101, the first one) in the 180 ° peel test which is an evaluation item of the glass shatterproof film in JIS A 5759. It has been found that there is a problem that the adhesion with the optical layer 102 is insufficient.
  • An object of the present invention is to achieve the following objects. That is, an object of the present invention is to provide an optical body which is excellent in the adhesion between the first optical layer and the inorganic layer and is also applicable to a glass shatterproof film.
  • the means for solving the problems are as follows. That is, ⁇ 1> A first optical layer having an irregular surface, An inorganic layer disposed on the uneven surface of the first optical layer; A second optical layer having another uneven surface on the inorganic layer side and disposed so as to embed the unevenness on the other uneven surface; Have The first optical layer contains a polyacrylate having a cyclic structure in a side chain, The elongation at break of the first optical layer is 30% or more. It is an optical body characterized by the above. ⁇ 2> The optical body according to ⁇ 1>, wherein the cyclic structure contains nitrogen or oxygen as an element constituting a ring.
  • ⁇ 3> The optical body according to any one of ⁇ 1> to ⁇ 2>, wherein a peeling force in a 180 ° peel test defined in JIS A 5759 is 8 N / 25 mm or more.
  • the polyacrylate is a polymer of a radically polymerizable vinyl group-containing substance,
  • the radically polymerizable vinyl group-containing material contains (meth) acrylate having a cyclic structure of 40% by mass or more. It is an optical body in any one of said ⁇ 1> to ⁇ 3>.
  • ⁇ 5> The optical body according to any one of ⁇ 1> to ⁇ 4>, wherein the elongation at break of the second optical layer is 60% or more.
  • ⁇ 6> The optical body according to any one of ⁇ 1> to ⁇ 5>, further including an adhesive layer in contact with the second optical layer.
  • ⁇ 7> The optical body according to any one of ⁇ 1> to ⁇ 5>, wherein the second optical layer is used in contact with the adhesive layer.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in the adhesiveness of a 1st optical layer and an inorganic layer, and can provide the optical body applicable also to a glass scattering prevention film.
  • FIG. 1 is a cross-sectional view of an example of an optical body according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an example of an optical body according to a second embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the minimum value of the thickness of the second optical layer.
  • FIG. 4 is a perspective view showing the relationship between incident light incident on an optical body having wavelength selective reflectivity and reflected light reflected by the optical body.
  • FIG. 5A is a perspective view showing an example of the shape of a structure formed in the first optical layer.
  • FIG. 5B is a partial cross-sectional view showing a configuration example of an optical body provided with the first optical layer on which the structure shown in FIG. 5A is formed.
  • FIG. 5A is a perspective view showing an example of the shape of a structure formed in the first optical layer.
  • FIG. 5B is a partial cross-sectional view showing a configuration example of an optical body provided with the first optical layer on which the structure shown
  • FIG. 6A is a plan view showing a configuration example of a first optical layer in an optical body according to an embodiment of the present invention.
  • FIG. 6B is a cross-sectional view of the first optical layer shown in FIG. 6A taken along the line BB.
  • FIG. 7A is a process diagram for describing an example of a method of manufacturing an optical body according to an embodiment of the present invention (part 1).
  • FIG. 7: B is process drawing for demonstrating an example of the manufacturing method of the optical body which concerns on one Embodiment of this invention (the 2).
  • FIG. 7: C is process drawing for demonstrating an example of the manufacturing method of the optical body which concerns on one Embodiment of this invention (the 3).
  • FIG. 8A is a process diagram for describing an example of a method of manufacturing an optical body according to an embodiment of the present invention (part 4).
  • FIG. 8: B is process drawing for demonstrating an example of the manufacturing method of the optical body which concerns on one Embodiment of this invention (the 5).
  • FIG. 8C is a process diagram for describing an example of a method of manufacturing an optical body according to an embodiment of the present invention (part 6).
  • FIG. 9A is a process diagram for describing an example of a method of manufacturing an optical body according to an embodiment of the present invention (part 7).
  • FIG. 9: B is process drawing for demonstrating an example of the manufacturing method of the optical body which concerns on one Embodiment of this invention (the 8).
  • FIG. 8: B is process drawing for demonstrating an example of the manufacturing method of the optical body which concerns on one Embodiment of this invention (the 8).
  • FIG. 9C is a process diagram for describing an example of a method of manufacturing an optical body according to an embodiment of the present invention (part 9).
  • FIG. 9D is a process diagram for describing an example of a method of manufacturing an optical body according to an embodiment of the present invention (part 10).
  • FIG. 10 is a schematic view showing the shape of the structure of the first optical layer in the example.
  • FIG. 11 is a cross-sectional view showing an example in which a conventional optical body is bonded to an adherend (external support).
  • (meth) acrylate means one or two selected from acrylate and methacrylate.
  • “monofunctional (meth) acrylate” means “(meth) acrylate having one radically polymerizable vinyl functional group”
  • “polyfunctional (meth) acrylate” means “monofunctional (meth) acrylate”.
  • (meth) acrylate having a plurality of radically polymerizable vinyl functional groups” is meant.
  • the optical body of the present invention has at least a first optical layer, an inorganic layer, and a second optical layer, and further has other members as required.
  • the second optical layer is used in contact with the adhesive layer.
  • the present inventors omit the second base disposed between the outer support and the second optical layer in the optical body, and laminate the second optical layer and the adhesive layer in contact with each other,
  • the interlayer adhesion in particular, the adhesion between the inorganic layer and the first optical layer
  • the 180 ° peel test which is an evaluation item of the glass shatterproof film in JIS A 5759.
  • the present inventors diligently studied to solve the above problem.
  • the above problem can be solved by introducing a specific molecular structure into the resin constituting the first optical layer and controlling the elongation rate of the first optical layer, and the present invention has been completed. It reached.
  • a PET (polyethylene terephthalate) film as a base is interposed between the second optical layer and the adhesive layer.
  • PET polyethylene terephthalate
  • the second optical layer and the adhesive layer are used in contact with each other and laminated, and the substrate is omitted.
  • the absence of PET as a substrate adversely affects the low adhesion between the first optical layer and the inorganic layer, which is an evaluation item of the glass shatterproof film according to JIS A 5759, which is 180 °.
  • the present inventors are excellent in the adhesiveness of a 1st optical layer and an inorganic layer, and the optical which can be applied also to a glass scattering prevention film by examining from the composition side and physical property side of a 2nd optical layer. It has been found that a body can be obtained, and the present invention has been completed.
  • FIG. 1 is a cross-sectional view of an example of an optical body according to a first embodiment of the present invention.
  • the optical body 11 includes a first optical layer 2 having an uneven surface 2a, an inorganic layer 1 disposed on the uneven surface 2a of the first optical layer 2, and other unevenness on the inorganic layer 1 side.
  • a second optical layer 3 having a surface 3a and disposed so as to bury the unevenness in another uneven surface 3a, and a second optical layer 3 disposed on a surface 2b opposite to the uneven surface 2a of the first optical layer 2 1 and the base material 4 are provided.
  • the optical body 11 has a second base material (second base material 105 in FIG. 11) disposed on the surface 3 b (external support side) facing the other uneven surface 3 a of the second optical layer 3. Instead, the second optical layer 3 is used in contact with the adhesive layer.
  • FIG. 2 is a cross-sectional view of an example of an optical body according to a second embodiment of the present invention.
  • the optical body 11 includes a first optical layer 2 having an uneven surface 2 a, an inorganic layer 1 disposed on the uneven surface 2 a of the first optical layer 2, and other unevenness on the inorganic layer 1 side.
  • a second optical layer 3 having a surface 3a and disposed so as to bury the unevenness in another uneven surface 3a, and a second optical layer 3 disposed on a surface 2b opposite to the uneven surface 2a of the first optical layer 2
  • the first substrate 4 and the adhesive layer 5 in contact with the second optical layer 3 are provided.
  • the optical body 11 does not have the second base material (reference numeral 105 in FIG. 11) disposed on the surface 3 b (external support side) opposed to the other uneven surface 3 a of the second optical layer 3.
  • the first optical layer has an uneven surface.
  • the first optical layer supports and protects the inorganic layer formed on the uneven surface.
  • one surface is a smooth surface, and the other surface is an uneven surface (first surface).
  • the inorganic layer is disposed on the uneven surface (first surface).
  • the first optical layer satisfies the following (1) and (2).
  • the first optical layer contains a polyacrylate having a cyclic structure in the side chain.
  • the elongation at break of the first optical layer is 30% or more. In the present invention, it is considered that (1) and (2) comprehensively contribute to the improvement of the adhesion between the first optical layer and the inorganic layer.
  • the polyacrylate has a cyclic structure in the side chain.
  • the said polyacrylate is a polymer of the radically polymerizable vinyl group containing substance mentioned later.
  • the cyclic structure may be a single ring or a multiple ring.
  • the cyclic structure may contain nitrogen or oxygen as an element constituting the ring.
  • an aromatic ring, an aliphatic ring, an aromatic heterocyclic ring, an aliphatic heterocyclic ring etc. are mentioned, for example.
  • aromatic ring a benzene ring, a naphthalene ring, an anthracene ring etc. are mentioned, for example.
  • Examples of the aliphatic ring include a cyclopentane ring and a cyclohexane ring.
  • the aliphatic ring may have a bridged structure, for example, a bridged cycloalkane structure (eg, norbornane structure, bicyclo [2.2.2] octane structure, adamantane structure, tricyclodecane structure, etc. Tetracyclododecane structure and the like), bridged cycloalkene structure (for example, norbornene structure, bicyclo [2.2.2] octene structure, tricyclodecene structure, tetracyclododecene structure and the like) and the like can be mentioned.
  • a bridged cycloalkane structure eg, norbornane structure, bicyclo [2.2.2] octane structure, adamantane structure, tricyclodecane structure, etc. Tetracyclododecane structure and
  • aromatic heterocyclic ring examples include furan ring, pyrrole ring, thiophene ring, pyridine ring, thiazole ring and benzothiazole ring.
  • Examples of the aliphatic heterocyclic ring include an oxetane ring, a tetrahydrofuran ring, a piperidine ring, and a morpholine ring.
  • the aliphatic heterocyclic ring may have a bridge structure, and examples thereof include an oxa norbornane structure, a thia norbornane structure, an aza norbornane structure, an oxa norbornene structure, a thia norbornene structure, and an aza norbornene structure.
  • the polyacrylate can be said to be a cured product of a photocurable resin composition.
  • the photocurable resin composition contains at least a radically polymerizable vinyl group-containing substance, and further contains other components such as a photoradical generator as required.
  • the radically polymerizable vinyl group-containing substance is not particularly limited as long as it is a substance having a radically polymerizable vinyl group, and can be appropriately selected according to the purpose.
  • a monofunctional (meth) acrylate compound, multiple Functional (meth) acrylate monomers, phosphoric acid group-containing (meth) acrylates and the like can be mentioned.
  • the first optical layer and the second optical layer are preferably made of, for example, cured products of different photocurable resin compositions, but from the viewpoint of refractive index, a base resin (that is, a difunctional urethane ( It is preferable that the types of the meta) acrylate and the monofunctional (meth) acrylate compound are the same.
  • the monofunctional (meta) which has an alicyclic monofunctional (meth) acrylate monomer and a nitrogen-containing heterocyclic ring And the like) acrylate monomers, linear monofunctional (meth) acrylate monomers, monofunctional (meth) acrylate monomers having a hydroxyl group, monofunctional (meth) acrylate monomers having an alkylene oxide chain, and the like. These may be used alone or in combination of two or more.
  • monofunctional (meth) acrylate monomers having a cyclic structure such as alicyclic monofunctional (meth) acrylate monomers and monofunctional (meth) acrylate monomers having a nitrogen-containing heterocyclic ring in terms of hardness adjustment, particularly And monofunctional (meth) acrylate monomers having a cyclic structure having a glass transition temperature Tg of 80 ° C. or higher.
  • Alicyclic monofunctional (meth) acrylate monomer there is no restriction
  • (meth) acryloyl morpholine isopropyl (meth) acrylamide, hydroxyethyl ( Examples thereof include meta) acrylamide, N- (meth) acryloyloxyethyl hexahydrophthalimide, pentamethyl piperidyl (meth) acrylate and the like. These may be used alone or in combination of two or more. Among these, acryloyl morpholine is preferable.
  • linear monofunctional (meth) acrylate monomer There is no restriction
  • Monofunctional (meth) acrylate monomer having a hydroxyl group there is no restriction
  • Monofunctional (meth) acrylate monomer having alkylene oxide chain There is no restriction
  • a cyclic crosslinking agent is more preferable.
  • the polyfunctional (meth) acrylate monomer the cured product can be made heat resistant without largely changing the storage elastic modulus at room temperature.
  • the optical body becomes brittle and it becomes difficult to produce the optical body by a roll-to-roll process or the like.
  • the cyclic crosslinking agent is not particularly limited and may be appropriately selected according to the purpose.
  • Examples thereof include dioxane glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, ethylene oxide modified isocyanuric acid di
  • Examples thereof include (meth) acrylates, ethylene oxide-modified isocyanuric acid tri (meth) acrylates (ethoxylated isocyanurate tri (meth) acrylates), and caprolactone-modified tris ((meth) acryloxyethyl) isocyanurates. These may be used alone or in combination of two or more.
  • ethylene oxide-modified isocyanuric acid triacrylate is preferable in terms of flexibility.
  • bifunctional urethane (meth) acrylate As an example of the said polyfunctional (meth) acrylate monomer, According to the objective, it can select suitably, For example, EBECRYL8804, EBECRYL8807, EBECRYL8402, KRM8296 (The above Daicel Ornex Co., Ltd., CN 9001, CN 978, CN 962 (Satmar Co., Ltd.), Purple light UV 6640 B, Purple light UV 3300 B, UV 3200 B (All Nippon Synthetic Chemical Industry Co., Ltd.), TEAI-2000, TE-2000 Nippon Soda Co., Ltd.) and the like. These may be used alone or in combination of two or more. Among these, aliphatic bifunctional acrylates (eg, EBECRYL 8807) are preferable in terms of flexibility and weather resistance.
  • the glass transition temperature of the bifunctional urethane (meth) acrylate is not particularly limited and may be appropriately selected depending on the purpose, but is preferably -30 ° C to 45 ° C. When the glass transition temperature is ⁇ 30 ° C. or more and 45 ° C. or less, tensile elongation at break and flexibility can be improved. In addition, the glass transition temperature said here points out the value of the homopolymer of the said (meth) acrylate.
  • the phosphate group-containing (meth) acrylate is not particularly limited and may be appropriately selected depending on the purpose. For example, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, di- 2-methacryloxyethyl phosphate and the like. These may be used alone or in combination of two or more.
  • the radically polymerizable vinyl group-containing material preferably contains a (meth) acrylate having a cyclic structure.
  • a (meth) acrylate having a cyclic structure As said cyclic structure, the said cyclic structure illustrated by description of the said polyacrylate is mentioned.
  • the molecular weight of the (meth) acrylate having a cyclic structure is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include 150 to 500.
  • the (meth) acrylate having a cyclic structure may be, for example, monofunctional or polyfunctional, but is preferably monofunctional.
  • the radically polymerizable vinyl group-containing material contains 40% by mass or more of the (meth) acrylate having the cyclic structure in terms of obtaining better adhesion between the first optical layer and the inorganic layer. Is preferable, and it is more preferable to contain 40 mass% or more and 60 mass% or less.
  • the photo radical generator is not particularly limited as long as it is an organic substance that generates radicals by light, and can be appropriately selected according to the purpose.
  • a silane coupling agent etc. are mentioned, for example.
  • silane coupling agent-- There is no restriction
  • a minimum value of the thickness of a said 1st optical layer there is no restriction
  • the minimum value of the thickness of the first optical layer is 2 ⁇ m or more, the prism effect can be reduced and sufficient transparency can be obtained.
  • the first optical layer preferably has a storage elastic modulus larger than that of the second optical layer and is harder. In addition, this is achieved because the resin which comprises the said 1st optical layer contains a polyfunctional (meth) acrylate monomer.
  • the elongation at break of the first optical layer is 30% or more.
  • As a breaking elongation rate of a said 1st optical layer 30% or more and 200% or less is mentioned, for example.
  • the breaking elongation can be determined, for example, as follows. A smooth film with an average thickness of 100 ⁇ m corresponding to the first optical layer is produced on the release-treated PET substrate. The film is peeled from the release-treated PET substrate and cut into a length of 100 mm ⁇ a width of 25 mm to obtain a test piece. The measurement is performed in accordance with JIS A 5759 2008. The tensile test is conducted three times at a test speed of 300 mm / min, and the average value of the strain at break is measured.
  • the cure shrinkage rate is preferably 12% or less. By doing so, the adhesion between the first optical layer and the inorganic layer can be further improved.
  • the cure shrinkage rate is, for example, 5% or more and 12% or less.
  • the cure shrinkage rate can be measured, for example, as follows. With regard to the photocurable resin composition for forming the first optical layer, the specific gravity of the composition before curing and the cured product (composition after curing) was determined using an electronic densitometer (SD-120L manufactured by MIRAGE Co., Ltd.) It measures and calculates according to a following formula from specific gravity difference of both.
  • Curing shrinkage (%) 100 ⁇ [(specific gravity of the cured product) ⁇ (specific gravity of the composition)] / (specific gravity of the cured product)
  • the inorganic layer is a layer disposed on the uneven surface of the first optical layer.
  • a reflective layer that reflects at least near infrared rays is preferable.
  • the following laminated film etc. are mentioned, for example. Details of an example of the reflective layer will be described later with reference to FIG.
  • the surface of the inorganic layer on the second optical layer side is preferably made of an oxide.
  • the oxide is not particularly limited and may be appropriately selected depending on the purpose, for example, oxides composed mainly of ZnO, the oxide mainly composed of Nb 2 O 5, and the like.
  • an average film thickness of the said inorganic layer there is no restriction
  • the average film thickness is 20 ⁇ m or less, the optical path along which the transmitted light is refracted becomes short, and the transmitted image can be prevented from appearing distorted.
  • a sputtering method for example, a vapor deposition method, a dip coating method, the die coating method etc. can be used.
  • Laminated film There is no restriction
  • a metal having high reflectance in the infrared region is used.
  • the metal having a high reflectance in the infrared region is not particularly limited and can be appropriately selected according to the purpose.
  • Au, Ag, Cu, Al, Ni, Cr, Ti, Pd, Co, Si examples thereof include simple substances such as Ta, W, Mo and Ge, and alloys containing two or more of these simple substances.
  • Ag-based, Cu-based, Al-based, Si-based and Ge-based are preferable in terms of practicality.
  • the alloy is not particularly limited and may be appropriately selected according to the purpose.
  • the optically transparent layer is an optically transparent layer having a high refractive index in the visible region and functioning as an antireflective layer.
  • the optically transparent layer there is no restriction
  • a thin buffer layer of Ti or the like having a thickness of about several nm may be provided on the interface of the optically transparent layer to be formed for the purpose of preventing the oxidation degradation of the lower layer metal during the formation of the optically transparent layer.
  • the buffer layer is a layer for suppressing oxidation of a metal layer or the like which is a lower layer by oxidizing itself when forming the upper layer.
  • the transparent conductive layer is a transparent conductive layer mainly composed of a conductive material having transparency in the visible region.
  • a transparent conductive layer mainly composed of a conductive material having transparency in the visible region.
  • a transparent conductive layer mainly composed of a conductive material having transparency in the visible region.
  • transparent conductive layer there is no restriction
  • nanoparticles of the transparent conductive substance nanoparticles of conductive materials such as metal, nanorods, and a layer in which nanowires are dispersed in a resin at a high concentration may be used.
  • the functional layer is a layer containing as a main component a chromic material whose reflection performance and the like are reversibly changed by an external stimulus.
  • the chromic material is, for example, a material that reversibly changes its structure by external stimuli such as heat, light, and penetration molecules.
  • limiting in particular as said chromic material According to the objective, it can select suitably, For example, a photochromic material, a thermochromic material, a gas chromic material, an electrochromic material, etc. are mentioned.
  • the photochromic material is a material that reversibly changes its structure by the action of light.
  • the photochromic material is a material capable of reversibly changing physical properties such as reflectance and color by irradiation with light such as ultraviolet light.
  • the photochromic material is not particularly limited and may be appropriately selected depending on the purpose, for example, Cr, Fe, TiO 2 doped with like Ni, WO 3, MoO 3, Nb 2 O 5 transition metal such as An oxide etc. can be mentioned.
  • wavelength selectivity can also be improved by laminating
  • thermochromic material is a material that reversibly changes its structure by the action of heat.
  • the thermochromic material can reversibly change various physical properties such as reflectance and color by heating.
  • the thermochromic material is not particularly limited and may be appropriately selected depending on the purpose, for example, VO 2, and the like.
  • elements such as W, Mo and F can be added for the purpose of controlling the transition temperature and transition curve.
  • a thin film whose main component is a thermochromic material such as VO 2 may be sandwiched by an antireflective layer whose main component is a high refractive index material such as TiO 2 or ITO.
  • photonic lattices such as cholesteric liquid crystals can also be used.
  • the cholesteric liquid crystal can selectively reflect light of a wavelength according to the layer spacing, and the layer spacing changes with temperature, so that heating can reversibly change physical properties such as reflectance and color. it can. At this time, it is also possible to widen the reflection band by using several cholesteric liquid crystal layers having different layer intervals.
  • the electrochromic material is a material capable of reversibly changing various physical properties such as reflectance and color by electricity.
  • the electrochromic material for example, a material whose structure is reversibly changed by application of a voltage can be used.
  • the reflection type light control material in which a reflection characteristic changes, etc. by doping or de-doping such as proton etc. is mentioned Be
  • the reflection type light control material is a material whose optical property can be controlled to a transparent state, a mirror state, and / or an intermediate state thereof by an external stimulus.
  • the reflection type light modulating material is not particularly limited and may be appropriately selected depending on the purpose, for example, alloy materials, WO 3 to alloy magnesium and nickel, an alloy material of magnesium and titanium as main components And materials in which needle crystals having selective reflectivity are confined in microcapsules.
  • the catalyst layer which contains the said alloy layer, Pd, etc. on the 2nd optical layer Thin buffer layer such as Al, electrolyte layer such as Ta 2 O 5 , ion storage layer such as WO 3 containing proton, and transparent conductive layer, (ii) transparent conductive layer on second optical layer,
  • transparent conductive layer on second optical layer examples thereof include an electrolyte layer, an electrochromic layer such as WO 3 and a configuration in which a transparent conductive layer is laminated. In these configurations, protons contained in the electrolyte layer are doped or de-doped in the alloy layer by applying a voltage between the transparent conductive layer and the counter electrode.
  • the transmittance of the alloy layer is changed. Furthermore, in order to enhance wavelength selectivity, it is desirable to laminate the electrochromic material with a high refractive index material such as TiO 2 or ITO. Moreover, as another structure, the structure where the transparent conductive layer, the optically transparent layer which disperse
  • the semipermeable layer is made of, for example, a single layer or a plurality of metal layers and is semipermeable. There is no restriction
  • the second optical layer has another uneven surface (second surface) on the inorganic layer side, and is arranged (formed) so that the unevenness on the other uneven surface (second surface) is buried. , Protecting the inorganic layer.
  • the second optical layer is, for example, a cured product of a photocurable resin composition (second photocurable resin composition).
  • one surface is a smooth surface
  • the other surface is another uneven surface (second surface).
  • the concavo-convex surface of the first optical layer and the other concavo-convex surface of the second optical layer have a relationship in which the concavities and convexities are reversed.
  • the second photocurable resin composition contains at least a radically polymerizable vinyl group-containing substance, and further contains other components such as a photoradical generator as needed.
  • the radically polymerizable vinyl group-containing substance is not particularly limited as long as it is a substance having a radically polymerizable vinyl group, and can be appropriately selected according to the purpose.
  • the above-mentioned radically polymerizable vinyl group-containing substance exemplified, etc. may be mentioned.
  • the content of the polyfunctional (meth) acrylate monomer in the radically polymerizable vinyl group-containing substance of the second photocurable resin composition is not particularly limited and can be appropriately selected according to the purpose. 30 mass% or more and 75 mass% or less are preferable, and 40 mass% or more and 60 mass% or less are preferable. Since the polyfunctional (meth) acrylate monomer has high reactivity, when the content is in a preferable range, the amount of the photoradical generator remaining in the second optical layer can be easily reduced.
  • the content of the phosphoric acid group-containing (meth) acrylate in the radically polymerizable vinyl group-containing substance of the second photocurable resin composition is not particularly limited, and may be appropriately selected according to the purpose. Although it can be performed, 0.01 mass% or more and 1.0 mass% or less are preferable at the point of the improvement of the adhesiveness of the said 2nd optical layer and the said inorganic layer.
  • the photo radical generator is not particularly limited as long as it is an organic substance that generates radicals by light, and can be appropriately selected according to the purpose.
  • the above-mentioned examples described in the description of the first optical layer An optical radical generator etc. are mentioned.
  • a minimum value of the thickness of a said 2nd optical layer there is no restriction
  • the minimum value of the thickness of the second optical layer is, for example, represented by “A” in FIG. 3 and “the thickness of the second optical layer when the thickness of the first optical layer is maximum” means.
  • the elongation at break of the second optical layer is preferably 60% or more, more preferably 140% or more, and particularly preferably 200% or more.
  • a breaking elongation rate of the said 2nd optical layer 60% or more and 250% or less is mentioned, for example.
  • the breaking elongation can be determined, for example, as follows. A smooth film with an average thickness of 100 ⁇ m corresponding to the second optical layer is produced on the release-treated PET substrate. The film is peeled from the release-treated PET substrate and cut into a length of 100 mm ⁇ a width of 25 mm to obtain a test piece. The measurement is performed in accordance with JIS A 5759 2008. The tensile test is conducted three times at a test speed of 300 mm / min, and the average value of the strain at break is measured.
  • ⁇ Adhesive layer> There is no restriction
  • the acrylic adhesive layer is an adhesive layer containing an acrylic polymer. In addition, in order to improve the weather resistance, the adhesive layer may contain a UV absorber.
  • the base material is disposed on the surface facing the uneven surface of the first optical layer, and usually has transparency.
  • the substrate preferably has energy ray transparency. Thereby, an energy ray is irradiated from the said base material side with respect to the photocurable resin composition made to intervene between the said base material and the said inorganic layer, and the said photocurable resin composition is hardened. It is because it can.
  • the shape of the substrate is preferably in the form of a film from the viewpoint of imparting flexibility to the optical body, but it is not particularly limited to this shape.
  • the tensile elongation at break of the optical body is measured, for example, by the following method. Measure according to JIS A 5759 2008. A test piece of test length 100 mm ⁇ width 25 mm is prepared, and a tensile test is performed three times at a test speed of 300 mm / min, and the average value of strain at break is measured.
  • ⁇ Storage elastic modulus> There is no restriction
  • the storage elastic modulus is measured, for example, at a measurement frequency of 1 Hz, using a dynamic viscoelasticity measuring apparatus (RSA3 manufactured by TA Instruments Co., Ltd.).
  • the said optical body is 8 N / 25 mm or more in the peeling force by the 180 degree peel test prescribed
  • the peeling force is, for example, 8 N / 25 mm or more and 50 N / 25 mm or less.
  • the peeling force defined herein is an index showing the adhesion between the layers of the optical body, and is the peeling force in the state where interfacial peeling does not occur. That is, when interfacial peeling between layers occurs in the 180 ° peel test, even if a value of 8 N / 25 mm or more is obtained, the value is not evaluated as “peel force”.
  • the 180 ° peel test is performed, for example, as follows.
  • An optical body in which an adhesive layer is attached to the second optical layer is prepared. It is cut into a length of 250 mm ⁇ a width of 25 mm to obtain a test piece.
  • the obtained test piece is stuck on a plate glass of 3 mm in thickness, 50 mm in width, and 125 mm in length.
  • pressure is caused to reciprocate at a speed of about 300 mm per minute. Thereafter, the test piece is allowed to stand for 24 hours.
  • An autograph AGS-X 50N (Shimadzu Corporation) is used as a test apparatus.
  • the film (the idle portion) is clamped to the upper chuck and the glass sheet is clamped to the lower chuck. Peel off at a tension rate of 300 mm / min and measure the load at that time. Measure the load of 4 points at 20 mm intervals. The adhesive force (peel force, N / 25 mm width) is taken as the average value of measured load at 4 points. Test results are the average value of 3 test pieces.
  • the value when using an optical comb of 2.0 mm is not particularly limited and can be appropriately selected according to the purpose. 60% or more is preferable and 75% or more is more preferable.
  • the value when using an optical comb of 0.5 mm is not particularly limited, and can be appropriately selected according to the purpose. Is preferably 60% or more, more preferably 75% or more. If the transmitted image definition has a value of 60% or more and less than 75%, only a very bright object such as a light source is concerned with the diffraction pattern, but the outside scene can be clearly seen.
  • the transmitted image definition has a value of 75% or more, the diffraction pattern is hardly noticeable.
  • the value of the transmitted image sharpness is measured according to JIS K-7374: 2007 using ICM-1T manufactured by Suga Test Instruments.
  • measurement is preferably performed after calibration using a filter of the wavelength to be transmitted.
  • FIG. 4 is a perspective view showing the relationship between incident light incident on the optical body 11 having wavelength selective reflectivity and reflected light reflected by the optical body 11.
  • the optical body 11 has an incident surface S1 on which the light L is incident.
  • the optical body 11 has transparency with respect to light other than the said specific wavelength range. It is preferable that it is what has the range of the transmitted image definition mentioned later as transparency.
  • theta the perpendicular l 1 with respect to the incident surface S1, is an angle formed between the incident light L or the reflected light L 1.
  • phi a specific linearly l 2 within the incident surface S1, is an angle formed between the projection and the component on the incident surface S1 and the incident light L or the reflected light L 1.
  • a specific linearly l 2 in the plane of incidence, the angle of incidence (theta, phi) is fixed to, when rotating the optical member 11 as an axis a perpendicular l 1 with respect to the incident surface S1 of the optical body 11, phi It is the axis where the reflection intensity in the direction is maximum.
  • the reflection intensity is more axial (direction) of maximum shall select one of them as linear l 2.
  • the angle ⁇ rotated clockwise with respect to the perpendicular line 11 is defined as “+ ⁇ ”
  • the angle ⁇ rotated counterclockwise is defined as “ ⁇ ”.
  • the angle ⁇ rotated clockwise on the basis of the straight line 12 is set as “+ ⁇ ”
  • the angle ⁇ rotated counterclockwise is set as “ ⁇ ”.
  • the light of the specific wavelength band that is selectively directed and reflected and the specific light to be transmitted differ depending on the application of the optical body 11.
  • light of a specific wavelength band that is selectively directed and reflected is near infrared light
  • light of a specific wavelength band to be transmitted is visible
  • it is light.
  • light of a specific wavelength band that is selectively directed and reflected is mainly near infrared light of a wavelength band of 780 nm or more and 2100 nm or less.
  • directional reflection means that the reflected light intensity in a specific direction other than the specular reflection is stronger than the specular reflected light intensity and sufficiently stronger than the non-directive diffuse reflection intensity.
  • “reflecting” indicates that the reflectance in a specific wavelength band, for example, the near infrared region, is preferably 30% or more, more preferably 50% or more, and still more preferably 80% or more.
  • Transmission means that the transmittance in a specific wavelength band, for example, the visible light region, is preferably 30% or more, more preferably 50% or more, and still more preferably 70% or more.
  • the direction ⁇ o of directional reflection is ⁇ 90 ° or more and 90 ° or less.
  • the optical body 11 in this range is useful when there is no tall building in the vicinity.
  • the direction of directional reflection be in the vicinity of ( ⁇ , ⁇ ).
  • the term “nearby” means a deviation within a range of preferably 5 degrees, more preferably 3 degrees, and even more preferably 2 degrees from ( ⁇ , ⁇ ).
  • the optical body 11 having wavelength selective reflectivity directional reflection of light of a specific wavelength band is light of a specific wavelength band with respect to light incident on the incident surface S1 at a direction near retroreflection, that is, incident angle ( ⁇ , ⁇ ) It is preferable that the reflection direction of is near (.theta., .Phi.).
  • the optical body 11 is attached to the external support, it is possible to return the light of the specific wavelength band among the light incident from the upper sky to the upper sky.
  • the vicinity is preferably 5 degrees or less, more preferably 3 degrees or less, and still more preferably 2 degrees or less.
  • the optical body 11 By setting it in this range, when the optical body 11 is attached to the external support, it is possible to efficiently return the light of the specific wavelength band among the light incident from the upper sky to the upper sky.
  • the infrared light emitting unit and the light receiving unit are adjacent, as in the case of an infrared sensor or infrared imaging, the retroreflecting direction must be the same as the incident direction, but it is not necessary to sense from a specific direction Need not be in exactly the same direction.
  • the shape of the structure 2c constituting the first optical layer 2 may have a asymmetrical shape with respect to the vertical perpendicular line l 1 to the incident surface S1 or the emission surface S2 of the optical body 11.
  • the main axis l m of the structure 2c is thus inclined in an arrangement direction a of the structure 2c with respect to the perpendicular line l 1.
  • the main axis l m of the structure 2c means a straight line passing through the midpoint of the base of the cross section of the structure and the vertex of the structure.
  • the main axis l m of the structure 2c is based on the perpendicular l 1 It is preferable to incline downward (ground side) of the window material as an external support. Generally, it is the time zone around noontime when heat inflow through the window is large, and the altitude of the sun is often higher than 45 °, so by adopting the above shape, the efficiency of light incident from these high angles is increased Because it can be reflected upward.
  • 5A and 5B an example in which the asymmetric shape is shown with respect to the perpendicular line l 1 of the structure 2c of the prism shape. It is also a asymmetrical shape with respect to the perpendicular line l 1 of the structure 2c other than prism-shaped.
  • the corner cube body may have an asymmetric shape with respect to the vertical line l 1 .
  • the inclination angle ⁇ (FIG. 1) of the prism-shaped structure 2c is, for example, 45 °.
  • the structure body 2c preferably has a flat surface or a curved surface inclined at an inclination angle of 45 ° or more from the viewpoint of reflecting light incident from the upper sky and returning much light to the upper sky when applied to the window material.
  • FIG. 6A is a plan view showing a configuration example of a first optical layer in an optical body according to an embodiment of the present invention.
  • FIG. 6B is a cross-sectional view of the first optical layer shown in FIG. 6A taken along the line BB.
  • the structures 2 c are two-dimensionally arranged on one main surface of the first optical layer 2. It is preferable that this arrangement is a close packed arrangement.
  • a dense array such as a delta dense array is formed by two-dimensionally arranging the structures 2c in the closest dense packing state.
  • the delta dense array for example, as shown in FIGS. 6A to 6B, is a structure in which structures 2c (for example, triangular pyramids) having a triangular bottom are arranged in the closest packed state.
  • the shape of the structure 2c formed on the surface of the first optical layer 2 is not limited to one type, and a structure 2c having a plurality of shapes is formed on the surface of the first optical layer You may When the structures 2c of a plurality of types of shapes are provided on the surface, a predetermined pattern composed of the structures 2c of a plurality of types of shapes may be periodically repeated. Also, depending on the desired characteristics, plural types of structures 2c may be formed randomly (aperiodically).
  • FIGS. 7A to 7C, 8A to 8C, and 9A to 9D an example of a method of manufacturing an optical body according to an embodiment of the present invention will be described with reference to FIGS. 7A to 7C, 8A to 8C, and 9A to 9D.
  • a part or all of the manufacturing process shown below is performed by roll-to-roll in consideration of productivity.
  • the manufacturing process of the mold shall be excluded.
  • the mold 21 having the same concavo-convex shape as that of the structure 2c constituting the first optical layer 2 or the inverted shape of the mold 21 is formed by, for example, cutting or laser processing. Form a mold (replica).
  • the concavo-convex shape of the mold 21 is transferred to a film-like resin material using, for example, a melt extrusion method or a transfer method.
  • a transfer method a method of pouring a photocurable resin composition into a mold and irradiating it with energy rays to cure it, a method of applying heat and pressure to a resin, transferring a shape, or supplying a resin film from a roll And the method of transferring the shape of the mold while adding (laminate transfer method).
  • the 1st optical layer 2 which has the structure 2c in one main surface is formed.
  • the first optical layer 2 may be formed on the first base material 4.
  • the film-like first base material 4 is supplied from a roll, and after the photocurable resin composition is applied on the first base material 4, it is pressed against the mold and the shape of the mold is A method of transferring and irradiating energy rays such as ultraviolet rays to cure the photocurable resin composition is used.
  • a wavelength selective reflection layer (functional layer) as the inorganic layer 1 is formed on one principal surface of the first optical layer 2.
  • a film-forming method of the wavelength-selective reflection layer as the inorganic layer 1 According to the objective, it can select suitably, For example, sputtering method, a vapor deposition method, CVD (Chemical Vapor Deposition) method, dip coating A method, a die coating method, a wet coating method, a spray coating method, etc. may be mentioned, and it is preferable to appropriately select from these film forming methods according to the shape of the structure 2c and the like.
  • an annealing process 31 is performed on the wavelength selective reflection layer as the inorganic layer 1 as necessary.
  • the temperature of the annealing process is, for example, in the range of 100 ° C. or more and 250 ° C. or less.
  • the photocurable resin composition 22 is applied on the wavelength selective reflection layer as the inorganic layer 1.
  • the photocurable resin composition 22 is spread to a predetermined thickness with a coater or the like to fill the uneven structure, thereby forming a laminate.
  • the photocurable resin composition 22 is cured by, for example, energy rays 32, and a pressure 33 is applied to the laminate.
  • energy ray there is no restriction
  • the accumulated irradiation dose is not particularly limited, and can be appropriately selected in consideration of the curing characteristics of the resin, the suppression of yellowing of the resin and the substrate 4, and the like.
  • the 2nd optical layer 3 is formed on the wavelength selection reflection layer as the inorganic layer 1, and the optical body 11 is obtained.
  • the adhesive layer 5 may be formed on the side opposite to the inorganic layer 1 side of the second optical layer 3.
  • the flatness of the surface 3b opposed to the other uneven surface 3a of the second optical layer 3 is due to the flatness of the coater head or the like and the thickness of the resin (the degree of filling of the unevenness).
  • Example 1 Preparation of Optical Body>
  • the following photocurable resin composition A1 was used to form a first optical layer having a square pyramidal structure 2d shown in FIG. 10 on the surface.
  • the following photocurable resin composition A1 is applied on a PET base material A4300, and then a structure 2d is formed by the transfer method using the transfer mold, and thereafter, it is irradiated with ultraviolet rays to be cured.
  • a first optical layer By a transfer method using a transfer mold capable of forming a first optical layer having a structure 2d of a quadrangular pyramid shape shown in FIG. 10 on a PET base material A4300 (made by Toyobo Co., Ltd., thickness 50 ⁇ m)
  • An inorganic layer having the following configuration was formed on the formed first optical layer by vacuum sputtering.
  • the following photocurable resin composition B1 was apply
  • coated coated, it irradiated and hardened the ultraviolet-ray, and the 2nd optical layer was formed.
  • an optical body was obtained.
  • the thickness of the thinnest part of the second optical layer after curing was 20 ⁇ m.
  • the thickness of the optical body was 85 ⁇ m.
  • photo-curable resin composition A1 >> The materials described in Table 1 below were mixed to obtain a photocurable resin composition A1.
  • the units of the numerical values in Table 1 are parts by mass except for the "cyclic structure content".
  • the “cyclic structure content” is the ratio (% by mass) of the (meth) acrylate having a cyclic structure to the total amount of the radically polymerizable vinyl group-containing substance which is a resin component of the first optical layer.
  • EBECRYL 8807 bifunctional urethane acrylate, manufactured by Daicel Ornex Co., Ltd.
  • NK ester A9300 ethoxylated isocyanuric acid triacrylate as polyfunctional acrylate monomer, Shin-Nakamura Chemical Co., Ltd.
  • ACMO monofunctional having a nitrogen-containing heterocyclic ring Acryloyl morpholine as acrylate monomer, manufactured by KJ Chemicals Ltd.
  • ⁇ A-NOD-N 1,9-nonanediol diacrylate as polyfunctional acrylate monomer, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • AMP-10G acrylic acid 2- Phenoxyethyl, Shin-Nakamura Chemical Co., Ltd.-IBXA: Isobornyl acrylate, Osaka Organic Chemical Industry Co., Ltd.-Alonics M-111: Nonylphenol EO modified acrylate, Toagosei Co., Ltd.-Bi Scoat # 155: cyclohexyl acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Biscoat # 150: tetrahydrofurfuryl acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. Irgacure 127: photoradical generator (photopolymerization initiator), BASF Japan Ltd. Made
  • photo-curable resin composition B1 >> The materials described in Table 2 below were mixed to obtain a photocurable resin composition B1.
  • EBECRYL 8807 bifunctional urethane acrylate, manufactured by Daicel Ornex Co., Ltd.
  • ACMO acryloyl morpholine as a monofunctional acrylate monomer having a nitrogen-containing heterocyclic ring
  • AMP-10G 2-phenoxyethyl acrylate
  • P-2M 2-methacryloyloxyethyl acid phosphate as phosphate-containing acrylate
  • Kyoeisha Chemical Co., Ltd.-Irgacure 127 photo radical generator (photopolymerization initiator), BASF Japan Made in Japan
  • the obtained optical body was subjected to the following test and measurement. The results are shown in Table 3.
  • tests were conducted according to JIS A 5759. Specifically, the 180 ° peel test was performed as follows. An adhesive layer (average thickness 16 ⁇ m, MF58UV0455, manufactured by Yodogawa Paper Co., Ltd.) was attached to the second optical layer of the produced optical body. It was cut into a length of 250 mm ⁇ a width of 25 mm to obtain a test piece. The obtained test piece was stuck on plate glass of thickness 3 mm, width 50 mm, and length 125 mm. After pasting, using a pressure roller specified in JIS Z 0237, pressure was applied by reciprocating once at a speed of about 300 mm per minute. Thereafter, the test piece was allowed to stand for 24 hours.
  • An adhesive layer average thickness 16 ⁇ m, MF58UV0455, manufactured by Yodogawa Paper Co., Ltd.
  • An autograph AGS-X 50N (Shimadzu Corporation) was used as a test apparatus. After the idle portion of the test piece was folded at 180 ° and 25 mm was peeled off, the film (idle portion) was held by the upper chuck and the sheet glass was held by the lower chuck. Peeling was performed at a tensile speed of 300 mm per minute, and the load at that time was measured. The load at four points was measured at intervals of 20 mm. The adhesive force (peel force, N / 25 mm width) was taken as the average value of the measured load at 4 points. The test result was an average value of three test pieces.
  • the evaluation criteria were as follows.
  • the adhesive layer has a peeling force of 8 N / 25 mm or more, assuming that no interfacial failure occurs between the first optical layer and the inorganic layer and between the second optical layer and the inorganic layer.
  • the adhesive layer to be realized was used.
  • x Peeling force of 8 N / 25 mm or more, the first optical layer There is interfacial failure between the and the inorganic layer. In all samples, no interface failure occurred between the second optical layer and the inorganic layer.
  • ⁇ Odor> The odor of the monomer contained in the optical body was evaluated by sensory evaluation.
  • the evaluator evaluated the presence or absence of the odor of the optical body according to the following evaluation criteria.
  • Curing shrinkage rate The cure shrinkage of the first optical layer was measured. Specifically, for the photocurable resin composition A1, the specific gravity of the composition before curing and the cured product (composition after curing) was measured using an electronic densimeter (SD-120L manufactured by MIRAGE Co., Ltd.). The specific gravity difference was calculated by the following equation. The obtained results are shown in Table 2.
  • Curing shrinkage (%) 100 ⁇ [(specific gravity of the cured product) ⁇ (specific gravity of the composition)] / (specific gravity of the cured product)
  • ⁇ Measurement of tensile elongation at break> ⁇ Elongation at break of first optical layer Using the photocurable resin composition A1, a smooth film with an average thickness of 100 ⁇ m corresponding to the first optical layer was produced on the release-treated PET substrate. The said film was peeled from the said mold release process PET base material, and it cut
  • ⁇ Storage elastic modulus> The storage elastic modulus (Pa) (25 ° C. or 60 ° C.) was measured for each sample at a measurement frequency of 1 Hz using a dynamic viscoelasticity measurement device (RSA3 manufactured by TA Instruments Co., Ltd.). In addition, in the case of a measurement, it measured in the state which removed base-material PETA4300.
  • Example 3 An optical body was produced in the same manner as in Example 1 except that the photocurable resin composition A1 in Example 1 was changed to the photocurable resin composition described in Table 1. Evaluation similar to Example 1 was performed about the produced optical body. The results are shown in Table 3.
  • E is a power of 10.
  • E + 09 means 10 9 .
  • the first optical layer contains a polyacrylate having a cyclic structure in the side chain, and the first optical It was found that when the elongation at break of the layer is 30% or more, an optical body excellent in the adhesion between the first optical layer and the inorganic layer and applicable to a glass shatterproof film can be obtained.
  • the optical body of the present invention is applicable as a film over a wide range, but in particular, it can be suitably used as a heat ray reflective film attached to window glass, walls and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

凹凸面を有する第1の光学層と、 前記第1の光学層の凹凸面上に配置された無機層と、 前記無機層側に他の凹凸面を有し、該他の凹凸面における凹凸が埋没するように配置された第2の光学層と、 を有し、 前記第1の光学層が、環状構造を側鎖に有するポリアクリレートを含有し、 前記第1の光学層の破断伸び率が、30%以上である、 光学体である。

Description

光学体
 本発明は、光学体に関する。
 窓ガラス、壁等の被着体に貼り付けることにより、所定の角度で入射する太陽光のうち、可視光領域の波長は室内に入射させつつ、赤外線等の高波長域光線は入射してきた方向に跳ね返すことができる、熱線再帰性を有する光学体が開発されている(例えば、特許文献1参照)。
 特許文献1に記載の光学体は、図11に示すように、窓ガラス、壁等の被着体(外部支持体107)に貼り付けられる光学体100であって、無機層101と、無機層101の一方の表面(外部支持体107とは反対側の表面)に形成された第1の光学層102と、無機層101の他方の表面(外部支持体107側の表面)に形成された第2の光学層103と、第1の光学層102の一方の表面(外部支持体107とは反対側の表面)に形成された第1の基材104と、第2の光学層103の一方の表面(外部支持体107側の表面)に形成された第2の基材105と備える構成になっている。そして、光学体100は、粘着層106を介して外部支持体107に貼り付けられる。光学体100は、十分な透明性を有する。
 光学体の薄型化、及び製造プロセス低減の観点から、窓ガラス、壁等の外部支持体107と第2の光学層103との間に形成される第2の基材105を省略する検討がなされている(例えば、特許文献2参照)。
特開2011-128512号公報 特開2011-212892号公報
 本発明らは、図11の光学体において、外部支持体107と第2の光学層103との間に形成された第2の基材105を省略し、第2の光学層103と粘着層106とを接して積層させ、粘着層106を外部支持体107に貼り付けると、JIS A5759におけるガラス飛散防止フィルムの評価項目である180°ピール試験において層間密着性(特に無機層101と、第1の光学層102との密着性)が不十分になるという問題があることを知見した。
 本発明は、以下の目的を達成することを課題とする。即ち、本発明は、第1の光学層と無機層との密着性に優れ、ガラス飛散防止フィルムにも適用可能な光学体を提供することを目的とする。
 前記課題を解決するための手段としては以下の通りである。即ち、
 <1> 凹凸面を有する第1の光学層と、
 前記第1の光学層の凹凸面上に配置された無機層と、
 前記無機層側に他の凹凸面を有し、該他の凹凸面における凹凸が埋没するように配置された第2の光学層と、
 を有し、
 前記第1の光学層が、環状構造を側鎖に有するポリアクリレートを含有し、
 前記第1の光学層の破断伸び率が、30%以上である、
ことを特徴とする光学体である。
 <2> 前記環状構造が、環を構成する元素に窒素又は酸素を含む前記<1>に記載の光学体である。
 <3> JIS A5759で規定される180°ピール試験による剥離力が、8N/25mm以上である前記<1>から<2>のいずれかに記載の光学体である。
 <4> 前記ポリアクリレートが、ラジカル重合性ビニル基含有物質の重合体であり、
 前記ラジカル重合性ビニル基含有物質が、40質量%以上の環状構造を有する(メタ)アクリレートを含有する、
 前記<1>から<3>のいずれかに記載の光学体である。
 <5> 前記第2の光学層の破断伸び率が、60%以上である前記<1>から<4>のいずれかに記載の光学体である。
 <6> 更に、前記第2の光学層に接する粘着層を有する前記<1>から<5>のいずれかに記載の光学体である。
 <7> 前記第2の光学層が、粘着層と接して使用される前記<1>から<5>のいずれかに記載の光学体である。
 本発明によれば、第1の光学層と無機層との密着性に優れ、ガラス飛散防止フィルムにも適用可能な光学体を提供することができる。
図1は、本発明の第1の実施形態に係る光学体の一例の断面図である。 図2は、本発明の第2の実施形態に係る光学体の一例の断面図である。 図3は、第2の光学層の厚みの最小値を説明するための図である。 図4は、波長選択反射性を有する光学体に対して入射する入射光と、光学体により反射された反射光との関係を示す斜視図である。 図5Aは、第1の光学層に形成された構造体の形状例を示す斜視図である。 図5Bは、図5Aに示す構造体が形成された第1の光学層を備える光学体の一構成例を示す部分断面図である。 図6Aは、本発明の一実施形態に係る光学体における第1の光学層の構成例を示す平面図である。 図6Bは、図6Aに示した第1の光学層のB-B線に沿った断面図である。 図7Aは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その1)。 図7Bは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その2)。 図7Cは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その3)。 図8Aは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その4)。 図8Bは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その5)。 図8Cは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その6)。 図9Aは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その7)。 図9Bは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その8)。 図9Cは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その9)。 図9Dは、本発明の一実施形態に係る光学体の製造方法の一例を説明するための工程図である(その10)。 図10は、実施例における第1の光学層が有する構造体の形状を表す模式図である。 図11は、従来の光学体を被着体(外部支持体)に貼り合わせた例を示す断面図である。
 本明細書において、「(メタ)アクリレート」は、アクリレート及びメタクリレートから選択される1種または2種を意味する。
 また、本明細書において、「単官能(メタ)アクリレート」とは、「ラジカル重合性ビニル官能基を1個有する(メタ)アクリレート」を意味し、「多官能(メタ)アクリレート」とは、「ラジカル重合性ビニル官能基を複数個有する(メタ)アクリレート」を意味する。
(光学体)
 本発明の光学体は、第1の光学層と、無機層と、第2の光学層とを少なくとも有し、更に必要に応じて、その他の部材を有する。係る光学体は、第2の光学層が、粘着層と接して使用される。
 本発明者らは、光学体において、外部支持体と第2の光学層との間に配される第2の基材を省略し、第2の光学層と粘着層とを接して積層させ、粘着層を外部支持体に貼り付けると、JIS A5759におけるガラス飛散防止フィルムの評価項目である180°ピール試験において層間密着性(特に無機層と、第1の光学層との密着性)が不十分になるという問題があることを知見した。
 そこで、本発明者らは、前記問題を解決するために鋭意検討を行った。そのところ、第第1の光学層を構成する樹脂に特定の分子構造を導入し、かつ第1の光学層の伸び率を制御することで、前記問題が解決できることを見出し、本発明の完成に至った。
 なお、従来の光学体では、第2の光学層と粘着層との間には、基材としてのPET(ポリエチレンテレフタレート)フィルムが介在する。そして、PETが好影響し、ガラス飛散防止フィルムとして要求される180°ピール試験における層間密着性は問題とならない。
 しかし、本発明の光学体では、第2の光学層と粘着層とを接して積層させて使用し、係る基材を省略する。その際に、基材としてのPETがないことが悪影響し、第1の光学層と、無機層との密着性の低さが露呈し、JIS A5759におけるガラス飛散防止フィルムの評価項目である180°ピール試験において、無機層と、第1の光学層との密着性が不十分になる。
 そこで、本発明者らは、第2の光学層の組成面及び物性面から検討することによって、第1の光学層と無機層との密着性に優れ、ガラス飛散防止フィルムにも適用可能な光学体が得られることを見出し、本発明の完成に至った。
 図1は、本発明の第1の実施形態に係る光学体の一例の断面図である。
 図1において、光学体11は、凹凸面2aを有する第1の光学層2と、第1の光学層2の凹凸面2a上に配置された無機層1と、無機層1側に他の凹凸面3aを有し、他の凹凸面3aにおける凹凸が埋没するように配置された第2の光学層3と、第1の光学層2の凹凸面2aと対向する面2b上に配置された第1の基材4とを備える。光学体11は、第2の光学層3の他の凹凸面3aと対向する面3b上(外部支持体側)に配置される第2の基材(図11における第2の基材105)を有さず、第2の光学層3が粘着層に接して使用される。
 図2は、本発明の第2の実施形態に係る光学体の一例の断面図である。
 図2において、光学体11は、凹凸面2aを有する第1の光学層2と、第1の光学層2の凹凸面2a上に配置された無機層1と、無機層1側に他の凹凸面3aを有し、他の凹凸面3aにおける凹凸が埋没するように配置された第2の光学層3と、第1の光学層2の凹凸面2aと対向する面2b上に配置された第1の基材4と、第2の光学層3と接する粘着層5とを備える。光学体11は、第2の光学層3の他の凹凸面3aと対向する面3b上(外部支持体側)に配置される第2の基材(図11における符号105)を有さない。
<第1の光学層>
 前記第1の光学層は、凹凸面を有する。
 前記第1の光学層は、該凹凸面上に形成された無機層を支持し、かつ保護する。
 前記第1の光学層の両主面のうち、例えば、一方の面は平滑面であり、他方の面は凹凸面(第1の面)である。無機層は該凹凸面(第1の面)上に配される。
 前記第1の光学層は、下記(1)及び(2)を満たす。
 (1)前記第1の光学層は、環状構造を側鎖に有するポリアクリレートを含有する。
 (2)前記第1の光学層の破断伸び率は、30%以上である。
 本発明においては、前記(1)及び(2)が、第1の光学層と無機層との密着性の向上に総合的に寄与しているものと考えられる。
<<ポリアクリレート>>
 前記ポリアクリレートは、環状構造を側鎖に有する。
 前記ポリアクリレートとは、後述するラジカル重合性ビニル基含有物質の重合体である。
 前記環状構造としては、単環であってもよいし、多環であってもよい。
 前記環状構造は、環を構成する元素に窒素又は酸素を含んでいてもよい。
 前記環状構造としては、例えば、芳香族環、脂肪族環、芳香族複素環、脂肪族複素環などが挙げられる。
 前記芳香族環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環などが挙げられる。
 前記脂肪族環としては、例えば、シクロペンタン環、シクロヘキサン環などが挙げられる。
 また、前記脂肪族環は、有橋構造であってもよく、例えば、有橋のシクロアルカン構造(例えば、ノルボルナン構造、ビシクロ[2.2.2]オクタン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等)、有橋のシクロアルケン構造(例えば、ノルボルネン構造、ビシクロ[2.2.2]オクテン構造、トリシクロデセン構造、テトラシクロドデセン構造等)などが挙げられる。
 前記芳香族複素環としては、例えば、フラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、ベンゾチアゾール環などが挙げられる。
 前記脂肪族複素環としては、例えば、オキセタン環、テトラヒドロフラン環、ピペリジン環、モルホリン環などが挙げられる。
 また、前記脂肪族複素環は、有橋構造であってもよく、例えば、オキサノルボルナン構造、チアノルボルナン構造、アザノルボルナン構造、オキサノルボルネン構造、チアノルボルネン構造、アザノルボルネン構造などが挙げられる。
 前記ポリアクリレートは、光硬化性樹脂組成物の硬化物とも言える。
<<<光硬化性樹脂組成物>>>
 前記光硬化性樹脂組成物は、ラジカル重合性ビニル基含有物質を少なくとも含有し、更に必要に応じて、光ラジカル発生剤などのその他の成分を含有する。
-ラジカル重合性ビニル基含有物質-
 前記ラジカル重合性ビニル基含有物質としては、ラジカル重合性ビニル基を有する物質であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレートモノマー、リン酸基含有(メタ)アクリレートなどが挙げられる。
 前記第1の光学層及び前記第2の光学層は、例えば、それぞれ異なる光硬化性樹脂組成物の硬化物からなることが好ましいが、屈折率の観点から、ベース樹脂(即ち、2官能ウレタン(メタ)アクリレート及び単官能(メタ)アクリレート化合物)の種類が同じであることが好ましい。
--単官能(メタ)アクリレート化合物--
 前記単官能(メタ)アクリレート化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂環式単官能(メタ)アクリレートモノマー、含窒素複素環を有する単官能(メタ)アクリレートモノマー、直鎖式単官能(メタ)アクリレートモノマー、水酸基を有する単官能(メタ)アクリレートモノマー、アルキレンオキサイド鎖を有する単官能(メタ)アクリレートモノマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、硬さ調整の点で、脂環式単官能(メタ)アクリレートモノマー、含窒素複素環を有する単官能(メタ)アクリレートモノマー等の環状構造を有する単官能(メタ)アクリレートモノマー、特に、ガラス転移温度Tgが80℃以上の環状構造を有する単官能(メタ)アクリレートモノマーが好ましい。
---脂環式単官能(メタ)アクリレートモノマー---
 前記脂環式単官能(メタ)アクリレートモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
---含窒素複素環を有する単官能(メタ)アクリレートモノマー---
 前記含窒素複素環を有する単官能(メタ)アクリレートモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(メタ)アクリロイルモルホリン、イソプロピル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、ペンタメチルピペリジル(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、アクリロイルモルホリンが好ましい。
---直鎖式単官能(メタ)アクリレートモノマー---
 前記直鎖式単官能(メタ)アクリレートモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、n-オクチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
---水酸基を有する単官能(メタ)アクリレートモノマー---
 前記水酸基を有する単官能(メタ)アクリレートモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
---アルキレンオキサイド鎖を有する単官能(メタ)アクリレートモノマー---
 前記アルキレンオキサイド鎖を有する単官能(メタ)アクリレートモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシエチル(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、フェノキシエチル(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレートが好ましい。
--多官能(メタ)アクリレートモノマー--
 前記多官能(メタ)アクリレートモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、環状の架橋剤がより好ましい。
 前記多官能(メタ)アクリレートモノマーを用いることで、室温での貯蔵弾性率を大きく変化させることなく、硬化物を耐熱化することができるからである。室温での貯蔵弾性率が大きく変化すると、光学体が脆くなり、ロール・ツー・ロール工程などによる光学体の作製が困難となる。
 前記環状の架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジオキサングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸トリ(メタ)アクリレート〔エトキシ化イソシアヌ―ル酸トリ(メタ)アクリレート〕、カプロラクトン変性トリス((メタ)アクリロキシエチル)イソシアヌレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、可撓性の点で、エチレンオキシド変性イソシアヌル酸トリアクリレート(エトキシ化イソシアヌル酸トリアクリレート)が好ましい。
---2官能ウレタン(メタ)アクリレート---
 前記多官能(メタ)アクリレートモノマーの一例としての前記2官能ウレタン(メタ)アクリレートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、EBECRYL8804、EBECRYL8807、EBECRYL8402、KRM8296(以上ダイセル・オルネクス(株)製)、CN9001、CN978、CN962(以上サートマー社製)、紫光UV6640B、紫光UV3300B、UV3200B(以上日本合成化学工業(株)製)、TEAI-2000、TE-2000(以上、日本曹達株式会社製)などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、柔軟性及び耐候性の点で、脂肪族2官能アクリレート(例えば、EBECRYL8807)が好ましい。
 前記2官能ウレタン(メタ)アクリレートのガラス転移温度としては、特に制限はなく、目的に応じて適宜選択することができるが、-30℃以上45℃以下が好ましい。前記ガラス転移温度が-30℃以上45℃以下であると、引張破断伸び率と柔軟性を向上させることができる。なお、ここで言うガラス転移温度は、前記(メタ)アクリレートの単独重合物の値を指す。
 前記光硬化性樹脂組成物の前記ラジカル重合性ビニル基含有物質における前記多官能(メタ)アクリレートモノマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、40質量%以上70質量%以下が好ましく、50質量%以上60質量%以下が好ましい。前記多官能(メタ)アクリレートモノマーは、反応性が高いため、前記含有量が、好ましい範囲内であると、前記第1の光学層における残存前記光ラジカル発生剤量を低減しやすくなる。
--リン酸基含有(メタ)アクリレート--
 前記リン酸基含有(メタ)アクリレートを添加剤として、含有させることにより、無機層との密着性を向上させることができる。
 前記リン酸基含有(メタ)アクリレートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-メタクロイロキシエチルアシッドホスフェート、2-アクリロイルオキシエチルアシッドフォスフェート、ジ-2-メタクリロキシエチルフォスフェート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記ラジカル重合性ビニル基含有物質は、環状構造を有する(メタ)アクリレートを含有することが好ましい。前記環状構造としては、前記ポリアクリレートの説明で例示した前記環状構造が挙げられる。
 前記環状構造を有する(メタ)アクリレートの分子量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、150~500などが挙げられる。
 前記環状構造を有する(メタ)アクリレートは、例えば、単官能であっても、多官能であってもよいが、単官能であることが好ましい。
 前記ラジカル重合性ビニル基含有物質は、前記第1の光学層と、前記無機層とのより良好な密着性を得る点で、前記環状構造を有する(メタ)アクリレートを40質量%以上含有することが好ましく、40質量%以上60質量%以下含有することがより好ましい。
-光ラジカル発生剤-
 前記光ラジカル発生剤としては、光によってラジカルを発生する有機物質であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、
 ・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(イルガキュア184)
 ・2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(イルガキュア651) ・2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(ダロキュア1173)
 ・2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン(イルガキュア127)
 ・2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(イルガキュア907)
 ・ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(イルガキュア819)
 ・オキシフェニル酢酸2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステル及びオキシフェニル酢酸2-(2-ヒドロキシエトキシ)エチルエステルの混合物(イルガキュア745)
、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 なお、これらは、光重合開始剤、光ラジカル重合開始剤などと称されることもある。
 前記光硬化性樹脂組成物における前記光ラジカル発生剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1質量%以上7.0質量%以下が好ましく、1.0質量%以上5.0質量%以下がより好ましい。
-その他の成分-
 前記その他の成分としては、例えば、シランカップリング剤などが挙げられる。
--シランカップリング剤--
 前記シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3-アクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記第1の光学層の厚みの最小値としては、特に制限はなく、目的に応じて適宜選択することができるが、2μm以上が好ましく、2μm以上40μm以下がより好ましく、2μm以上25μm以下が更により好ましく、2μm以上10μm以下が特に好ましい。前記第1の光学層の厚みの最小値が2μm以上であることにより、プリズム効果を低減させて、十分な透明性が得ることができる。
 前記第1の光学層は、前記第2の光学層よりも、貯蔵弾性率が大きくて硬いことが好ましい。なお、これは、前記第1の光学層を構成する樹脂に多官能(メタ)アクリレートモノマーが含有されていることにより、達成される。
<<破断伸び率>>
 前記第1の光学層の破断伸び率は、30%以上である。前記第1の光学層の破断伸び率としては、例えば、30%以上200%以下が挙げられる。
 前記破断伸び率は、例えば、以下のように求めることができる。
 離型処理PET基材上に、第1の光学層に相当する平均厚み100μmの平滑なフィルムを作製する。当該フィルムを、前記離型処理PET基材から剥離して、長さ100mm×幅25mmに切断し、試験片を得る。
 測定は、JIS A5759 2008に従い行う。試験速度300mm/minで引張り試験を3回行い、その破断時のひずみの平均値を測定する。
<<硬化収縮率>>
 前記第1の光学層が、光硬化性樹脂組成物の硬化物である場合、その硬化収縮率は、12%以下であることが好ましい。そうすることにより、前記第1の光学層と前記無機層との密着性をより向上させることができる。
 前記硬化収縮率は、例えば、5%以上12%以下である。
 前記硬化収縮率は、例えば、以下のようにして測定できる。
 前記第1の光学層を形成するための光硬化性樹脂組成物について、硬化前の組成物と硬化物(硬化後の組成物)の比重を電子比重計(MIRAGE社製SD-120L)を用いて測定し、両者の比重差から次式により算出する。
 硬化収縮率(%)=
  100×〔(硬化物の比重)-(組成物の比重)〕/(硬化物の比重)
<無機層>
 前記無機層は、前記第1の光学層の凹凸面上に配置された層である。
 前記無機層としては、少なくとも近赤外線を反射する反射層が好ましい。前記反射層としては、例えば、下記積層膜などが挙げられる。前記反射層の一例の詳細については、図4を用いて後述する。
 前記無機層の前記第2の光学層側の表面は酸化物からなることが好ましい。
 前記酸化物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ZnOを主成分とした酸化物、Nbを主成分とした酸化物、などが挙げられる。
 前記無機層の平均膜厚としては、特に制限はなく、目的に応じて適宜選択することができるが、20μm以下が好ましく、5μm以下がより好ましく、1μm以下がさらに好ましい。前記平均膜厚が20μm以下であると、透過光が屈折する光路が短くなり、透過像が歪んで見えるのを防止することができる。
 前記無機層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スパッタ法、蒸着法、ディップコーティング法、ダイコーティング法などを用いることができる。
 前記無機層の種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、積層膜、透明導電層、機能層、半透過層などが挙げられる。これらは、1種単独でもよいし、2種以上でもよい。
<<積層膜>>
 前記積層膜としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)屈折率の異なる低屈折率層及び高屈折率層を交互に積層してなる積層膜、(ii)赤外領域において反射率の高い金属層と、可視領域において屈折率が高く反射防止層として機能する光学透明層、または透明導電層とを交互に積層してなる積層膜、などが挙げられる。
-金属層-
 前記金属層には、赤外領域において反射率の高い金属が使用される。
 赤外領域において反射率の高い金属としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Au、Ag、Cu、Al、Ni、Cr、Ti、Pd、Co、Si、Ta、W、Mo、Geなどの単体、これらの単体を2種以上含む合金、などが挙げられる。これらの中でも、実用性の点で、Ag系、Cu系、Al系、Si系、Ge系が好ましい。
 前記合金としては、特に制限はなく、目的に応じて適宜選択することができるが、AlCu、AlTi、AlCr、AlCo、AlNdCu、AlMgSi、AgPdCu、AgPdTi、AgCuTi、AgPdCa、AgPdMg、AgPdFe、Ag、SiB、などが好ましい。
 前記金属層の腐食を抑えるために、金属層に対してTi、Ndなどの材料を添加することが好ましい。特に、金属層の材料としてAgを用いる場合には、上記材料を添加することが好ましい。
-光学透明層-
 前記光学透明層は、可視領域において屈折率が高く反射防止層として機能する光学透明層である。
 前記光学透明層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化ニオブ、酸化タンタル、酸化チタン等の高誘電体、などが挙げられる。
 前記光学透明層成膜時の下層金属の酸化劣化を防ぐ目的で、成膜する光学透明層の界面に数nm程度のTiなどの薄いバッファー層を設けてもよい。ここで、バッファー層とは、上層成膜時に、自らが酸化することで下層である金属層などの酸化を抑制するための層である。
<<透明導電層>>
 前記透明導電層は、可視領域において透明性を有する導電性材料を主成分とする透明導電層である。
 前記透明導電層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化錫、酸化亜鉛、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、アルミニウムドープ酸化亜鉛(AZO)、アンチモンドープ酸化錫、カーボンナノチューブ含有体等の透明導電物質、などが挙げられる。
 また、前記透明導電層として、前記透明導電物質のナノ粒子や金属などの導電性を持つ材料のナノ粒子、ナノロッド、ナノワイヤーを樹脂中に高濃度に分散させた層を用いてもよい。
<<機能層>>
 前記機能層は、外部刺激により反射性能などが可逆的に変化するクロミック材料を主成分とする層である。
 前記クロミック材料は、例えば、熱、光、侵入分子などの外部刺激により構造を可逆的に変化させる材料である。
 前記クロミック材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フォトクロミック材料、サーモクロミック材料、ガスクロミック材料、エレクトロクロミック材料、などが挙げられる。
 前記フォトクロミック材料は、光の作用により構造を可逆的に変化させる材料である。
 前記フォトクロミック材料は、紫外線等の光照射により、反射率、色等の物性を可逆的に変化させることができる材料である。
 前記フォトクロミック材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Cr、Fe、NiなどをドープしたTiO、WO、MoO、Nb等の遷移金属酸化物、などを挙げることができる。また、これらの層と屈折率の異なる層を積層することで波長選択性を向上させることもできる。
 前記サーモクロミック材料とは、熱の作用により構造を可逆的に変化させる材料である。
 前記サーモクロミック材料は、加熱により、反射率や色などの様々な物性を可逆的に変化させることができる。
 前記サーモクロミック材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、VO、などが挙げられる。また、転移温度や転移カーブを制御する目的で、W、Mo、Fなどの元素を添加することもできる。
 また、VOなどのサーモクロミック材料を主成分とする薄膜を、TiOやITOなどの高屈折率体を主成分とする反射防止層で挟んだ積層構造としてもよい。
 または、コレステリック液晶などのフォトニックラティスを用いることもできる。前記コレステリック液晶は層間隔に応じた波長の光を選択的に反射することができ、この層間隔は温度によって変化するため、加熱により、反射率や色などの物性を可逆的に変化させることができる。この時、層間隔の異なるいくつかのコレステリック液晶層を用いて反射帯域を広げることも可能である。
 エレクトロクロミック材料とは、電気により、反射率や色などの様々な物性を可逆的に変化させることができる材料である。
 前記エレクトロクロミック材料としては、例えば、電圧の印加により構造を可逆的に変化させる材料を用いることができる。前記エレクトロクロミック材料の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、プロトンなどのドープまたは脱ドープにより、反射特性が変わる反射型調光材料、などが挙げられる。
 前記反射型調光材料とは、具体的には、外部刺激により、光学的な性質を透明な状態と、鏡の状態、及び/又はその中間状態に制御することができる材料である。前記反射型調光材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、マグネシウム及びニッケルの合金材料、マグネシウム及びチタンの合金材料を主成分とする合金材料、WOやマイクロカプセル中に選択反射性を有する針状結晶を閉じ込めた材料、などが挙げられる。
 前記機能層の具体的構成としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)第2の光学層上に、上記合金層、Pdなどを含む触媒層、薄いAlなどのバッファー層、Taなどの電解質層、プロトンを含むWOなどのイオン貯蔵層、透明導電層が積層された構成、(ii)第2の光学層上に透明導電層、電解質層、WOなどのエレクトロクロミック層、透明導電層が積層された構成、などが挙げられる。
 これらの構成では、透明導電層と対向電極の間に電圧を印加することにより、電解質層に含まれるプロトンが合金層にドープまたは脱ドープされる。これにより、合金層の透過率が変化する。また、波長選択性を高めるために、エレクトロクロミック材料をTiOやITOなどの高屈折率体と積層することが望ましい。
 また、その他の構成として、第2の光学層上に透明導電層、マイクロカプセルを分散した光学透明層、透明電極が積層された構成、が挙げられる。この構成では、両透明電極間に電圧を印加することにより、マイクロカプセル中の針状結晶が配向した透過状態にしたり、電圧を除くことで針状結晶が四方八方を向き、波長選択反射状態にすることができる。
<<半透過層>>
 前記半透過層は、例えば、単層または複数層の金属層からなり、半透過性を有するものである。
 前記金属層の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、上述の積層膜の金属層と同様のものを用いることができる。
<第2の光学層>
 前記第2の光学層は、前記無機層側に他の凹凸面(第2の面)を有し、該他の凹凸面(第2の面)における凹凸が埋没するように配置(形成)され、前記無機層を保護する。
 前記第2の光学層は、例えば、光硬化性樹脂組成物(第2の光硬化性樹脂組成物)の硬化物である。
 前記第2の光学層の両主面のうち、例えば、一方の面は平滑面であり、他方の面は他の凹凸面(第2の面)である。第1の光学層の凹凸面と第2の光学層の他の凹凸面とは、互いに凹凸を反転した関係にある。
<<光硬化性樹脂組成物(第2の光硬化性樹脂組成物)>>
 前記第2の光硬化性樹脂組成物は、ラジカル重合性ビニル基含有物質を少なくとも含有し、更に必要に応じて、光ラジカル発生剤などのその他の成分を含有する。
<<<ラジカル重合性ビニル基含有物質>>>
 前記ラジカル重合性ビニル基含有物質としては、ラジカル重合性ビニル基を有する物質であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の光学層の説明において例示した前記ラジカル重合性ビニル基含有物質などが挙げられる。
 前記第2の光硬化性樹脂組成物のラジカル重合性ビニル基含有物質における前記多官能(メタ)アクリレートモノマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%以上75質量%以下が好ましく、40質量%以上60質量%以下が好ましい。前記多官能(メタ)アクリレートモノマーは、反応性が高いため、前記含有量が、好ましい範囲内であると、前記第2の光学層における残存前記光ラジカル発生剤量を低減しやすくなる。
 また、前記第2の光硬化性樹脂組成物のラジカル重合性ビニル基含有物質における前記リン酸基含有(メタ)アクリレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記第2の光学層と前記無機層との密着性の向上の点で、0.01質量%以上1.0質量%以下が好ましい。
<<<光ラジカル発生剤>>>
 前記光ラジカル発生剤としては、光によってラジカルを発生する有機物質であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の光学層の説明において例示した前記光ラジカル発生剤などが挙げられる。
 前記第2の光硬化性樹脂組成物における前記光ラジカル発生剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01質量%以上5.0質量%以下が好ましく、0.1質量%以上3.0質量%以下がより好ましい。
 前記第2の光学層の厚みの最小値としては、特に制限はなく、目的に応じて適宜選択することができるが、2μm以上が好ましく、2μm以上40μm以下がより好ましく、2μm以上25μm以下が更により好ましく、2μm以上10μm以下が特に好ましい。前記第2の光学層の厚みの最小値が2μm以上であることにより、プリズム効果を低減させて、十分な透明性が得ることができる。
 前記第2の光学層の厚みの最小値とは、例えば、図3においては「A」で表され、「第1の光学層の厚みが最大であるときの第2の光学層の厚み」を意味する。
<<破断伸び率>>
 前記第2の光学層の破断伸び率は、60%以上が好ましく、140%以上がより好ましく、200%以上が特に好ましい。前記第2の光学層の破断伸び率としては、例えば、60%以上250%以下が挙げられる。
 前記破断伸び率は、例えば、以下のように求めることができる。
 離型処理PET基材上に、第2の光学層に相当する平均厚み100μmの平滑なフィルムを作製する。当該フィルムを、前記離型処理PET基材から剥離して、長さ100mm×幅25mmに切断し、試験片を得る。
 測定は、JIS A5759 2008に従い行う。試験速度300mm/minで引張り試験を3回行い、その破断時のひずみの平均値を測定する。
<粘着層>
 前記粘着層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系、ゴム系、ポリエステル系、シリコン系などが挙げられるが、前記粘着層は、光学特性や耐候性の観点から、アクリル系粘着層であることが好ましい。
 前記アクリル系粘着層は、アクリル系ポリマーを含有する粘着層である。
 また、耐候性を向上させるために、粘着層にはUV吸収剤を含有しても良い。
 前記粘着層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上30μm以下が好ましく、10μm以上20μm以下がより好ましい。
<その他の部材>
 前記その他の部材としては、例えば、基材などが挙げられる。
<<基材>>
 前記基材は、前記第1の光学層の凹凸面と対向する面上に配置され、通常、透明性を有する。
 前記基材は、エネルギー線透過性を有することが好ましい。これにより、前記基材と前記無機層との間に介在させた光硬化性樹脂組成物に対して、前記基材側からエネルギー線を照射し、前記光硬化性樹脂組成物を硬化させることができるからである。
 前記基材の形状としては、光学体に可撓性を付与する観点から、フィルム状を有することが好ましいが、特にこの形状に限定されるものではない。
 前記基材の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、などが挙げられる。
 前記基材の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、生産性の観点から、38μm以上100μm以下が好ましい。
<破断伸び率>
 前記光学体の破断伸び率としては、特に制限はなく、目的に応じて適宜選択することができるが、60%以上が好ましく、60%以上1,000%以下がより好ましく、60%以上500%以下が特に好ましい。
 前記光学体の破断伸び率が60%以上であることにより、JIS-A5759に規定される「ガラス飛散防止フィルム」に好適に適合することができる。
 前記光学体の引張破断伸び率は、例えば、以下の方法で測定される。
 JIS A5759 2008に従い測定を行う。試験長さ100mm×幅25mmの試験片を作製し、試験速度300mm/minで引張り試験を3回行い、その破断時のひずみの平均値を測定する。
<貯蔵弾性率>
 前記光学体の25℃における貯蔵弾性率としては、特に制限はなく、目的に応じて適宜選択することができるが、3.0×10Pa以下が好ましい。前記光学体の25℃における貯蔵弾性率としては、例えば、1.0×10Pa以上3.0×10Pa以下が挙げられる。
 前記光学体の60℃における貯蔵弾性率としては、特に制限はなく、目的に応じて適宜選択することができるが、5.0×10Pa以上が好ましい。前記光学体の60℃における貯蔵弾性率としては、例えば、5.0×10Pa以上1.0×10Pa以下が挙げられる。
 貯蔵弾性率は、例えば、動的粘弾性測定装置(TAインスツルメンツ(株)製RSA3)を用い、測定周波数1Hzで測定する。
<180°ピール試験>
 前記光学体は、JIS A5759で規定される180°ピール試験による剥離力が、8N/25mm以上であることが好ましい。
 前記剥離力は、例えば、8N/25mm以上50N/25mm以下である。
 ここで定義される剥離力は、前記光学体の各層間の密着性を示す指標であり、界面剥離が生じていない状態での剥離力である。即ち、180°ピール試験において層間の界面剥離が生じている場合は、たとえ8N/25mm以上の値が得られても、その値は「剥離力」であるとは評価されない。
 180°ピール試験は、例えば、以下のようにして行う。
 第2の光学層に粘着層が貼着された光学体を用意する。
 それを、長さ250mm×幅25mmに切断し、試験片を得る。
 得られた試験片を、厚さ3mm、幅50mm、長さ125mmの板ガラスに貼り付ける。貼付け後、JIS Z 0237に規定する圧着ローラを用いて毎分約300mmの速さで1往復させて圧着させる。その後、試験片を24時間静置する。
 試験装置には、オートグラフAGS-X 50N((株)島津製作所)を用いる。
 試験片の遊び部分を180°に折り返し、25mmはがした後、フィルム(遊び部分)を上部チャックに、板ガラスは下部チャックに挟む。引張速さ毎分300mmで引きはがしを行い、その時の荷重を測定する。20mm間隔で4点の荷重を測定する。粘着力(剥離力、N/25mm幅)は、4点の測定荷重の平均値とする。試験結果は、3枚の試験片の平均値とする。
<透過像鮮明度>
 前記光学体において、透過性を持つ波長帯に対する透過像鮮明度に関し、2.0mmの光学くしを用いたときの値としては、特に制限はなく、目的に応じて適宜選択することができるが、60%以上が好ましく、75%以上がより好ましい。
 更に、前記光学体において、透過性を持つ波長帯に対する透過像鮮明度に関し、0.5mmの光学くしを用いたときの値としては、特に制限はなく、目的に応じて適宜選択することができるが、60%以上が好ましく、75%以上がより好ましい。透過像鮮明度の値が60%以上75%未満であると、光源のように非常に明るい物体のみ回折パターンが気になるが、外の景色を鮮明に見ることができる。透過像鮮明度の値が75%以上であれば、回折パターンは殆ど気にならない。
 ここで、透過像鮮明度の値は、スガ試験機製ICM-1Tを用いて、JIS K-7374:2007に準じて測定したものである。ただし、透過させたい波長がD65光源波長と異なる場合は、透過したい波長のフィルターを用いて校正した後に測定することが好ましい。
<波長選択反射性>
 図4は、波長選択反射性を有する光学体11に対して入射する入射光と、光学体11により反射された反射光との関係を示す斜視図である。光学体11は、光Lが入射する入射面S1を有する。光学体11は、入射角(θ、φ)で入射面S1に入射した光Lのうち、特定波長帯の光Lを選択的に正反射(-θ、φ+180°)以外の方向に指向反射するのに対して、特定波長帯以外の光Lを透過する。また、光学体11は、上記特定波長帯以外の光に対して透明性を有する。透明性としては、後述する透過像鮮明度の範囲を有するものであることが好ましい。但し、θ:入射面S1に対する垂線lと、入射光Lまたは反射光Lとのなす角である。φ:入射面S1内の特定の直線lと、入射光Lまたは反射光Lを入射面S1に射影した成分とのなす角である。ここで、入射面内の特定の直線lとは、入射角(θ、φ)を固定し、光学体11の入射面S1に対する垂線lを軸として光学体11を回転したときに、φ方向への反射強度が最大になる軸である。但し、反射強度が最大となる軸(方向)が複数ある場合、そのうちの1つを直線lとして選択するものとする。なお、垂線lを基準にして時計回りに回転した角度θを「+θ」とし、反時計回りに回転した角度θを「-θ」とする。直線lを基準にして時計回りに回転した角度φを「+φ」とし、反時計回りに回転した角度φを「-φ」とする。
 選択的に指向反射する特定の波長帯の光、及び透過させる特定の光は、光学体11の用途により異なる。例えば、外部支持体としての窓材に対して光学体11を適用する場合、選択的に指向反射する特定の波長帯の光は近赤外光であり、透過させる特定の波長帯の光は可視光であることが好ましい。具体的には、選択的に指向反射する特定の波長帯の光が、主に波長帯域780nm以上2100nm以下の近赤外線であることが好ましい。近赤外線を反射することで、光学体をガラス窓などの窓材に貼り合わせた場合に、建物内の温度上昇を抑制することができる。したがって、冷房負荷を軽減し、省エネルギー化を図ることができる。ここで、指向反射とは、正反射以外のある特定の方向への反射光強度が、正反射光強度より強く、かつ、指向性を持たない拡散反射強度よりも十分に強いことを意味する。ここで、反射するとは、特定の波長帯域、例えば近赤外域における反射率が好ましくは30%以上、より好ましくは50%以上、さらに好ましくは80%以上であることを示す。透過するとは、特定の波長帯域、例えば可視光域における透過率が好ましくは30%以上、より好ましくは50%以上、さらに好ましくは70%以上であることを示す。
 波長選択反射性を有する光学体11において、指向反射する方向φoが-90°以上、90°以下であることが好ましい。光学体11を外部支持体に貼った場合、上空から入射する光のうち、特定波長帯の光を上空方向に戻すことができるからである。周辺に高い建物がない場合にはこの範囲の光学体11が有用である。また、指向反射する方向が(θ、-φ)近傍であることが好ましい。近傍とは、好ましく(θ、-φ)から5度以内、より好ましくは3度以内であり、さらに好ましくは2度以内の範囲内のずれのことをいう。この範囲にすることで、光学体11を外部支持体に貼った場合、同程度の高さが立ち並ぶ建物の上空から入射する光のうち、特定波長帯の光を他の建物の上空に効率良く戻すことができるからである。このような指向反射を実現するためには、例えば球面や双曲面の一部や三角錐、四角錘、円錐などの3次元構造体を用いることが好ましい。(θ、φ)方向(-90°<φ<90°)から入射した光は、その形状に基づいて(θo、φo)方向(0°<θo<90°、-90°<φo<90°)に反射させることができる。または、一方向に伸びた柱状体にすることが好ましい。(θ、φ)方向(-90°<φ<90°)から入射した光は、柱状体の傾斜角に基づいて(θo、-φ)方向(0°<θo<90°)に反射させることができる。
 波長選択反射性を有する光学体11において、特定波長帯の光の指向反射が、再帰反射近傍方向、すなわち、入射角(θ、φ)で入射面S1に入射した光に対する、特定波長帯の光の反射方向が、(θ、φ)近傍であることが好ましい。光学体11を外部支持体に貼った場合、上空から入射する光のうち、特定波長帯の光を上空に戻すことができるからである。ここで近傍とは5度以内が好ましく、より好ましくは3度以内であり、さらに好ましくは2度以内である。この範囲にすることで、光学体11を外部支持体に貼った場合、上空から入射する光のうち、特定波長帯の光を上空に効率良く戻すことができるからである。また、赤外線センサーや赤外線撮像のように、赤外光照射部と受光部が隣接している場合は、再帰反射方向は入射方向と等しくなければならないが、特定の方向からセンシングする必要がない場合は、厳密に同一方向とする必要はない。
<凹凸形状>
 図5Aに示すように、第1の光学層2を構成する構造体2cの形状を、光学体11の入射面S1または出射面S2に垂直な垂線lに対して非対称な形状としてもよい。この場合、構造体2cの主軸lが、垂線lを基準にして構造体2cの配列方向aに傾くことになる。ここで、構造体2cの主軸lとは、構造体断面の底辺の中点と構造体の頂点とを通る直線を意味する。地面に対して略垂直に配置された外部支持体としての窓材に光学体11を貼る場合には、図5Bに示すように、構造体2cの主軸lが、垂線lを基準にして外部支持体としての窓材の下方(地面側)に傾いていることが好ましい。一般に窓を介した熱の流入が多いのは昼過ぎ頃の時間帯であり、太陽の高度が45°より高いことが多いため、上記形状を採用することで、これら高角度から入射する光を効率的に上方に反射できるからである。図5A及び図5Bでは、プリズム形状の構造体2cを垂線lに対して非対称な形状とした例が示されている。なお、プリズム形状以外の構造体2cを垂線lに対して非対称な形状としてもよい。例えば、コーナーキューブ体を垂線lに対して非対称な形状としてもよい。
 構造体2cをプリズム形状とする場合、プリズム形状の構造体2cの傾斜角度α(図1)は、例えば45°である。構造体2cは、窓材に適用した場合に、上空から入射した光を反射して上空に多く戻す観点からは、傾斜角がなるべく45°以上傾斜した平面または曲面を有することが好ましい。このような形状にすることで、入射光はほぼ1回の反射で上空へ戻るため、波長選択反射膜の反射率がそれ程高く無くとも効率的に上空方向へ入射光を反射できると共に、波長選択反射膜における光の吸収を低減できるからである。
 図6Aは、本発明の一実施形態に係る光学体における第1の光学層の構成例を示す平面図である。図6Bは、図6Aに示した第1の光学層のB-B線に沿った断面図である。
 第1の光学層2の一主面には、構造体2cが2次元的に配列されている。この配列は、最稠密充填状態での配列であることが好ましい。例えば、第1の光学層2の一主面には、構造体2cを最稠密充填状態で2次元配列することによりデルタ稠密アレイなどの稠密アレイが形成されている。デルタ稠密アレイは、例えば図6A~図6Bに示すように、三角形状の底面を有する構造体2c(例えば三角錐)を最稠密充填状態で配列させたものである。
 また、第1の光学層2の表面に形成される構造体2cの形状は1種類に限定されるものではなく、複数種類の形状の構造体2cを第1の光学層の表面に形成するようにしてもよい。複数種類の形状の構造体2cを表面に設ける場合、複数種類の形状の構造体2cからなる所定のパターンが周期的に繰り返されるようにしてもよい。また、所望とする特性によっては、複数種類の構造体2cがランダム(非周期的)に形成されるようにしてもよい。
<光学体の製造方法>
 以下、図7A~図7C、図8A~図8C、及び図9A~図9Dを参照して、本発明の一実施形態に係る光学体の製造方法の一例について説明する。なお、以下に示す製造プロセスの一部または全部は、生産性を考慮して、ロール・ツー・ロールにより行われることが好ましい。但し、金型の作製工程は除くものとする。
 まず、図7Aに示すように、例えばバイト加工またはレーザー加工などにより、第1の光学層2を構成する構造体2cと同一の凹凸形状の金型21、またはその金型21の反転形状を有する金型(レプリカ)を形成する。次に、図7Bに示すように、例えば溶融押し出し法または転写法などを用いて、金型21の凹凸形状をフィルム状の樹脂材料に転写する。転写法としては、型に光硬化性樹脂組成物を流し込み、エネルギー線を照射して硬化させる方法、樹脂に熱や圧力を加え、形状を転写する方法、または樹脂フィルムをロールから供給し、熱を加えながら型の形状を転写する方法(ラミネート転写法)などが挙げられる。これにより、図7Cに示すように、一主面に構造体2cを有する第1の光学層2が形成される。
 また、図7Cに示すように、第1の基材4上に、第1の光学層2を形成するようにしてもよい。この場合には、例えば、フィルム状の第1の基材4をロールから供給し、該第1の基材4上に光硬化性樹脂組成物を塗布した後に型に押し当て、型の形状を転写し、紫外線等のエネルギー線を照射して光硬化性樹脂組成物を硬化させる方法が用いられる。
 次に、図8Aに示すように、その第1の光学層2の一主面上に無機層1としての波長選択反射層(機能性層)を成膜する。無機層1としての波長選択反射層の成膜方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スパッタリング法、蒸着法、CVD(Chemical Vapor Deposition)法、ディップコーティング法、ダイコーティング法、ウェットコーティング法、スプレーコーティング法などが挙げられ、これらの成膜方法から、構造体2cの形状などに応じて適宜選択することが好ましい。次に、図8Bに示すように、必要に応じて、無機層1としての波長選択反射層に対してアニール処理31を施す。アニール処理の温度は、例えば100℃以上250℃以下の範囲内である。
 次に、図8Cに示すように、光硬化性樹脂組成物22を、無機層1としての波長選択反射層上に塗布する。
 次に、図9Aのように、コーター等で光硬化性樹脂組成物22を所定厚みに塗り広げて凹凸構造を埋めることにより、積層体を形成する。
 次に、図9Bに示すように、例えばエネルギー線32により光硬化性樹脂組成物22を硬化させるとともに、積層体に対して圧力33を加える。前記エネルギー線としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子線、紫外線、可視光線、ガンマ線、電子線などが挙げられる。これらの中でも、生産設備の観点から、紫外線が好ましい。積算照射量としては、特に制限はなく、樹脂の硬化特性、樹脂や基材4の黄変抑制などを考慮して、適宜選択することができる。積層体に加える圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01MPa以上1MPa以下が好ましい。積層体に加える圧力が、0.01MPa未満であると、フィルムの走行性に問題が生じ、一方、1MPaを超えると、ニップロールとして金属ロールを用いる必要があり、圧力ムラが生じ易い。
 以上により、図9Cに示すように、無機層1としての波長選択反射層上に第2の光学層3が形成され、光学体11が得られる。
 更に、本発明の光学体は、第2の光学層3の無機層1側と反対側に粘着層5が形成されていてもよい。粘着層5の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、第2の光学層3上に粘着剤組成物を塗布して形成してもよいし、第2の光学層3と粘着層5とをラミネート加工により貼り合わせることで形成してもよい。
 なお、第2の光学層3の他の凹凸面3aと対向する面3bの平坦度は、コーターヘッド等の平坦度、及び、樹脂の厚さ(凹凸の埋まり具合)に起因する。
 次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。
(実施例1)
<光学体の作製>
 図10に示す四角錐形状の構造体2dを表面に有する第1の光学層を形成可能な転写金型を用いた転写法により、PET基材A4300(東洋紡株式会社製、厚み50μm)上に、下記光硬化性樹脂組成物A1を用いて、図10に示す四角錐形状の構造体2dを表面に有する第1の光学層を形成した。具体的には、PET基材A4300上に、下記光硬化性樹脂組成物A1を塗布した後、前記転写金型を用いた転写法により構造体2dを形成し、その後、紫外線を照射して硬化させて第1の光学層を形成した。
 形成した第1の光学層上に、下記構成の無機層を真空スパッタ法により形成した。形成した無機層上に、下記光硬化性樹脂組成物B1を塗布し、紫外線を照射して硬化させて第2の光学層を形成した。
 以上により、光学体を得た。硬化後の第2の光学層の最薄部の厚みは20μmであった。光学体の厚みは、85μmであった。
<<光硬化性樹脂組成物A1>>
 以下の表1に記載の材料を混合して、光硬化性樹脂組成物A1を得た。
Figure JPOXMLDOC01-appb-T000001
 表1中の数値の単位は、「環状構造含有率」を除き、質量部である。
 「環状構造含有率」とは、第1の光学層の樹脂成分であるラジカル重合性ビニル基含有物質の総量に対する、環状構造を有する(メタ)アクリレートの割合(質量%)である。
 表1中の材料の詳細は以下のとおりである。
 ・EBECRYL8807:2官能ウレタンアクリレート、ダイセル・オルネクス株式会社製
 ・NKエステルA9300:多官能アクリレートモノマーとしてのエトキシ化イソシアヌル酸トリアクリレート、新中村化学工業株式会社製
 ・ACMO:含窒素複素環を有する単官能アクリレートモノマーとしてのアクリロイルモルホリン、KJケミカルズ株式会社製
 ・A-NOD-N:多官能アクリレートモノマーとしての1,9-ノナンジオールジアクリレート、新中村化学工業株式会社製
 ・AMP-10G:アクリル酸2-フェノキシエチル、新中村化学工業株式会社製
 ・IBXA:イソボルニルアクリレート、大阪有機化学工業株式会社製
 ・アロニックスM-111:ノニルフェノールEO変性アクリレート、東亞合成株式会社製
 ・ビスコート#155:シクロヘキシルアクリレート、大阪有機化学工業株式会社製
 ・ビスコート#150:テトラヒドロフルフリルアクリレート、大阪有機化学工業株式会社製
 ・イルガキュア127:光ラジカル発生剤(光重合開始剤)、BASFジャパン株式会社製
<<無機層の構成>>
 (第1の光学層)/Nb(32nm)/AgPdCu(11nm)/Al-ZnO(8nm)/Nb(70nm)/AgPdCu(11nm)/AZO(32nm)/(第2の光学層)
<<光硬化性樹脂組成物B1>>
 以下の表2に記載の材料を混合して、光硬化性樹脂組成物B1を得た。
Figure JPOXMLDOC01-appb-T000002
 表2中の材料の詳細は以下のとおりである。
 ・EBECRYL8807:2官能ウレタンアクリレート、ダイセル・オルネクス株式会社製
 ・ACMO:含窒素複素環を有する単官能アクリレートモノマーとしてのアクリロイルモルホリン、KJケミカルズ株式会社製
 ・AMP-10G:アクリル酸2-フェノキシエチル、新中村化学工業株式会社製
 ・ライトエステルP-2M:リン酸含有アクリレートとしての2-メタクロイロキシエチルアシッドホスフェート、共栄社化学株式会社製
 ・イルガキュア127:光ラジカル発生剤(光重合開始剤)、BASFジャパン株式会社製
 得られた光学体を以下の試験・測定に供した。結果を表3に示す。
<180°ピール試験>
 JIS A 5759に準じて試験を行った。具体的には以下のようにして、180°ピール試験を行った。
 作製した光学体の第2の光学層に、粘着層(平均厚み16μm、MF58UV0455、巴川製紙所製)を貼り付けた。
 それを、長さ250mm×幅25mmに切断し、試験片を得た。
 得られた試験片を、厚さ3mm、幅50mm、長さ125mmの板ガラスに貼り付けた。貼付け後、JIS Z 0237に規定する圧着ローラを用いて毎分約300mmの速さで1往復させて圧着させた。その後、試験片を24時間静置した。
 試験装置には、オートグラフ AGS-X 50N((株)島津製作所)を用いた。
 試験片の遊び部分を180°に折り返し、25mmはがした後、フィルム(遊び部分)を上部チャックに、板ガラスは下部チャックに挟んだ。引張速さ毎分300mmで引きはがしを行い、その時の荷重を測定した。20mm間隔で4点の荷重を測定した。粘着力(剥離力、N/25mm幅)は、4点の測定荷重の平均値とした。試験結果は、3枚の試験片の平均値とした。
 以下の評価基準で評価した。
 なお、粘着層には、第1の光学層と無機層との間、及び第2の光学層と無機層との間で界面破壊が無いと仮定した場合に、8N/25mm以上の剥離力を実現する粘着層を用いた。
〔評価基準〕
 ○:8N/25mm以上の剥離力であり、かつ第1の光学層と無機層との間で界面破壊がない。
 △:8N/25mm以上の剥離力であるが、第1の光学層と無機層との間で一部に界面破壊がある
 ×:8N/25mm以上の剥離力であるが、第1の光学層と無機層との間で界面破壊がある。
 なお、全ての試料において、第2の光学層と無機層との間では界面破壊はなかった。
<臭い>
 光学体が含有するモノマーの臭いを官能評価で評価した。評価者が光学体の臭いの有無を以下の評価基準で評価した。
〔評価基準〕
 ○:臭いがない。
 ×:臭いがある。
<硬化収縮率>
 第1の光学層の硬化収縮率を測定した。
 具体的には光硬化性樹脂組成物A1について、硬化前の組成物と硬化物(硬化後の組成物)の比重を電子比重計(MIRAGE社製SD-120L)を用いて測定し、両者の比重差から次式により算出した。得られた結果を表2に示す。
 硬化収縮率(%)=
  100×〔(硬化物の比重)-(組成物の比重)〕/(硬化物の比重)
<引張破断伸び率の測定>
<<第1の光学層の破断伸び率>>
 光硬化性樹脂組成物A1を用いて、離型処理PET基材上に、第1の光学層に相当する平均厚み100μmの平滑なフィルムを作製した。当該フィルムを、前記離型処理PET基材から剥離して、長さ100mm×幅25mmに切断し、試験片を得た。
 当該フィルムを作製する際には、第1の光学層を形成する際と同様の光照射を行った。
 測定は、JIS A5759 2008に従い行った。試験速度300mm/minで引張り試験を3回行い、その破断時のひずみの平均値を測定した。
<<第2の光学層の破断伸び率>>
 光硬化性樹脂組成物B1を用いて、離型処理PET基材上に、第2の光学層に相当する平均厚み100μmの平滑なフィルムを作製した。当該フィルムを、前記離型処理PET基材から剥離して、長さ100mm×幅25mmに切断し、試験片を得た。
 当該フィルムを作製する際には、第2の光学層を形成する際と同様の光照射を行った。
 測定は、JIS A5759 2008に従い行った。試験速度300mm/minで引張り試験を3回行い、その破断時のひずみの平均値を測定した。
<貯蔵弾性率>
 各試料について、動的粘弾性測定装置(TAインスツルメンツ(株)製RSA3)を用い、測定周波数1Hzで貯蔵弾性率(Pa)(25℃又は60℃)を測定した。
 なお、測定の際には、基材PETA4300を除去した状態で測定を行った。
(実施例2~3)
 実施例1において、光硬化性樹脂組成物A1を、表1に記載の光硬化性樹脂組成物に変更した以外は、実施例1と同様にして、光学体を作製した。
 作製した光学体について、実施例1と同様の評価を行った。結果を表3に示した。
(比較例1~3)
 実施例1において、光硬化性樹脂組成物A1を、表1に記載の光硬化性樹脂組成物に変更した以外は、実施例1と同様にして、光学体を作製した。
 作製した光学体について、実施例1と同様の評価を行った。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 表3中、「E」は、10のべき乗である。例えば、「E+09」は、10を意味する。
 以上より、第1の光学層と、無機層と、第2の光学層とを備える光学体において、第1の光学層が、環状構造を側鎖に有するポリアクリレートを含有し、第1の光学層の破断伸び率が30%以上であることにより、第1の光学層と無機層との密着性に優れ、ガラス飛散防止フィルムにも適用可能な光学体が得られることが分かった。
 本発明の光学体は、フィルムとして、多岐に亘って適用可能であるが、特に、窓ガラス、壁等に貼り付ける熱線再帰フィルムとして好適に用いることができる。
 1    無機層
 2    第1の光学層
 2a   凹凸面
 2b   面
 3a   凹凸面
 3    第2の光学層
 4    第1の基材
 5    粘着層
 11   光学体
 22   光硬化性樹脂組成物
 100  光学体
 101  無機層
 102  第1の光学層
 103  第2の光学層
 104  第1の基材
 105  第2の基材
 106  粘着層
 107  外部支持体

Claims (7)

  1.  凹凸面を有する第1の光学層と、
     前記第1の光学層の凹凸面上に配置された無機層と、
     前記無機層側に他の凹凸面を有し、該他の凹凸面における凹凸が埋没するように配置された第2の光学層と、
     を有し、
     前記第1の光学層が、環状構造を側鎖に有するポリアクリレートを含有し、
     前記第1の光学層の破断伸び率が、30%以上である、
    ことを特徴とする光学体。
  2.  前記環状構造が、環を構成する元素に窒素又は酸素を含む請求項1に記載の光学体。
  3.  JIS A5759で規定される180°ピール試験による剥離力が、8N/25mm以上である請求項1から2のいずれかに記載の光学体。
  4.  前記ポリアクリレートが、ラジカル重合性ビニル基含有物質の重合体であり、
     前記ラジカル重合性ビニル基含有物質が、40質量%以上の環状構造を有する(メタ)アクリレートを含有する、
     請求項1から3のいずれかに記載の光学体。
  5.  前記第2の光学層の破断伸び率が、60%以上である請求項1から4のいずれかに記載の光学体。
  6.  更に、前記第2の光学層に接する粘着層を有する請求項1から5のいずれかに記載の光学体。
  7.  前記第2の光学層が、粘着層と接して使用される請求項1から5のいずれかに記載の光学体。
PCT/JP2018/025115 2017-07-28 2018-07-02 光学体 WO2019021755A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-146152 2017-07-28
JP2017146152A JP2019028203A (ja) 2017-07-28 2017-07-28 光学体

Publications (1)

Publication Number Publication Date
WO2019021755A1 true WO2019021755A1 (ja) 2019-01-31

Family

ID=65040124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025115 WO2019021755A1 (ja) 2017-07-28 2018-07-02 光学体

Country Status (2)

Country Link
JP (1) JP2019028203A (ja)
WO (1) WO2019021755A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059790A1 (ja) * 2020-09-17 2022-03-24 富士フイルム株式会社 加飾フィルム、加飾成型体、加飾パネル、及び、電子デバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254693B2 (ja) * 2019-12-27 2023-04-10 富士フイルム株式会社 積層体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106112A (ja) * 2006-10-24 2008-05-08 Ube Nitto Kasei Co Ltd ガラス窓外貼り用装飾性フィルム
JP2010160467A (ja) * 2008-12-09 2010-07-22 Sony Corp 光学体およびその製造方法、窓材、ブラインド、ロールカーテン、ならびに障子
JP2015165018A (ja) * 2014-02-10 2015-09-17 日本カーバイド工業株式会社 光硬化する組成物ならびにその組成物から得られる光硬化物および粘接着剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106112A (ja) * 2006-10-24 2008-05-08 Ube Nitto Kasei Co Ltd ガラス窓外貼り用装飾性フィルム
JP2010160467A (ja) * 2008-12-09 2010-07-22 Sony Corp 光学体およびその製造方法、窓材、ブラインド、ロールカーテン、ならびに障子
JP2015165018A (ja) * 2014-02-10 2015-09-17 日本カーバイド工業株式会社 光硬化する組成物ならびにその組成物から得られる光硬化物および粘接着剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
20 December 2016 (2016-12-20), Retrieved from the Internet <URL:http://www.jisc.go.jp/pdfa5/PDFView/ShowPDF/UAEAAMXgrG zCoQDzdpB8> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059790A1 (ja) * 2020-09-17 2022-03-24 富士フイルム株式会社 加飾フィルム、加飾成型体、加飾パネル、及び、電子デバイス

Also Published As

Publication number Publication date
JP2019028203A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
KR101648280B1 (ko) 적층체
JP5332599B2 (ja) 偏光板、その製造方法及びそれを用いた複合偏光板
TWI736625B (zh) 積層薄膜及影像顯示裝置
JP5662019B2 (ja) 光学体およびその製造方法
JP5888864B2 (ja) アクリル系樹脂フィルム及びこれを用いた偏光板並びにアクリル系樹脂フィルムの製造方法
KR20150125704A (ko) 적층 구조체 및 그의 제조 방법과 물품
JP2017025205A (ja) 透明な粘着剤層を有する透明導電層付カバー部材
JP2017026826A (ja) 透明な粘着剤層及びパターン化された透明導電層を有する偏光フィルム積層体並びに液晶パネル及び有機elパネル
WO2019107036A1 (ja) ハードコートフィルム、光学積層体および画像表示装置
JP6550251B2 (ja) 粘着剤層付き光学フィルム
TW201544878A (zh) 波長轉換構件、背光單元、偏光板、液晶面板及液晶顯示裝置
TWI605098B (zh) Hard coated film, polarizing plate using the same, display member, and display device
US9871227B2 (en) Light scattering layer having particles for an organic EL light emitting device
JP2016218478A (ja) アクリル系樹脂フィルム及び偏光板
JP2015125436A (ja) 光学フィルム、画像表示装置、及び光学フィルムの製造方法
JP6387651B2 (ja) ブルーライトカットフィルム、表示装置、及び、ブルーライトカットフィルム用樹脂組成物
WO2019021755A1 (ja) 光学体
CN116515457A (zh) 粘合剂层、其制造方法、粘合片、带粘合剂层的光学膜和图像显示装置
JP2015129882A (ja) 光学フィルム、画像表示装置及び光学フィルムの製造方法
JP2013142830A (ja) 光学積層体、偏光板及び画像表示装置
EP3414621A1 (en) Unitary optical film assembly
JP2016041778A (ja) 保護フィルム、フィルム積層体および偏光板
JP2018101016A (ja) 機能性フィルム
WO2018116748A1 (ja) 光学体
JP6076420B2 (ja) 透明な粘着剤層を有する導電性フィルム積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837333

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837333

Country of ref document: EP

Kind code of ref document: A1