WO2019021665A1 - 光学フィルタ - Google Patents

光学フィルタ Download PDF

Info

Publication number
WO2019021665A1
WO2019021665A1 PCT/JP2018/022490 JP2018022490W WO2019021665A1 WO 2019021665 A1 WO2019021665 A1 WO 2019021665A1 JP 2018022490 W JP2018022490 W JP 2018022490W WO 2019021665 A1 WO2019021665 A1 WO 2019021665A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical filter
light
transmittance
absorbing
Prior art date
Application number
PCT/JP2018/022490
Other languages
English (en)
French (fr)
Inventor
雄一郎 久保
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to CN201880049576.3A priority Critical patent/CN110959124B/zh
Priority to KR1020207005472A priority patent/KR102351046B1/ko
Priority to US16/633,474 priority patent/US11592603B2/en
Publication of WO2019021665A1 publication Critical patent/WO2019021665A1/ja
Priority to US18/158,790 priority patent/US11885993B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes

Definitions

  • the present invention relates to an optical filter.
  • an imaging device using an imaging device such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS)
  • various optical filters are disposed in front of the imaging device to obtain an image having good color reproducibility.
  • the imaging device has spectral sensitivity in a wide wavelength range from the ultraviolet region to the infrared region.
  • human visual sensitivity exists only in the visible light region. For this reason, there is known a technique in which an optical filter for shielding infrared rays or ultraviolet rays is disposed in front of the imaging device in order to bring the spectral sensitivity of the imaging device in the imaging device closer to human visibility.
  • optical filter such as an optical filter having reflection of light such as an optical filter having a dielectric multilayer film, and an optical filter having a film containing a light absorbing agent capable of absorbing light of a predetermined wavelength
  • optical filters that utilize light absorption. The latter is desirable in that it has spectral characteristics that are less likely to fluctuate with respect to the incident angle of incident light.
  • Patent Document 1 describes a near infrared absorption filter formed of a near infrared absorber and a resin.
  • the near infrared absorber is obtained from a predetermined phosphonic acid compound, a predetermined phosphoric acid ester compound, and a copper salt.
  • Certain phosphonic acid compounds have the monovalent group R 1 represented by —CH 2 CH 2 —R 11 bonded to the phosphorus atom P.
  • R 11 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a fluorinated alkyl group having 1 to 20 carbon atoms.
  • the near infrared absorption filter described in Patent Document 1 can effectively absorb light at a wavelength of 800 nm to 1200 nm, it is difficult to say that it has desirable light absorption characteristics at a wavelength of 350 nm to 400 nm and a wavelength of 650 nm to 800 nm. . Therefore, the present invention provides an optical filter which can exhibit desired optical performance which can not be realized only by the near infrared absorption filter described in Patent Document 1 with a simple configuration.
  • the present invention Equipped with a UV-IR absorbing layer capable of absorbing infrared and ultraviolet light, When light with a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °: (I) has an average transmittance of 78% or more at a wavelength of 450 nm to 600 nm, (Ii) has a spectral transmittance of 1% or less at a wavelength of 750 nm to 1080 nm, (Iii) having a spectral transmittance of 1% or less at a wavelength of 300 nm to 350 nm, (Iv) The first IR cut-off wavelength having a spectral transmittance of 50 nm at a wavelength of 600 nm to 750 nm and a spectral transmittance of 50% at a wavelength of 600 nm to 750 nm, while decreasing with an increase in wavelength Exists, (V) The first UV cut-off wavelength having a spectral transmittance of 50
  • the above optical filter can exhibit desired optical performance with a simple configuration.
  • FIG. 1A is a cross-sectional view showing an example of the optical filter of the present invention.
  • FIG. 1B is a cross-sectional view showing another example of the optical filter of the present invention.
  • FIG. 1C is a cross-sectional view showing still another example of the optical filter of the present invention.
  • FIG. 1D is a cross-sectional view showing still another example of the optical filter of the present invention.
  • FIG. 1E is a cross-sectional view showing still another example of the optical filter of the present invention.
  • FIG. 1F is a cross-sectional view showing still another example of the optical filter of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a camera module provided with the optical filter of the present invention.
  • FIG. 3 is a transmittance spectrum of the optical filter according to the first embodiment.
  • FIG. 4 is a transmittance spectrum of the optical filter according to the second embodiment.
  • FIG. 5 is a transmittance spectrum of the optical filter according to the sixteenth embodiment.
  • FIG. 6 is a transmittance spectrum of the optical filter according to the seventeenth embodiment.
  • FIG. 7 is a transmittance spectrum of the optical filter according to the eighteenth embodiment.
  • FIG. 8A is a transmittance spectrum of the infrared ray absorbing glass substrate used in Example 21.
  • FIG. 8B is a transmittance spectrum of the optical filter according to Example 21.
  • FIG. 9 is a transmittance spectrum of the optical filter according to Example 22.
  • FIG. 10 is a transmittance spectrum of the optical filter according to Example 23.
  • FIG. 11 is a transmittance spectrum of the optical filter according to Example 24.
  • FIG. 12 is a transmittance spectrum of the optical filter according to Example 38.
  • the optical filter may have the property of transmitting light at a wavelength of 450 nm to 600 nm and cutting light at a wavelength of 300 nm to 400 nm and a wavelength of 650 nm to 1100 nm.
  • the optical filter described in Patent Document 1 does not have sufficient light absorption characteristics at a wavelength of 350 nm to 400 nm and a wavelength of 650 nm to 800 nm, and has a wavelength of 350 nm to 400 nm and a wavelength of 650 nm to 800 nm.
  • another light absorbing layer or a light reflecting film is required.
  • the optical filter 1 a comprises a UV-IR absorbing layer 10.
  • the UV-IR absorbing layer 10 is a layer capable of absorbing infrared rays and ultraviolet rays.
  • the optical filter 1a exhibits the following optical performance (i) to (v) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °.
  • spectral transmittance is transmittance when incident light of a specific wavelength is incident on an object such as a sample
  • average transmittance is spectral transmittance within a predetermined wavelength range.
  • maximum transmittance is the maximum value of the spectral transmittance within a predetermined wavelength range.
  • transmittance spectrum is a spectrum in which the spectral transmittance at each wavelength within a predetermined wavelength range is arranged in order of wavelength.
  • IR cutoff wavelength indicates 50% spectral transmittance in a wavelength range of 600 nm or more when light having a wavelength of 300 nm to 1200 nm is incident on an optical filter at a predetermined incident angle. It means the wavelength.
  • the “first IR cut-off wavelength” is an IR cut-off wavelength when light is incident on the optical filter at an incident angle of 0 °.
  • the “UV cut-off wavelength” is a wavelength that exhibits 50% spectral transmittance in the wavelength range of 450 nm or less when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter at a predetermined incident angle. means.
  • the “first UV cut-off wavelength” is a UV cut-off wavelength when light is incident on the optical filter at an incident angle of 0 °.
  • the optical filter 1a exerts the optical performances of (i) to (v) above, whereby the optical filter 1a has a large amount of transmission of light with a wavelength of 450 nm to 600 nm, and a wavelength of 300 nm to 400 nm and a wavelength of 650 nm to 1100 nm. You can cut the light effectively. For this reason, the transmission spectrum of the optical filter 1a is more adapted to human visual sensitivity than the transmission spectrum of the near-infrared absorption filter described in Patent Document 1. In addition, even if the optical filter 1a does not have any layer other than the UV-IR absorbing layer 10, the optical performance of the above (i) to (v) can be exhibited.
  • the optical filter 1a preferably has an average transmittance of 80% or more, more preferably 82% or more, at a wavelength of 450 nm to 600 nm.
  • the optical filter 1a desirably has a spectral transmittance of 1% or less at wavelengths of 300 nm to 360 nm. Thereby, the optical filter 1a can cut the light of an ultraviolet region more effectively.
  • the first IR cutoff wavelength (a wavelength exhibiting a spectral transmittance of 50%) desirably lies within a wavelength range of 630 nm to 650 nm.
  • the transmission spectrum of the optical filter 1a is more adapted to human visual sensitivity.
  • the first UV cutoff wavelength (a wavelength exhibiting a 50% spectral transmittance) desirably lies within a wavelength range of 390 nm to 420 nm.
  • the transmission spectrum of the optical filter 1a is more adapted to human visual sensitivity.
  • the optical filter 1a desirably exhibits the following optical performance (vi) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. This makes it possible to shield infrared rays having relatively long wavelengths (wavelengths of 1000 to 1100 nm). Conventionally, in order to cut light of this wavelength, a light reflecting film composed of a dielectric multilayer film is often used. However, according to the optical filter 1a, light of this wavelength can be effectively cut without using such a dielectric multilayer film.
  • the optical filter 1a desirably exhibits the optical performance of the following (vii) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. In this case, it is possible to cut out infrared rays having longer wavelengths (1100 to 1200 nm). As a result, even if the dielectric multilayer film is not used or the number of laminated dielectrics in the dielectric multilayer film is small, the optical filter 1a can effectively cut the light of this wavelength. (Vii) Spectral transmittance of 15% or less at wavelengths of 1100 to 1200 nm
  • the absolute value of the difference between the second IR cutoff wavelength and the first IR cutoff wavelength is 10 nm or less (optical performance (viii)).
  • the second IR cutoff wavelength is an IR cutoff wavelength when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 40 °.
  • the transmittance characteristic in the vicinity of the first IR cutoff wavelength of the optical filter 1a does not easily change with respect to the incident angle of light incident on the optical filter 1a.
  • the absolute value of the difference between the second IR cutoff wavelength and the first IR cutoff wavelength is desirably 5 nm or less.
  • the absolute value of the difference between the third IR cutoff wavelength and the first IR cutoff wavelength is 15 nm or less (optical performance (ix)).
  • the third IR cutoff wavelength is the IR cutoff wavelength when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 50 °.
  • the incident angle of light incident on the optical filter 1a changes significantly, it is possible to suppress the change in the transmittance characteristic near the first IR cutoff wavelength of the optical filter 1a.
  • the optical filter 1a is disposed in front of the imaging element of the imaging device capable of imaging at a wide angle of view, it is easy to obtain a high quality image.
  • the absolute value of the difference between the fourth IR cutoff wavelength and the first IR cutoff wavelength is 20 nm or less.
  • the fourth IR cutoff wavelength is an IR cutoff wavelength when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 60 °. In this case, even if the optical filter 1a is disposed in front of the imaging element of the imaging apparatus capable of imaging at a wide angle of view, a high quality image can be easily obtained.
  • the absolute value of the difference between the second UV cutoff wavelength and the first UV cutoff wavelength is 10 nm or less (optical performance (x)).
  • the second UV cutoff wavelength is a UV cutoff wavelength when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 40 °.
  • the transmittance characteristic in the vicinity of the first UV cutoff wavelength of the optical filter 1a does not easily change with respect to the incident angle of light incident on the optical filter 1a.
  • the absolute value of the difference between the second UV cutoff wavelength and the first UV cutoff wavelength is desirably 5 nm or less.
  • the absolute value of the difference between the third UV cutoff wavelength and the first UV cutoff wavelength is 15 nm or less (optical performance (xi)).
  • the third UV cutoff wavelength is a UV cutoff wavelength when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 50 °.
  • the incident angle of light incident on the optical filter 1a changes significantly, it is possible to suppress the change in the transmittance characteristic in the vicinity of the first UV cutoff wavelength of the optical filter 1a.
  • the optical filter 1a is disposed in front of the imaging element of the imaging device capable of imaging at a wide angle of view, it is easy to obtain a high quality image.
  • the absolute value of the difference between the fourth UV cutoff wavelength and the first UV cutoff wavelength is 20 nm or less.
  • the fourth UV cutoff wavelength is a UV cutoff wavelength when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 60 °. In this case, even if the optical filter 1a is disposed in front of the imaging element of the imaging apparatus capable of imaging at a wide angle of view, a high quality image can be easily obtained.
  • the optical filter 1a desirably exhibits the following optical performance (xii) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °.
  • the optical filter 1a desirably exhibits the following optical performance (xiii) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °.
  • Each color filter corresponding to RGB used in the imaging device may transmit not only light in the wavelength range corresponding to each RGB but also light having a wavelength of 800 nm or more. For this reason, if the spectral transmittance in the above wavelength range of the infrared cut filter used in the imaging device is not low to a certain extent, light in the above wavelength range enters the pixel of the imaging element and a signal is output from that pixel .
  • a digital image when the light amount in the visible light region is sufficiently strong, infrared light with a low light amount can be obtained even if the pixel of the image pickup element receives light through the color filter. Digital images have no major impact. However, when the amount of light in the visible light region is small or in the dark part of the image, such infrared rays are likely to be influenced, and sometimes a tint such as bluish or reddish may be mixed into those images.
  • a color filter used together with an imaging device such as a CMOS and a CCD may transmit light in a wavelength range of 800 to 950 nm or 800 to 1000 nm. Such defects in the image can be prevented by the optical filter 1a having the optical performances of (xii) and (xiii) described above.
  • the UV-IR absorbing layer 10 is not particularly limited as long as it absorbs infrared rays and ultraviolet rays so that the optical filter 1a can exhibit the optical performances of (i) to (v) above, for example, by phosphonic acid and copper ion It contains the formed UV-IR absorber.
  • the UV-IR absorbing layer 10 comprises a UV-IR absorber formed by phosphonic acid and copper ions
  • the phosphonic acid comprises, for example, a primary phosphonic acid having an aryl group.
  • the aryl group is attached to the phosphorus atom.
  • the aryl group which the first phosphonic acid has is, for example, a phenyl group, a benzyl group, a toluyl group, a nitrophenyl group, a hydroxyphenyl group, a halogenated phenyl group in which at least one hydrogen atom in the phenyl group is substituted by a halogen atom, Alternatively, it is a halogenated benzyl group in which at least one hydrogen atom in the benzene ring of the benzyl group is substituted by a halogen atom.
  • the first phosphonic acid has a halogenated phenyl group in a part thereof. In this case, the optical filter 1a can more easily exhibit the optical performances of (i) to (v).
  • the phosphonic acid desirably further comprises a second phosphonic acid having an alkyl group.
  • the alkyl group is attached to the phosphorus atom.
  • the alkyl group possessed by the second phosphonic acid is, for example, an alkyl group having 6 or less carbon atoms.
  • the alkyl group may have either linear or branched chain.
  • the UV-IR absorbing layer 10 comprises a UV-IR absorber formed by phosphonic acid and copper ions
  • the UV-IR absorbing layer 10 desirably comprises a phosphate ester for dispersing the UV-IR absorber; And a matrix resin.
  • the phosphoric acid ester contained in the UV-IR absorbing layer 10 is not particularly limited as long as the UV-IR absorbing agent can be appropriately dispersed, but, for example, the phosphoric acid diester represented by the following formula (c1) and the following formula It contains at least one of the phosphoric monoesters represented by c2).
  • R 21 , R 22 and R 3 are each a monovalent functional group represented by — (CH 2 CH 2 O) n R 4 and n Is an integer of 1 to 25 and R 4 is an alkyl group having 6 to 25 carbon atoms.
  • R 21 , R 22 and R 3 are functional groups of the same or different type from one another.
  • the phosphoric acid ester is not particularly limited.
  • Plysurf A208N polyoxyethylene alkyl (C12, C13) ether phosphoric acid ester
  • Plysurf A208 F polyoxyethylene alkyl (C8) ether phosphoric acid ester
  • Plysurf A208 B Polyoxyethylene lauryl ether phosphate
  • Plysurf A 219 B Polyoxyethylene lauryl ether phosphate
  • Plysurf AL Polyoxyethylene styrenated phenyl ether phosphate
  • Plysurf A 212 C Polyoxyethylene tridecyl ether phosphate
  • Plysurf A 215 C polyoxyethylene tridecyl ether phosphate ester.
  • NIKKOL DDP-2 polyoxyethylene alkyl ether phosphate
  • NIKKOL DDP-4 polyoxyethylene alkyl ether phosphate
  • NIKKOL DDP-6 polyoxyethylene alkyl ether phosphate possible.
  • the matrix resin contained in the UV-IR absorbing layer 10 is, for example, a resin capable of dispersing a UV-IR absorber and capable of being heat-cured or UV-cured. Furthermore, when a resin layer of 0.1 mm is formed of the resin as a matrix resin, the transmittance of the resin layer for wavelengths 350 nm to 900 nm is, for example, 70% or more, preferably 75% or more, and more preferably The resin which is 80% or more can be used.
  • the content of phosphonic acid is, for example, 3 to 180 parts by mass with respect to 100 parts by mass of the matrix resin.
  • the matrix resin contained in the UV-IR absorption layer 10 is not particularly limited as long as the above-mentioned properties are satisfied, but, for example, (poly) olefin resin, polyimide resin, polyvinyl butyral resin, polycarbonate resin, polyamide resin, polysulfone resin, polyether It is a sulfone resin, a polyamide imide resin, a (modified) acrylic resin, an epoxy resin, or a silicone resin.
  • the matrix resin may contain an aryl group such as a phenyl group, and is preferably a silicone resin containing an aryl group such as a phenyl group.
  • the UV-IR absorbing layer 10 is hard (is rigid) and the thickness of the UV-IR absorbing layer 10 is increased, cracks easily occur due to curing shrinkage during the manufacturing process of the optical filter 1a.
  • the matrix resin is a silicone resin containing an aryl group
  • the UV-IR absorbing layer 10 tends to have good crack resistance.
  • the UV-IR absorber is less likely to aggregate when it contains the UV-IR absorber formed by the above phosphonic acid and copper ion.
  • the matrix resin of the UV-IR absorbing layer 10 is a silicone resin containing an aryl group
  • the phosphate ester contained in the UV-IR absorbing layer 10 is a phosphorus represented by formula (c1) or formula (c2) It is desirable to have a flexible linear organic functional group such as an oxyalkyl group like an acid ester. This is because the UV-IR absorber is less likely to aggregate due to the interaction based on the combination of the phosphonic acid described above, the silicone resin containing an aryl group, and the phosphate ester having a linear organic functional group such as an oxyalkyl group, And, it is because the UV-IR absorbing layer can be provided with good rigidity and good flexibility.
  • silicone resins used as matrix resins include KR-255, KR-300, KR-2621-1, KR-211, KR-311, KR-216, KR-212, and KR-251. be able to. All of these are silicone resins manufactured by Shin-Etsu Chemical Co., Ltd.
  • the optical filter 1a further includes, for example, a transparent dielectric substrate 20, and at least a part of one of the main surfaces of the transparent dielectric substrate 20 is covered with a UV-IR absorbing layer 10.
  • the transparent dielectric substrate 20 is not particularly limited as long as it is a dielectric substrate having high average transmittance (for example, 80% or more) in 450 nm to 600 nm. In some cases, the transparent dielectric substrate 20 may have absorption in the ultraviolet region or the infrared region.
  • the transparent dielectric substrate 20 is made of, for example, glass or resin.
  • the glass contains, for example, borosilicate glass such as D263, soda lime glass (blue plate), white sheet glass such as B270, alkali-free glass, or copper.
  • Infrared absorbing glass such as phosphate glass or fluorophosphate glass containing copper.
  • the transparent dielectric substrate 20 is an infrared absorbing glass such as copper containing phosphate glass or copper containing fluorophosphate glass, the infrared absorption performance and UV of the transparent dielectric substrate 20
  • the infrared absorption performance required for the optical filter 1a can be realized by the combination with the infrared absorption performance of the IR absorption layer 10.
  • Such infrared absorbing glass is, for example, BG-60, BG-61, BG-62, BG-63 or BG-67 manufactured by Schott, and 500EXL manufactured by Nippon Electric Glass Co., Ltd., or Hoya Company CM5000, CM500, C5000, or C500S. Further, the infrared absorbing glass may have an ultraviolet absorbing property.
  • the transparent dielectric substrate 20 may be a crystalline substrate having transparency, such as magnesium oxide, sapphire, or quartz.
  • sapphire is hard to scratch because of its high hardness.
  • plate-shaped sapphire may be arrange
  • protect filter a scratch resistant protective material
  • the resin is, for example, (poly) olefin resin, polyimide resin, polyvinyl butyral resin, polycarbonate resin, polyamide resin, polysulfone resin, polyether sulfone resin, polyamide imide resin (Modified) acrylic resin, epoxy resin, or silicone resin.
  • the UV-IR absorbing layer 10 is formed as a single layer.
  • the structure of the optical filter 1a is simple.
  • the optical filter 1a applies, for example, a composition for forming the UV-IR absorbing layer 10 (UV-IR absorbing composition) to one main surface of the transparent dielectric substrate 20 to form a coating film. It can be produced by drying the coating.
  • the preparation method of the UV-IR absorbing composition and the manufacturing method of the optical filter 1a will be described by taking the case where the UV-IR absorbing layer 10 contains the UV-IR absorbing agent formed by phosphonic acid and copper ions. .
  • a copper salt such as copper acetate monohydrate is added to a predetermined solvent such as tetrahydrofuran (THF) and stirred to obtain a solution of copper salt.
  • a phosphate diester represented by the formula (c1) or a phosphate ester compound such as a phosphate monoester represented by the formula (c2) is added to the copper salt solution and stirred to prepare a solution A.
  • the first phosphonic acid is added to a predetermined solvent such as THF and stirred to prepare a solution B.
  • solution B When using multiple types of phosphonic acids as the first phosphonic acid, add the phosphonic acid to a predetermined solvent such as THF and then stir to mix a plurality of preparatory solutions prepared for each type of phosphonic acid to obtain solution B May be prepared. Desirably, an alkoxysilane monomer is added in preparation of B liquid.
  • a predetermined solvent such as THF
  • an alkoxysilane monomer is added in preparation of B liquid.
  • the particles of the UV-IR absorber can be prevented from aggregating each other, so even if the content of the phosphate ester is reduced, the UV-IR absorbing ability can be reduced.
  • the UV-IR absorber disperses well in the composition.
  • the siloxane bond (-Si-O) can be treated by sufficiently performing a hydrolysis reaction and a condensation polymerization reaction of an alkoxysilane monomer. -Si-) is formed, and the optical filter 1a has good moisture resistance.
  • the optical filter 1a has good heat resistance. This is because the siloxane bond is higher in bond energy and chemically stable than bonds such as —C—C— bond and —C—O— bond, and is excellent in heat resistance and moisture resistance.
  • solution B is added to solution A and stirred for a predetermined time.
  • a predetermined solvent such as toluene is added to the solution and stirred to obtain a solution C.
  • a desolvation process is performed for a predetermined time while heating the solution C to obtain the solution D.
  • the solvent such as THF and the components generated by the dissociation of the copper salt such as acetic acid (boiling point: about 118 ° C.) are removed, and the first phosphonic acid and the copper ion form a UV-IR absorber.
  • the temperature for heating solution C is determined based on the boiling point of the component to be removed which has been dissociated from the copper salt.
  • a solvent such as toluene (boiling point: about 110 ° C.) used to obtain the liquid C also evaporates. Since it is desirable that this solvent remains in the UV-IR absorbing composition to a certain extent, it is preferable from this viewpoint that the amount of the solvent added and the time for the desolvation treatment be determined.
  • o-xylene (boiling point: about 144 ° C.) can be used instead of toluene. In this case, since the boiling point of o-xylene is higher than the boiling point of toluene, the amount of addition can be reduced to about one fourth of the amount of addition of toluene.
  • solution H is further prepared as follows. First, a copper salt such as copper acetate monohydrate is added to a predetermined solvent such as tetrahydrofuran (THF) and stirred to obtain a copper salt solution. Next, a phosphate diester represented by the formula (c1) or a phosphate ester compound such as a phosphate monoester represented by the formula (c2) is added to the solution of the copper salt and stirred to prepare a solution E. Do. In addition, secondary phosphonic acid is added to a predetermined solvent such as THF and stirred to prepare solution F.
  • a predetermined solvent such as THF
  • the second phosphonic acid is added to a predetermined solvent such as THF and then stirred to mix a plurality of preparation solutions prepared for each type of the second phosphonic acid.
  • Solution F may be prepared. While stirring solution E, add solution F to solution E and stir for a predetermined time.
  • a predetermined solvent such as toluene is added to the solution and stirred to obtain a G liquid.
  • the solvent removal treatment is performed for a predetermined time while heating the solution G to obtain the solution H. This removes the solvent generated by dissociation of the solvent such as THF and the copper salt such as acetic acid, and the second phosphonic acid and the copper ion form another UV-IR absorber.
  • the temperature at which solution G is heated is determined in the same manner as solution C, and the solvent for obtaining solution G is also determined in the same manner as solution C.
  • a matrix resin such as silicone resin can be added to solution D and stirred to prepare a UV-IR absorbing composition. Also, when the UV-IR absorbing composition contains a UV-IR absorber formed of a secondary phosphonic acid and copper ions, it is obtained by adding a matrix resin such as silicone resin to liquid D and stirring.
  • a UV-IR absorptive composition can be prepared by further adding a solution H to the prepared solution I and stirring.
  • the UV-IR absorbing composition is applied to one main surface of the transparent dielectric substrate 20 to form a coating.
  • a liquid UV-IR absorbing composition is applied by spin coating or dispenser to one main surface of the transparent dielectric substrate 20 to form a coating.
  • this coating film is subjected to a predetermined heat treatment to cure the coating film.
  • the coating is exposed to an environment at a temperature of 50 ° C. to 200 ° C.
  • the coating film is humidified to sufficiently hydrolyze the alkoxysilane monomer contained in the UV-IR absorbing composition.
  • the coated film is exposed to the environment of a temperature of 40 ° C. to 100 ° C. and a relative humidity of 40% to 100%.
  • the optical filter 1a can be manufactured.
  • the alkoxysilane and water may be made to coexist in a liquid composition, and these reactions may be performed.
  • water is added to the UV-IR absorbing composition in advance when producing the optical filter, the phosphate ester or the UV-IR absorber is deteriorated in the process of forming the UV-IR absorbing layer.
  • the UV-IR absorption performance may be degraded, and the durability of the optical filter may be impaired. For this reason, it is desirable to perform the humidification process after curing the coating film by a predetermined heat treatment.
  • the transparent dielectric substrate 20 is a glass substrate
  • the resin layer containing a silane coupling agent is converted to the transparent dielectric substrate 20 and UV It may be formed between it and the IR absorbing layer 10.
  • the optical filter 1a can be changed from various viewpoints.
  • the optical filter 1a may be changed to the optical filters 1b to 1f shown in FIGS. 1B to 1F, respectively.
  • the optical filters 1b to 1f are configured in the same manner as the optical filter 1a, unless otherwise specified.
  • the components of the optical filters 1b to 1f which are the same as or correspond to the components of the optical filter 1a are designated by the same reference numerals, and the detailed description thereof is omitted.
  • the description on the optical filter 1a also applies to the optical filters 1b to 1f unless technically contradictory.
  • the UV-IR absorbing layer 10 is formed on both main surfaces of the transparent dielectric substrate 20.
  • the optical filter 1b can exhibit the optical performance of the above (i) to (v) not by one UV-IR absorbing layer 10 but by two UV-IR absorbing layers 10.
  • the thickness of the UV-IR absorbing layer 10 on both main surfaces of the transparent dielectric substrate 20 may be the same or different. That is, UV is applied on both main surfaces of the transparent dielectric substrate 20 so that the thickness of the UV-IR absorbing layer 10 necessary for the optical filter 1b to obtain desired optical characteristics is evenly or unevenly distributed.
  • the IR absorbing layer 10 is formed.
  • each UV-IR absorbing layer 10 formed on both main surfaces of the transparent dielectric substrate 20 is relatively small.
  • the internal pressure of the coating film is low and the occurrence of cracks can be prevented.
  • coats a liquid UV-IR absorptive composition can be shortened, and the time for hardening the coating film of a UV-IR absorptive composition can be shortened.
  • the UV-IR absorbing layer 10 is formed on both main surfaces of the transparent dielectric substrate 20, warping is suppressed in the optical filter 1b even when the transparent dielectric substrate 20 is thin. Also in this case, in order to improve the adhesion between the transparent dielectric substrate 20 and the UV-IR absorbing layer 10, the resin layer containing a silane coupling agent is placed between the transparent dielectric substrate 20 and the UV-IR absorbing layer 10 It may be formed in
  • an optical filter 1c includes an antireflective film 30.
  • the anti-reflection film 30 is a film formed to form an interface between the optical filter 1c and air, for reducing reflection of light in the visible light region.
  • the antireflective film 30 is a film formed of, for example, a resin, an oxide, and a dielectric such as a fluoride.
  • the antireflective film 30 may be a multilayer film formed by laminating two or more types of dielectrics having different refractive indexes.
  • the antireflective film 30 may be a dielectric multilayer film made of a low refractive index material such as SiO 2 and a high refractive index material such as TiO 2 or Ta 2 O 5 .
  • a low refractive index material such as SiO 2
  • a high refractive index material such as TiO 2 or Ta 2 O 5 .
  • the resin layer containing a silane coupling agent is placed between the transparent dielectric substrate 20 and the UV-IR absorbing layer 10 It may be formed in some cases, in order to improve the adhesion of the antireflective film 30, a resin layer containing a silane coupling agent may be formed between the UV-IR absorbing layer 10 and the antireflective film 30.
  • the anti-reflection film 30 may be disposed on both main surfaces of the optical filter 1 c or may be disposed on only one of the main surfaces.
  • an optical filter 1d is constituted only by the UV-IR absorbing layer 10.
  • the optical filter 1d is formed by applying a UV-IR absorbing composition to a predetermined substrate such as a glass substrate, a resin substrate, a metal substrate (for example, a steel substrate or a stainless steel substrate) to form a coating film It can be manufactured by peeling it from the substrate after curing it.
  • the optical filter 1d may be manufactured by a melt molding method.
  • the optical filter 1 d is thin because it does not include the transparent dielectric substrate 20. Therefore, the optical filter 1d can contribute to reducing the height of the imaging device and the optical system.
  • the optical filter 1e which concerns on another example of this invention is equipped with the UV-IR absorption layer 10, and a pair of anti-reflective film 30 arrange
  • the optical filter 1 e can contribute to lowering the posture of the imaging device and the optical system, and can increase the light amount in the visible light region as compared to the optical filter 1 d.
  • an optical filter 1f comprises a UV-IR absorbing layer 10, and a reflective film 40 disposed on one of its main surfaces that reflects infrared light and / or ultraviolet light.
  • the reflective film 40 is, for example, a film formed by vapor deposition of a metal such as aluminum, or a dielectric multilayer film in which a layer made of a high refractive index material and a layer made of a low refractive index material are alternately stacked. is there.
  • the high refractive index material a material having a refractive index of 1.7 to 2.5 such as TiO 2 , ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , ZnO, and In 2 O 3 is used.
  • the low refractive index material materials having a refractive index of 1.2 to 1.6, such as SiO 2 , Al 2 O 3 and MgF 2 are used.
  • the method of forming the dielectric multilayer film is, for example, a chemical vapor deposition (CVD) method, a sputtering method, or a vacuum evaporation method.
  • such a reflective film may be formed so that it may make both the main surfaces of an optical filter (illustration omitted). When the reflective film is formed on both main surfaces of the optical filter, the stress is balanced on both the front and back sides of the optical filter, and the merit that the optical filter is hardly warped is obtained.
  • Each of the optical filters 1a to 1f may be modified to include an infrared absorbing film (not shown) separately from the UV-IR absorbing layer 10, as necessary.
  • the infrared absorbing film contains, for example, an organic infrared absorber such as a cyanine type, a phthalocyanine type, a squarylium type, a diimmonium type, and an azo type, or an infrared absorber made of a metal complex.
  • the infrared absorbing film contains, for example, one or more infrared absorbers selected from these infrared absorbers.
  • This organic infrared absorber has a small wavelength range (absorption band) of absorbable light and is suitable for absorbing light in a specific range of wavelengths.
  • Each of the optical filters 1a to 1f may be changed to include an ultraviolet absorbing film (not shown) separately from the UV-IR absorbing layer 10, as necessary.
  • the ultraviolet absorbing film contains, for example, ultraviolet absorbers such as benzophenone type, triazine type, indole type, merocyanine type, and oxazole type.
  • the ultraviolet absorbing film contains, for example, one or more ultraviolet absorbers selected from these ultraviolet absorbers.
  • UV absorbers may be included, for example, those that absorb UV light of around 300 nm to 340 nm, emit light (fluorescent light) having a wavelength longer than the absorbed wavelength, and function as a fluorescent agent or a brightening agent,
  • the ultraviolet absorbing film can reduce the incidence of ultraviolet light which causes deterioration of the material used for the optical filter such as resin.
  • the above infrared absorber or ultraviolet absorber may be previously contained in the transparent dielectric substrate 20 made of resin.
  • the infrared absorbing film or the ultraviolet absorbing film can be formed, for example, by forming a resin containing an infrared absorbing agent or an ultraviolet absorbing agent. In this case, the resin needs to be able to appropriately dissolve or disperse the infrared absorber or the ultraviolet absorber, and be transparent.
  • Such resins include (poly) olefin resins, polyimide resins, polyvinyl butyral resins, polycarbonate resins, polyamide resins, polysulfone resins, polyether sulfone resins, polyamideimide resins, (modified) acrylic resins, epoxy resins, and silicone resins Can be illustrated.
  • Each of the optical filters 1a to 1f may be modified to further include a reflective film that reflects infrared light and / or ultraviolet light, as necessary.
  • a reflective film for example, a film formed by vapor deposition of a metal such as aluminum, or a dielectric in which a layer made of a high refractive index material and a layer made of a low refractive index material are alternately laminated. Multilayer films can be used.
  • Such a reflective film may be formed to form both main surfaces of the optical filter, or may be formed to form one main surface of the optical filter. When the reflective film is formed as in the former case, the stress is balanced on both the front and back sides of the optical filter, and the optical filter is hardly warped.
  • the reflective film is a dielectric multilayer film
  • high refractive index materials such as TiO 2 , ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , ZnO, and In 2 O 3 etc. of 1.7 to 2.
  • a material having a refractive index of 5 is used, and as a low refractive index material, a material having a refractive index of 1.2 to 1.6 such as SiO 2 , Al 2 O 3 and MgF 2 is used.
  • the method of forming the dielectric multilayer film is, for example, a chemical vapor deposition (CVD) method, a sputtering method, or a vacuum evaporation method.
  • the optical filters 1a to 1f are disposed, for example, on the front side (closer to the object) of an imaging device such as a CCD or CMOS inside the imaging device in order to bring the spectral sensitivity of the imaging device in the imaging device closer to human visibility. Ru.
  • a camera module 100 using the optical filter 1a can be provided.
  • the camera module 100 includes, for example, a lens system 2, a low pass filter 3, an image sensor 4, a circuit board 5, an optical filter support case 7, and an optical system case 8 in addition to the optical filter 1 a.
  • the peripheral edge of the optical filter 1 a is fitted in, for example, an annular recess in contact with an opening formed at the center of the optical filter support housing 7.
  • the optical filter support housing 7 is fixed to the optical system housing 8.
  • a lens system 2, a low pass filter 3 and an imaging element 4 are arranged in this order along the optical axis.
  • the imaging device 4 is, for example, a CCD or a CMOS.
  • Light from the subject is cut by ultraviolet light and infrared light by the optical filter 1 a and then condensed by the lens system 2, and further passes through the low pass filter 3 and enters the imaging device 4.
  • the electric signal generated by the imaging device 4 is sent to the outside of the camera module 100 by the circuit board 5.
  • the optical filter 1a also functions as a cover (protect filter) for protecting the lens system 2.
  • a sapphire substrate is used as the transparent dielectric substrate 20 in the optical filter 1a. Since the sapphire substrate has high abrasion resistance, for example, it is preferable that the sapphire substrate be disposed outside (the side opposite to the side of the imaging device 4). As a result, the optical filter 1a has high scratch resistance against external contact and the like, and the optical performance of the above (i) to (v) (preferably, the optical performance of (vi) to (xiii)). Have.
  • the camera module 100 shown in FIG. 2 is a schematic diagram for illustrating arrangement
  • the camera module using the optical filter 1a is not limited to that shown in FIG. 2 as long as the optical filter 1a functions as a protect filter, and the low pass filter 3 may be omitted as necessary. Other filters may be provided.
  • ⁇ Transmittance spectrum measurement of optical filter> The transmittance spectrum when light having a wavelength of 300 nm to 1200 nm was incident on the optical filters according to the examples and comparative examples was measured using an ultraviolet-visible spectrophotometer (product name: V-670, manufactured by JASCO Corporation) .
  • the transmittance spectrum at each angle was measured by changing the incident angle of the incident light to the optical filter from 0 ° to 65 ° in increments of 5 °.
  • ⁇ Measurement of thickness of UV-IR absorbing layer> The thickness of the optical filter which concerns on an Example and a comparative example was measured with the digital micrometer.
  • the optical filters according to the examples and comparative examples regarding the optical filter having a transparent dielectric substrate such as glass, UV-IR absorption in the optical filter by subtracting the thickness of the glass substrate from the thickness of the optical filter measured with a digital micrometer The layer thickness was determined.
  • Example 1 1.125 g of copper acetate monohydrate ((CH 3 COO) 2 Cu ⁇ H 2 O) and 60 g of tetrahydrofuran (THF) were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 0.412 g of Plysurf A 208 N (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), which is a phosphoric acid ester compound, was added to the obtained copper acetate solution, and the mixture was stirred for 30 minutes to obtain a solution A.
  • Plysurf A 208 N manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the solution B-1 and the solution B-2 were mixed and stirred for 1 minute, and 1.943 g of methyltriethoxysilane (MTES: CH 3 Si (OC 2 H 5 ) 3 ) (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.634 g of tetraethoxysilane (TEOS: Si (OC 2 H 5 ) 4 ) (special grade manufactured by Kishida Chemical Co., Ltd.) was added, and the mixture was further stirred for 1 minute to obtain a solution B.
  • the solution B was added to the solution A while stirring the solution A, and the solution was stirred at room temperature for 1 minute.
  • Liquid D which is a dispersion of fine particles of phenyl-based copper phosphonate (absorbent) containing copper phenylphosphonate and copper 4-bromophenylphosphonate, was transparent, and the fine particles were well dispersed.
  • Liquid H which is a dispersion of fine particles of copper butylphosphonate, was transparent, and the fine particles were well dispersed.
  • a dispenser in the range of 30 mm ⁇ 30 mm at the center of one main surface of a transparent glass substrate (SCHOTT's product name: D263) made of borosilicate glass having dimensions of 76 mm ⁇ 76 mm ⁇ 0.21 mm
  • the UV-IR absorbing composition according to Example 1 was applied to form a coating.
  • the thickness of the coating was determined by trial and error so that the average transmittance of the optical filter at a wavelength of 700 to 730 nm was about 1%.
  • a frame having an opening corresponding to the application range of the coating solution was placed on the transparent glass substrate to block the coating solution so that the coating solution did not flow out when the UV-IR absorbing composition was applied to the transparent glass substrate .
  • a coating having a target thickness was obtained.
  • the transparent glass substrate having an undried coated film was placed in an oven, and heat treatment was performed at 85 ° C. for 6 hours to cure the coated film.
  • the transparent glass substrate on which the above-mentioned coating film is formed is placed in a constant temperature and humidity chamber set to a temperature of 85 ° C. and a relative humidity of 85% for 20 hours to perform humidification treatment.
  • An optical filter according to Example 1 in which an absorption layer was formed was obtained.
  • the humidification treatment promotes the hydrolysis and condensation polymerization of alkoxysilane contained in the UV-IR absorbing composition coated on a transparent glass substrate to form a hard and dense matrix in the UV-IR absorbing layer. went.
  • the thickness of the UV-IR absorbing layer of the optical filter according to Example 1 was 170 ⁇ m.
  • the transmittance spectrum of the optical filter according to Example 1 was measured at an incident angle of 0 ° to 65 °.
  • the transmittance spectra at incident angles of 0 °, 40 °, 50 °, and 60 ° are shown in FIG. Tables 7 and 8 show the results of observation of the transmittance spectrum of the optical filter according to Example 1 when the incident angle is 0 °.
  • the “wavelength range of transmittance of 78% or more” in Table 8 is a wavelength range showing a spectral transmittance of 78% or more at wavelengths of 400 nm to 600 nm.
  • the “wavelength range of 1% or less of transmittance” related to the infrared region characteristic in Table 8 is a wavelength range showing a spectral transmittance of 1% or less at wavelengths of 700 nm to 1200 nm.
  • the “wavelength range of 0.1% or less of transmittance” related to the infrared region characteristic in Table 8 is a wavelength range showing a spectral transmittance of 0.1% or less at wavelengths of 700 nm to 1200 nm.
  • the “wavelength range of transmittance of 1% or less” related to the ultraviolet region characteristic in Table 8 is a wavelength range showing a spectral transmittance of 1% or less at wavelengths of 300 nm to 400 nm.
  • the “wavelength range of 0.1% or less of transmittance” related to the ultraviolet region characteristics in Table 8 is a wavelength range showing a spectral transmittance of 0.1% or less at wavelengths of 300 nm to 400 nm. This is also true in Table 10, Table 12, Table 14, Table 16, Table 18, and Table 20. Further, the results (incidence angle: 0 ° to 65 °) of the optical filter according to Example 1 observed from the transmittance spectrum at incident angles of 0 ° and 30 ° to 65 ° (in 5 ° increments) are shown in Table 11 and It is shown in Table 12.
  • Examples 2 to 15 In the same manner as in Example 1 except that the addition amount of each compound was adjusted as shown in Table 1, UV-IR absorptive compositions according to Examples 2 to 15 were prepared. The thickness of the UV-IR absorbing layer was adjusted as shown in Table 1 using the UV-IR absorbing compositions according to Examples 2 to 15 instead of the UV-IR absorbing composition according to Example 1. Optical filters according to Examples 2 to 15 were produced in the same manner as in Example 1 except for the above. The content and content of each phosphonic acid based on the amount of substance are shown in Table 2. Since the content rate of each phosphonic acid is calculated by rounding off the second decimal place, the total may not be 100 mol%.
  • the transmittance spectrum of the optical filter according to Example 2 at an incident angle of 0 ° to 65 ° was measured.
  • the transmittance spectra at incident angles of 0 °, 40 °, 50 ° and 60 ° are shown in FIG.
  • Tables 7 and 8 show the results of observation of the transmittance spectrum of the optical filter according to Example 2 when the incident angle is 0 °.
  • Tables 13 and 14 show the results of observation of the optical filter according to Example 2 from the transmittance spectrum at incident angles of 0 ° and 30 ° to 65 ° (in 5 ° increments) are shown in Tables 13 and 14.
  • Tables 7 and 8 show the results of the optical filters according to Examples 3 to 15 observed from the transmittance spectrum when the incident angle is 0 °.
  • Example 16 Conducted using a dispenser in the range of 30 mm ⁇ 30 mm at the center of one main surface of a transparent glass substrate (SCHOTT's product name: D263) made of borosilicate glass having dimensions of 76 mm ⁇ 76 mm ⁇ 0.21 mm
  • the UV-IR absorbing composition according to Example 2 was applied to form a coating of a predetermined thickness.
  • a frame having an opening corresponding to the application range of the coating solution was placed on the transparent glass substrate to block the coating solution so that the coating solution did not flow out when the UV-IR absorbing composition was applied to the transparent glass substrate .
  • the transparent glass substrate having an undried coated film was placed in an oven, and heat treatment was performed at 85 ° C. for 6 hours to cure the coated film.
  • the coating was peeled from the transparent glass substrate.
  • the peeled coating is placed in a constant temperature and humidity chamber set at a temperature of 85 ° C. and a relative humidity of 85% for 20 hours to perform a humidification treatment, and the optical according to Example 16 composed only of a UV-IR absorbing layer I got a filter.
  • the measurement by the digital micrometer measured the thickness of only the light absorption layer.
  • the thickness of the optical filter according to Example 16 was 132 ⁇ m.
  • the transmittance spectrum of the optical filter according to Example 16 at an incident angle of 0 ° to 65 ° was measured.
  • the transmittance spectra at incident angles of 0 °, 40 °, 50 °, and 60 ° are shown in FIG.
  • Tables 7 and 8 show the results of observation of the transmittance spectrum of the optical filter according to Example 16 when the incident angle is 0 °. Furthermore, the results of observation of the optical filter according to Example 16 from the transmittance spectrum at incident angles of 0 ° and 30 ° to 65 ° (in 5 ° increments) are shown in Tables 15 and 16.
  • Example 17 Conducted using a dispenser in the range of 30 mm ⁇ 30 mm at the center of one main surface of a transparent glass substrate (SCHOTT's product name: D263) made of borosilicate glass having dimensions of 76 mm ⁇ 76 mm ⁇ 0.21 mm
  • the UV-IR absorbing composition according to Example 2 was applied to form a coating having a thickness of about half the thickness of the coating in Example 2.
  • a frame having an opening corresponding to the application range of the coating solution was placed on the transparent glass substrate to block the coating solution so that the coating solution did not flow out when the UV-IR absorbing composition was applied to the transparent glass substrate .
  • the transparent glass substrate having an undried coated film was placed in an oven, and heat treatment was performed at 85 ° C.
  • the UV-IR absorptive composition according to Example 2 is applied to a range of 30 mm ⁇ 30 mm in the center of the other main surface of the transparent glass substrate using a dispenser. A coating of about half thickness was formed. A frame having an opening corresponding to the application range of the coating solution was placed on the transparent glass substrate to block the coating solution so that the coating solution did not flow out when the UV-IR absorbing composition was applied to the transparent glass substrate . Next, the transparent glass substrate having an undried coated film was placed in an oven, and heat treatment was performed at 85 ° C. for 6 hours to cure the coated film. Next, in a constant temperature and humidity chamber set at a temperature of 85 ° C.
  • Example 17 An optical filter according to Example 17 was obtained in which UV-IR absorbing layers were formed on both sides of The total thickness of the UV-IR absorbing layers formed on both sides of the transparent glass substrate was 193 ⁇ m.
  • the transmittance spectrum of the optical filter according to Example 17 at an incident angle of 0 ° to 65 ° was measured.
  • the transmittance spectra at incident angles of 0 °, 40 °, 50 ° and 60 ° are shown in FIG.
  • Tables 7 and 8 show the results of observation of the transmittance spectrum of the optical filter according to Example 17 when the incident angle is 0 °.
  • Tables 17 and 18 show the results of observation of the optical filter according to Example 17 from the transmittance spectrum at incident angles of 0 ° and 30 ° to 65 ° (in 5 ° increments).
  • Example 17 is similar to Example 17 except that instead of the transparent glass substrate used in Example 17, a transparent glass substrate of the same type as the transparent glass substrate used in Example 17 having a thickness of 0.07 mm is used.
  • the total thickness of the UV-IR absorbing layers formed on both sides of the transparent glass substrate was 183 ⁇ m.
  • the transmittance spectrum of the optical filter according to Example 18 at an incident angle of 0 ° to 65 ° was measured.
  • the transmittance spectra at incident angles of 0 °, 40 °, 50 ° and 60 ° are shown in FIG.
  • Tables 7 and 8 show the results of observation of the transmittance spectrum of the optical filter according to Example 18 when the incident angle is 0 °.
  • Tables 19 and 20 show the results of the optical filter according to Example 18 observed from the transmittance spectrum at incident angles of 0 ° and 30 ° to 65 ° (in 5 ° increments).
  • Example 19 The same procedure as in Example 1 was repeated except that Plysurf A208F (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used as the phosphoric acid ester compound instead of Plysurf A208N, and the addition amount of each compound was adjusted as shown in Table 1.
  • a UV-IR absorbing composition according to Example 19 was prepared.
  • Example 1 and Example 1 were used except that the UV-IR absorbing composition according to Example 19 was used instead of the UV-IR absorbing composition according to Example 1, and the thickness of the UV-IR absorbing layer was adjusted to 198 ⁇ m.
  • an optical filter according to Example 19 was produced. The transmittance spectrum of the optical filter according to Example 19 was measured, and the results observed from the transmittance spectrum when the incident angle was 0 ° are shown in Table 7 and Table 8.
  • Example 20 The addition amount of each compound was adjusted as shown in Table 1 using 4-fluorophenylphosphonic acid (C 6 H 4 FPO (OH) 2 ) (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 4-bromophenylphosphonic acid.
  • a UV-IR absorbing composition according to Example 20 was prepared in the same manner as Example 1 except for the above.
  • Example 1 and Example 1 were used except that the UV-IR absorbing composition according to Example 20 was used instead of the UV-IR absorbing composition according to Example 1, and the thickness of the UV-IR absorbing layer was adjusted to 168 ⁇ m.
  • an optical filter according to Example 20 was produced.
  • the transmittance spectrum of the optical filter according to Example 20 is measured, and the results observed from the transmittance spectrum when the incident angle is 0 ° are shown in Table 7 and Table 8.
  • Example 21 is carried out in the same manner as in Example 2 except that an infrared absorbing glass substrate having a thickness of 100 ⁇ m is used instead of the transparent glass substrate used in Example 2 and the thickness of the UV-IR absorbing layer is adjusted to 76 ⁇ m.
  • An optical filter according to The infrared absorbing glass substrate contained copper and had the transmittance spectrum shown in FIG. 8A.
  • the transmittance spectrum of the optical filter according to Example 21 at an incident angle of 0 ° was measured. The results are shown in FIG. 8B.
  • permeability spectrum in 0 degree of incident angles of the optical filter which concerns on Example 21 is shown in Table 7 and Table 8.
  • Example 22 to Example 37 Example 22 in the same manner as Example 2, except that the conditions of the humidification treatment of the dried coating film were changed as shown in Table 3, and the thickness of the UV-IR absorbing layer was adjusted as shown in Table 3.
  • Optical filters according to ⁇ 37 were produced respectively.
  • the transmittance spectra of the optical filters according to Examples 22 to 24 at an incident angle of 0 ° were measured. The results are shown in FIGS. 9 to 11, respectively.
  • Tables 7 and 8 show the results of the optical filters according to Examples 22 to 24 observed from the transmittance spectrum at an incident angle of 0 °.
  • the transmittance spectra of the optical filters according to Examples 25 to 37 are measured, and the results observed from the transmittance spectra when the incident angle is 0 ° are shown in Tables 7 and 8.
  • Example 38 was carried out in the same manner as Example 2, except that a sapphire substrate having a thickness of 0.3 mm was used instead of the transparent glass substrate used in Example 2 and the thickness of the UV-IR absorbing layer was adjusted to 168 ⁇ m.
  • An optical filter according to The transmittance spectrum of the optical filter according to Example 38 at an incident angle of 0 ° was measured. The results are shown in FIG. Tables 7 and 8 show the results of observation of the transmittance spectrum of the optical filter according to Example 38 at an incident angle of 0 °.
  • Comparative Example 1 A liquid D (a dispersion of fine particles of phenyl-based copper phosphonate) according to Comparative Example 1 was prepared in the same manner as Example 1, except that the addition amount of each compound was adjusted as shown in Table 4 and Table 5. .
  • 2.200 g of a silicone resin (Shin-Etsu Chemical Co., Ltd., product name: KR-300) is added to Liquid D according to Comparative Example 1 and stirred for 30 minutes to obtain a UV-IR absorbing composition according to Comparative Example 1.
  • Example 1 except using the UV-IR absorbing composition according to Comparative Example 1 instead of the UV-IR absorbing composition according to Example 1, and adjusting the thickness of the UV-IR absorbing layer to 126 ⁇ m
  • an optical filter according to Comparative Example 1 was produced.
  • the transmittance spectrum of the optical filter according to Comparative Example 1 was measured, and the results that can be seen from the transmittance spectrum when the incident angle is 0 ° are shown in Table 9 and Table 10.
  • the thickness of the UV-IR absorbing layer of the optical filter according to Comparative Example 1 was changed to 200 ⁇ m based on the result of transmittance spectrum measurement when the incident angle was 0 ° of the optical filter according to Comparative Example 1.
  • the transmittance spectrum of the case is calculated, and the results that can be seen from this transmittance spectrum are shown in Table 9 and Table 10 as Comparative Calculation Example 1.
  • Comparative Example 2 In the same manner as in Example 1 except that the addition amount of each compound was adjusted as shown in Table 4 and Table 5, a liquid D (a dispersion of fine particles of phenyl-based copper phosphonate) according to Comparative Example 2 was prepared. did. 4.400 g of a silicone resin (Shin-Etsu Chemical Co., Ltd., product name: KR-300) is added to Liquid D according to Comparative Example 2 and stirred for 30 minutes to obtain a UV-IR absorbing composition according to Comparative Example 2.
  • a silicone resin Shin-Etsu Chemical Co., Ltd., product name: KR-300
  • the thickness of the UV-IR absorbing layer of the optical filter according to Comparative Example 2 was changed to 347 ⁇ m based on the result of transmittance spectrum measurement when the incident angle was 0 ° of the optical filter according to Comparative Example 2.
  • the transmittance spectrum of the case is calculated, and the results that can be seen from this transmittance spectrum are shown in Table 9 and Table 10 as Comparative Calculation Example 2.
  • Comparative Example 3 1.125 g of copper acetate monohydrate and 60 g of THF were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 0.624 g of Plysurf A208F (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was added to the obtained copper acetate solution and stirred for 30 minutes to obtain a solution A. To 0.832 g of phenylphosphonic acid (manufactured by Nissan Chemical Industries, Ltd.), 10 g of THF was added and stirred for 30 minutes to obtain solution B-1.
  • Plysurf A208F manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • solution B-1 To solution B-1, 1.274 g of MTES (manufactured by Shin-Etsu Chemical Co., Ltd.) and 1.012 g of TEOS (special grade manufactured by Kishida Chemical Co., Ltd.) were added, and the mixture was further stirred for 1 minute to obtain solution B.
  • the solution B was added to the solution A while stirring the solution A, and the solution was stirred at room temperature for 1 minute.
  • 25 g of toluene was added to this solution, followed by stirring at room temperature for 1 minute to obtain a solution C.
  • the solution C is placed in a flask and heated in an oil bath (manufactured by Tokyo Rika Kikai Co., Ltd., model: OSB-2100) while removing solvent by a rotary evaporator (manufactured by Tokyo Rika Kikai Co., Ltd., model: N-1110SF) went.
  • the set temperature of the oil bath was adjusted to 105 ° C.
  • the D liquid which concerns on the comparative example 3 after the desolvation process was taken out from the inside of a flask.
  • Liquid D (dispersion of fine particles of copper phenylphosphonate) according to Comparative Example 3 was transparent, and the fine particles were well dispersed.
  • the transmittance spectrum of the optical filter according to Comparative Example 3 is measured, and the results observed from the transmittance spectrum when the incident angle is 0 ° are shown in Table 9 and Table 10.
  • the transmittance spectrum in the case of changing the thickness of the UV-IR absorbing layer of the optical filter according to comparative example 3 to 303 ⁇ m is calculated The results that can be seen from this transmittance spectrum are shown as Comparative Calculation Example 3 in Tables 9 and 10.
  • Comparative Example 4 1.125 g of copper acetate monohydrate and 60 g of THF were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 0.891 g of Plysurf A208F, which is a phosphate compound, was added to the obtained copper acetate solution, and the mixture was stirred for 30 minutes to obtain a solution E. Further, 10 g of THF was added to 0.670 g of n-butylphosphonic acid (manufactured by Nippon Chemical Industrial Co., Ltd.) and stirred for 30 minutes to obtain a solution F. The solution F was added to the solution E while stirring the solution E, and the solution was stirred at room temperature for 1 minute.
  • Plysurf A208F which is a phosphate compound
  • Liquid H which is a dispersion of fine particles of copper butylphosphonate, was transparent, and the fine particles were well dispersed.
  • the transmittance spectrum of the optical filter according to Comparative Example 4 is measured, and the results that can be seen from the transmittance spectrum when the incident angle is 0 ° are shown in Table 9 and Table 10.
  • the thickness of the UV-IR absorbing layer of the optical filter according to Comparative Example 4 is changed to 1216 ⁇ m and 385 ⁇ m based on the result of transmittance spectrum measurement when the incident angle is 0 ° of the optical filter according to Comparative Example 4.
  • the transmittance spectrums in the case of making them be calculated, respectively, and results which can be seen from these transmittance spectra are shown in Table 9 and Table 10 as Comparative Calculation Example 4-A and Comparative Calculation Example 4-B, respectively.
  • Comparative Example 5 An optical filter according to Comparative Example 5 was produced in the same manner as Example 2, except that the thickness of the UV-IR absorbing layer was adjusted to 191 ⁇ m, and the coating was not humidified. The transmittance spectrum of the optical filter according to Comparative Example 5 is measured, and the results that can be seen from the transmittance spectrum when the incident angle is 0 ° are shown in Table 9 and Table 10.
  • Comparative Examples 6 and 7 The optical filters according to Comparative Examples 6 and 7 were prepared in the same manner as Example 2, except that the thickness of the UV-IR absorbing layer was adjusted as shown in Table 9 and the humidification treatment of the coating film was adjusted as shown in Table 6. Made. The transmittance spectra of the optical filters according to Comparative Examples 6 and 7 are measured, and the results observed from the transmittance spectra when the incident angle is 0 ° are shown in Tables 9 and 10.
  • Comparative Example 8 In the same manner as in Comparative Example 1, Liquid D (a dispersion of fine particles of phenyl-based copper phosphonate) according to Comparative Example 8 was prepared. 0.225 g of copper acetate monohydrate and 36 g of THF were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 0.178 g of Plysurf A208F (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), which is a phosphate compound, was added to the obtained copper acetate solution, and the mixture was stirred for 30 minutes to obtain a solution E.
  • Plysurf A208F manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the optical filters according to Examples 1 to 38 had the optical performances of (i) to (vii) above. Moreover, according to Table 11, Table 13, Table 15, Table 17, and Table 19, the optical filters according to Examples 1, 2 and 16 to 18 further have the optical performances of (viii) to (xi) above. Was. In addition, according to another result (incident angle: 0 ° to 65 °, illustration omitted) of transmittance spectrum measurement for the optical filters according to Examples 3 to 15 and Examples 19 to 38, the optical according to these Examples The filter also had the optical performance of (viii) to (xi) above.
  • the optical filter according to Comparative Example 1 did not have the optical performances of (ii), (vi) and (vii) above, and did not have desired characteristics in the infrared region. .
  • Comparative Calculation Example 1 although the characteristics in the infrared region can be improved by increasing the thickness of the UV-IR absorbing layer, the first IR cutoff wavelength becomes short and the optical of (iv) It was suggested that the performance could not be realized. Thus, it was suggested that even if the UV-IR absorbing composition according to Comparative Example 1 is used, it is impossible to produce an optical filter having all the optical performances of the above (i) to (v).
  • the optical filter according to Comparative Example 4 did not have the optical performances of (iii) and (v) above, and did not have desired characteristics in the ultraviolet region. Moreover, according to Comparative Calculation Example 4-A, although the optical performances of (iii) and (v) can be realized by increasing the thickness of the UV-IR absorbing layer, the optical performance of (i) is realized. It was suggested that it was difficult to do. Moreover, according to Comparative Calculation Example 4-B, although the optical performance of (i) is improved by reducing the thickness of the UV-IR absorbing layer, the optical performances of (iii) and (v) are further increased.
  • the optical filter according to Comparative Example 5 did not have the optical performances of (i) and (iv) above.
  • Comparative Calculation Example 5 by decreasing the thickness of the UV-IR absorbing layer, the average transmittance at a wavelength of 450 to 600 nm increases, but the IR cutoff wavelength hardly changes, and the maximum transmission at a wavelength of 750 to 1080 nm It is suggested that the rate also increases. Therefore, it was suggested that the method for producing an optical filter according to Comparative Example 5 can not produce optical filters having all the optical performances of the above (i) to (v).
  • the humidification treatment is in the transmittance spectrum of the optical filter.
  • the optical filter according to Comparative Example 6 did not have the optical performance of (iv) above.
  • Comparative Calculation Example 6 it was suggested that although the IR cutoff wavelength is increased by decreasing the thickness of the UV-IR absorbing layer, the maximum transmittance at the wavelength of 750 to 1080 nm is also increased. Therefore, it was suggested that the method for producing an optical filter according to Comparative Example 6 can not produce optical filters having all the optical performances of the above (i) to (v). In particular, it was suggested that the conditions for the humidification treatment in Comparative Example 6 were not sufficient.
  • the optical filter according to Comparative Example 7 did not have the optical performances of (i) and (iv) above.
  • Comparative Calculation Example 7 it was suggested that although the IR cutoff wavelength is increased by decreasing the thickness of the UV-IR absorbing layer, the maximum transmittance at the wavelength of 750 to 1080 nm is also increased. Therefore, it was suggested that the method for producing an optical filter according to Comparative Example 7 can not produce optical filters having all the optical performances of the above (i) to (v). In particular, it was suggested that the conditions for the humidification treatment in Comparative Example 7 were not sufficient.
  • the content of n-butylphosphonic acid in the UV-IR absorbing composition according to Example 3 is the highest, and Example 5
  • the content of n-butyl phosphonic acid in the UV-IR absorbing composition according to is lowest.
  • Table 8 when the content of the alkyl phosphonic acid in the UV-IR absorbing composition is increased, the wavelength range and the spectral transmittance are 1% or less at a wavelength of 700 to 1200 nm. It has been suggested that the wavelength range of 0.1% or less expands toward the long wavelength side. The same was true for Examples 6-8, 9 and 10, and Examples 11-15.
  • the content of n-butylphosphonic acid of the UV-IR absorbing composition according to Example 11 is the highest, and Example 12
  • the content of n-butyl phosphonic acid in the UV-IR absorbing composition according to is second highest and the content of n-butyl phosphonic acid in the UV-IR absorbing composition according to example 13 is third highest
  • the content of n-butylphosphonic acid in the UV-IR absorbing composition according to Example 15 is the lowest.
  • the maximum transmittance of the optical filter at a wavelength of 1000 to 1100 nm and the maximum transmittance of the optical filter at a wavelength of 1100 to 1200 nm are the lowest in Example 11, and Second lowest, third lowest in Example 13, highest in Example 15.
  • the shielding properties of the wavelength in the infrared region are improved.
  • the content of 4-bromophenylphosphonic acid of the UV-IR-absorbing composition according to Example 7 is the highest.
  • the content of 4-bromophenylphosphonic acid in the UV-IR absorbing composition according to Example 13 is the lowest.
  • the higher the content of 4-bromophenylphosphonic acid of the UV-IR absorbing composition the larger the UV cutoff wavelength. This suggested that it is possible to optimize the optical performance of the optical filter by adjusting the content of 4-bromophenylphosphonic acid in the UV-IR absorbing composition.
  • the UV-IR absorbing compositions for producing optical filters according to Examples 22 to 37 and Comparative Examples 5 to 7 are prepared in the same manner as the UV-IR absorbing composition according to Example 2, As shown in Tables 7 to 10, the optical filters according to the examples and the comparative examples had optical performance different from that of the optical filter according to the second example. As described above, although the humidification treatment is performed for the purpose of promoting the hydrolysis and condensation polymerization of the alkoxysilane contained in the UV-IR absorbing composition, these examples and these are selected according to the aspect of the humidification treatment. In the optical filter according to the comparative example, differences occurred in the average transmittance and the IR cutoff wavelength at the wavelength of 450 to 600 nm.
  • This treatment condition corresponds to the condition of the amount of exposed water vapor of 5.0 [mol / m 3 ⁇ hour] or more, but the temperature in the humidification treatment is as low as 40 ° C. and the relative humidity is 70%, and It was suggested that good optical performance could be obtained by extending the treatment time to make the exposure water vapor amount of the same degree even if the temperature in the treatment is 60 ° C. and the relative humidity is as low as 40%. From these results, it has been suggested that it is desirable from the viewpoint of efficiently providing good optical performance to the optical filter that humidifying treatment for a short time in an environment of a temperature of 60 ° C. or more and a relative humidity of 70% or more.

Abstract

光学フィルタ(1a)は、UV‐IR吸収層を備え、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(i)~(v)の特性を有する。(i)波長450nm~600nmにおいて78%以上の平均透過率、(ii)波長750nm~1080nmにおいて1%以下の分光透過率、(iii)波長300nm~350nmにおいて1%以下の分光透過率、(iv)波長600nm~750nmにおいて波長の増加に伴い減少する分光透過率及び波長620nm~680nmの範囲内に存在する第一IRカットオフ波長、並びに(v)波長350nm~450nmにおいて波長の増加に伴い増加する分光透過率及び波長380nm~430nmの範囲内に存在する第一UVカットオフ波長

Description

光学フィルタ
 本発明は、光学フィルタに関する。
 CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を用いた撮像装置において、良好な色再現性を有する画像を得るために様々な光学フィルタが撮像素子の前面に配置されている。一般的に、撮像素子は紫外線領域から赤外線領域に至る広い波長範囲で分光感度を有する。一方、人間の視感度は可視光の領域にのみに存在する。このため、撮像装置における撮像素子の分光感度を人間の視感度に近づけるために、撮像素子の前面に赤外線又は紫外線を遮蔽する光学フィルタを配置する技術が知られている。
 光学フィルタとしては、誘電体多層膜を有する光学フィルタのように光の反射を利用する光学フィルタと、所定の波長の光を吸収可能な光吸収剤を含有している膜を有する光学フィルタのように光の吸収を利用する光学フィルタとがある。後者は、入射光の入射角度に対して変動しにくい分光特性を有する点で望ましい。
 例えば、特許文献1には、近赤外線吸収剤及び樹脂から形成される近赤外線吸収フィルタが記載されている。近赤外線吸収剤は、所定のホスホン酸化合物と、所定のリン酸エステル化合物と、銅塩とから得られる。所定のホスホン酸化合物は、リン原子Pに結合した-CH2CH2-R11で表される一価の基R1を有する。R11は水素原子、炭素数1~20のアルキル基、又は炭素数1~20のフッ素化アルキル基である。
特開2011-203467号公報
 特許文献1に記載の近赤外線吸収フィルタは、波長800nm~1200nmにおける光を有効に吸収できているものの、波長350nm~400nm及び波長650nm~800nmにおいて望ましい光吸収特性を有しているとは言い難い。そこで、本発明は、特許文献1に記載の近赤外線吸収フィルタのみでは実現困難な所望の光学性能を簡素な構成で発揮できる光学フィルタを提供する。
 本発明は、
 赤外線及び紫外線を吸収可能なUV‐IR吸収層を備え、
 0°の入射角度で波長300nm~1200nmの光を入射させたときに、
 (i)波長450nm~600nmにおいて78%以上の平均透過率を有し、
 (ii)波長750nm~1080nmにおいて1%以下の分光透過率を有し、
 (iii)波長300nm~350nmにおいて1%以下の分光透過率を有し、
 (iv)波長600nm~750nmにおいて波長の増加に伴い減少する分光透過率を有するとともに、波長600nm~750nmにおいて分光透過率が50%を示す第一IRカットオフ波長が波長620nm~680nmの範囲内に存在し、
 (v)波長350nm~450nmにおいて波長の増加に伴い増加する分光透過率を有するとともに、波長350nm~450nmにおいて分光透過率が50%を示す第一UVカットオフ波長が波長380nm~430nmの範囲内に存在する、
 光学フィルタを提供する。
 上記の光学フィルタは、所望の光学性能を簡素な構成で発揮できる。
図1Aは、本発明の光学フィルタの一例を示す断面図である。 図1Bは、本発明の光学フィルタの別の一例を示す断面図である。 図1Cは、本発明の光学フィルタのさらに別の一例を示す断面図である。 図1Dは、本発明の光学フィルタのさらに別の一例を示す断面図である。 図1Eは、本発明の光学フィルタのさらに別の一例を示す断面図である。 図1Fは、本発明の光学フィルタのさらに別の一例を示す断面図である。 図2は、本発明の光学フィルタを備えたカメラモジュールの一例を示す断面図である。 図3は、実施例1に係る光学フィルタの透過率スペクトルである。 図4は、実施例2に係る光学フィルタの透過率スペクトルである。 図5は、実施例16に係る光学フィルタの透過率スペクトルである。 図6は、実施例17に係る光学フィルタの透過率スペクトルである。 図7は、実施例18に係る光学フィルタの透過率スペクトルである。 図8Aは、実施例21で用いた赤外線吸収ガラス基板の透過率スペクトルである。 図8Bは、実施例21に係る光学フィルタの透過率スペクトルである。 図9は、実施例22に係る光学フィルタの透過率スペクトルである。 図10は、実施例23に係る光学フィルタの透過率スペクトルである。 図11は、実施例24に係る光学フィルタの透過率スペクトルである。 図12は、実施例38に係る光学フィルタの透過率スペクトルである。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。
 光学フィルタは、波長450nm~600nmの光を透過させ、かつ、波長300nm~400nm及び波長650nm~1100nmの光をカットする特性を有することが望ましい場合がある。しかし、例えば、特許文献1に記載の光学フィルタは、波長350nm~400nm及び波長650nm~800nmにおいて十分な光吸収特性を有しておらず、波長350nm~400nmの光及び波長650nm~800nmの光をカットするために、別の光吸収層又は光反射膜を必要とする。このように、簡素な構成(例えば、単一の層)で上記の望ましい特性を有する光学フィルタを実現することは容易なことではない。実際に、本発明者は、簡素な構成で上記の望ましい特性を有する光学フィルタを実現するために試行錯誤を何度も重ねた。その結果、本発明者は、ついに本発明に係る光学フィルタを案出した。
 図1Aに示す通り、光学フィルタ1aは、UV‐IR吸収層10を備えている。UV‐IR吸収層10は、赤外線及び紫外線を吸収可能な層である。光学フィルタ1aは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(i)~(v)の光学性能を発揮する。
(i)波長450nm~600nmにおいて78%以上の平均透過率
(ii)波長750nm~1080nmにおいて1%以下の分光透過率
(iii)波長300nm~350nmにおいて1%以下の分光透過率
(iv)波長600nm~750nmにおいて波長の増加に伴い減少する分光透過率及び波長620nm~680nmの範囲内に存在する第一IRカットオフ波長
(v)波長350nm~450nmにおいて波長の増加に伴い増加する分光透過率及び波長380nm~430nmの範囲内に存在する第一UVカットオフ波長
 本明細書において、「分光透過率」とは、特定の波長の入射光が試料等の物体に入射するときの透過率であり、「平均透過率」とは、所定の波長範囲内の分光透過率の平均値であり、「最大透過率」とは、所定の波長範囲内の分光透過率の最大値である。また、本明細書において、「透過率スペクトル」とは所定の波長範囲内の各波長における分光透過率を波長の順に並べたものである。
 本明細書において、「IRカットオフ波長」とは、光学フィルタに波長300nm~1200nmの光を、所定の入射角度で入射させたときに、600nm以上の波長範囲において50%の分光透過率を示す波長を意味する。「第一IRカットオフ波長」は、0°の入射角度で光学フィルタに光を入射させたときのIRカットオフ波長である。また、「UVカットオフ波長」とは、光学フィルタに波長300nm~1200nmの光を、所定の入射角度で入射させたときに、450nm以下の波長範囲において、50%の分光透過率を示す波長を意味する。「第一UVカットオフ波長」は、0°の入射角度で光学フィルタに光を入射させたときのUVカットオフ波長である。
 光学フィルタ1aが上記の(i)~(v)の光学性能を発揮することにより、光学フィルタ1aにおいて波長450nm~600nmの光の透過量が多く、かつ、波長300nm~400nm及び波長650nm~1100nmの光を効果的にカットできる。このため、光学フィルタ1aの透過スペクトルは、特許文献1に記載の近赤外線吸収フィルタの透過スペクトルに比べて、人間の視感度により適合している。しかも、光学フィルタ1aは、UV‐IR吸収層10以外の層を備えていなくても、上記の(i)~(v)の光学性能を発揮できる。
 上記(i)に関し、光学フィルタ1aは、波長450nm~600nmにおいて、望ましくは80%以上の平均透過率を有し、より望ましくは82%以上の平均透過率を有する。
 上記(iii)に関し、光学フィルタ1aは、望ましくは、波長300nm~360nmにおいて1%以下の分光透過率を有する。これにより、光学フィルタ1aは、紫外線領域の光をより効果的にカットできる。
 上記(iv)に関し、第一IRカットオフ波長(50%の分光透過率を示す波長)は、望ましくは、波長630nm~650nmの範囲内に存在する。これにより、光学フィルタ1aの透過スペクトルが人間の視感度により適合する。
 上記(v)に関し、第一UVカットオフ波長(50%の分光透過率を示す波長)は、望ましくは、波長390nm~420nmの範囲内に存在する。これにより、光学フィルタ1aの透過スペクトルが人間の視感度により適合する。
 光学フィルタ1aは、望ましくは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(vi)の光学性能を発揮する。これにより、比較的長い波長(波長1000~1100nm)を有する赤外線を遮蔽することができる。従来、この波長の光をカットするためには誘電体多層膜からなる光反射膜が用いられることが多い。しかし、光学フィルタ1aによれば、このような誘電体多層膜を用いなくともこの波長の光を効果的にカットできる。誘電体多層膜からなる光反射膜が必要であったとしても、光反射膜に要求される反射性能のレベルを低くできるので、光反射膜における誘電体の積層数を低減でき、光反射膜の形成に要するコストを低減できる。
(vi)波長1000~1100nmにおいて3%以下の分光透過率
 光学フィルタ1aは、望ましくは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(vii)の光学性能を発揮する。この場合、より長い波長(1100~1200nm)を有する赤外線をカットできる。これにより、誘電体多層膜を用いなくとも又は誘電体多層膜における誘電体の積層数が少なくても、光学フィルタ1aがこの波長の光を効果的にカットできる。
(vii)波長1100~1200nmにおいて15%以下の分光透過率
 例えば、光学フィルタ1aにおいて、第二IRカットオフ波長と、第一IRカットオフ波長との差の絶対値が10nm以下である(光学性能(viii))。第二IRカットオフ波長は、光学フィルタ1aに40°の入射角度で波長300nm~1200nmの光を入射させたときのIRカットオフ波長である。この場合、光学フィルタ1aの第一IRカットオフ波長付近の透過率特性は、光学フィルタ1aに入射する光の入射角度に対して変動しにくい。その結果、光学フィルタ1aが撮像素子の前方に配置された撮像装置によって得られた画像の中心部及び周辺部において異なる色味が発生することを抑制できる。
 光学フィルタ1aにおいて、第二IRカットオフ波長と、第一IRカットオフ波長との差の絶対値は、望ましくは5nm以下である。
 例えば、光学フィルタ1aにおいて、第三IRカットオフ波長と、第一IRカットオフ波長との差の絶対値が15nm以下である(光学性能(ix))。第三IRカットオフ波長は、光学フィルタ1aに50°の入射角度で波長300nm~1200nmの光を入射させたときのIRカットオフ波長である。この場合、光学フィルタ1aに入射する光の入射角度が大きく変化しても、光学フィルタ1aの第一IRカットオフ波長付近の透過率特性の変化を抑制できる。その結果、広い画角で撮像可能な撮像装置の撮像素子の前方に光学フィルタ1aを配置しても、良質な画像が得られやすい。
 例えば、光学フィルタ1aにおいて、第四IRカットオフ波長と、第一IRカットオフ波長との差の絶対値が20nm以下である。第四IRカットオフ波長は、光学フィルタ1aに60°の入射角度で波長300nm~1200nmの光を入射させたときのIRカットオフ波長である。この場合、広い画角で撮像可能な撮像装置の撮像素子の前方に光学フィルタ1aを配置しても、良質な画像が得られやすい。
 例えば、光学フィルタ1aにおいて、第二UVカットオフ波長と、第一UVカットオフ波長との差の絶対値が10nm以下である(光学性能(x))。第二UVカットオフ波長は、光学フィルタ1aに40°の入射角度で波長300nm~1200nmの光を入射させたときのUVカットオフ波長である。この場合、光学フィルタ1aの第一UVカットオフ波長付近の透過率特性は、光学フィルタ1aに入射する光の入射角度に対して変動しにくい。その結果、光学フィルタ1aが撮像素子の前方に配置された撮像装置によって得られた画像の中心部及び周辺部において異なる色味が発生することを抑制できる。
 光学フィルタ1aにおいて、第二UVカットオフ波長と、第一UVカットオフ波長との差の絶対値は、望ましくは5nm以下である。
 例えば、光学フィルタ1aにおいて、第三UVカットオフ波長と、第一UVカットオフ波長との差の絶対値が15nm以下である(光学性能(xi))。第三UVカットオフ波長は、光学フィルタ1aに50°の入射角度で波長300nm~1200nmの光を入射させたときのUVカットオフ波長である。この場合、光学フィルタ1aに入射する光の入射角度が大きく変化しても、光学フィルタ1aの第一UVカットオフ波長付近の透過率特性の変化を抑制できる。その結果、広い画角で撮像可能な撮像装置の撮像素子の前方に光学フィルタ1aを配置しても、良質な画像が得られやすい。
 例えば、光学フィルタ1aにおいて、第四UVカットオフ波長と、第一UVカットオフ波長との差の絶対値が20nm以下である。第四UVカットオフ波長は、光学フィルタ1aに60°の入射角度で波長300nm~1200nmの光を入射させたときのUVカットオフ波長である。この場合、広い画角で撮像可能な撮像装置の撮像素子の前方に光学フィルタ1aを配置しても、良質な画像が得られやすい。
 光学フィルタ1aは、望ましくは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(xii)の光学性能を発揮する。
(xii)波長800~950nmにおいて0.5%以下の分光透過率、より望ましくは0.1%以下の分光透過率
 光学フィルタ1aは、望ましくは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(xiii)の光学性能をさらに発揮する。
(xiii)波長800~1000nmにおいて0.5%以下の分光透過率、より望ましくは0.1%以下の分光透過率
 撮像装置に使用されているRGBに対応した各カラーフィルタは、各RGBに対応した波長範囲の光を透過させるだけではなく波長800nm以上の光をも透過させることがある。このため、撮像装置に用いられる赤外線カットフィルタの上記の波長範囲における分光透過率がある程度低くないと、上記の波長範囲の光が撮像素子の画素に入射し、その画素から信号が出力されてしまう。このような撮像装置を用いてデジタル画像を取得した場合に、可視光領域の光量が十分に強いときは、低光量の赤外線がカラーフィルタを透過して撮像素子の画素が受光しても得られたデジタル画像に大きな影響は出ない。しかし、可視光領域の光量が小さいとき又は画像の暗部においては、そのような赤外線の影響を受けやすくなり、ときには青系又は赤系などの色味がそれらの画像に混ざることがある。
 このように、CMOS及びCCDなどの撮像素子とともに用いられているカラーフィルタは、波長800~950nmまたは800~1000nmの範囲における光を透過させる場合がある。光学フィルタ1aが上記の(xii)及び(xiii)の光学性能を有することにより、このような画像の不具合を防止できる。
 UV‐IR吸収層10は、上記(i)~(v)の光学性能を光学フィルタ1aが発揮できるように、赤外線及び紫外線を吸収する限り特に制限されないが、例えば、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含んでいる。
 UV‐IR吸収層10がホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含む場合、そのホスホン酸は、例えば、アリール基を有する第一ホスホン酸を含む。第一ホスホン酸においてアリール基はリン原子に結合している。これにより、光学フィルタ1aが上記(i)~(v)の光学性能を発揮しやすい。
 第一ホスホン酸が有するアリール基は、例えば、フェニル基、ベンジル基、トルイル基、ニトロフェニル基、ヒドロキシフェニル基、フェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基、又はベンジル基のベンゼン環における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化ベンジル基である。望ましくは、第一ホスホン酸は、その一部において、ハロゲン化フェニル基を有する。この場合、より確実に、光学フィルタ1aが上記(i)~(v)の光学性能を発揮しやすい。
 UV‐IR吸収層10がホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含む場合、そのホスホン酸は、望ましくは、アルキル基を有する第二ホスホン酸をさらに含む。第二ホスホン酸において、アルキル基はリン原子に結合している。
 第二ホスホン酸が有するアルキル基は、例えば、6個以下の炭素原子を有するアルキル基である。このアルキル基は、直鎖及び分岐鎖のいずれを有していてもよい。
 UV‐IR吸収層10がホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含む場合、UV‐IR吸収層10は、望ましくは、UV‐IR吸収剤を分散させるリン酸エステルと、マトリクス樹脂とをさらに含む。
 UV‐IR吸収層10に含有されているリン酸エステルは、UV‐IR吸収剤を適切に分散できる限り特に制限されないが、例えば、下記式(c1)で表されるリン酸ジエステル及び下記式(c2)で表されるリン酸モノエステルの少なくとも一方を含む。下記式(c1)及び下記式(c2)において、R21、R22、及びR3は、それぞれ、-(CH2CH2O)n4で表される1価の官能基であり、nは、1~25の整数であり、R4は、炭素数6~25のアルキル基を示す。R21、R22、及びR3は、互いに同一又は異なる種類の官能基である。
Figure JPOXMLDOC01-appb-C000001
 リン酸エステルは、特に制限されないが、例えば、プライサーフA208N:ポリオキシエチレンアルキル(C12、C13)エーテルリン酸エステル、プライサーフA208F:ポリオキシエチレンアルキル(C8)エーテルリン酸エステル、プライサーフA208B:ポリオキシエチレンラウリルエーテルリン酸エステル、プライサーフA219B:ポリオキシエチレンラウリルエーテルリン酸エステル、プライサーフAL:ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル、プライサーフA212C:ポリオキシエチレントリデシルエーテルリン酸エステル、又はプライサーフA215C:ポリオキシエチレントリデシルエーテルリン酸エステルであり得る。これらはいずれも第一工業製薬社製の製品である。また、リン酸エステルは、NIKKOL DDP-2:ポリオキシエチレンアルキルエーテルリン酸エステル、NIKKOL DDP-4:ポリオキシエチレンアルキルエーテルリン酸エステル、又はNIKKOL DDP-6:ポリオキシエチレンアルキルエーテルリン酸エステルであり得る。これらは、いずれも日光ケミカルズ社製の製品である。
 UV‐IR吸収層10に含まれるマトリクス樹脂は、例えば、UV‐IR吸収剤を分散させることができ、熱硬化又は紫外線硬化が可能な樹脂である。さらに、マトリクス樹脂として、その樹脂によって0.1mmの樹脂層を形成した場合に、その樹脂層の波長350nm~900nmに対する透過率が例えば70%以上であり、望ましくは75%以上であり、より望ましくは80%以上である樹脂を用いることができる。ホスホン酸の含有量は、例えば、マトリクス樹脂100質量部に対して3~180質量部である。
 UV‐IR吸収層10に含まれるマトリクス樹脂は、上記の特性を満足する限り特に限定されないが、例えば(ポリ)オレフィン樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂、(変性)アクリル樹脂、エポキシ樹脂、又はシリコーン樹脂である。マトリクス樹脂は、フェニル基等のアリール基を含んでいてもよく、望ましくはフェニル基等のアリール基を含んでいるシリコーン樹脂である。UV‐IR吸収層10が硬い(リジッドである)と、そのUV‐IR吸収層10の厚みが増すにつれて、光学フィルタ1aの製造工程中に硬化収縮によりクラックが生じやすい。マトリクス樹脂がアリール基を含むシリコーン樹脂であるとUV‐IR吸収層10が良好な耐クラック性を有しやすい。また、アリール基を含むシリコーン樹脂を用いると、上記のホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含有する場合にUV‐IR吸収剤が凝集しにくい。さらに、UV‐IR吸収層10のマトリクス樹脂がアリール基を含むシリコーン樹脂である場合に、UV‐IR吸収層10に含まれるリン酸エステルが式(c1)又は式(c2)で表されるリン酸エステルのようにオキシアルキル基等の柔軟性を有する直鎖有機官能基を有することが望ましい。なぜなら、上記のホスホン酸と、アリール基を含むシリコーン樹脂と、オキシアルキル基等の直鎖有機官能基を有するリン酸エステルとの組合せに基づく相互作用により、UV‐IR吸収剤が凝集しにくく、かつ、UV‐IR吸収層に良好な剛性及び良好な柔軟性をもたらすことができるからである。マトリクス樹脂として使用されるシリコーン樹脂の具体例としては、KR-255、KR-300、KR-2621-1、KR-211、KR-311、KR-216、KR-212、及びKR-251を挙げることができる。これらはいずれも信越化学工業社製のシリコーン樹脂である。
 図1Aに示す通り、光学フィルタ1aは、例えば透明誘電体基板20をさらに備え、透明誘電体基板20の一方の主面の少なくとも一部がUV‐IR吸収層10によって覆われている。透明誘電体基板20は、450nm~600nmにおいて高い平均透過率(例えば、80%以上)を有する誘電体基板である限り、特に制限されない。場合によっては、透明誘電体基板20は、紫外線領域又は赤外線領域に吸収能を有していてもよい。
 透明誘電体基板20は、例えば、ガラス製又は樹脂製である。透明誘電体基板20がガラス製である場合、そのガラスは、例えば、D263等のホウケイ酸ガラス、ソーダ石灰ガラス(青板)、B270等の白板ガラス、無アルカリガラス、又は銅を含有しているリン酸塩ガラス若しくは銅を含有しているフツリン酸塩ガラス等の赤外線吸収性ガラスである。透明誘電体基板20が、銅を含有しているリン酸塩ガラス又は銅を含有しているフツリン酸塩ガラス等の赤外線吸収性ガラスである場合、透明誘電体基板20が有する赤外線吸収性能とUV‐IR吸収層10が有する赤外線吸収性能との組み合わせによって光学フィルタ1aに必要な赤外線吸収性能を実現できる。このため、UV‐IR吸収層10に要求される赤外線吸収性能のレベルを下げることができる。このような赤外線吸収性ガラスは、例えば、ショット社製のBG-60、BG-61、BG-62、BG-63、若しくはBG-67であり、日本電気硝子社製の500EXLであり、又はHOYA社製のCM5000、CM500、C5000、若しくはC500Sである。また、赤外線吸収性ガラスは紫外線吸収特性を有していてもよい。
 透明誘電体基板20は、酸化マグネシウム、サファイア、又は石英などの透明性を有する結晶性の基板であってもよい。例えば、サファイアは高硬度であるので、傷がつきにくい。このため、板状のサファイアは、耐擦傷性の保護材料(プロテクトフィルタ)として、スマートフォン及び携帯電話等の携帯端末に備えられているカメラモジュール又はレンズの前面に配置される場合がある。このような板状のサファイア上にUV‐IR吸収層10が形成されることにより、カメラモジュール及びレンズの保護とともに、紫外線又は赤外線を遮蔽できる。これにより、紫外線又は赤外線の遮蔽性を備える光学フィルタをCCDやCMOSなどの撮像素子の周辺又はカメラモジュールの内部に配置する必要がなくなる。このため、板状のサファイア上にUV‐IR吸収層10を形成すれば、カメラモジュールの低背位化に貢献できる。
 透明誘電体基板20が、樹脂製である場合、その樹脂は、例えば、(ポリ)オレフィン樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂、(変性)アクリル樹脂、エポキシ樹脂、又はシリコーン樹脂である。
 図1Aに示す通り、光学フィルタ1aにおいて、例えば、UV‐IR吸収層10は、単一の層として形成されている。この場合、光学フィルタ1aの構造が簡素である。
 光学フィルタ1aは、例えば、UV‐IR吸収層10を形成するための組成物(UV‐IR吸収性組成物)を透明誘電体基板20の一方の主面に塗布して塗膜を形成し、その塗膜を乾燥させることによって製造できる。UV‐IR吸収層10が、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含む場合を例に、UV‐IR吸収性組成物の調製方法及び光学フィルタ1aの製造方法を説明する。
 まず、UV‐IR吸収性組成物の調製方法の一例を説明する。酢酸銅一水和物などの銅塩をテトラヒドロフラン(THF)などの所定の溶媒に添加して撹拌し、銅塩の溶液を得る。次に、この銅塩の溶液に、式(c1)で表されるリン酸ジエステル又は式(c2)で表されるリン酸モノエステルなどのリン酸エステル化合物を加えて撹拌し、A液を調製する。また、第一ホスホン酸をTHFなどの所定の溶媒に加えて撹拌し、B液を調製する。第一ホスホン酸として複数種類のホスホン酸を用いる場合、ホスホン酸をTHFなどの所定の溶媒に加えたうえで撹拌して、ホスホン酸の種類ごとに調製した複数の予備液を混合してB液を調製してもよい。望ましくは、B液の調製においてアルコキシシランモノマーが加えられる。
 UV‐IR吸収性組成物にアルコキシシランモノマーが加えられると、UV‐IR吸収剤の粒子同士が凝集することを防止できるので、リン酸エステルの含有量を低減しても、UV‐IR吸収性組成物においてUV‐IR吸収剤が良好に分散する。また、UV‐IR吸収性組成物を用いて光学フィルタ1aを製造する場合に、アルコキシシランモノマーの加水分解反応及び縮重合反応が十分に起こるように処理することにより、シロキサン結合(-Si-O-Si-)が形成され、光学フィルタ1aが良好な耐湿性を有する。加えて、光学フィルタ1aが良好な耐熱性を有する。なぜなら、シロキサン結合は、-C-C-結合及び-C-O-結合等の結合よりも結合エネルギーが高く化学的に安定しており、耐熱性及び耐湿性に優れているからである。
 次に、A液を撹拌しながら、A液にB液を加えて所定時間撹拌する。次に、この溶液にトルエンなどの所定の溶媒を加えて撹拌し、C液を得る。次に、C液を加温しながら所定時間脱溶媒処理を行って、D液を得る。これにより、THFなどの溶媒及び酢酸(沸点:約118℃)などの銅塩の解離により発生する成分が除去され、第一ホスホン酸と銅イオンとによってUV‐IR吸収剤が生成される。C液を加温する温度は、銅塩から解離した除去されるべき成分の沸点に基づいて定められている。なお、脱溶媒処理においては、C液を得るために用いたトルエン(沸点:約110℃)などの溶媒も揮発する。この溶媒は、UV‐IR吸収性組成物においてある程度残留していることが望ましいので、この観点から溶媒の添加量及び脱溶媒処理の時間が定められているとよい。なお、C液を得るためにトルエンに代えてo‐キシレン(沸点:約144℃)を用いることもできる。この場合、o‐キシレンの沸点はトルエンの沸点よりも高いので、添加量をトルエンの添加量の4分の1程度に低減できる。
 UV‐IR吸収性組成物が第二ホスホン酸をさらに含んでいる場合、例えば、以下のようにしてH液がさらに調製される。まず、酢酸銅一水和物などの銅塩をテトラヒドロフラン(THF)などの所定の溶媒に添加して撹拌し、銅塩の溶液を得る。次に、この銅塩の溶液に、式(c1)で表されるリン酸ジエステル又は式(c2)で表されるリン酸モノエステルなどのリン酸エステル化合物を加えて撹拌し、E液を調製する。また、第二ホスホン酸をTHFなどの所定の溶媒に加えて撹拌し、F液を調製する。第二ホスホン酸として複数種類のホスホン酸を用いる場合、第二ホスホン酸をTHFなどの所定の溶媒に加えたうえで撹拌して第二ホスホン酸の種類ごとに調製した複数の予備液を混合してF液を調製してもよい。E液を撹拌しながら、E液にF液を加えて所定時間撹拌する。次に、この溶液にトルエンなどの所定の溶媒を加えて撹拌し、G液を得る。次に、G液を加温しながら所定時間脱溶媒処理を行って、H液を得る。これにより、THFなどの溶媒及び酢酸などの銅塩の解離により発生する成分が除去され、第二ホスホン酸と銅イオンとによって別のUV‐IR吸収剤が生成される。G液を加温する温度はC液と同様に決定され、G液を得るための溶媒もC液と同様に決定される。
 D液にシリコーン樹脂等のマトリクス樹脂を加えて撹拌してUV‐IR吸収性組成物を調製できる。また、UV‐IR吸収性組成物が第二ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含有している場合、D液にシリコーン樹脂等のマトリクス樹脂を加えて撹拌して得られたI液に、さらにH液を加えて撹拌することにより、UV‐IR吸収性組成物を調製できる。
 UV‐IR吸収性組成物を透明誘電体基板20の一方の主面に塗布して塗膜を形成する。例えば、液状のUV‐IR吸収性組成物をスピンコーティング又はディスペンサによる塗布により、透明誘電体基板20の一方の主面に塗布して塗膜を形成する。次に、この塗膜に対して所定の加熱処理を行って塗膜を硬化させる。例えば、50℃~200℃の温度の環境にこの塗膜を曝す。必要に応じて、UV‐IR吸収性組成物に含有されているアルコキシシランモノマーを十分に加水分解させるために塗膜に加湿処理を施す。例えば、40℃~100℃の温度及び40%~100%の相対湿度の環境に硬化後の塗膜を曝す。これにより、シロキサン結合のくり返し構造(Si-O)nが形成される。このようにして、光学フィルタ1aを製造できる。なお、一般的にはモノマーを含むアルコキシシランの加水分解及び縮重合反応においては、アルコキシシランと水とを液状組成物内に併存させてこれらの反応を行わせる場合がある。しかし、光学フィルタを作製するときに予めUV‐IR吸収性組成物に水を添加しておくと、UV‐IR吸収層の形成の過程でリン酸エステル又はUV‐IR吸収剤が劣化してしまい、UV‐IR吸収性能が低下したり、光学フィルタの耐久性を損ねたりする可能性がある。このため、所定の加熱処理により塗膜を硬化させた後に加湿処理を行うことが望ましい。
 透明誘電体基板20がガラス基板である場合、透明誘電体基板20とUV‐IR吸収層10との付着性を向上させるために、シランカップリング剤を含む樹脂層を透明誘電体基板20とUV‐IR吸収層10との間に形成してもよい。
 <変形例>
 光学フィルタ1aは、様々な観点から変更可能である。例えば、光学フィルタ1aは、図1B~図1Fに示す光学フィルタ1b~1fにそれぞれ変更されてもよい。光学フィルタ1b~1fは、特に説明する場合を除き、光学フィルタ1aと同様に構成されている。光学フィルタ1aの構成要素と同一又は対応する光学フィルタ1b~1fの構成要素には同一の符号を付し、詳細な説明を省略する。光学フィルタ1aに関する説明は、技術的に矛盾しない限り光学フィルタ1b~1fにも当てはまる。
 図1Bに示す通り、本発明の別の一例に係る光学フィルタ1bは、透明誘電体基板20の両方の主面上にUV‐IR吸収層10が形成されている。これにより、1つのUV‐IR吸収層10によってではなく、2つのUV‐IR吸収層10によって、光学フィルタ1bが上記の(i)~(v)の光学性能を発揮できる。透明誘電体基板20の両方の主面上におけるUV‐IR吸収層10の厚みは同一であってもよいし、異なっていてもよい。すなわち、光学フィルタ1bが所望の光学特性を得るために必要なUV‐IR吸収層10の厚みが均等に又は不均等に分配されるように、透明誘電体基板20の両方の主面上にUV‐IR吸収層10が形成されている。これにより、透明誘電体基板20の両方の主面上に形成された各UV‐IR吸収層10の厚みが比較的小さい。これにより、塗膜の内部圧力が低くクラックの発生を防止できる。また、液状のUV‐IR吸収性組成物を塗布する時間を短縮でき、UV‐IR吸収性組成物の塗膜を硬化させるための時間を短縮できる。透明誘電体基板20が薄い場合、透明誘電体基板20の一方の主面上のみにUV‐IR吸収層10を形成すると、UV‐IR吸収性組成物からUV‐IR吸収層10を形成する場合に生じる収縮に伴う応力によって、光学フィルタが反る可能性がある。しかし、透明誘電体基板20の両方の主面上にUV‐IR吸収層10が形成されていることにより、透明誘電体基板20が薄い場合でも、光学フィルタ1bにおいて反りが抑制される。この場合も、透明誘電体基板20とUV‐IR吸収層10との付着性を向上させるために、シランカップリング剤を含む樹脂層を透明誘電体基板20とUV‐IR吸収層10との間に形成してもよい。
 図1Cに示す通り、本発明の別の一例に係る光学フィルタ1cは、反射防止膜30を備えている。反射防止膜30は、光学フィルタ1cと空気との界面をなすように形成された、可視光領域の光の反射を低減するための膜である。反射防止膜30は、例えば、樹脂、酸化物、及びフッ化物等の誘電体によって形成された膜である。反射防止膜30は、屈折率の異なる二種類以上の誘電体を積層して形成された多層膜であってもよい。特に、反射防止膜30は、SiO2等の低屈折率材料とTiO2又はTa25等の高屈折率材料とからなる誘電体多層膜であってもよい。この場合、光学フィルタ1cと空気との界面におけるフレネル反射が低減され、光学フィルタ1cの可視光領域の光量を増大させることができる。この場合も、透明誘電体基板20とUV‐IR吸収層10との付着性を向上させるために、シランカップリング剤を含む樹脂層を透明誘電体基板20とUV‐IR吸収層10との間に形成してもよい。場合によっては、反射防止膜30の付着性を向上させるために、シランカップリング剤を含む樹脂層をUV‐IR吸収層10と反射防止膜30との間に形成してもよい。反射防止膜30は、光学フィルタ1cの両方の主面に配置されていてもよいし、片方の主面にのみ配置されていてもよい。
 図1Dに示す通り、本発明の別の一例に係る光学フィルタ1dは、UV‐IR吸収層10のみによって構成されている。光学フィルタ1dは、例えば、ガラス基板、樹脂基板、金属基板(例えば、スチール基板又はステンレス基板)等の所定の基板にUV‐IR吸収性組成物を塗布して塗膜を形成し、この塗膜を硬化させた後に基板から剥離させることによって製造できる。光学フィルタ1dは、溶融成形法によって製造されてもよい。光学フィルタ1dは、透明誘電体基板20を備えていないので薄い。このため、光学フィルタ1dは、撮像素子及び光学系の低背位化に貢献できる。
 図1Eに示す通り、本発明の別の一例に係る光学フィルタ1eは、UV‐IR吸収層10と、その両面に配置された一対の反射防止膜30とを備えている。この場合、光学フィルタ1eは、撮像素子及び光学系の低背位化に貢献でき、かつ、光学フィルタ1dに比べて可視光領域の光量を増大させることができる。
 図1Fに示す通り、本発明の別の一例に係る光学フィルタ1fは、UV‐IR吸収層10と、その一方の主面に配置された、赤外線及び/又は紫外線を反射する反射膜40とを備えている。反射膜40は、例えば、アルミニウム等の金属を蒸着することにより形成された膜、又は、高屈折率材料からなる層と低屈折率材料からなる層とが交互に積層された誘電体多層膜である。高屈折率材料としてはTiO2、ZrO2、Ta25、Nb25、ZnO、及びIn23等の1.7~2.5の屈折率を有する材料が用いられる。低屈折率材料としては、SiO2、Al23、及びMgF2等の1.2~1.6の屈折率を有する材料が用いられる。誘電体多層膜を形成する方法は、例えば、化学気相成長(CVD)法、スパッタ法、又は真空蒸着法である。また、このような反射膜が光学フィルタの両方の主面をなすように形成されてもよい(図示省略)。光学フィルタの両方の主面に反射膜が形成されていると、光学フィルタの表裏両面で応力がバランスし、光学フィルタが反りにくいというメリットが得られる。
 光学フィルタ1a~1fは、それぞれ、必要に応じて、UV‐IR吸収層10とは別に、赤外線吸収膜(図示省略)を備えるように変更されてもよい。赤外線吸収膜は、例えば、シアニン系、フタロシアニン系、スクアリリウム系、ジインモニウム系、及びアゾ系等の有機系の赤外線吸収剤又は金属錯体からなる赤外線吸収剤を含有している。赤外線吸収膜は、例えば、これらの赤外線吸収剤から選ばれる1つ又は複数の赤外線吸収剤を含有している。この有機系の赤外線吸収剤は、吸収可能な光の波長範囲(吸収バンド)が小さく、特定の範囲の波長の光を吸収するのに適している。
 光学フィルタ1a~1fは、それぞれ、必要に応じて、UV‐IR吸収層10とは別に、紫外線吸収膜(図示省略)を備えるように変更されてもよい。紫外線吸収膜は、例えば、ベンゾフェノン系、トリアジン系、インドール系、メロシアニン系、及びオキサゾール系等の紫外線吸収剤を含有している。紫外線吸収膜は、例えば、これらの紫外線吸収剤から選ばれる1つ又は複数の紫外線吸収剤を含有している。これらの紫外線吸収剤は、例えば300nm~340nm付近の紫外線を吸収し、吸収した波長よりも長い波長の光(蛍光)を発し、蛍光剤又は蛍光増白剤として機能するものも含まれうるが、紫外線吸収膜により、樹脂等の光学フィルタに使用されている材料の劣化をもたらす紫外線の入射を低減できる。
 上記の赤外線吸収剤又は紫外線吸収剤は、樹脂製の透明誘電体基板20に予め含有させてもよい。赤外線吸収膜や紫外線吸収膜は、例えば、赤外線吸収剤又は紫外線吸収剤を含有している樹脂を成膜することによって形成できる。この場合、樹脂は、赤外線吸収剤又は紫外線吸収剤を適切に溶解又は分散させることができ、かつ、透明であることが必要である。このような樹脂として、(ポリ)オレフィン樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂、(変性)アクリル樹脂、エポキシ樹脂、及びシリコーン樹脂を例示できる。
 光学フィルタ1a~1fは、それぞれ、必要に応じて、赤外線及び/又は紫外線を反射する反射膜をさらに備えるように変更されてもよい。このような反射膜としては、例えば、アルミニウム等の金属を蒸着することにより形成された膜、又は、高屈折率材料からなる層と低屈折率材料からなる層とが交互に積層された誘電体多層膜を用いることができる。このような反射膜は光学フィルタの両方の主面をなすように形成されてもよく、光学フィルタの片方の主面をなすように形成されてもよい。前者のように反射膜が形成されていると、光学フィルタの表裏両面で応力がバランスし、光学フィルタが反りにくい。反射膜が誘電体多層膜である場合、例えば、高屈折率材料としてはTiO2、ZrO2、Ta25、Nb25、ZnO、及びIn23等の1.7~2.5の屈折率を有する材料が用いられ、低屈折率材料としてはSiO2、Al23、及びMgF2等の1.2~1.6の屈折率を有する材料が用いられる。誘電体多層膜を形成する方法は、例えば、化学気相成長(CVD)法、スパッタ法、又は真空蒸着法である。
 光学フィルタ1a~1fは、例えば、撮像装置における撮像素子の分光感度を人間の視感度に近づけるために、撮像装置の内部のCCD又はCMOS等の撮像素子の前面(被写体に近い側)に配置される。
 また、図2に示す通り、例えば、光学フィルタ1aを用いたカメラモジュール100を提供できる。カメラモジュール100は、光学フィルタ1aに加え、例えば、レンズ系2、ローパスフィルタ3、撮像素子4、回路基板5、光学フィルタ支持筐体7、及び光学系筐体8を備えている。光学フィルタ1aの周縁は、例えば、光学フィルタ支持筐体7の中央に形成された開口に接する環状の凹部に嵌められている。光学フィルタ支持筐体7は、光学系筐体8に固定されている。光学系筐体8の内部には、レンズ系2、ローパスフィルタ3、及び撮像素子4が光軸に沿ってこの順番で配置されている。撮像素子4は、例えば、CCD又はCMOSである。被写体からの光は、光学フィルタ1aによって、紫外線及び赤外線がカットされた後、レンズ系2によって集光され、さらにローパスフィルタ3を通過して撮像素子4に入る。撮像素子4によって生成された電気信号は回路基板5によってカメラモジュール100の外部に送られる。
 カメラモジュール100において、光学フィルタ1aはレンズ系2を保護するカバー(プロテクトフィルタ)としての機能も果たしている。この場合、望ましくは、光学フィルタ1aにおける透明誘電体基板20としてサファイア基板が使用される。サファイア基板は高い耐擦傷性を有するので、例えばサファイア基板が外側(撮像素子4の側とは反対側)に配置されることが望ましい。これにより、光学フィルタ1aは、外部からの接触等に対して高い耐擦傷性を有するとともに上記(i)~(v)の光学性能(望ましくはさらに(vi)~(xiii)の光学性能)を有する。これにより、撮像素子4の近くに赤外線又は紫外線をカットするための光学フィルタを配置する必要がなくなり、カメラモジュール100を低背位化しやすい。なお、図2に示すカメラモジュール100は、各部品の配置等を例示するための概略図であり、光学フィルタ1aがプロテクトフィルタとして用いられる態様を説明するものである。光学フィルタ1aがプロテクトフィルタとしての機能を果たす限り、光学フィルタ1aを用いたカメラモジュールは、図2で表したものに限定されず、必要に応じて、ローパスフィルタ3は省略されてもよいし、他のフィルタを備えていてもよい。
 実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。まず、実施例及び比較例に係る光学フィルタの評価方法を説明する。
 <光学フィルタの透過率スペクトル測定>
 波長300nm~1200nmの光を実施例及び比較例に係る光学フィルタに入射させたときの透過率スペクトルを、紫外線可視分光光度計(日本分光社製、製品名:V-670)を用いて測定した。光学フィルタに対する入射光の入射角度を0°から65°まで5°刻みで変化させてそれぞれの角度における透過率スペクトルを測定した。
 <UV‐IR吸収層の厚みの測定>
 実施例及び比較例に係る光学フィルタの厚みをデジタルマイクロメータで測定した。実施例及び比較例に係る光学フィルタのうちガラス等の透明誘電体基板を有する光学フィルタについては、デジタルマイクロメータで測定した光学フィルタの厚みからガラス基板の厚みを差し引いて光学フィルタにおけるUV‐IR吸収層の厚みを決定した。
 <実施例1>
 酢酸銅一水和物((CH3COO)2Cu・H2O)1.125gとテトラヒドロフラン(THF)60gとを混合して、3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208N(第一工業製薬社製)を0.412g加えて30分間撹拌し、A液を得た。フェニルホスホン酸(C65PO(OH)2)(日産化学工業社製)0.441gにTHF10gを加えて30分間撹拌し、B-1液を得た。4‐ブロモフェニルホスホン酸(C64BrPO(OH)2)(東京化成工業社製)0.661gにTHF10gを加えて30分間撹拌し、B-2液を得た。次に、B-1液とB-2液とを混ぜて1分間撹拌し、メチルトリエトキシシラン(MTES:CH3Si(OC253)(信越化学工業社製)1.934gとテトラエトキシシラン(TEOS:Si(OC254)(キシダ化学社製 特級)0.634gを加えてさらに1分間撹拌し、B液を得た。A液を撹拌しながらA液にB液を加え、室温で1分間撹拌した。次に、この溶液にトルエン25gを加えた後、室温で1分間撹拌し、C液を得た。このC液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB-2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N-1110SF)によって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後のD液を取り出した。フェニルホスホン酸銅及び4‐ブロモフェニルホスホン酸銅を含むフェニル系ホスホン酸銅(吸収剤)の微粒子の分散液であるD液は透明であり、微粒子が良好に分散していた。
 酢酸銅一水和物0.225gとTHF36gとを混合して3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208Nを0.129g加えて30分間撹拌し、E液を得た。また、n‐ブチルホスホン酸(C49PO(OH)2)(日本化学工業社製)0.144gにTHF10gを加えて30分間撹拌し、F液を得た。E液を撹拌しながらE液にF液を加え、室温で1分間撹拌した。次に、この溶液にトルエン25gを加えた後、室温で1分間撹拌し、G液を得た。このG液をフラスコに入れてオイルバスで加温しながら、ロータリーエバポレータによって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後のH液を取り出した。ブチルホスホン酸銅の微粒子の分散液であるH液は透明であり、微粒子が良好に分散していた。
 D液にシリコーン樹脂(信越化学工業社製、製品名:KR-300)を2.200g添加し30分間撹拌して、I液を得た。H液をI液に加えて30分間撹拌し、実施例1に係るUV‐IR吸収性組成物(J液)を得た。実施例1に係るUV‐IR吸収性組成物(J液)について、各成分の質量基準の含有量を表1に示し、各成分の物質量基準の含有量及び各ホスホン酸の物質量基準の含有率を表2に示す。各ホスホン酸の含有率は、小数第2位を四捨五入して求めているため、合計が100mol%にならない場合がある。
 76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263)の一方の主面の中心部の30mm×30mmの範囲にディスペンサを用いて実施例1に係るUV‐IR吸収性組成物を塗布して塗膜を形成した。光学フィルタの波長700~730nmにおける平均透過率が約1%になるように試行錯誤を行って塗膜の厚みを決定した。UV‐IR吸収性組成物を透明ガラス基板に塗布するときに塗布液が流れ出さないように、塗布液の塗布範囲に相当する開口を有する枠を透明ガラス基板上に置いて塗布液をせき止めた。塗布液の量を調節することで、目標の厚みの塗膜を得た。次に、未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、85℃で6時間加熱処理を行い、塗膜を硬化させた。その後、温度85℃及び相対湿度85%に設定された恒温恒湿槽内に、上記の塗膜が形成された透明ガラス基板を20時間置いて加湿処理を行い、透明ガラス基板上にUV‐IR吸収層が形成された実施例1に係る光学フィルタを得た。加湿処理は、透明ガラス基板上に塗布されたUV‐IR吸収性組成物に含まれるアルコキシシランの加水分解及び縮重合を促進させ、UV‐IR吸収層において硬質で緻密なマトリクスを形成するために行った。実施例1に係る光学フィルタのUV‐IR吸収層の厚みは170μmであった。実施例1に係る光学フィルタの、入射角度が0°~65°における透過率スペクトルを測定した。入射角度が0°、40°、50°、及び60°における透過率スペクトルを図3に示す。実施例1に係る光学フィルタの、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。表8における「透過率78%以上の波長範囲」は、波長400nm~600nmにおいて78%以上の分光透過率を示す波長範囲である。表8における赤外線領域特性に関する「透過率1%以下の波長範囲」は、波長700nm~1200nmにおいて1%以下の分光透過率を示す波長範囲である。表8における赤外線領域特性に関する「透過率0.1%以下の波長範囲」は、波長700nm~1200nmにおいて0.1%以下の分光透過率を示す波長範囲である。表8における紫外線領域特性に関する「透過率1%以下の波長範囲」は、波長300nm~400nmにおいて1%以下の分光透過率を示す波長範囲である。表8における紫外線領域特性に関する「透過率0.1%以下の波長範囲」は、波長300nm~400nmにおいて0.1%以下の分光透過率を示す波長範囲である。このことは、表10、表12、表14、表16、表18、及び表20においても当てはまる。さらに、実施例1に係る光学フィルタの、入射角度が0°、30°~65°(5°刻み)における透過率スペクトルから看取した結果(入射角度:0°~65°)を表11及び表12に示す。
 <実施例2~15>
 各化合物の添加量を表1に示す通りに調節した以外は、実施例1と同様にして、実施例2~15に係るUV‐IR吸収性組成物を調製した。実施例1に係るUV‐IR吸収性組成物の代わりに、実施例2~15に係るUV‐IR吸収性組成物を用いて、UV‐IR吸収層の厚みを表1に示す通りに調節した以外は、実施例1と同様にして、それぞれ、実施例2~15に係る光学フィルタを作製した。各ホスホン酸の物質量基準の含有量及び含有率を表2に示す。各ホスホン酸の含有率は、小数第2位を四捨五入して求めているため、合計が100mol%にならない場合がある。実施例2に係る光学フィルタの、入射角度が0°~65°における透過率スペクトルを測定した。入射角度が0°、40°、50°及び60°における透過率スペクトルを図4に示す。実施例2に係る光学フィルタの、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。さらに、実施例2に係る光学フィルタの、入射角度が0°、30°~65°(5°刻み)における透過率スペクトルから看取した結果を表13及び表14に示す。また、実施例3~15に係る光学フィルタの、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。
 <実施例16>
 76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263)の一方の主面の中心部の30mm×30mmの範囲にディスペンサを用いて実施例2に係るUV‐IR吸収性組成物を塗布して所定の厚みの塗膜を形成した。UV‐IR吸収性組成物を透明ガラス基板に塗布するときに塗布液が流れ出さないように、塗布液の塗布範囲に相当する開口を有する枠を透明ガラス基板上に置いて塗布液をせき止めた。次に、未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、85℃で6時間加熱処理を行い、塗膜を硬化させた。その後、この塗膜を透明ガラス基板から剥離させた。温度85℃及び相対湿度85%に設定された恒温恒湿槽内に、剥離させた塗膜を20時間置いて加湿処理を行い、UV‐IR吸収層のみから構成された実施例16に係る光学フィルタを得た。デジタルマイクロメータによる計測は、光吸収層のみの厚みを測定した。その結果、実施例16に係る光学フィルタの厚みは132μmであった。実施例16に係る光学フィルタの、入射角度が0°~65°における透過率スペクトルを測定した。入射角度が0°、40°、50°、及び60°における透過率スペクトルを図5に示す。実施例16に係る光学フィルタの、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。さらに、実施例16に係る光学フィルタの、入射角度が0°、30°~65°(5°刻み)における透過率スペクトルから看取した結果を表15及び表16に示す。
 <実施例17>
 76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263)の一方の主面の中心部の30mm×30mmの範囲にディスペンサを用いて実施例2に係るUV‐IR吸収性組成物を塗布し、実施例2における塗膜の厚みの約半分の厚みの塗膜を形成した。UV‐IR吸収性組成物を透明ガラス基板に塗布するときに塗布液が流れ出さないように、塗布液の塗布範囲に相当する開口を有する枠を透明ガラス基板上に置いて塗布液をせき止めた。次に、未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、85℃で6時間加熱処理を行い、塗膜を硬化させた。次に、透明ガラス基板の他方の主面の中心部の30mm×30mmの範囲にディスペンサを用いて実施例2に係るUV‐IR吸収性組成物を塗布し、実施例2における塗膜の厚みの約半分の厚みの塗膜を形成した。UV‐IR吸収性組成物を透明ガラス基板に塗布するときに塗布液が流れ出さないように、塗布液の塗布範囲に相当する開口を有する枠を透明ガラス基板上に置いて塗布液をせき止めた。次に、未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、85℃で6時間加熱処理を行い、塗膜を硬化させた。次に、温度85℃及び相対湿度85%に設定された恒温恒湿槽内に、両主面に上記の塗膜が形成された透明ガラス基板を20時間置いて加湿処理を行い、透明ガラス基板の両面にUV‐IR吸収層が形成された実施例17に係る光学フィルタを得た。透明ガラス基板の両面に形成されたUV‐IR吸収層の合計の厚みは193μmであった。実施例17に係る光学フィルタの、入射角度が0°~65°における透過率スペクトルを測定した。入射角度が0°、40°、50°及び60°における透過率スペクトルを図6に示す。実施例17に係る光学フィルタの、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。実施例17に係る光学フィルタの、入射角度が0°、30°~65°(5°刻み)における透過率スペクトルから看取した結果を表17及び表18に示す。
 <実施例18>
 実施例17で用いた透明ガラス基板の代わりに、0.07mmの厚みを有する実施例17で用いた透明ガラス基板と同一種類の透明ガラス基板を用いた以外は、実施例17と同様にして、透明ガラス基板の両面にUV‐IR吸収層が形成された実施例18に係る光学フィルタを作製した。透明ガラス基板の両面に形成されたUV‐IR吸収層の合計の厚みは183μmであった。実施例18に係る光学フィルタの、入射角度が0°~65°における透過率スペクトルを測定した。入射角度が0°、40°、50°及び60°における透過率スペクトルを図7に示す。実施例18に係る光学フィルタの、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。実施例18に係る光学フィルタの、入射角度が0°、30°~65°(5°刻み)における透過率スペクトルから看取した結果を表19及び表20に示す。
 <実施例19>
 リン酸エステル化合物として、プライサーフA208Nの代わりに、プライサーフA208F(第一工業製薬社製)を用い、各化合物の添加量を表1に示す通りに調節した以外は、実施例1と同様にして、実施例19に係るUV‐IR吸収性組成物を調製した。実施例1に係るUV‐IR吸収性組成物の代わりに、実施例19に係るUV‐IR吸収性組成物を用い、UV‐IR吸収層の厚みを198μmに調節した以外は、実施例1と同様にして、実施例19に係る光学フィルタを作製した。実施例19に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。
 <実施例20>
 4‐ブロモフェニルホスホン酸の代わりに、4‐フルオロフェニルホスホン酸(C64FPO(OH)2)(東京化成工業社製)を用い、各化合物の添加量を表1に示す通り調節した以外は、実施例1と同様にして、実施例20に係るUV‐IR吸収性組成物を調製した。実施例1に係るUV‐IR吸収性組成物の代わりに、実施例20に係るUV‐IR吸収性組成物を用い、UV‐IR吸収層の厚みを168μmに調節した以外は、実施例1と同様にして、実施例20に係る光学フィルタを作製した。実施例20に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。
 <実施例21>
 実施例2で用いた透明ガラス基板の代わりに、100μmの厚みを有する赤外線吸収ガラス基板を用い、UV‐IR吸収層の厚みを76μmに調節した以外は、実施例2と同様にして実施例21に係る光学フィルタを作製した。この赤外線吸収ガラス基板は銅を含有しており、図8Aに示す透過率スペクトルを有していた。実施例21に係る光学フィルタの、入射角度が0°における透過率スペクトルを測定した。その結果を図8Bに示す。また、実施例21に係る光学フィルタの、入射角度が0°における透過率スペクトルから看取した結果を表7及び表8に示す。
 <実施例22~実施例37>
 乾燥された塗膜の加湿処理の条件を表3に示す通りに変更し、UV‐IR吸収層の厚みを表3に示す通りに調節した以外は、実施例2と同様にして、実施例22~37に係る光学フィルタをそれぞれ作製した。実施例22~24に係る光学フィルタの、入射角度が0°における透過率スペクトルを測定した。その結果をそれぞれ図9~図11に示す。また、実施例22~24に係る光学フィルタの、入射角度が0°における透過率スペクトルから看取した結果を表7及び表8に示す。実施例25~37に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取した結果を表7及び表8に示す。
 <実施例38>
 実施例2で用いた透明ガラス基板の代わりに、0.3mmの厚みを有するサファイア基板を用い、UV‐IR吸収層の厚みを168μmに調節した以外は、実施例2と同様にして実施例38に係る光学フィルタを作製した。実施例38に係る光学フィルタの、入射角度が0°における透過率スペクトルを測定した。その結果を図12に示す。実施例38に係る光学フィルタの、入射角度が0°における透過率スペクトルから看取した結果を表7及び表8に示す。
 <比較例1>
 各化合物の添加量を表4及び表5に示す通りに調節した以外は、実施例1と同様にして、比較例1に係るD液(フェニル系ホスホン酸銅の微粒子の分散液)を調製した。比較例1に係るD液にシリコーン樹脂(信越化学工業社製、製品名:KR-300)を2.200g添加し30分間撹拌して、比較例1に係るUV‐IR吸収性組成物を得た。実施例1に係るUV‐IR吸収性組成物の代わりに、比較例1に係るUV‐IR吸収性組成物を用いて、UV‐IR吸収層の厚みを126μmに調節した以外は、実施例1と同様にして比較例1に係る光学フィルタを作製した。比較例1に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取できる結果を表9及び表10に示す。また、比較例1に係る光学フィルタの、入射角度が0°のときの透過率スペクトル測定の結果に基づいて、比較例1に係る光学フィルタのUV‐IR吸収層の厚みを200μmに変化させた場合の透過率スペクトルを計算し、この透過率スペクトルから看取できる結果を表9及び表10に比較計算例1として示す。
 <比較例2>
 各化合物の添加量を表4及び表5に示す通りに調節した以外は、実施例1と同様にして、比較例2に係るD液(フェニル系ホスホン酸銅の微粒子の分散液)をそれぞれ調製した。比較例2に係るD液にシリコーン樹脂(信越化学工業社製、製品名:KR-300)を4.400g添加し30分間撹拌して、比較例2に係るUV‐IR吸収性組成物を得た。実施例1に係るUV‐IR吸収性組成物の代わりに、比較例2に係るUV‐IR吸収性組成物を用いて、UV‐IR吸収層の厚みを217μmに調節し、塗膜を硬化させるための加熱処理及び加湿処理の条件を表6に示す通りに変更した以外は、実施例1と同様にして比較例2に係る光学フィルタを作製した。比較例2に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取できる結果を表9及び表10に示す。また、比較例2に係る光学フィルタの、入射角度が0°のときの透過率スペクトル測定の結果に基づいて、比較例2に係る光学フィルタのUV‐IR吸収層の厚みを347μmに変化させた場合の透過率スペクトルを計算し、この透過率スペクトルから看取できる結果を表9及び表10に比較計算例2として示す。
 <比較例3>
 酢酸銅一水和物1.125gとTHF60gとを混合して、3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、プライサーフA208F(第一工業製薬社製)を0.624g加えて30分間撹拌し、A液を得た。フェニルホスホン酸(日産化学工業社製)0.832gにTHF10gを加えて30分間撹拌し、B-1液を得た。B-1液に、MTES(信越化学工業社製)1.274gとTEOS(キシダ化学社製 特級)1.012gを加えてさらに1分間撹拌し、B液を得た。A液を撹拌しながらA液にB液を加え、室温で1分間撹拌した。次に、この溶液にトルエン25gを加えた後、室温で1分間撹拌し、C液を得た。このC液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB-2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N-1110SF)によって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の比較例3に係るD液を取り出した。比較例3に係るD液(フェニルホスホン酸銅の微粒子の分散液)は透明であり、微粒子が良好に分散していた。
 比較例3に係るD液にシリコーン樹脂(信越化学工業社製、製品名:KR-300)を4.400g添加し30分間撹拌して、比較例3に係るUV‐IR吸収性組成物を得た。実施例1に係るUV‐IR吸収性組成物の代わりに、比較例3に係るUV‐IR吸収性組成物を用いて、UV‐IR吸収層の厚みを198μmに調節し、塗膜を硬化させるための加熱処理の条件を表6に示す通りに調節した以外は、実施例1と同様にして比較例3に係る光学フィルタを作製した。比較例3に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取した結果を表9及び表10に示す。また、比較例3に係る光学フィルタの透過率スペクトル測定の結果に基づいて、比較例3に係る光学フィルタのUV‐IR吸収層の厚みを303μmに変化させた場合の透過率スペクトルを計算し、この透過率スペクトルから看取できる結果を表9及び表10に比較計算例3として示す。
 <比較例4>
 酢酸銅一水和物1.125gとTHF60gとを混合して3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208Fを0.891g加えて30分間撹拌し、E液を得た。また、n‐ブチルホスホン酸(日本化学工業社製)0.670gにTHF10gを加えて30分間撹拌し、F液を得た。E液を撹拌しながらE液にF液を加え、室温で1分間撹拌した。次に、この溶液にトルエン25gを加えた後、室温で1分間撹拌し、G液を得た。このG液をフラスコに入れてオイルバスで加温しながら、ロータリーエバポレータによって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の比較例4に係るH液を取り出した。ブチルホスホン酸銅の微粒子の分散液であるH液は透明であり、微粒子が良好に分散していた。
 比較例4に係るH液にシリコーン樹脂(信越化学工業社製、製品名:KR-300)を4.400g添加し30分間撹拌して、比較例4に係るUV‐IR吸収性組成物を得た。比較例2に係るUV‐IR吸収性組成物の代わりに、比較例4に係るUV‐IR吸収性組成物を用いて、UV‐IR吸収層の厚みを1002μmに調節し、塗膜の加湿処理を行わなかった以外は、比較例2と同様にして比較例4に係る光学フィルタを作製した。比較例4に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取できる結果を表9及び表10に示す。また、比較例4に係る光学フィルタの、入射角度が0°のときの透過率スペクトル測定の結果に基づいて、比較例4に係る光学フィルタのUV‐IR吸収層の厚みを1216μm及び385μmに変化させた場合の透過率スペクトルをそれぞれ計算し、これらの透過率スペクトルから看取できる結果を表9及び表10に比較計算例4-A及び比較計算例4-Bとしてそれぞれ示す。
 <比較例5>
 UV‐IR吸収層の厚みを191μmに調節し、塗膜の加湿処理を行わなかった以外は、実施例2と同様にして比較例5に係る光学フィルタを作製した。比較例5に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取できる結果を表9及び表10に示す。比較例5に係る光学フィルタの、入射角度が0°のときの透過率スペクトル測定の結果に基づいて、比較例5に係る光学フィルタのUV‐IR吸収層の厚みを148μmに変化させた場合の透過率スペクトルを計算し、この透過率スペクトルから看取できる結果を表9及び表10に比較計算例5として示す。
 <比較例6及び7>
 UV‐IR吸収層の厚みを表9に示す通りに調節し、塗膜の加湿処理を表6に示す通り調節した以外は、実施例2と同様にして比較例6及び7に係る光学フィルタを作製した。比較例6及び7に係る光学フィルタの透過率スペクトルを測定し、入射角度が0°のときの透過率スペクトルから看取した結果を表9及び表10に示す。比較例6に係る光学フィルタの、入射角度が0°のときの透過率スペクトル測定の結果に基づいて、比較例6に係る光学フィルタのUV‐IR吸収層の厚みを155μmに変化させた場合の透過率スペクトルを計算し、この透過率スペクトルから看取できる結果を表9及び表10に比較計算例6として示す。また、比較例7に係る光学フィルタの、入射角度が0°のときの透過率スペクトル測定の結果に基づいて、比較例7に係る光学フィルタのUV‐IR吸収層の厚みを161μmに変化させた場合の透過率スペクトルを計算し、この透過率スペクトルから看取できる結果を表9及び表10に比較計算例7として示す。
 <比較例8>
 比較例1と同様にして、比較例8に係るD液(フェニル系ホスホン酸銅の微粒子の分散液)を調製した。酢酸銅一水和物0.225gとTHF36gとを混合して3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208F(第一工業製薬社製)を0.178g加えて30分間撹拌し、E液を得た。また、n‐ブチルホスホン酸(日本化学工業社製)0.134gにTHF10gを加えて30分間撹拌し、F液を得た。E液を撹拌しながらE液にF液を加え、室温で1分間撹拌した。次に、この溶液にトルエン25gを加えた後、室温で1分間撹拌し、G液を得た。このG液をフラスコに入れてオイルバスで加温しながら、ロータリーエバポレータによって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の比較例8に係るH液を取り出した。比較例8に係るD液にシリコーン樹脂(信越化学工業社製、製品名:KR-300)を2.200g添加し30分間撹拌して、比較例8に係るI液を得た。比較例8に係るH液を比較例8に係るI液に加えて撹拌したが、ホスホン酸銅粒子の凝集が生じ、高い透明性を有するUV‐IR吸収性組成物を得ることはできなかった。
 <比較例9>
 表4に示す分量でホスホン酸としてn‐ブチルホスホン酸のみを含み、アルコキシシランモノマーを含まないUV‐IR吸収性組成物の調製を試みたが、ホスホン酸銅粒子の凝集が生じてしまい、高い透明性を有する均質なUV‐IR吸収性組成物を得ることはできなかった。
 表7によれば、実施例1~38に係る光学フィルタは、上記(i)~(vii)の光学性能を有していた。また、表11、表13、表15、表17、及び表19によれば、実施例1、2、16~18に係る光学フィルタは、上記(viii)~(xi)の光学性能をさらに有していた。また、実施例3~15及び実施例19~38に係る光学フィルタに関する透過率スペクトル測定の別の結果(入射角度:0°~65°、図示省略)によれば、これらの実施例に係る光学フィルタも上記(viii)~(xi)の光学性能をさらに有していた。
 表9によれば、比較例1に係る光学フィルタは、上記(ii)、(vi)、及び(vii)の光学性能を有しておらず、赤外線領域において所望の特性を有していなかった。また、比較計算例1によれば、UV‐IR吸収層の厚みを大きくすることにより、赤外線領域における特性を向上させることができるものの、第一IRカットオフ波長が短くなって(iv)の光学性能を実現できないことが示唆された。このように、比較例1に係るUV‐IR吸収性組成物を用いても、上記(i)~(v)のすべての光学性能を有する光学フィルタを作製できないことが示唆された。同様に、表9における比較例2及び比較計算例2並びに比較例3及び比較計算例3の結果によれば、比較例2及び3に係るUV‐IR吸収性組成物を用いても、上記(i)~(v)のすべての光学性能を有する光学フィルタを作製できないことが示唆された。
 表9によれば、比較例4に係る光学フィルタは、上記(iii)及び(v)の光学性能を有しておらず、紫外線領域において所望の特性を有していなかった。また、比較計算例4-Aによれば、UV‐IR吸収層の厚みを大きくすることにより、上記(iii)及び(v)の光学性能を実現できるものの、上記(i)の光学性能を実現することが難しいことが示唆された。また、比較計算例4-Bによれば、UV‐IR吸収層の厚みを小さくすることにより、上記(i)の光学性能は向上するものの、上記(iii)及び(v)の光学性能がさらに悪化し、加えて、波長750~1080nmにおける最大透過率も増加することが示唆された。このため、比較例4に係るUV‐IR吸収性組成物を用いても、上記(i)~(v)のすべての光学性能を有する光学フィルタを作製できないことが示唆された。
 表9によれば、比較例5に係る光学フィルタは、上記(i)及び(iv)の光学性能を有していなかった。比較計算例5によれば、UV‐IR吸収層の厚みを小さくすることにより、波長450~600nmにおける平均透過率は高まるものの、IRカットオフ波長はほとんど変化せず、波長750~1080nmにおける最大透過率も増加することが示唆された。このため、比較例5に係る光学フィルタの作製方法では、上記(i)~(v)のすべての光学性能を有する光学フィルタを作製できないことが示唆された。UV‐IR吸収性組成物に含まれるアルコキシシランモノマーの加水分解及び縮重合が加湿処理により促進され、UV‐IR吸収層の硬化が進むことに加えて、加湿処理が光学フィルタの透過率スペクトルにも影響を及ぼすことが示唆された。
 表9によれば、比較例6に係る光学フィルタは、上記(iv)の光学性能を有していなかった。比較計算例6によれば、UV‐IR吸収層の厚みを小さくすることにより、IRカットオフ波長が増加するものの、波長750~1080nmにおける最大透過率も増加することが示唆された。このため、比較例6に係る光学フィルタの作製方法では、上記(i)~(v)のすべての光学性能を有する光学フィルタを作製できないことが示唆された。特に、比較例6における加湿処理の条件が十分でないことが示唆された。
 表9によれば、比較例7に係る光学フィルタは、上記(i)及び(iv)の光学性能を有していなかった。比較計算例7によれば、UV‐IR吸収層の厚みを小さくすることにより、IRカットオフ波長が増加するものの、波長750~1080nmにおける最大透過率も増加することが示唆された。このため、比較例7に係る光学フィルタの作製方法では、上記(i)~(v)のすべての光学性能を有する光学フィルタを作製できないことが示唆された。特に、比較例7における加湿処理の条件が十分でないことが示唆された。
 表2に示す通り、実施例3~5に係るUV‐IR吸収性組成物において、実施例3に係るUV‐IR吸収性組成物のn‐ブチルホスホン酸の含有率が最も高く、実施例5に係るUV‐IR吸収性組成物のn‐ブチルホスホン酸の含有率が最も低い。このことと、表8によれば、UV‐IR吸収性組成物におけるアルキル系ホスホン酸の含有率が高くなると、波長700~1200nmにおいて分光透過率が1%以下である波長範囲及び分光透過率が0.1%以下である波長範囲が長波長側に向けて拡大することが示唆された。実施例6~8、実施例9及び実施例10、並びに実施例11~15においても同じことがいえた。
 表2に示す通り、実施例11~15に係るUV‐IR吸収性組成物において、実施例11に係るUV‐IR吸収性組成物のn‐ブチルホスホン酸の含有率が最も高く、実施例12に係るUV‐IR吸収性組成物のn‐ブチルホスホン酸の含有率が二番目に高く、実施例13に係るUV‐IR吸収性組成物のn‐ブチルホスホン酸の含有率が三番目に高く、実施例15に係るUV‐IR吸収性組成物のn‐ブチルホスホン酸の含有率が最も低い。表7における実施例11~15の結果によれば、光学フィルタの波長1000~1100nmにおける最大透過率及び光学フィルタの波長1100~1200nmにおける最大透過率は、実施例11において最も低く、実施例12において2番目に低く、実施例13において3番目に低く、実施例15において最も高い。これにより、UV‐IR吸収性組成物において所定の範囲でアルキル系スルホン酸の含有率を高めることにより、赤外線領域の波長の遮蔽性が向上することが示唆された。
 表2に示す通り、実施例7、10、及び13に係るUV‐IR吸収性組成物において、実施例7に係るUV‐IR吸収性組成物の4‐ブロモフェニルホスホン酸の含有率が最も高く、実施例13に係るUV‐IR吸収性組成物の4‐ブロモフェニルホスホン酸の含有率が最も低い。表7における実施例7、10、及び13の結果によれば、UV‐IR吸収性組成物の4‐ブロモフェニルホスホン酸の含有率が高いほどUVカットオフ波長が大きくなっている。これにより、UV‐IR吸収性組成物の4‐ブロモフェニルホスホン酸の含有率を調節することにより、光学フィルタの光学性能の最適化が可能であることが示唆された。
 実施例22~37並びに比較例5~7に係る光学フィルタを作製するためのUV‐IR吸収性組成物は、実施例2に係るUV‐IR吸収性組成物と同様に調製されているものの、表7~表10に示す通り、これらの実施例及びこれらの比較例に係る光学フィルタは、実施例2に係る光学フィルタとは異なる光学性能を有していた。上記の通り、UV‐IR吸収性組成物に含まれる、アルコキシシランの加水分解及び縮重合を促進させる目的で加湿処理が行われてはいるが、加湿処理の態様により、これらの実施例及びこれらの比較例に係る光学フィルタにおいて、波長450~600nmにおける平均透過率及びIRカットオフ波長について差異が生じた。
 表9における比較計算例5~7の結果によれば、UV‐IR吸収層の厚みを変えることでUVカットオフ波長を調節できるものの、比較例5~7に係る光学フィルタの作製方法によれば、(i)~(xi)の他の光学性能を満たしながら、IRカットオフ波長を所望の範囲に収めることは困難である。そこで、各実施例及び一部の比較例の加湿処理において被処理物品が晒される環境における水蒸気量(曝露水蒸気量)を下記の通り求めた。結果を表3及び表6に示す。温度t[℃]の時の飽和水蒸気圧e[hPa]を、Tetensの近似式:e=6.11×10(7.5t/(t+237.3))により求めた。飽和水蒸気圧e[hPa]と相対湿度φ[%]から、水蒸気密度ρv[g/m3]をρv=217×e×φ/(t+273.15)の式より求めた。水蒸気量×時間[mol/m3・時間]を曝露水蒸気量として定義した。表3及び表6に示す通り、加湿処理において、温度が60℃以上の場合、相対湿度は70%以上で処理時間1時間以上のときに良好な光学性能が得られることが示唆された。この処理条件は、5.0[mol/m3・時間]以上の曝露水蒸気量の条件に相当するが、加湿処理での温度が40℃と低く相対湿度が70%である場合、及び、加湿処理での温度が60℃で相対湿度が40%と低い場合でも、処理時間を延ばして同程度の曝露水蒸気量とすることで良好な光学性能が得られることが示唆された。これらの結果から、60℃以上の温度及び70%以上の相対湿度の環境において短時間の加湿処理を行うことが、良好な光学性能を効率良く光学フィルタにもたらす観点から望ましいことが示唆された。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021

Claims (12)

  1.  赤外線及び紫外線を吸収可能なUV‐IR吸収層を備え、
     0°の入射角度で波長300nm~1200nmの光を入射させたときに、
     (i)波長450nm~600nmにおいて78%以上の平均透過率を有し、
     (ii)波長750nm~1080nmにおいて1%以下の分光透過率を有し、
     (iii)波長300nm~350nmにおいて1%以下の分光透過率を有し、
     (iv)波長600nm~750nmにおいて波長の増加に伴い減少する分光透過率を有するとともに、波長600nm~750nmにおいて分光透過率が50%を示す第一IRカットオフ波長が波長620nm~680nmの範囲内に存在し、
     (v)波長350nm~450nmにおいて波長の増加に伴い増加する分光透過率を有するとともに、波長350nm~450nmにおいて分光透過率が50%を示す第一UVカットオフ波長が波長380nm~430nmの範囲内に存在する、
     光学フィルタ。
  2.  0°の入射角度で波長300nm~1200nmの光を入射させたときに、
     (vi)波長1000~1100nmにおいて3%以下の分光透過率を有する、
     請求項1に記載の光学フィルタ。
  3.  0°の入射角度で波長300nm~1200nmの光を入射させたときに、
     (vii)波長1100~1200nmにおいて15%以下の分光透過率を有する、
     請求項1又は2に記載の光学フィルタ。
  4.  40°の入射角度で波長300nm~1200nmの光を入射させたときに波長600nm~750nmにおいて分光透過率が50%を示す第二IRカットオフ波長と、前記第一IRカットオフ波長との差の絶対値が10nm以下である、請求項1~3のいずれか1項に記載の光学フィルタ。
  5.  50°の入射角度で波長300nm~1200nmの光を入射させたときに波長600nm~750nmにおいて分光透過率が50%を示す第三IRカットオフ波長と、前記第一IRカットオフ波長との差の絶対値が15nm以下である、請求項1~4のいずれか1項に記載の光学フィルタ。
  6.  40°の入射角度で波長300nm~1200nmの光を入射させたときに波長350nm~450nmにおいて分光透過率が50%を示す第二UVカットオフ波長と、前記第一UVカットオフ波長との差の絶対値が10nm以下である、請求項1~5のいずれか1項に記載の光学フィルタ。
  7.  50°の入射角度で波長300nm~1200nmの光を入射させたときに波長350nm~450nmにおいて分光透過率が50%を示す第三UVカットオフ波長と、前記第一UVカットオフ波長との差の絶対値が15nm以下である、請求項1~6のいずれか1項に記載の光学フィルタ。
  8.  前記UV‐IR吸収層は、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含む、請求項1~7のいずれか1項に記載の光学フィルタ。
  9.  前記ホスホン酸は、アリール基を有する第一ホスホン酸を含む、請求項8に記載の光学フィルタ。
  10.  前記第一ホスホン酸は、その一部において、フェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基を有する、請求項9に記載の光学フィルタ。
  11.  前記ホスホン酸は、アルキル基を有する第二ホスホン酸をさらに含む、請求項9又は10に記載の光学フィルタ。
  12.  前記UV‐IR吸収層は、単一の層として形成されている、請求項1~11のいずれか1項に記載の光学フィルタ。
     
PCT/JP2018/022490 2017-07-27 2018-06-12 光学フィルタ WO2019021665A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880049576.3A CN110959124B (zh) 2017-07-27 2018-06-12 光学滤波器
KR1020207005472A KR102351046B1 (ko) 2017-07-27 2018-06-12 광학 필터
US16/633,474 US11592603B2 (en) 2017-07-27 2018-06-12 Optical filter
US18/158,790 US11885993B2 (en) 2017-07-27 2023-01-24 Optical filter and method of manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145519 2017-07-27
JP2017145519A JP6232161B1 (ja) 2017-07-27 2017-07-27 光学フィルタ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/633,474 A-371-Of-International US11592603B2 (en) 2017-07-27 2018-06-12 Optical filter
US18/158,790 Continuation US11885993B2 (en) 2017-07-27 2023-01-24 Optical filter and method of manufacturing

Publications (1)

Publication Number Publication Date
WO2019021665A1 true WO2019021665A1 (ja) 2019-01-31

Family

ID=60321131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022490 WO2019021665A1 (ja) 2017-07-27 2018-06-12 光学フィルタ

Country Status (6)

Country Link
US (2) US11592603B2 (ja)
JP (1) JP6232161B1 (ja)
KR (1) KR102351046B1 (ja)
CN (1) CN110959124B (ja)
TW (1) TWI741195B (ja)
WO (1) WO2019021665A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232161B1 (ja) 2017-07-27 2017-11-15 日本板硝子株式会社 光学フィルタ
JP6267823B1 (ja) 2017-07-27 2018-01-24 日本板硝子株式会社 光学フィルタ、カメラモジュール、及び情報端末
KR20200095518A (ko) * 2017-12-06 2020-08-10 니혼 이타가라스 가부시키가이샤 광학 필터 및 촬상 장치
CN111406227B (zh) * 2017-12-07 2022-06-10 日本板硝子株式会社 滤光器和摄像装置
JP6516948B1 (ja) * 2017-12-07 2019-05-22 日本板硝子株式会社 光学フィルタ及び撮像装置
WO2019138976A1 (ja) * 2018-01-09 2019-07-18 日本板硝子株式会社 光学フィルタ及び撮像装置
WO2019208518A1 (ja) * 2018-04-27 2019-10-31 日本板硝子株式会社 光学フィルタ及び光学フィルタ用組成物
US20220057556A1 (en) * 2018-09-11 2022-02-24 Nippon Sheet Glass Company, Limited Liquid composition for optical filters and optical filter
CN112654901B (zh) * 2018-09-11 2022-11-08 日本板硝子株式会社 滤光片用液态组合物及滤光片
WO2020071461A1 (ja) * 2018-10-05 2020-04-09 日本板硝子株式会社 光学フィルタ及び光吸収性組成物
US20220214481A1 (en) 2019-05-23 2022-07-07 Nippon Sheet Glass Company, Limited Light-absorbing composition, light-absorbing film, and optical filter
TWI715451B (zh) * 2020-02-27 2021-01-01 白金科技股份有限公司 紅外光擴散片
JP7431078B2 (ja) 2020-03-24 2024-02-14 日本板硝子株式会社 光吸収性組成物、光吸収膜、及び光学フィルタ
KR20230088368A (ko) * 2020-10-16 2023-06-19 니혼 이타가라스 가부시키가이샤 광학 필터, 촬상 장치, 및 광학 필터의 제조 방법
WO2023248738A1 (ja) * 2022-06-24 2023-12-28 日本板硝子株式会社 光吸収体、光吸収性化合物、光吸収性化合物の分散液、光吸収性組成物、光学フィルタ、光電変換素子、環境光センサ、及び撮像装置
WO2024048513A1 (ja) * 2022-08-31 2024-03-07 Agc株式会社 光学フィルタ
WO2024048512A1 (ja) * 2022-08-31 2024-03-07 Agc株式会社 光学フィルタ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152127A (ja) * 1997-08-07 1999-02-26 Kyoritsu Kagaku Sangyo Kk 近赤外線吸収材料、その合成方法、および近赤外線吸収性樹脂組成物
JP2001154015A (ja) * 1999-09-16 2001-06-08 Kureha Chem Ind Co Ltd 光学フィルタ及びその製造方法
JP2005325292A (ja) * 2004-05-17 2005-11-24 Japan Carlit Co Ltd:The 近赤外線吸収色素及び近赤外線遮断フィルター
JP2011227528A (ja) * 2008-11-06 2011-11-10 Uni-Chemical Co Ltd 赤外線遮断性樹脂
JP2015043061A (ja) * 2013-02-19 2015-03-05 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、並びに、カメラモジュールおよびその製造方法
WO2016043166A1 (ja) * 2014-09-19 2016-03-24 旭硝子株式会社 光学フィルタ
JP2016157123A (ja) * 2011-09-15 2016-09-01 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
US20160326043A1 (en) * 2014-01-16 2016-11-10 Cdgm Glass Co., Ltd Glass composition
WO2017006571A1 (ja) * 2015-07-09 2017-01-12 日本板硝子株式会社 赤外線カットフィルタ、撮像装置、及び赤外線カットフィルタの製造方法
US20170146708A1 (en) * 2014-02-12 2017-05-25 Woo Joo LAH Optical filter and imaging device comprising same
JP6232161B1 (ja) * 2017-07-27 2017-11-15 日本板硝子株式会社 光学フィルタ

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198404A (ja) 1983-04-07 1983-11-18 Dainippon Jiyochiyuugiku Kk イソバレリアン酸エステル誘導体を含有する殺虫剤
JPH0339576Y2 (ja) 1985-08-13 1991-08-20
US5764416A (en) 1988-04-19 1998-06-09 Litton Systems, Inc. Fault tolerant antireflective coatings
WO1999026952A1 (fr) 1997-11-21 1999-06-03 Kureha Kagaku Kogyo Kabushiki Kaisha Composes de phosphate, composes de phosphate et de cuivre et leurs procedes de preparation, substance et composition absorbant les infrarouges proches et leur produit de mise en application
US6168825B1 (en) 1998-11-02 2001-01-02 O'brien Dudley Process for producing thin transparent gold coatings
JP4500417B2 (ja) 2000-08-25 2010-07-14 株式会社クレハ 光学材料及びその製造方法
JP2004200966A (ja) 2002-12-18 2004-07-15 Sanyo Electric Co Ltd カメラモジュール
JP4277615B2 (ja) 2003-08-01 2009-06-10 パナソニック電工株式会社 近赤外線吸収組成物及び近赤外線吸収フィルター
JP4777068B2 (ja) 2003-09-26 2011-09-21 株式会社クレハ 合わせガラス用赤外線吸収性組成物および合わせガラス用赤外線吸収性樹脂組成物
JP5036229B2 (ja) * 2006-06-21 2012-09-26 Agcテクノグラス株式会社 視感度補正フィルタガラス及び視感度補正フィルタ
JP4621270B2 (ja) 2007-07-13 2011-01-26 キヤノン株式会社 光学フィルタ
WO2009020207A1 (ja) 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. 近赤外線吸収性組成物、及び近赤外線吸収フィルタ
JP2009204816A (ja) * 2008-02-27 2009-09-10 Fujifilm Corp 着色硬化性組成物、カラーフィルタ、及び液晶表示装置
JP5331361B2 (ja) 2008-03-31 2013-10-30 株式会社クレハ 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
US8772376B2 (en) 2009-08-18 2014-07-08 International Business Machines Corporation Near-infrared absorbing film compositions
WO2011071052A1 (ja) 2009-12-07 2011-06-16 旭硝子株式会社 光学部材、近赤外線カットフィルタ、固体撮像素子、撮像装置用レンズ、およびそれらを用いた撮像・表示装置
JP5611631B2 (ja) 2010-03-25 2014-10-22 株式会社クレハ 近赤外線吸収フィルターおよびその製造方法
JP2013156460A (ja) 2012-01-31 2013-08-15 Konica Minolta Inc 携帯情報端末用カバー部材
JP6206410B2 (ja) 2012-08-29 2017-10-04 旭硝子株式会社 近赤外線カットフィルタ
JP6317875B2 (ja) 2012-09-06 2018-04-25 日本板硝子株式会社 赤外線カットフィルタ、撮像装置および赤外線カットフィルタの製造方法
WO2014061188A1 (ja) 2012-10-17 2014-04-24 ソニー株式会社 撮像素子及び撮像装置
JP5617063B1 (ja) 2012-12-28 2014-10-29 旭硝子株式会社 近赤外線カットフィルタ
JP2014191346A (ja) 2013-03-28 2014-10-06 Konica Minolta Inc Irカットフィルターおよびそれを備えた撮像装置
JP2014203044A (ja) 2013-04-09 2014-10-27 日本板硝子株式会社 赤外線カットフィルタおよび撮像装置
WO2014168190A1 (ja) * 2013-04-10 2014-10-16 旭硝子株式会社 赤外線遮蔽フィルタ、固体撮像素子、および撮像・表示装置
JP6114235B2 (ja) 2013-07-03 2017-04-12 富士フイルム株式会社 赤外線遮光組成物、赤外線遮光層、赤外線カットフィルタ、カメラモジュール
KR20160027028A (ko) * 2013-07-24 2016-03-09 후지필름 가부시키가이샤 근적외선 흡수성 조성물, 이를 이용한 근적외선 차단 필터 및 그 제조 방법, 카메라 모듈 및 그 제조 방법, 그리고 고체 촬상 소자
JP5884953B2 (ja) 2013-10-17 2016-03-15 Jsr株式会社 光学フィルター、固体撮像装置およびカメラモジュール
JP6020746B2 (ja) 2013-12-26 2016-11-02 旭硝子株式会社 光学フィルタ
JP2017025120A (ja) * 2014-04-28 2017-02-02 旭硝子株式会社 液状組成物および抗菌性物品
JP2015229743A (ja) * 2014-06-06 2015-12-21 コニカミノルタ株式会社 赤外線吸収樹脂組成物およびレンズ
WO2016114362A1 (ja) 2015-01-14 2016-07-21 旭硝子株式会社 近赤外線カットフィルタおよび固体撮像装置
CN106104319B (zh) 2015-02-18 2018-12-07 Agc株式会社 光学滤波器和摄像装置
JPWO2016158818A1 (ja) * 2015-03-31 2018-03-01 富士フイルム株式会社 赤外線カットフィルタ、キット、および固体撮像素子
WO2016189789A1 (ja) 2015-05-27 2016-12-01 ソニー株式会社 撮像素子
US10745541B2 (en) 2015-09-24 2020-08-18 Nippon Sheet Glass Company, Limited Composition for infrared-absorbing layers, infrared-cut filter, and imaging apparatus
CN205157947U (zh) 2015-11-26 2016-04-13 浙江水晶光电科技股份有限公司 一种应用于摄像模组的滤光片
KR101832114B1 (ko) 2015-12-01 2018-02-23 아사히 가라스 가부시키가이샤 광학 필터 및 촬상 장치
TW201800459A (zh) * 2015-12-18 2018-01-01 富士軟片股份有限公司 近紅外線吸收組成物、近紅外線截止濾波器、近紅外線截止濾波器的製造方法、固體攝像元件、照相機模組及圖像顯示裝置
CN108603038A (zh) 2016-02-02 2018-09-28 Agc株式会社 近红外线吸收色素、光学滤波器和摄像装置
KR102177847B1 (ko) * 2016-04-21 2020-11-11 니혼 이타가라스 가부시키가이샤 적외선 흡수성 조성물, 적외선 컷 필터, 및 촬상 광학계
JP6087464B1 (ja) 2016-06-30 2017-03-01 日本板硝子株式会社 赤外線カットフィルタ及び撮像光学系
CN109562981A (zh) 2016-07-29 2019-04-02 Agc株式会社 光学玻璃和近红外线截止滤光片
JP6339755B1 (ja) * 2016-11-14 2018-06-06 日本板硝子株式会社 光吸収性組成物及び光学フィルタ
JP6589061B2 (ja) 2017-02-24 2019-10-09 株式会社オプトラン カメラ構造、撮像装置
US11535726B2 (en) * 2017-03-22 2022-12-27 Nippon Sheet Glass Company, Limited Ultraviolet- and infrared-absorbing composition and ultraviolet- and infrared-absorbing filter
WO2018221424A1 (ja) 2017-05-29 2018-12-06 Jsr株式会社 環境光センサー用光学フィルター
JP2019012121A (ja) 2017-06-29 2019-01-24 Agc株式会社 光学フィルタおよび撮像装置
JP6267823B1 (ja) * 2017-07-27 2018-01-24 日本板硝子株式会社 光学フィルタ、カメラモジュール、及び情報端末

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152127A (ja) * 1997-08-07 1999-02-26 Kyoritsu Kagaku Sangyo Kk 近赤外線吸収材料、その合成方法、および近赤外線吸収性樹脂組成物
JP2001154015A (ja) * 1999-09-16 2001-06-08 Kureha Chem Ind Co Ltd 光学フィルタ及びその製造方法
JP2005325292A (ja) * 2004-05-17 2005-11-24 Japan Carlit Co Ltd:The 近赤外線吸収色素及び近赤外線遮断フィルター
JP2011227528A (ja) * 2008-11-06 2011-11-10 Uni-Chemical Co Ltd 赤外線遮断性樹脂
JP2016157123A (ja) * 2011-09-15 2016-09-01 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
JP2015043061A (ja) * 2013-02-19 2015-03-05 富士フイルム株式会社 近赤外線吸収性組成物、近赤外線カットフィルタおよびその製造方法、並びに、カメラモジュールおよびその製造方法
US20160326043A1 (en) * 2014-01-16 2016-11-10 Cdgm Glass Co., Ltd Glass composition
US20170146708A1 (en) * 2014-02-12 2017-05-25 Woo Joo LAH Optical filter and imaging device comprising same
WO2016043166A1 (ja) * 2014-09-19 2016-03-24 旭硝子株式会社 光学フィルタ
WO2017006571A1 (ja) * 2015-07-09 2017-01-12 日本板硝子株式会社 赤外線カットフィルタ、撮像装置、及び赤外線カットフィルタの製造方法
JP6232161B1 (ja) * 2017-07-27 2017-11-15 日本板硝子株式会社 光学フィルタ

Also Published As

Publication number Publication date
US20230204833A1 (en) 2023-06-29
TW201910822A (zh) 2019-03-16
JP6232161B1 (ja) 2017-11-15
KR20200028023A (ko) 2020-03-13
US11592603B2 (en) 2023-02-28
US20200158930A1 (en) 2020-05-21
JP2019028162A (ja) 2019-02-21
KR102351046B1 (ko) 2022-01-13
TWI741195B (zh) 2021-10-01
US11885993B2 (en) 2024-01-30
CN110959124B (zh) 2021-12-31
CN110959124A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
JP6232161B1 (ja) 光学フィルタ
JP6267823B1 (ja) 光学フィルタ、カメラモジュール、及び情報端末
JP6783966B2 (ja) 光学フィルタ
JP6778222B2 (ja) 光学フィルタ及びカメラモジュール
JP6368443B1 (ja) Uv‐ir吸収性組成物
JP6368444B1 (ja) 光学フィルタの製造方法
JP6435033B1 (ja) 光学フィルタ
JP6368417B1 (ja) 光学フィルタ
JP6634541B1 (ja) 光学フィルタ、カメラモジュール、及び情報端末
JP6634540B1 (ja) 光学フィルタ、カメラモジュール、及び情報端末
JP6545780B2 (ja) 光学フィルタ及びカメラ付き情報端末
JP6640404B2 (ja) 光学フィルタ及びカメラ付き情報端末
JP2020057009A (ja) 光学フィルタ及びカメラ付き情報端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207005472

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18837990

Country of ref document: EP

Kind code of ref document: A1