WO2019019950A1 - 直流灭弧电路及装置 - Google Patents

直流灭弧电路及装置 Download PDF

Info

Publication number
WO2019019950A1
WO2019019950A1 PCT/CN2018/096226 CN2018096226W WO2019019950A1 WO 2019019950 A1 WO2019019950 A1 WO 2019019950A1 CN 2018096226 W CN2018096226 W CN 2018096226W WO 2019019950 A1 WO2019019950 A1 WO 2019019950A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc extinguishing
switch
mechanical switch
power semiconductor
semiconductor device
Prior art date
Application number
PCT/CN2018/096226
Other languages
English (en)
French (fr)
Inventor
郭桥石
Original Assignee
广州市金矢电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711070356.2A external-priority patent/CN107863956B/zh
Application filed by 广州市金矢电子有限公司 filed Critical 广州市金矢电子有限公司
Priority to AU2018308487A priority Critical patent/AU2018308487B2/en
Priority to US16/633,135 priority patent/US11373817B2/en
Priority to KR1020207004709A priority patent/KR102570020B1/ko
Priority to EP18838450.7A priority patent/EP3648133B1/en
Priority to JP2020502664A priority patent/JP6901183B2/ja
Publication of WO2019019950A1 publication Critical patent/WO2019019950A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/548Electromechanical and static switch connected in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/547Combinations of mechanical switches and static switches, the latter being controlled by the former

Definitions

  • the invention relates to a DC arc extinguishing circuit and device, in particular to a DC arc extinguishing circuit and device suitable for rapidly extinguishing a mechanical contact such as a mechanical switch, and can also be used for other breakpoints (such as fuses and plugs of a fuse link) Arcing of breakpoints and wire breakpoints between the socket and the socket.
  • the object of the present invention is to solve the problem that the electrical life of the mechanical switch in the prior DC electric control system is short, and provide a DC arc extinguishing circuit with good arc extinguishing effect, reduced mechanical switch breaking voltage (arc breaking voltage) and fast arc extinguishing speed.
  • Device arc breaking voltage
  • a DC arc extinguishing circuit wherein a mechanical switch required to extinguish an arc is connected in series with a load, comprising a power semiconductor device, a capacitor, the power semiconductor device being connected to the capacitor, and the power semiconductor device being disconnected during the mechanical switch
  • a potential difference between the two ends of the mechanical switch is greater than 5 volts; a current is passed through the power semiconductor device, the load is used to break the arc of the mechanical switch, and the current is a charging current of the capacitor or Discharge current.
  • a DC arc extinguishing circuit wherein the power semiconductor device is turned on at a potential difference greater than 5 volts and less than or equal to 20 volts at both ends of the mechanical switch; or greater than 20 volts less than The working voltage range of the mechanical switch is turned on.
  • a DC arc extinguishing circuit the power semiconductor device being turned on after the mechanical switch is arced.
  • a DC arc extinguishing circuit wherein the power semiconductor device is turned on when a breakdown voltage of an opening distance between contacts of the mechanical switch is greater than an operating voltage of the mechanical switch.
  • a DC arc extinguishing device comprising the DC arc extinguishing circuit described above, wherein the power semiconductor device is a semi-controlled device, a trigger pole of the half-controlled device and an anode or a second anode of the half-controlled device Connected to form a voltage detecting switch, the power semiconductor device and the capacitor constitute a first series circuit, and the first series circuit is connected in parallel with the mechanical switch.
  • a DC arc extinguishing device further comprising a first semiconductor device, the first semiconductor device having a turn-on voltage greater than 3 volts, a trigger pole of the half-controlled device passing the first semiconductor device and the anode or the first Two anode connections.
  • a DC arc extinguishing device wherein the first semiconductor device is a Zener diode, or a transient diode, or a trigger diode, or a varistor.
  • a DC arc extinguishing device further includes a second diode, the second diode, the first semiconductor device, and the trigger pole of the semi-controlled device are connected in series.
  • a DC arc extinguishing device is provided with a non-insulating isolation between a detecting end of the voltage detecting switch and an output end of the voltage detecting switch.
  • a DC arc extinguishing device wherein the voltage detecting switch is a time delay semiconductor switch.
  • a DC arc extinguishing device wherein the voltage detecting switch is a two-terminal circuit.
  • a DC arc extinguishing device further comprising a discharge unit for discharging the capacitor, the discharge unit being connected in parallel with the semi-controlled device.
  • a DC arc extinguishing device the discharge unit is composed of a first diode, or is composed of a first current limiting element, or is composed of a first diode and a first current limiting element connected in series.
  • a DC arc extinguishing device is packaged as a device by using an insulating material.
  • a DC arc extinguishing device is packaged as a device with an insulating material for discharging the capacitor.
  • a DC arc extinguishing device comprising the DC arc extinguishing circuit described above, further comprising a control unit, the control unit being coupled to the power semiconductor device.
  • a DC arc extinguishing device the control unit, the power semiconductor device constitutes a voltage detecting switch, and a voltage signal of a connection end of the mechanical switch and the load is transmitted to the control unit; the capacitor and the power The semiconductor device constitutes a first series circuit, the first series circuit being in parallel with the mechanical switch.
  • a DC arc extinguishing device in which the control unit detects that the contact of the mechanical switch is disconnected, and delays controlling the power semiconductor device to be turned on, the delay is greater than 100 microseconds .
  • a DC arc extinguishing device the control unit performs A/D acquisition on the voltage signal.
  • a DC arc extinguishing device further comprising a discharge unit for discharging the capacitor, the discharge unit being connected in parallel with the power semiconductor device, the capacitor being discharged by the mechanical switch, the discharge unit, the voltage
  • the signal is the voltage of the load.
  • a DC arc extinguishing device the voltage signal being a voltage of the load, or a voltage relative to the other end of the power semiconductor device, or a voltage relative to a power input of the mechanical switch.
  • a DC arc extinguishing device the power semiconductor device being a semi-controlled device.
  • a DC arc extinguishing device a control signal of the mechanical switch is transmitted to the control unit, or a control signal of the control unit is transmitted to the mechanical switch.
  • a DC arc extinguishing device wherein the control unit stores an adaptive control program for optimizing arc extinguishing control by using the voltage signal or a change of a voltage signal of the power semiconductor device relative to another end of the load connection end parameter.
  • a DC arc extinguishing device further comprising a discharge unit for discharging the capacitor, the discharge unit comprising at least one discharge switch, and a control signal of the control unit is transmitted to the discharge switch.
  • a DC arc extinguishing device is a first semiconductor switch, and the first semiconductor switch is a semi-controlled device.
  • a DC arc extinguishing device further includes a first current limiting element, the discharge switch being in series with the first current limiting element.
  • a DC arc extinguishing device the discharge switch is connected in parallel with the capacitor, wherein the control unit controls the discharge switch, the power semiconductor device to be turned on, and supplies power to the load during the mechanical switch closing operation. The mechanical switch is then closed; during the mechanical switch breaking operation, the discharge switch is in an off state.
  • a DC arc extinguishing device further includes a fourth semiconductor switch, wherein the fourth semiconductor switch is a half-controlled device, a control end of the fourth semiconductor switch is connected to the control unit, and the capacitor and the fourth The semiconductor switch constitutes a second series circuit, the input power terminal of the mechanical switch charging the capacitor through the fourth semiconductor switch, the power semiconductor device, and the load.
  • a DC arc extinguishing device further includes a third diode, the capacitor being discharged through the discharge switch and the third diode.
  • a DC arc extinguishing device wherein the discharge switch and the power semiconductor device are both semi-controlled switches, and a voltage signal of a common terminal of the second series circuit, the discharge switch, and the power semiconductor device is connected to the Said control unit.
  • a DC arc extinguishing device for detecting an operating state of the power semiconductor device.
  • a DC arc extinguishing device is configured to detect an operating state of the discharge switch.
  • a DC arc extinguishing device is configured to detect an operating state of the fourth semiconductor switch.
  • a DC arc extinguishing device a control signal of the mechanical switch is transmitted to the control unit, or a control signal of the control unit is transmitted to the mechanical switch.
  • a DC arc extinguishing device wherein the control unit controls the power semiconductor device to be turned on when an arc is detected in a state in which the mechanical switch is disconnected.
  • a DC arc extinguishing device wherein the number of the mechanical switches is at least two, respectively a first mechanical switch and a second mechanical switch; the load is at least two, respectively being a first load and a second load; and the power semiconductor
  • the number of devices is at least two, which are a first power semiconductor device and a second power semiconductor device, respectively.
  • a DC arc extinguishing device further includes a fourth mechanical switch, the fourth mechanical switch is connected in series with the discharge switch and the first series circuit, and a control signal of the control unit is connected to the fourth mechanical switch Control terminal.
  • a DC arc extinguishing device in which the control unit detects that the contact of the mechanical switch is disconnected, and delays controlling the power semiconductor device to be turned on, the delay is greater than 100 microseconds
  • the control unit stores a parameter related to the current of the load, or inputs a parameter related to the current of the load, the greater the current of the load during the mechanical switch breaking operation, the delayed The longer the time.
  • a DC arc extinguishing device wherein the control unit stores an adaptive control program for optimizing arc extinguishing control by using the voltage signal or a change of a voltage signal of the power semiconductor device relative to another end of the load connection end parameter.
  • a DC arc extinguishing circuit as shown in FIG. 2, the mechanical switch K1 required to extinguish the arc is connected in series with the load RL1, including the power semiconductor device TR1, the capacitor C1, the power semiconductor device TR1 is connected with the capacitor C1, and the mechanical switch K1 is disconnected.
  • the power semiconductor device TR1 has a potential difference greater than 5 volts across the mechanical switch K1; the current passes through the power semiconductor device TR1, the load RL1, and is used for mechanical switch K1 to break the arc, and the current is the charging current of the capacitor C1 (Note: Connect the P1 terminal to the load RL1 terminal, and the current is the discharge current of the capacitor C1).
  • the power semiconductor device TR1 is turned on when the potential difference between the two ends of the mechanical switch K1 is greater than 5 volts; the current output from the power input terminal of the mechanical switch K1 passes through the power semiconductor device TR1, the load RL1 is opposite to the capacitor C1 is charged, the current is the charging current of the capacitor C1, the voltage of the load RL1 rises rapidly, and the electric field strength between the contacts of the mechanical switch K1 drops rapidly, reaching the purpose of breaking and extinguishing the mechanical switch K1 (ie, reaching no arc breaking, or arcing) The purpose of extremely short time is).
  • the charging power supply of the capacitor C1 shown in Fig. 1 is provided by the power input terminal of the mechanical switch K1, which has the advantage of low cost and simple circuit, and other power sources can be used as the charging power source of the capacitor C1 in practical applications.
  • the mechanical switch K1 is closed, and the control power semiconductor device TR1 is turned on to charge the capacitor C1 (it is also possible to fully charge the capacitor with other power sources in advance), and the power semiconductor device TR1 has a potential difference greater than 5 at both ends of the mechanical switch K1 during the mechanical switch K1 breaking process.
  • the volt is turned on; the current passes through the power semiconductor device TR1, the load RL1, the current is the discharge current of the capacitor C1, the voltage of the load RL1 rises rapidly, and the electric field strength between the contacts of the mechanical switch K1 drops rapidly, reaching the mechanical switch K1 breaking arc extinguishing Purpose (ie to achieve the purpose of no arc breaking, or arcing time is very short break);
  • the invention has reasonable design. Since the potential difference of the power semiconductor device TR1 at both ends of the mechanical switch K1 is greater than 5 volts, a certain opening distance exists at both ends of the contact of the mechanical switch K1, and it is easy to quickly extinguish the arc, after the arc extinguishing or After the arc is not broken, the arc is not easy to reignite.
  • the invention has the advantages of good arc extinguishing effect, low mechanical switch breaking voltage and fast arc extinguishing speed.
  • FIG. 1 is a graph showing the electrical life curve of the breaking voltage of a brand high voltage contactor of the background art.
  • FIG. 2 is a schematic diagram of a DC arc extinguishing circuit of the present invention.
  • Embodiment 3 is a circuit schematic diagram of Embodiment 1 of the DC arc extinguishing device of the present invention.
  • Embodiment 4 is a circuit schematic diagram of Embodiment 2 of the DC arc extinguishing device of the present invention.
  • Fig. 5 is a timing circuit diagram of a voltage detecting switch of the DC arc extinguishing device of the present invention.
  • Fig. 6 is a schematic view showing the package of the DC arc extinguishing device of the present invention.
  • Figure 7 is a second schematic view of the package of the DC arc extinguishing device of the present invention.
  • Figure 8 is a schematic circuit diagram of a third embodiment of the DC arc extinguishing device of the present invention.
  • Figure 9 is a circuit diagram of the fourth embodiment of the DC arc extinguishing device of the present invention.
  • Embodiment 1 of the DC arc extinguishing device of the present invention is as shown in FIG. 3:
  • a DC arc extinguishing circuit the mechanical switch K1 required for arc extinguishing is connected in series with the load RL1, including a power semiconductor device TR1 (half-controlled device, a bidirectional thyristor) and a capacitor C1, and a mechanical switch K1 is disconnected, the power semiconductor device TR1
  • the potential difference between the two ends of the mechanical switch K1 is greater than 5 volts; the current passes through the power semiconductor device TR1 and the load RL1, and is used for the mechanical switch K1 to interrupt the arc extinguishing, and the current is the charging current of the capacitor C1.
  • a DC arc extinguishing device comprising the DC arc extinguishing circuit described above, further comprising a first semiconductor device Z1 (Zener diode), the trigger pole of the power semiconductor device TR1 passing through the first semiconductor device Z1 and the power semiconductor device TR1
  • the two anodes are connected to form a voltage detecting switch A.
  • the power semiconductor device TR1 and the capacitor C1 are connected in series to form a first series circuit, and the first series circuit is connected in parallel with the mechanical switch K1.
  • the mechanical switch K1 is closed, the capacitor C1 is discharged through the mechanical switch K1, the power semiconductor device TR1, and the mechanical switch K1 is disconnected, when the potential difference between the two ends of the mechanical switch K1 is greater than the opening voltage of the voltage detecting switch A (greater than 5 volts)
  • the power semiconductor device TR1 is turned on, the input power terminal of the mechanical switch K1 rapidly charges the capacitor C1 through the power semiconductor device TR1 and the load RL1, and the voltage across the load RL1 rises, and the electric field strength between the contacts of the mechanical switch K1 rapidly decreases.
  • the purpose of quickly extinguishing the arc of the mechanical switch K1 is achieved.
  • the voltage detecting switch A adopts a bidirectional thyristor, and has the advantages of simple circuit.
  • Embodiment 2 of the arc extinguishing device of the present invention is as shown in FIG. 4:
  • the mechanical switch K1 required for arc extinguishing is connected in series with the load RL1, and includes a power semiconductor device SCR1 (half-controlled device, a unidirectional thyristor) and a capacitor C1, and a mechanical switch K1 is disconnected, the power semiconductor device
  • SCR1 half-controlled device, a unidirectional thyristor
  • the potential difference between the SCR1 and the mechanical switch K1 is greater than 5 volts; the current passes through the power semiconductor device SCR1 and the load RL1, and is used for the mechanical switch K1 to interrupt the arc extinguishing, and the current is the charging current of the capacitor C1.
  • a DC arc extinguishing device comprising the DC arc extinguishing circuit described above, further comprising a first semiconductor device Z1 (stabilizing diode), a second diode D2, a discharge unit B, and a trigger pole of the power semiconductor device SCR1 a diode D2 (for preventing the influence of a reverse voltage on the circuit), an anode connection of the first semiconductor device Z1 and the power semiconductor device SCR1, and a voltage detecting switch A for detecting a potential difference between the mechanical switch K1 and the power
  • the semiconductor device SCR1 and the capacitor C1 are connected in series to form a first series circuit, and the first series circuit is connected in parallel with the mechanical switch K1.
  • the discharge unit B is formed in parallel with the power semiconductor device SCR1, and is composed of a first diode D1 and a first current limiting element R1 (resistance) in series. According to the actual situation, the first current limiting element R1 may be separately formed, or the first two The pole tube D1 is composed.
  • the mechanical switch K1 is closed, the capacitor C1 is discharged through the mechanical switch K1, the discharge unit B, and the mechanical switch K1 is disconnected, when the potential difference between the two ends of the mechanical switch K1 is greater than the turn-on voltage of the voltage detecting switch A, the power semiconductor device SCR1
  • the capacitor C1 is rapidly charged by the power semiconductor device SCR1 and the load RL1, and the voltage across the load RL1 rises, and the electric field strength between the contacts of the mechanical switch K1 drops rapidly, achieving the purpose of quickly extinguishing the arc of the mechanical switch K1.
  • the voltage detecting switch A adopts a unidirectional thyristor, and has the advantages of high current rising rate with high withstand capability and good reliability, and adopts a discharge unit B, which has the advantages of small current impact when the first current limiting element R1 is connected in series. .
  • the voltage detecting switch A is a two-terminal circuit and is a semi-controlled switch, which is composed of a semiconductor device and has the advantages of simple circuit and low cost.
  • the opening voltage of the first semiconductor device Z1 needs to be greater than 3 volts (mather than the peak-to-peak value of the system ripple voltage), and a transient diode, a trigger diode, or a varistor may be used.
  • the turn-on voltage of the thyristor is greater than 5 volts, the first semiconductor device Z1 is selected according to the use conditions.
  • the triggering pole of the power semiconductor device does not need series resistor current limiting, which can improve the triggering speed of the power semiconductor device, overcome the capacitor charging before the power semiconductor device is turned on, and improve the capacity utilization of the capacitor.
  • the voltage detection of the above embodiment The non-insulated isolation between the detection terminal of the switch A and the output terminal of the voltage detection switch A has the advantage of low cost.
  • the first semiconductor device Z1 of the voltage detecting switch A can also adopt the delay circuit of FIG. 5 or the delay circuit similar to that of FIG. 5, and the voltage detecting switch is a delay conducting switch, which can ensure The mechanical switch K1 is disconnected with sufficient opening distance to extinguish the arc to prevent re-ignition after the arc is extinguished.
  • the delay conduction time of the delay conduction switch is preferably controlled to be greater than 100 microseconds.
  • an insulating material may be used as a device, which may be in the form of two-port or three-port, and the discharge unit may be external according to the situation (external time) It is a three-port, one of which is the end point where the capacitor is connected to the power semiconductor device. It can also be built in. It can be a circular structure (as shown in Figure 6) or a square structure (shown in Figure 7).
  • Embodiment 3 of the DC arc extinguishing device of the present invention is as shown in FIG. 8:
  • the mechanical switch K1 required for arc extinguishing is connected in series with the load RL1, and includes a power semiconductor device SCR1 (half-controlled device, a unidirectional thyristor) and a capacitor C1, and a mechanical switch K1 is disconnected, the power semiconductor device
  • SCR1 half-controlled device, a unidirectional thyristor
  • the potential difference between the SCR1 and the mechanical switch K1 is greater than 5 volts; the current passes through the power semiconductor device SCR1 and the load RL1, and is used for the mechanical switch K1 to interrupt the arc extinguishing, and the current is the charging current of the capacitor C1.
  • a DC arc extinguishing device comprising the DC arc extinguishing circuit described above, further comprising a control unit C and a discharge unit B, wherein the control unit C is connected with the power semiconductor device SCR1 to form a voltage detecting switch A; the power semiconductor device SCR1 and the capacitor C1 is connected in series to form a first series circuit, and the first series circuit is connected in parallel with the mechanical switch K1.
  • the voltage detecting switch A is composed of a control unit C, a power semiconductor device SCR1 (for a semi-controlled device, a unidirectional thyristor), a power semiconductor device SCR1 and a capacitor C1 constitute a first series circuit, and the first series circuit is connected in parallel with the mechanical switch K1.
  • the voltage signal of the connection between the mechanical switch K1 and the load RL1 is transmitted to the control unit C; the power semiconductor device SCR1 is connected to the control unit C; during the breaking of the mechanical switch K1, the power semiconductor device SCR1 is turned on, and the power input end of the mechanical switch K1 passes the power
  • the semiconductor device SCR1 and the load RL1 charge the capacitor C1, and the J1 port is the control power terminal; the J2 port is the communication port for receiving the control command and data, transmitting the device and external state information (such as mechanical switch, load status, etc.), J1 J2 is selected according to needs.
  • Control unit C Built-in programmable device (microcontroller), A/D acquisition of the voltage of the load RL1, control signal of the mechanical switch K1 is transmitted to the control unit C (selected according to needs), and the control of the mechanical switch K1 can also be used.
  • the signal is controlled by the control unit C (selected according to needs), it stores the parameter related to the current of the load RL1, or inputs the parameter related to the current of the load RL1, and the mechanical switch K1 is detected during the mechanical switch K1.
  • the contact is disconnected, the delay control power semiconductor SCR1 is turned on, the larger the current of the load RL1 is, the longer the delay time is, the delay time is proportional to the current of the load RL1; the mechanical switch K1 is divided during the working process, the load The larger the current of RL1 is, the larger the voltage difference between capacitor C1 and load RL1 is, and the power semiconductor device SCR1 is turned on, which is used to increase the current of charging C1 and improve the arc extinguishing effect.
  • Discharge unit B in parallel with the power semiconductor device SCR1, the capacitor C1 is discharged through the mechanical switch K1, the discharge unit B, which is composed of the first diode D1 and the first current limiting element R1 in series, or the first diode can be used alone D1 is composed of or composed of the first current limiting element R1; when the power semiconductor device SCR1 uses a bidirectional thyristor, the discharge unit B can be selected as needed.
  • the mechanical switch K1 is closed, the capacitor C1 is discharged through the mechanical switch K1, the discharge unit B (if the capacitor C1 originally stores a charge), during the mechanical switch K1 is disconnected, the control unit C detects that the contact of the mechanical switch K1 is disconnected, The delay control power semiconductor device SCR1 is turned on (the delay is greater than 100 microseconds, or at the same time meets the voltage value set by the control unit C, the time value of the delay is related to the breaking speed of the mechanical switch K1), or the mechanical switch K1 is detected.
  • the control power semiconductor device SCR1 When the voltage signal connected to the load RL1 reaches the set voltage value (or coincides with the time value set by the control unit C, the time value is related to the breaking speed of the mechanical switch K1), the control power semiconductor device SCR1 is turned on, and the capacitor C1 Through the rapid charging of the power semiconductor device SCR1 and the load RL1, the voltage across the load RL1 rises, and the electric field strength between the contacts of the mechanical switch K1 drops rapidly, achieving the purpose of rapidly extinguishing the mechanical switch K1.
  • the voltage signal at the connection end of the mechanical switch K1 and the load RL1 is the voltage of the load RL1, and may also be the potential difference between the capacitor C1 and the load RL1 (ie, the voltage relative to the other end of the power semiconductor device SCR1);
  • the voltage detecting switch A adopts a unidirectional thyristor, which has the advantages of high current rising rate tolerance and good reliability, and the discharge unit B is used at the same time.
  • the utility model has the advantages that the mechanical switch K1 has small closing current impact (when the first current limiting component is connected in series), and the control unit C stores the adaptive control program.
  • the voltage signal of the mechanical switch K1 and the load RL1 is used or relative.
  • Optimizing the arc extinguishing control parameter ie, adjusting the control power semiconductor device to conduct the contact with the mechanical switch
  • the control unit C adopts a programmable device with built-in control program
  • the intelligent unit can complete timing, A/D acquisition, voltage comparison, logic processing, etc., which is beneficial to simplify the circuit, can adjust the control mode to different conditions of the load (voltage change), improve the arc extinguishing effect, and effectively improve the electrical switch.
  • the electrical life of the mechanical switch is calculated. Without the auxiliary contact, the contact state of the mechanical switch K1 (on state, off state, arcing state) can be detected in real time, and relevant information is transmitted. .
  • Embodiment 4 of the DC arc extinguishing device of the present invention is as shown in FIG. 9:
  • a DC arc extinguishing circuit the mechanical switch (K1, K2, K3) required for arc extinguishing is connected in series with the load (RL1, RL2, RL3), including power semiconductor devices (SCR1, SCR2, SCR3 semi-controlled devices, one-way Thyristor) and capacitor C1, the mechanical switch K1 is disconnected, the power semiconductor devices (SCR1, SCR2, SCR3) have a potential difference greater than 5 volts across the mechanical switches (K1, K2, K3); the current passes through the power semiconductor device ( SCR1, SCR2, SCR3), load (RL1, RL2, RL3), used for mechanical switch (K1, K2, K3) to break the arc, the current is the charging current of capacitor C1.
  • a DC arc extinguishing device suitable for a multi-channel mechanical switch electronic control system, comprising the DC arc extinguishing circuit described above, power semiconductor devices (SCR1, SCR2, SCR3) and capacitor C1 in series Forming a first series circuit, the first series circuit is connected in parallel with the mechanical switches (K1, K2, K3), and further comprises a control unit C, a discharge unit B, a third diode D3, and a fourth semiconductor switch SCR4 (half-controlled device, One-way thyristor, PA and PB can be disconnected as needed, but it is not recommended.
  • SCR1, SCR2, SCR3 power semiconductor devices
  • capacitor C1 in series Forming a first series circuit
  • the first series circuit is connected in parallel with the mechanical switches (K1, K2, K3), and further comprises a control unit C, a discharge unit B, a third diode D3, and a fourth semiconductor switch SCR4 (half-controlled device, One-way thyristor, PA and PB can be disconnected as needed
  • control unit C When PA and PB are disconnected, control unit C needs to collect PA and PB terminal voltage), fourth mechanical switch K4, fourth mechanical switch
  • the control signal of K4 is provided by the control unit C, and the control unit C is connected with the power semiconductor devices (SCR1, SCR2, SCR3) to form a voltage detecting switch A, the third diode D3 is connected in parallel with the fourth semiconductor switch SCR4, and the fourth semiconductor switch SCR4
  • the control terminal is connected to the control unit C, the second series circuit composed of the capacitor C1 and the fourth semiconductor switch SCR4, the first semiconductor switch S1 of the discharge unit B (half-controlled device, unidirectional thyristor, discharge switch), power semiconductor
  • the voltage signal of the common terminal PB connected to the device (SCR1, SCR2, SCR3, semi-controlled device, unidirectional thyristor) is connected to the control unit C; the input power terminal of the mechanical switch (K1, K2, K3) is connected with the battery BT, the battery The negative pole of the BT is connected to the working ground
  • Voltage detection switch A consists of control unit C, power semiconductor devices (SCR1, SCR2, SCR3), power semiconductor devices (SCR1, SCR2, SCR3), fourth semiconductor switch SCR4 (optional), capacitor C1 to form the first series a circuit, the first series circuit is connected in parallel with the mechanical switches (K1, K2, K3), and the voltage signals of the connection ends of the mechanical switches (K1, K2, K3) and the loads (RL1, RL2, RL3) are transmitted to the control unit C; the power semiconductor device (SCR1, SCR2, SCR3) is connected to the control unit C.
  • Control unit C Built-in programmable device (microcontroller), A/D acquisition of the voltage of the load (RL1, RL2, RL3) and the voltage signal of the common terminal PB, and the voltage signal of the input power terminal of the mechanical switch K1 is connected to the control Unit C (A/D acquisition).
  • the control Unit C A/D acquisition.
  • the contact of the mechanical switch (K1, K2, K3) is detected to be disconnected, and the delay control power semiconductor device (SCR1, SCR2, SCR3) is turned on, due to control
  • the electrical characteristics of the mechanical switches (K1, K2, K3) and the loads (RL1, RL2, RL3) connected to the unit C are not necessarily identical.
  • the control unit C needs to store and load (RL1, RL2, RL3).
  • Current related parameters, or parameters related to the current of the load (RL1, RL2, RL3).
  • K1, K2, K3 the breaking operation of the mechanical switch
  • the time parameter of the delay control can be completed by the microcontroller built in the control unit C; the control signals of the mechanical switches (K1, K2, K3, K5, K6) are transmitted to the control unit C (improving the arc extinguishing accuracy, real-time performance) According to the need), it is also possible to adopt the control mode provided by the control unit C for the control signals of the mechanical switches (K1, K2, K3, K5, K6) (more beneficial to the logic of the action logic and the arc extinguishing control logic of each mechanical switch) Control, choose as needed);
  • Discharge unit B includes a first current limiting element R1 (resistance, when the third diode D3 is connected in series with the current limiting element and the load is a non-capacitive load, can be omitted), the first semiconductor switch S1 (semi-controlled device, single To the thyristor, the first semiconductor switch S1 is a discharge switch, and the control signal of the control unit C controls the first semiconductor switch S1 to be turned on, and the capacitor C1 passes through the first current limiting element R1, the first semiconductor switch S1, and the third diode D3. (When the fourth semiconductor switch SCR4 uses a bidirectional thyristor, it can be selected as needed) to discharge.
  • the fourth semiconductor switch SCR4 uses a bidirectional thyristor, it can be selected as needed
  • the control unit C can detect the voltage at the common terminal PB point. Whether the first semiconductor switch S1 and the power semiconductor devices (SCR1, SCR2, SCR3) are turned off, and if turned off, indicates that the mechanical switches (K1, K2, K3) are completely closed.
  • the breaking of the mechanical switch (K1, K2, K3), the first semiconductor switch S1 is in an off state, the control unit C detects that the mechanical switch (K1, K2, K3) is open, and the fourth semiconductor switch SCR4 is delayed.
  • the power semiconductor devices (SCR1, SCR2, SCR3) are turned on (delay is greater than 100 microseconds, can be completed by the built-in microcontroller, or at the same time meet the voltage value set by the control unit C, the time value of the delay and the corresponding machine
  • the breaking speed of the switch is related to), or when the voltage signal at the connection of the mechanical switch (K1, K2, K3) and the load (RL1, RL2, RL3) reaches the set voltage value (or at the same time as the time set by the control unit C)
  • the value which is related to the breaking speed of the corresponding mechanical switch, controls the fourth semiconductor switch SCR4, the power semiconductor devices (SCR1, SCR2, SCR3) to be turned on, and the control unit C can detect the voltage at the common terminal PB point.
  • the fourth semiconductor switch SCR4 the power semiconductor device (SCR1, SCR2, SCR3) is in an on state, and the input power terminals of the mechanical switches (K1, K2, K3) pass through the fourth semiconductor switch SCR4, the power semiconductor device (SCR1, SCR2) SC R3), load (RL1, RL2, RL3) quickly charge capacitor C1, the voltage across the load (RL1, RL2, RL3) rises, and the electric field strength between the contacts of the mechanical switch (K1, K2, K3) drops rapidly, reaching For the purpose of fast arc extinguishing of the mechanical switch (K1, K2, K3), the control unit C can pass the fourth semiconductor switch SCR4 and the power semiconductor device (SCR1, SCR2, SCR3) in the off state by detecting the voltage of the common terminal PB point. To determine whether the capacitor C1 is fully charged, in preparation for the next discharge of the capacitor C1.
  • the control unit C performs A/D acquisition (or high and low level acquisition) on the voltage signal of the common terminal PB, and has the following advantages:
  • the fourth semiconductor switch SCR4, the first semiconductor switch S1, the power semiconductor device (SCR1, SCR2, SCR3) can be quickly and accurately detected in a conducting state and an off state by using a single end point without high-resolution A/D acquisition. (Charge or discharge is completed), breakdown state, to ensure the system's response speed and safety.
  • the load (RL1, RL2, RL3) can be a load such as a motor controller, a DC/DC converter, a motor, a resistor, or the like.
  • the voltage signals at the connection ends of the mechanical switches (K1, K2, K3) and the loads (RL1, RL2, RL3) described above are the voltages of the loads (RL1, RL2, RL3) (A/D acquisition is performed when the voltage signal of the control unit C is used.
  • the voltage signal can also be the voltage relative to the other end of the power semiconductor device (SCR1, SCR2, SCR3) , or voltage relative to the power input of the mechanical switches (K1, K2, K3).
  • the control unit C when the voltage signal change speed is lower than the change speed set by the control unit C, the control unit C does not provide the relevant power semiconductor device turn-on control signal to prevent the capacitor C1 from being charged too slowly, and the power semiconductor device (SCR1, SCR2) , SCR3) very slow cutoff, affecting the response speed of other mechanical switches arc extinguishing; when the control unit C stores parameters related to the residual voltage change of the load, which is beneficial to improve the accuracy of the mechanical switch breaking detection, the control unit C stores adaptive control During the breaking process of the mechanical switch (K1, K2, K3), the voltage signal at the connection of the mechanical switch (K1, K2, K3, K5) and the load (RL1, RL2, RL3) or relative to the power semiconductor device (SCR1, SCR2) , SCR3) and the load (RL1, RL2, RL3) at the other end (PB) of the voltage signal changes, optimize the arc extinguishing control parameters (ie adjust the time difference between the control power semiconductor device conduction and the mechanical switch
  • the mechanical switch K1, the mechanical switch K2, and the mechanical switch K3 are respectively defined as a first mechanical switch, a second mechanical switch, and a third mechanical switch;
  • the load RL1, the load RL2, and the load RL3 are respectively defined as a first load, a second load, and a third load;
  • the power semiconductor device SCR1, the power semiconductor device SCR2, and the power semiconductor device SCR3 are defined as a first power semiconductor device, a second power semiconductor device, and a third power semiconductor device, respectively.
  • the sixth mechanical switch K6 When the multi-path mechanical switch is used for arc extinguishing, the sixth mechanical switch K6 is controlled to be broken when the arc extinguishing fails; when the control unit C detects an abnormality (such as the first semiconductor switch breakdown or mis-conduction, the power semiconductor device breakdown) Or mis-conducting, controlling the fourth mechanical switch K4 to break; in addition to the sixth mechanical switch K6, the fourth mechanical switch K4, the other mechanical switch (K1, K2, K3) using the DC arc extinguishing device of the present invention can be used in Ordinary (non-high pressure sealed) contactors can greatly reduce costs and improve safety (no risk of air leakage), especially in applications where sports such as automobiles and accidental mechanical shocks (such as collisions, rollovers, etc.) occur.
  • an abnormality such as the first semiconductor switch breakdown or mis-conduction, the power semiconductor device breakdown
  • mis-conducting controlling the fourth mechanical switch K4 to break
  • the mechanical switch (K1, K2, K3) may be accidentally closed and disconnected in the normally open state, or the opening distance becomes smaller, or the impact voltage appears at both ends of the mechanical switch (K1, K2, K3). At this time, arcing may occur, when controlling When the unit C detects the arcing in the state of the mechanical switch (K1, K2, K3), the control unit C controls the power semiconductor devices (SCR1, SCR2, SCR3) to be turned on, and the capacitor passes through the power semiconductor device (SCR1, SCR2, SCR3). Load (RL1, RL2 RL3) forming a charging circuit, extinguish; the control unit C when detecting interrupter fails, outputs a signal to control the mechanical switch K6 breaking.
  • the control unit adopts an intelligent unit including a programmable device, which has a built-in control program, and can adjust the control mode for different conditions of the load (RL1, RL2, RL3) and the mechanical switch (K1, K2, K3).
  • Improve the arc extinguishing effect effectively improve the electrical life of the mechanical switch, complete the timing (delay control power semiconductor device), A/D acquisition, voltage comparison, logic processing, etc., which is beneficial to simplify the circuit; shared capacitor, control unit, discharge switch pair Multi-channel mechanical switch (series circuit composed of each mechanical switch and each load, each series circuit is in parallel relationship) for arc extinguishing control, pre-charging (or closing arc extinguishing) and detection (on state, open state, Arcing state), according to the arcing condition and the number of operations, calculate the electrical life of the mechanical switch, and transmit relevant information (fault code, etc.), which is beneficial to improve the overall safety of the electronic control system, has a higher cost performance, and can be widely applied.
  • the capacitor C1 and the fourth semiconductor switch can also be multiple, which can improve the response speed, and can adopt the multi-pulse arc extinguishing mode (two or more capacitors, two or more pulses to the mechanical switch) Arc extinguishing), the discharge unit B can also use a switching power supply.
  • the control unit C proposes to use a transformer to trigger the power semiconductor device; the control unit C stores the adaptive control program, and the control unit C uses the mechanical switch to divide the voltage, and the voltage change rate of the voltage signal of the mechanical switch and the load connection is adjusted.
  • the change rate is small, which means that the breaking current is large, and the time difference is required, so that the mechanical switch has a relatively large opening distance between the contacts, and the mechanical switch has a strong arc breaking capability.
  • the electrical parameters of the voltage detecting switch can be selected by referring to the following requirements:
  • the working voltage of the mechanical switch is less than or equal to 200 volts, or the capacitance is large, it can be designed as a power semiconductor device with a potential difference greater than 5 volts at both ends of the mechanical switch and less than or equal to 20 volts. When it is large enough, the voltage value can be lowered appropriately);
  • the working voltage of the mechanical switch is greater than 200 volts, or the capacitance capacity is small, or the internal resistance of the charging circuit is large, it can be designed as a mechanical switch breaking process.
  • the voltage at both ends of the mechanical switch is greater than 20 volts and less than the mechanical switch.
  • the working voltage range power semiconductor device is turned on, because the voltage of the two ends of the mechanical switch is high in the range of 0 to 20 volts during the mechanical switching, and it is recommended to be less than 1/2 of the working voltage of the mechanical switch.
  • the mechanical switch has a large opening distance and a large charging current to improve the reliability of the arc extinguishing.
  • the power semiconductor device is turned on after the mechanical switch is arced. Because the mechanical switch is broken, the voltage change rate of the mechanical switch is large before the mechanical switch is arced. The opening distance between the contacts of the mechanical switch is very small, and the capacitor is needed. The large capacity can stabilize the arc extinguishing, that is, there is no arc breaking, and the arc is extinguished within 100 microseconds after the power semiconductor device is turned on. If the time is too long, the capacitance capacity needs to be extremely large, and the arc extinguishing stability is poor.
  • the power semiconductor device is turned on when the breakdown voltage of the opening distance between the contacts of the mechanical switch is greater than the working voltage of the mechanical switch, and the power semiconductor device can be turned on to achieve the purpose, and the delay can be
  • the delay circuit such as the microcontroller of the control unit or the resistor-capacitor delay circuit
  • the terminal When the terminal has a higher voltage, it is turned on to solve (ie, a voltage detecting switch with a high turn-on voltage), which has the advantages of effectively preventing arc re-ignition after arc extinguishing, and the capacity requirement of the capacitor is extremely small; the parameter can be based on the breaking speed of the mechanical switch. The capacity of the capacitor, the operating voltage of the mechanical switch, and the characteristics of the load are adjusted.
  • the current consumption rate of the power semiconductor device is not exceeded, the inductance of the charging circuit is reduced as much as possible, the rising rate of the charging current of the capacitor is increased, and the capacity requirement of the capacitor can be reduced.
  • the power semiconductor device can be greater than 180A per microsecond.
  • the unidirectional thyristors (which can be used in parallel) utilize the internal resistance of the discharge circuit to make the power semiconductor device work within a safe range and improve the arc extinguishing speed and the reliability of the arc extinguishing.
  • the mechanical switch of the above embodiment is a contactor (relay).
  • any mechanical breakpoint as an arc extinguishing target can also be defined as a mechanical switch, such as a fuse body, a connector, or the like.
  • the present invention has the following advantages:
  • the power semiconductor device Since the two ends of the mechanical switch form a large potential difference, the power semiconductor device is turned on, which is beneficial to overcome the influence of the internal resistance of the capacitor charging circuit, improve the instantaneous charging current of the capacitor, and has a small capacitance requirement, and has a small capacity.
  • a current limiting component requires less power and a faster response speed (ie, faster charging and discharging speed, which is critical for the arc-extinguishing response speed of the multi-way mechanical switch.
  • the first current limiting component is designed to 33 ohm arc-extinguishing mechanical switch with load from tens of amps to several hundred amps can complete the entire arc extinguishing process of capacitor charging and discharging in ten milliseconds. According to the technical scheme shown in Figure 9, it can count dozens in one second. Even over one hundred mechanical switches complete arc extinguishing), low cost, small size, high reliability, for 800 volts, 500 amp load, as long as tens of microfarads of capacitance, can meet in a few microseconds to tens of micro The arc is extinguished in seconds (not exceeding 100 microseconds).
  • the semi-controlled device has the advantages of large overload capacity, short conduction time, low cost, and zero-crossing of the current without breaking the overvoltage, and economically solving the load above 100 amps.
  • Arc-extinguishing problem 25 amp unidirectional thyristor with rated operating current, arc extinguishing for several hundred amps or more).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

本发明涉及一种直流灭弧电路及装置,特别是一种适合于对机械开关等机械触点快速灭弧的直流灭弧电路及装置,所需灭弧的机械开关与负载串联,其特征是:包括一电压检测开关、一电容,电压检测开关与电容连接,机械开关分断过程中,电容通过电压检测开关、负载形成放电回路,用于机械开关分断灭弧,本发明设计合理,具有成本低,灭弧速度快高的优点。

Description

直流灭弧电路及装置 技术领域
本发明涉及一种直流灭弧电路及装置特别是一种适合于对机械开关等机械触点快速灭弧的直流灭弧电路及装置,也可以用于其它断点(如熔断体的熔断、插头与插座之间的断点、导线断点)的灭弧。
背景技术
目前在新能源汽车、轨道交通、舰船等直流电控系统中,普遍使用接触器(继电器)等机械开关对负载进行接通和分断控制,由于直流电没有零点,其分断电弧大,存在机械开关成本高(高压接触器)、电寿命短的缺点,机械开关的分断电压越大,其电寿命将大幅度降低,如图1所示,为某品牌高压接触器的分断电压(即断弧电压)对应电寿命曲线图。
发明内容
本发明的目的在于解决现有直流电控系统中机械开关的电寿命短的问题,提供一种灭弧效果好、降低机械开关分断电压(断弧电压)、灭弧速度快的直流灭弧电路及装置。
实现本发明的目的是通过以下技术方案来达到的:
一种直流灭弧电路,所需灭弧的机械开关与负载串联,包括功率半导体器件、一电容,所述功率半导体器件与所述电容连接,所述机械开关分断过程中,所述功率半导体器件在所述机械开关的两端电位差大于5伏特导通;一电流通过所述功率半导体器件、所述负载,用于所述机械开关分断灭弧,所述电流为所述电容的充电电流或放电电流。
一种直流灭弧电路,所述机械开关分断过程中,所述功率半导体器件在所述机械开关的两端电位差大于5伏特且小于或等于20伏特区间导通;或大于20伏特小于所述机械开关的工作电压区间导通。
一种直流灭弧电路,所述功率半导体器件在所述机械开关燃弧后导通。
一种直流灭弧电路,所述机械开关分断过程中,所述功率半导体器件在所述机械开关的触点间开距的击穿电压大于所述机械开关的工作电压时导通。
一种包括前面所述的直流灭弧电路的直流灭弧装置,所述功率半导体器件为半控型器件,所述半控型器件的触发极与所述半控型器件的阳极或第二阳极连接,形成一电压检测开关,所述功率半导体器件与所述电容组成第一串联电路,所述第一串联电路与所述机械开关并联。
一种直流灭弧装置,还包括第一半导体器件,所述第一半导体器件开启电压大于3伏特,所述半控型器件的触发极通过所述第一半导体器件与所述阳极或所述第二阳极连接。
一种直流灭弧装置,所述第一半导体器件为稳压二极管,或为瞬态二极管,或为触发二极管,或为压敏电阻。
一种直流灭弧装置,还包括第二二极管,所述第二二极管、所述第一半导体器件、所述半控型器件的触发极串联。
一种直流灭弧装置,所述电压检测开关的检测端、所述电压检测开关的输出端之间非绝缘隔离。
一种直流灭弧装置,所述电压检测开关为一延时半导体开关。
一种直流灭弧装置,所述电压检测开关为二端电路。
一种直流灭弧装置,还包括一用于对所述电容放电的放电单元,所述放电单元与所述半控型器件并联。
一种直流灭弧装置,所述放电单元由第一二极管组成,或由第一限流元件组成,或由第一二极管与第一限流元件串联组成。
一种直流灭弧装置,采用绝缘材料封装为一器件。
一种直流灭弧装置,与一用于对所述电容放电的放电单元采用绝缘材料封装为一器件。
一种包括前面所述的直流灭弧电路的直流灭弧装置,还包括一控制单元,所述控制单元与所述功率半导体器件连接。
一种直流灭弧装置,所述控制单元、所述功率半导体器件组成一电压检测开关,所述机械开关与所述负载的连接端的电压信号传递至所述控制单元;所述电容与所述功率半导体器件组成第一串联电路,所述第一串联电路与所述机械开关并联。
一种直流灭弧装置,所述机械开关分断过程中,所述控制单元检测到所述机械开关的触点断开,延时控制所述功率半导体器件导通,所述延时大于100微秒。
一种直流灭弧装置,所述控制单元对所述电压信号进行A/D采集。
一种直流灭弧装置,还包括用于对所述电容放电的放电单元,所述放电单元与所述功率半导体器件并联,所述电容通过所述机械开关、所述放电单元放电,所述电压信号为所述负载的电压。
一种直流灭弧装置,所述电压信号为所述负载的电压,或相对于所述功率半导体器件的另一端的电压,或相对于所述机械开关的电源输入端的电压。
一种直流灭弧装置,所述功率半导体器件为半控型器件。
一种直流灭弧装置,所述机械开关的控制信号传递至所述控制单元,或所述控制单元的控制信号传递至所述机械开关。
一种直流灭弧装置,所述控制单元储存有自适应控制程序,利用所述电压信号或所述功率半导体器件的相对于与所述负载连接端的另一端的电压信号的变化,优化灭弧控制参数。
一种直流灭弧装置,还包括用于对所述电容放电的放电单元,所述放电单元至少包括一放电开关,所述控制单元的控制信号传递至所述放电开关。
一种直流灭弧装置,所述放电开关为第一半导体开关,所述第一半导体开关为半控型器件。
一种直流灭弧装置,还包括第一限流元件,所述放电开关与所述第一限流元件串联。
一种直流灭弧装置,所述放电开关与所述电容并联,所述机械开关闭合工作过程中,所述控制单元控制所述放电开关、所述功率半导体器件导通,给所述负载供电,然后所述机械开关闭合;所述机械开关分断工作过程中,所述放电开关处于截止状态。
一种直流灭弧装置,还包括第四半导体开关,所述第四半导体开关为半控型器件,所述第四半导体开关的控制端与所述控制单元连接,所述电容与所述第四半导体开关组成第二串联电路,所述机械开关的输入电源端通过所述第四半导体开关、所述功率半导体器件、所述负载对所述电容的充电。
一种直流灭弧装置,还包括第三二极管,所述电容通过所述放电开关、所述第三二极管放电。
一种直流灭弧装置,所述放电开关、所述功率半导体器件均为半控型开关,所述第二串联电路、所述放电开关、所述功率半导体器件连接的共同端的电压信号连接至所述控制单元。
一种直流灭弧装置,用于检测所述功率半导体器件的工作状态。
一种直流灭弧装置,用于检测所述放电开关的工作状态。
一种直流灭弧装置,用于检测所述第四半导体开关的工作状态。
一种直流灭弧装置,所述机械开关的控制信号传递至所述控制单元,或所述控制单元的控制信号传递至所述机械开关。
一种直流灭弧装置,所述控制单元在所述机械开关分断状态下检测到燃弧时,所述控制单元控制所述功率半导体器件导通。
一种直流灭弧装置,所述机械开关数量至少为二,分别为第一机械开关、第二机械开关;所述负载数量至少为二,分别为第一负载、第二负载;所述功率半导体器件数量至少为二,分别为第一功率半导体器件、第二功率半导体器件。
一种直流灭弧装置,还包括第四机械开关,所述第四机械开关与所述放电开关、所述第一串联电路串联,所述控制单元的控制信号连接至所述第四机械开关的控制端。
一种直流灭弧装置,所述机械开关分断过程中,所述控制单元检测到所述机械开关的触点断开,延时控制所述功率半导体器件导通,所述延时大于100微秒,所述控制单元储存与所述负载的电流相关的参数,或输入与所述负载的电流相关的参数,所述机械开关分断工作过程中,所述负载的电流越大,所述延时的时间越长。
一种直流灭弧装置,所述控制单元储存有自适应控制程序,利用所述电压信号或所述功率半导体器件的相对于与所述负载连接端的另一端的电压信号的变化,优化灭弧控制参数。
一种直流灭弧电路,如图2所示,所需灭弧的机械开关K1与负载RL1串联,包括功率半导体器件TR1、电容C1,功率半导体器件TR1与电容C1连接,机械开关K1分断过程中,功率半导体器件TR1在机械开关K1的两端电位差大于5伏特导通;电流通过功率半导体器件TR1、负载RL1,用于机械开关K1分断灭弧,电流为电容C1的充电电流(注:当把P1端与负载RL1端连接,电流为电容C1的放电电流)。
工作原理:机械开关K1分断过程中,功率半导体器件TR1在机械开关K1的两端电位差大于5伏特时导通;机械开关K1的电源输入端输出的电流通过功率半导体器件TR1、负载RL1对电容C1充电,该电流为电容C1的充电电流,负载RL1的电压快速上升,机械开关K1的触点间电场强度迅速下降,达到机械开关K1分断灭弧的目的(即达到无电弧分断,或燃弧时间极短分断的目的)。注意:图1所示的电容C1的充电电源由机械开关K1的电源输入端提供,具有成本低电路简单的优点,实际应用中也可以采用其它电源作为电容C1的充电电源。
当把P1端改为与负载RL1端连接,工作原理为:
机械开关K1闭合,控制功率半导体器件TR1导通对电容C1充电(也可以电容预先采用其它电源充满电),机械开关K1分断过程中,功率半导体器件TR1在机械开关K1的两端电位差大于5伏特导通;电流通过功率半导体器件TR1、负载RL1,该电流为电容C1的放电电流,负载RL1的电压快速上升,机械开关K1的触点间电场强度迅速下降,达到机械开关K1分断灭弧的目的(即达到无电弧分断,或燃弧时间极短分断的目的);
本发明设计合理,由于在功率半导体器件TR1在机械开关K1的两端电位差大于5伏特导通时,机械开关K1的触点两端已经存在一定开距,容易快速灭弧,灭弧后或无电弧分断后,电弧不易重燃,本发明具有灭弧效果好、降低机械开关分断电压、灭弧速度快的优点。
附图说明
图1是背景技术某品牌高压接触器的分断电压对应电寿命曲线图。
图2是本发明直流灭弧电路电路原理图。
图3是本发明直流灭弧装置实施例一电路原理图。
图4是本发明直流灭弧装置实施例二电路原理图。
图5是本发明直流灭弧装置的电压检测开关的延时电路图。
图6是本发明直流灭弧装置的封装示意图之一。
图7是本发明直流灭弧装置的封装示意图之二。
图8是本发明直流灭弧装置实施例三电路原理图。
图9是本发明直流灭弧装置实施例四电路原理图。
具体实施方式
本发明直流灭弧装置的实施例一,如图3所示:
一种直流灭弧电路,所需灭弧的机械开关K1与负载RL1串联,包括功率半导体器件TR1(半控型器件,为双向晶闸管)与电容C1,机械开关K1分断过程中,功率半导体器件TR1在机械开关K1的两端电位差大于5伏特导通;电流通过功率半导体器件TR1、负载RL1,用于机械开关K1分断灭弧,电流为电容C1的充电电流。
一种直流灭弧装置,包括前面所述的直流灭弧电路,还包括第一半导体器件Z1(稳压二极管),功率半导体器件TR1的触发极通过第一半导体器件Z1与功率半导体器件TR1的第二阳极连接,组成电压检测开关A,功率半导体器件TR1与电容C1串联组成第一串联电路,第一串联电路与机械开关K1并联。
工作原理:机械开关K1闭合,电容C1通过机械开关K1、功率半导体器件TR1放电,机械开关K1分断过程中,当机械开关K1的两端的电位差大于电压检测开关A的开启电压(大于5伏特)时,功率半导体器件TR1触发导通,机械开关K1的输入电源端通过功率半导体器件TR1、负载RL1对电容C1快速充电,负载RL1两端电压上升,机械开关K1的触点间电场强度快速下降,达到对机械开关K1快速灭弧的目的。
本实施例,电压检测开关A采用双向晶闸管,具有电路简单的优点。
本发明灭弧装置的实施例二,如图4所示:
一种直流灭弧电路,所需灭弧的机械开关K1与负载RL1串联,包括功率半导体器件SCR1(半控型器件,为单向晶闸管)与电容C1,机械开关K1分断过程中,功率半导体器 件SCR1在机械开关K1的两端电位差大于5伏特导通;电流通过功率半导体器件SCR1、负载RL1,用于机械开关K1分断灭弧,电流为电容C1的充电电流。
一种直流灭弧装置,包括前面所述的直流灭弧电路,还包括第一半导体器件Z1(稳压二极管)、第二二极管D2、放电单元B,功率半导体器件SCR1的触发极通过第二二极管D2(用于防止反向电压对电路的影响)、第一半导体器件Z1与功率半导体器件SCR1的阳极连接,组成电压检测开关A,用于检测机械开关K1两端的电位差,功率半导体器件SCR1与电容C1串联组成第一串联电路,第一串联电路与机械开关K1并联。
放电单元B:与功率半导体器件SCR1并联,由第一二极管D1与第一限流元件R1(电阻)串联组成,根据实际情况也可单独由第一限流元件R1组成,或第一二极管D1组成。
工作原理:机械开关K1闭合,电容C1通过机械开关K1、放电单元B放电,机械开关K1分断过程中,当机械开关K1的两端的电位差大于电压检测开关A的开启电压时,功率半导体器件SCR1触发导通,电容C1通过功率半导体器件SCR1、负载RL1快速充电,负载RL1两端电压上升,机械开关K1的触点间电场强度快速下降,达到对机械开关K1快速灭弧的目的。
本实施例,电压检测开关A采用单向晶闸管,具有电流上升速率耐受力高、可靠性好的优点,同时采用了放电单元B,当串联第一限流元件R1时具有电流冲击小的优点。
以上实施例,电压检测开关A为二端电路,且为半控型开关,由半导体器件组成,具有电路简单、成本低优点。
以上实施例一、二,第一半导体器件Z1的开启电压需大于3伏特(要大于系统纹波电压的峰峰值),可以采用瞬态二极管,或触发二极管,或压敏电阻等等同器件,采用晶闸管的开启电压大于5伏特时,第一半导体器件Z1根据使用工况需要选用。
机械开关K1分断过程中,功率半导体器件的触发极无需串联电阻限流,可以提高功率半导体器件触发速度,克服电容在功率半导体器件导通前充电,提升电容的容量利用率,以上实施例电压检测开关A的检测端、电压检测开关A的输出端之间非绝缘隔离,具有成本低的优点。
实际使用时也可以在电压检测开关A的第一半导体器件Z1采用如图5的延时电路或类似于如图5的延时电路,此时电压检测开关为一延时导通开关,可以保证机械开关K1断开有足够的开距,进行灭弧,防止电弧灭弧后重燃,延时导通开关的延时导通时间最好控制大于100微秒。
为方便普及推广使用,有利于标准化、批量化,成为通用器件,对以上实施例可采用绝 缘材料封装为一器件,可以采用两端口或三端口形式,放电单元根据情况可以外置(外置时为三端口,其中一端口为电容与功率半导体器件连接的端点),也可以内置,可以采用圆型结构(图6所示),或方形结构(图7所示)。
本发明直流灭弧装置的实施例三,如图8所示:
一种直流灭弧电路,所需灭弧的机械开关K1与负载RL1串联,包括功率半导体器件SCR1(半控型器件,为单向晶闸管)与电容C1,机械开关K1分断过程中,功率半导体器件SCR1在机械开关K1的两端电位差大于5伏特导通;电流通过功率半导体器件SCR1、负载RL1,用于机械开关K1分断灭弧,电流为电容C1的充电电流。
一种直流灭弧装置,包括以上所述的直流灭弧电路,还包括控制单元C、放电单元B,所述控制单元C与功率半导体器件SCR1连接组成电压检测开关A;功率半导体器件SCR1与电容C1串联组成第一串联电路,第一串联电路与机械开关K1并联。
电压检测开关A:由控制单元C、功率半导体器件SCR1(为半控型器件,单向晶闸管)组成,功率半导体器件SCR1与电容C1组成第一串联电路,第一串联电路与机械开关K1并联,机械开关K1与负载RL1的连接端的电压信号传递至控制单元C;功率半导体器件SCR1与控制单元C连接;机械开关K1分断过程中,功率半导体器件SCR1导通,机械开关K1的电源输入端通过功率半导体器件SCR1、负载RL1对电容C1充电,J1端口为控制电源端;J2端口为通信口,用于接受控制指令及数据、传送本装置及外部状态信息(如机械开关、负载状态等),J1、J2根据需要选用。
控制单元C:内置可编程器件(微控制器),对负载RL1的电压进行A/D采集,机械开关K1的控制信号传递至控制单元C(根据需要选择),也可以采用机械开关K1的控制信号由控制单元C提供的控制方式(根据需要选择),其储存与负载RL1的电流相关的参数,或输入与负载RL1的电流相关的参数,机械开关K1分断工作过程中,检测到机械开关K1的触点断开,延时控制功率半导体SCR1导通,负载RL1的电流越大,延时的时间越长,延时的时间与负载RL1的电流成正比;机械开关K1分断工作过程中,负载RL1的电流越大,电容C1与负载RL1之间电压差越大,功率半导体器件SCR1导通,用于提高电容C1的充电的电流,提升灭弧效果。
放电单元B:与功率半导体器件SCR1并联,电容C1通过机械开关K1、放电单元B放电,其由第一二极管D1与第一限流元件R1串联组成,也可以单独采用第一二极管D1组成,或由第一限流元件R1组成;当功率半导体器件SCR1采用双向晶闸管,放电单元B可根据需要选用。
工作原理:机械开关K1闭合,电容C1通过机械开关K1、放电单元B放电(如电容C1原来存储有电荷),机械开关K1分断过程中,控制单元C检测到机械开关K1的触点断开,延时控制功率半导体器件SCR1导通(延时大于100微秒,或同时符合控制单元C设定的电压值,延时的时间值与机械开关K1的分断速度有关),或检测到机械开关K1与负载RL1连接端的电压信号达到设定的电压值时(或同时符合控制单元C设定的时间值,该时间值与机械开关K1的分断速度有关),控制功率半导体器件SCR1导通,电容C1通过功率半导体器件SCR1、负载RL1快速充电,负载RL1两端电压上升,机械开关K1的触点间电场强度快速下降,达到对机械开关K1快速灭弧的目的。
本实施例,机械开关K1与负载RL1的连接端的电压信号为负载RL1的电压,也可以为电容C1与负载RL1之间的电位差(即相对于功率半导体器件SCR1的另一端的电压);机械开关K1的输入电源端上电时,不会存在电容C1上电冲击电流,电压检测开关A采用单向晶闸管,具有电流上升速率耐受力高、可靠性好的优点,同时采用了放电单元B,具有机械开关K1闭合电流冲击小(串联第一限流元件时)的优点,控制单元C储存自适应控制程序,机械开关K1分断过程中,利用机械开关K1与负载RL1连接端的电压信号或相对于功率半导体器件SCR1与负载RL1连接端的另一端(即电容C1与功率半导体器件SCR1连接端)的电压信号的变化,优化灭弧控制参数(即调整控制功率半导体器件导通与机械开关的触点断开的时间差),达到最佳的灭弧效果,控制单元C采用包括一可编程器件,其内置控制程序的智能化单元,可以完成定时、A/D采集、电压比较、逻辑处理等,有利简化电路,可以对负载的不同状况(电压变化),调整控制方式,提高灭弧效果,有效提升机械开关的电寿命,根据燃弧情况及操作次数对机械开关电寿命计算,无需辅助触点,能实时检测到机械开关K1的触点状态(接通状态、断开状态、燃弧状态),并传输相关信息。
本发明直流灭弧装置的实施例四,如图9所示:
一种直流灭弧电路,所需灭弧的机械开关(K1、K2、K3)与负载(RL1、RL2、RL3)串联,包括功率半导体器件(SCR1、SCR2、SCR3半控型器件,为单向晶闸管)与电容C1,机械开关K1分断过程中,功率半导体器件(SCR1、SCR2、SCR3)在机械开关(K1、K2、K3)的两端电位差大于5伏特导通;电流通过功率半导体器件(SCR1、SCR2、SCR3)、负载(RL1、RL2、RL3),用于机械开关(K1、K2、K3)分断灭弧,电流为电容C1的充电电流。
一种适用于多路机械开关电控系统的直流灭弧装置(即一种直流电弧管理系统),包括以上所述的直流灭弧电路,功率半导体器件(SCR1、SCR2、SCR3)与电容C1串联组成第 一串联电路,第一串联电路与机械开关(K1、K2、K3)并联,还包括控制单元C、放电单元B、第三二极管D3、第四半导体开关SCR4(半控型器件,单向晶闸管,PA与PB之间根据需要可断开,但不推荐,当PA与PB之间断开时,控制单元C要采集PA和PB端点电压)、第四机械开关K4,第四机械开关K4的控制信号由控制单元C提供,控制单元C与功率半导体器件(SCR1、SCR2、SCR3)连接组成电压检测开关A,第三二极管D3与第四半导体开关SCR4并联,第四半导体开关SCR4的控制端与控制单元C连接,电容C1与第四半导体开关SCR4组成的第二串联电路、放电单元B的第一半导体开关S1(半控型器件,单向晶闸管,放电开关)、功率半导体器件(SCR1、SCR2、SCR3,半控型器件,单向晶闸管)连接的共同端PB的电压信号连接至控制单元C;机械开关(K1、K2、K3)的输入电源端连接有电池BT,电池BT的负极通过第六机械开关K6(主负接触器)与工作地连接。J1端口为控制电源端;J2端口为通信口,用于接受控制指令及数据、传送本装置及外部状态信息(如机械开关、负载状态等),J1、J2根据需要选用。
电压检测开关A:由控制单元C、功率半导体器件(SCR1、SCR2、SCR3)组成,功率半导体器件(SCR1、SCR2、SCR3)、第四半导体开关SCR4(根据需要选用)、电容C1组成第一串联电路,第一串联电路与机械开关(K1、K2、K3)并联,机械开关(K1、K2、K3)与负载(RL1、RL2、RL3)的连接端的电压信号传递至控制单元C;功率半导体器件(SCR1、SCR2、SCR3)与控制单元C连接。
控制单元C:内置可编程器件(微控制器),对负载(RL1、RL2、RL3)的电压及共同端PB的电压信号进行A/D采集,机械开关K1的输入电源端的电压信号连接至控制单元C(A/D采集)。机械开关(K1、K2、K3)分断工作过程中,检测到机械开关(K1、K2、K3)的触点断开,延时控制功率半导体器件(SCR1、SCR2、SCR3)导通,由于与控制单元C连接的机械开关(K1、K2、K3)及负载(RL1、RL2、RL3)电特性未必一致,为达到最佳灭弧效果,控制单元C需储存与负载(RL1、RL2、RL3)的电流相关的参数,或输入与负载(RL1、RL2、RL3)的电流相关的参数。机械开关(K1、K2、K3)分断工作过程中,负载(RL1、RL2、RL3)的电流越大,延时的时间越长,延时的时间与负载(RL1、RL2、RL3)的电流成正比;延时控制的时间参数可以由控制单元C内置的微控制器完成;机械开关(K1、K2、K3、K5、K6)的控制信号传递至控制单元C(提高灭弧准确性,实时性,根据需要选择),也可以采用机械开关(K1、K2、K3、K5、K6)的控制信号由控制单元C提供的控制方式(更有利于对各个机械开关的动作逻辑、灭弧控制逻辑优化控制,根据需要选择);
放电单元B:包括第一限流元件R1(电阻,当第三二极管D3串联有限流元件及负载为非容性负载时,可省略)、第一半导体开关S1(半控型器件,单向晶闸管),第一半导体开关S1为放电开关,控制单元C的控制信号控制第一半导体开关S1导通,电容C1通过第一限流元件R1、第一半导体开关S1、第三二极管D3(当第四半导体开关SCR4采用双向晶闸管时,可根据需要选用)放电。
工作原理:机械开关K6闭合,机械开关(K1、K2、K3)的电源输入端上电后(接通电池BT),控制单元C先控制第四机械开关K4闭合,控制单元C提供一脉冲信号触发第一半导体开关S1导通,对电容C1放电,当放电电流小于第一半导体开关S1最小保持导通电流时,第一半导体开关S1自行截止,机械开关(K1、K2、K3)闭合工作过程中,控制单元C提供一脉冲信号触发第一半导体开关S1及功率半导体器件(SCR1、SCR2、SCR3,任一)导通,对负载(RL1、RL2、RL3,任一)充(供)电(如对电机控制器,直流变换器等),可有效克服容性负载对机械开关(K1、K2、K3)的电流冲击和闭合电弧,控制单元C通过检测共同端PB点的电压,可得知第一半导体开关S1及功率半导体器件(SCR1、SCR2、SCR3)是否截止,如截止,则表示机械开关(K1、K2、K3)完成闭合。
机械开关(K1、K2、K3)分断过程中,第一半导体开关S1处于截止状态,控制单元C检测到机械开关(K1、K2、K3)的触点断开,延时控制第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)导通(延时大于100微秒,可由内置的微控制器完成,或同时符合控制单元C设定的电压值,延时的时间值与对应的机械开关的分断速度有关),或检测到机械开关(K1、K2、K3)与负载(RL1、RL2、RL3)连接端的电压信号达到设定的电压值时(或同时符合控制单元C设定的时间值,该时间值与对应机械开关的分断速度有关),控制第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)导通,控制单元C通过检测共同端PB点的电压,可以得知第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)是否处于导通状态,机械开关(K1、K2、K3)的输入电源端通过第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)、负载(RL1、RL2、RL3)对电容C1快速充电,负载(RL1、RL2、RL3)两端电压上升,机械开关(K1、K2、K3)的触点间电场强度快速下降,达到对机械开关(K1、K2、K3)快速灭弧的目的,控制单元C通过检测共同端PB点的电压,可以通过第四半导体开关SCR4、功率半导体器件(SCR1、SCR2、SCR3)是否处于截止状态,来判断电容C1是否完成充电,为对电容C1下次放电做准备。
控制单元C对共同端PB的电压信号进行A/D采集(或高低电平采集),具有以下优点:
1、利用单一个端点且无需高分辨率A/D采集就可以快速准确检测出第四半导体开关SCR4、第一半导体开关S1、功率半导体器件(SCR1、SCR2、SCR3)在导通状态、截止状态(充电或放电是否完成)、击穿状态,保证系统的响应速度和安全性。
负载(RL1、RL2、RL3)可以为电机控制器、DC/DC变换器、电机、电阻等负载。
以上所述的机械开关(K1、K2、K3)与负载(RL1、RL2、RL3)连接端的电压信号为负载(RL1、RL2、RL3)的电压(当采用控制单元C电压信号进行A/D采集,具有不影响机械开关K1两端的绝缘耐压,机械开关K1常开状态下,无泄漏电流的优点),电压信号也可以为相对于功率半导体器件(SCR1、SCR2、SCR3)的另一端的电压,或相对于机械开关(K1、K2、K3)的电源输入端的电压。
机械开关分断过程中,电压信号变化速度小于控制单元C设定的变化速度时,控制单元C不提供相关的功率半导体器件导通控制信号,防止电容C1充电过慢,功率半导体器件(SCR1、SCR2、SCR3)很慢截止,影响其它机械开关灭弧的响应速度;当控制单元C存储与负载的残压变化有关参数,有利于提高对机械开关分断检测的准确性,控制单元C储存自适应控制程序,机械开关(K1、K2、K3)分断过程中,利用机械开关(K1、K2、K3、K5)与负载(RL1、RL2、RL3)连接端的电压信号或相对于功率半导体器件(SCR1、SCR2、SCR3)与负载(RL1、RL2、RL3)连接端的另一端(PB)的电压信号的变化,优化灭弧控制参数(即调整控制功率半导体器件导通与机械开关的触点断开的时间差),达到最佳的灭弧效果。
机械开关K1、机械开关K2、机械开关K3分别定义为第一机械开关、第二机械开关、第三机械开关;
负载RL1、负载RL2、负载RL3分别定义为第一负载、第二负载、第三负载;
功率半导体器件SCR1、功率半导体器件SCR2、功率半导体器件SCR3,分别定义为第一功率半导体器件、第二功率半导体器件、第三功率半导体器件。
多路机械开关灭弧的场合上使用时,在灭弧失败时,控制第六机械开关K6分断;控制单元C检测到异常时(如第一半导体开关击穿或误导通、功率半导体器件击穿或误导通),控制第四机械开关K4分断;除第六机械开关K6、第四机械开关K4外,其余采用本发明直流灭弧装置灭弧的机械开关(K1、K2、K3)可以采用在普通(非高压密封)接触器,可以大幅度降低成本,提高安全性(无漏气风险),特别是应用在汽车等运动并可能出现意外机械冲击(如碰撞、翻车等)的工况下,机械开关(K1、K2、K3)常开状态下可能意外闭合又分断,或开距变小,或机械开关(K1、K2、K3)两端出现冲击电压,这时可能出现燃弧, 当控制单元C在机械开关(K1、K2、K3)分断状态下检测到燃弧时,控制单元C控制功率半导体器件(SCR1、SCR2、SCR3)导通,电容通过功率半导体器件(SCR1、SCR2、SCR3)、负载(RL1、RL2、RL3)形成充电回路,进行灭弧;控制单元C在检测到灭弧失败时,输出一信号,控制机械开关K6分断。
本实施例,控制单元采用包括一可编程器件,其内置控制程序的智能化单元,可以对负载(RL1、RL2、RL3)、机械开关(K1、K2、K3)各自的不同状况,调整控制方式,提高灭弧效果,有效提升机械开关的电寿命,完成定时(延时控制功率半导体器件)、A/D采集、电压比较、逻辑处理等,有利简化电路;共用电容、控制单元、放电开关对多路机械开关(各机械开关与各负载组成的串联电路,各串联电路为并联关系)进行灭弧控制、对负载的预充电(或闭合灭弧)和检测(接通状态、断开状态、燃弧状态),根据燃弧情况及操作次数对机械开关电寿命计算,并传输相关信息(故障代码等),有利于提高电控系统的整体安全性,具有更高性价比的特点,可广泛应用于新能源汽车、轨道交通、舰船、航空、自动化控制等领域,作为一种具备电弧管理及灭弧职能的直流灭弧装置(直流电弧管理系统)。
根据实际工况,电容C1与第四半导体开关也可以多个,可以提升响应速度,并可以采用多脉冲灭弧方式(2个或2个以上电容,分2个或2个以上脉冲对机械开关灭弧),放电单元B也可以采用开关电源。
实施例三、四,控制单元C建议采用变压器触发功率半导体器件;控制单元C储存自适应控制程序,控制单元C利用机械开关的分断过程中,机械开关与负载连接端的电压信号的电压变化速率调整功率半导体器件导通与机械开关的触点断开的时间差,变化速率小则意味分断电流大,需加大时间差,使得机械开关的触点间比较大的开距,机械开关断弧能力也强,结合电容充电灭弧,可达到稳定可靠灭弧的目的。
以上实施例,电压检测开关的电参数可以参考以下要求选取:
1、机械开关的工作电压小于或等于200伏特时,或电容容量较大,可设计为功率半导体器件在机械开关的两端电位差大于5伏特且小于或等于20伏特区间导通(当电容容量足够大时,可适当放低电压值);
2、机械开关的工作电压大于200伏特时,或电容容量较小,或充电回路內阻较大时,可设计为机械开关分断过程中,机械开关的两端电压大于20伏特且小于机械开关的工作电压区间功率半导体器件导通,因为机械开关分断期间,机械开关的两端电压在0到20伏特区间电压上升速率很高,且推荐小于机械开关的工作电压的1/2为佳,用于获得机械开关较大的开距及较大的充电电流,提高灭弧的可靠性。
3、功率半导体器件在机械开关燃弧后导通,因为机械开关分断过程中,机械开关燃弧前,机械开关两端的电压变化速率大,机械开关的触点之间开距极小,需要电容的容量大才能稳定灭弧,即无电弧分断,功率半导体器件导通后100微秒内电弧熄灭,如果时间过长,电容容量需极大、灭弧稳定性差。
4、机械开关分断过程中,功率半导体器件在机械开关的触点间开距的击穿电压大于机械开关的工作电压时导通,可通过功率半导体器件延时导通来达到目的,延时可以采用在检测到机械开关的触点断开时由延时电路(如控制单元的微控制器,或电阻电容延时电路)完成对功率半导体器件延时控制,或电压检测开关检测到机械开关两端存在较高的电压时导通来解决(即采用高开启电压的电压检测开关),具有有效防止灭弧后电弧重燃,电容的容量要求极小的优点;参数可根据机械开关的分断速度、电容的容量、机械开关的工作电压、负载的特性调整。
以上实施例,不超出功率半导体器件电流上升速率承受范围内,尽可能减少充电回路的电感量,提升电容充电电流的上升速率,可减少电容的容量要求,功率半导体器件可采用大于180A每微秒的单向晶闸管(可多个并联使用),利用放电回路的内阻,使得功率半导体器件的工作在安全范围内,提高灭弧速度和灭弧的可靠性。
以上实施例机械开关为接触器(继电器),本发明中,任何作为灭弧目标的机械断点也可定义为机械开关,如熔断体、接插件等。
综上所述,本发明具有以下优点:
1、由于机械开关的两端形成较大的电位差,功率半导体器件导通,有利于克服电容充电回路内阻的影响,提高电容瞬间充电电流,电容容量要求小,由于电容容量小,具有第一限流元件所需功率小及响应速度快(即充放电速度快,这对多路机械开关的灭弧提升响应速度至关重要,当电容设计为30微法,第一限流元件设计为33欧姆对几十安培至几百安培负载的机械开关灭弧,可以在十毫秒内完成电容充放电整个灭弧过程,按图9所示的技术方案,可在1秒钟内对数十个甚至超百个机械开关完成灭弧)、成本低、体积小、可靠性高的优点,对800伏特,500安培负载,只要几十微法的电容,即可满足在几微秒到几十微秒时间内(不能超100微秒)电弧熄灭。
2、采用半控型器件(开关)与全控型器件相比具有过载能力大、导通时间短、成本低、电流过零截止不产生分断过电压的优点,经济地解决百安培以上负载的灭弧问题(可采用额定工作电流为25安培单向晶闸管,对几百安培以上电流灭弧)。
3、与机械开关并联灭弧方式,方便与机械开关作为一个整体使用,采用电容充电的方式 灭弧,能有效克服切除负载过电压现象。
4、工作电压波动时,电压检测开关不导通,电压检测开关无温升,电容电寿命长。
5、可以对没有控制线圈的手动控制的开关、行程开关等机械开关进行灭弧,适用范围广。
6、降低机械开关的分断电压(断弧电压),大幅度提升机械开关电寿命(如图1所示,当机械开关的两端工作电压为600V时,做300A的负载电流分断时,电寿命约为150次,采用机械开关配合本发明直流灭弧装置,机械开关分断的工作过程中,当机械开关的两端电压为90伏特时功率半导体器件导通(即把电压检测开关开启值设计为90V),相当于机械开关分断90V/300A的直流,则机械开关电寿命可以达2万次以上)。

Claims (40)

  1. 一种直流灭弧电路,所需灭弧的机械开关与负载串联,其特征是:包括功率半导体器件、一电容,所述功率半导体器件与所述电容连接,所述机械开关分断过程中,所述功率半导体器件在所述机械开关的两端电位差大于5伏特导通;一电流通过所述功率半导体器件、所述负载,用于所述机械开关分断灭弧,所述电流为所述电容的充电电流或放电电流。
  2. 根据权利要求1所述的直流灭弧电路,其特征是:所述机械开关分断过程中,所述功率半导体器件在所述机械开关的两端电位差大于5伏特且小于或等于20伏特区间导通;或大于20伏特小于所述机械开关的工作电压区间导通。
  3. 根据权利要求1所述的直流灭弧电路,其特征是:所述功率半导体器件在所述机械开关燃弧后导通。
  4. 根据权利要求1所述的直流灭弧电路,其特征是:所述机械开关分断过程中,所述功率半导体器件在所述机械开关的触点间开距的击穿电压大于所述机械开关的工作电压时导通。
  5. 一种包括权利要求1至4任一项直流灭弧电路的直流灭弧装置,其特征是:所述功率半导体器件为半控型器件,所述半控型器件的触发极与所述半控型器件的阳极或第二阳极连接,形成一电压检测开关,所述功率半导体器件与所述电容组成第一串联电路,所述第一串联电路与所述机械开关并联。
  6. 根据权利要求5所述的直流灭弧装置,其特征是:还包括第一半导体器件,所述第一半导体器件开启电压大于3伏特,所述半控型器件的触发极通过所述第一半导体器件与所述阳极或所述第二阳极连接。
  7. 根据权利要求6所述的直流灭弧装置,其特征是:所述第一半导体器件为稳压二极管,或为瞬态二极管,或为触发二极管,或为压敏电阻。
  8. 根据权利要求7所述的直流灭弧装置,其特征是:还包括第二二极管,所述第二二极管、所述第一半导体器件、所述半控型器件的触发极串联。
  9. 根据权利要求5所述的直流灭弧装置,其特征是:所述电压检测开关的检测端、所述电压检测开关的输出端之间非绝缘隔离。
  10. 根据权利要求5所述的直流灭弧装置,其特征是:所述电压检测开关为一延时半导体开关。
  11. 根据权利要求5所述的直流灭弧装置,其特征是:所述电压检测开关为二端电路。
  12. 根据权利要求5所述的直流灭弧装置,其特征是:还包括一用于对所述电容放电的放电单元,所述放电单元与所述半控型器件并联。
  13. 根据权利要求12所述的直流灭弧装置,其特征是:所述放电单元由第一二极管组成,或 由第一限流元件组成,或由第一二极管与第一限流元件串联组成。
  14. 根据权利要求5所述的直流灭弧装置,其特征是:采用绝缘材料封装为一器件。
  15. 根据权利要求5所述的直流灭弧装置,其特征是:与一用于对所述电容放电的放电单元采用绝缘材料封装为一器件。
  16. 一种包括权利要求1至4任一项所述的直流灭弧电路的直流灭弧装置,其特征是:还包括一控制单元,所述控制单元与所述功率半导体器件连接。
  17. 根据权利要求16所述的直流灭弧电路的直流灭弧装置,其特征是:所述控制单元、所述功率半导体器件组成一电压检测开关,所述机械开关与所述负载的连接端的电压信号传递至所述控制单元;所述电容与所述功率半导体器件组成第一串联电路,所述第一串联电路与所述机械开关并联。
  18. 根据权利要求17所述的直流灭弧装置,其特征是:所述机械开关分断过程中,所述控制单元检测到所述机械开关的触点断开,延时控制所述功率半导体器件导通,所述延时大于100微秒。
  19. 根据权利要求17所述的直流灭弧装置,其特征是:所述控制单元对所述电压信号进行A/D采集。
  20. 根据权利要求19所述的直流灭弧装置,其特征是:还包括用于对所述电容放电的放电单元,所述放电单元与所述功率半导体器件并联,所述电容通过所述机械开关、所述放电单元放电,所述电压信号为所述负载的电压。
  21. 根据权利要求17所述的直流灭弧装置,其特征是:所述电压信号为所述负载的电压,或相对于所述功率半导体器件的另一端的电压,或相对于所述机械开关的电源输入端的电压。
  22. 根据权利要求17所述的直流灭弧装置,其特征是:所述功率半导体器件为半控型器件。
  23. 根据权利要求17所述的直流灭弧装置,其特征是:所述机械开关的控制信号传递至所述控制单元,或所述控制单元的控制信号传递至所述机械开关。
  24. 根据权利要求17所述的直流灭弧装置,其特征是:所述控制单元储存有自适应控制程序,利用所述电压信号或所述功率半导体器件的相对于与所述负载连接端的另一端的电压信号的变化,优化灭弧控制参数。
  25. 根据权利要求17所述的直流灭弧装置,其特征是:还包括用于对所述电容放电的放电单元,所述放电单元至少包括一放电开关,所述控制单元的控制信号传递至所述放电开关。
  26. 根据权利要求25所述的直流灭弧装置,其特征是:所述放电开关为第一半导体开关,所述第一半导体开关为半控型器件。
  27. 根据权利要求25所述的直流灭弧装置,其特征是:还包括第一限流元件,所述放电开关与所述第一限流元件串联。
  28. 根据权利要求25所述的直流灭弧装置,其特征是:所述放电开关与所述电容并联,所述机械开关闭合工作过程中,所述控制单元控制所述放电开关、所述功率半导体器件导通,给所述负载供电,然后所述机械开关闭合;所述机械开关分断工作过程中,所述放电开关处于截止状态。
  29. 根据权利要求25所述的直流灭弧装置,其特征是:还包括第四半导体开关,所述第四半导体开关为半控型器件,所述第四半导体开关的控制端与所述控制单元连接,所述电容与所述第四半导体开关组成第二串联电路,所述机械开关的输入电源端通过所述第四半导体开关、所述功率半导体器件、所述负载对所述电容的充电。
  30. 根据权利要求29所述的直流灭弧装置,其特征是:还包括第三二极管,所述电容通过所述放电开关、所述第三二极管放电。
  31. 根据权利要求29所述的直流灭弧装置,其特征是:所述放电开关、所述功率半导体器件均为半控型开关,所述第二串联电路、所述放电开关、所述功率半导体器件连接的共同端的电压信号连接至所述控制单元。
  32. 根据权利要求31所述的直流灭弧装置,其特征是:用于检测所述功率半导体器件的工作状态。
  33. 根据权利要求31所述的直流灭弧装置,其特征是:用于检测所述放电开关的工作状态。
  34. 根据权利要求31所述的直流灭弧装置,其特征是:用于检测所述第四半导体开关的工作状态。
  35. 根据权利要求25所述的直流灭弧装置,其特征是:所述机械开关的控制信号传递至所述控制单元,或所述控制单元的控制信号传递至所述机械开关。
  36. 根据权利要求25所述的直流灭弧装置,其特征是:所述控制单元在所述机械开关分断状态下检测到燃弧时,所述控制单元控制所述功率半导体器件导通。
  37. 根据权利要求25所述的直流灭弧装置,其特征是:所述机械开关数量至少为二,分别为第一机械开关、第二机械开关;
    所述负载数量至少为二,分别为第一负载、第二负载;
    所述功率半导体器件数量至少为二,分别为第一功率半导体器件、第二功率半导体器件。
  38. 根据权利要求37所述的直流灭弧装置,其特征是:还包括第四机械开关,所述第四机械开关与所述放电开关、所述第一串联电路串联,所述控制单元的控制信号连接至所述第四机 械开关的控制端。
  39. 根据权利要求37所述的直流灭弧装置,其特征是:所述机械开关分断过程中,所述控制单元检测到所述机械开关的触点断开,延时控制所述功率半导体器件导通,所述延时大于100微秒,所述控制单元储存与所述负载的电流相关的参数,或输入与所述负载的电流相关的参数,所述机械开关分断工作过程中所述负载的电流越大,所述延时的时间越长。
  40. 根据权利要求37所述的直流灭弧装置,其特征是:所述控制单元储存有自适应控制程序,利用所述电压信号或所述功率半导体器件的相对于与所述负载连接端的另一端的电压信号的变化,优化灭弧控制参数。
PCT/CN2018/096226 2017-07-24 2018-07-19 直流灭弧电路及装置 WO2019019950A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2018308487A AU2018308487B2 (en) 2017-07-24 2018-07-19 Direct current arc extinguishing circuit and apparatus
US16/633,135 US11373817B2 (en) 2017-07-24 2018-07-19 Direct current arc extinguishing circuit and apparatus
KR1020207004709A KR102570020B1 (ko) 2017-07-24 2018-07-19 직류 소호 회로 및 장치
EP18838450.7A EP3648133B1 (en) 2017-07-24 2018-07-19 Direct-current arc-extinguishing circuit and device
JP2020502664A JP6901183B2 (ja) 2017-07-24 2018-07-19 直流消弧回路および装置

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201710608043 2017-07-24
CN201710608043.1 2017-07-24
CN201710835095.2 2017-09-15
CN201710835095 2017-09-15
CN201710896986 2017-09-28
CN201710896986.9 2017-09-28
CN201711070356.2 2017-11-03
CN201711070356.2A CN107863956B (zh) 2016-11-12 2017-11-03 动态电极灭弧装置
CN201810026942.5 2018-01-11
CN201810026942 2018-01-11
CN201810384250 2018-04-26
CN201810384250.8 2018-04-26
CN201810791947.7 2018-07-18
CN201810791947.7A CN109003851B (zh) 2017-07-24 2018-07-18 直流灭弧电路及装置

Publications (1)

Publication Number Publication Date
WO2019019950A1 true WO2019019950A1 (zh) 2019-01-31

Family

ID=64600508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096226 WO2019019950A1 (zh) 2017-07-24 2018-07-19 直流灭弧电路及装置

Country Status (7)

Country Link
US (1) US11373817B2 (zh)
EP (1) EP3648133B1 (zh)
JP (1) JP6901183B2 (zh)
KR (1) KR102570020B1 (zh)
CN (2) CN110993403B (zh)
AU (1) AU2018308487B2 (zh)
WO (1) WO2019019950A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063843B1 (fr) * 2017-03-08 2019-03-15 Valeo Equipements Electriques Moteur Circuit electrique de decharge d'une capacite, systeme electrique et vehicule automobile comportant un tel circuit electrique de decharge
CN110993403B (zh) * 2017-07-24 2023-07-25 广州市金矢电子有限公司 直流灭弧电路及装置
WO2020057551A1 (zh) 2018-09-19 2020-03-26 郭桥石 灭弧电路及装置
WO2020083179A1 (zh) * 2018-10-22 2020-04-30 郭桥石 灭弧电路及装置、开关系统
WO2020233151A1 (zh) * 2019-05-18 2020-11-26 Guo Qiaoshi 灭弧电路及装置
CN111261460A (zh) * 2020-03-19 2020-06-09 北斗(天津)科学技术应用研究院(有限合伙) 半导体有源消弧方法
WO2021190665A1 (zh) * 2020-04-03 2021-09-30 郭桥石 开关
EP4380815A2 (en) * 2020-04-14 2024-06-12 TAE Technologies, Inc. Systems, devices, and methods for charging and discharging module-based cascaded energy systems
WO2021190671A1 (zh) * 2020-05-10 2021-09-30 郭桥石 灭弧电路
CN111618395B (zh) * 2020-05-23 2022-09-27 上海沪工焊接集团股份有限公司 一种逆变手工弧焊机的熄弧控制电路
CN117220653A (zh) * 2023-09-13 2023-12-12 上海正泰智能科技有限公司 固态开关控制方法、固态开关系统、控制单元及存储介质
CN117060358B (zh) * 2023-10-20 2024-05-07 山东泰开直流技术有限公司 一种混合式直流断路器的供能控制电路、断路器和电气设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2244769Y (zh) * 1995-05-18 1997-01-08 李春峰 直流有触点电器无弧分断装置
US6621668B1 (en) * 2000-06-26 2003-09-16 Zytron Control Products, Inc. Relay circuit means for controlling the application of AC power to a load using a relay with arc suppression circuitry
CN104392859A (zh) * 2014-03-07 2015-03-04 广州市金矢电子有限公司 电子灭弧装置
CN107863956A (zh) * 2016-11-12 2018-03-30 广州市金矢电子有限公司 动态电极灭弧装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223892A1 (de) * 1982-06-26 1983-12-29 Maschinenfabrik Reinhausen Gebrüder Scheubeck GmbH & Co KG, 8400 Regensburg Anordnung zur lastumschaltung von stufentransformatoren mit antiparallel geschalteten thyristoren
DE3543804A1 (de) 1984-12-14 1986-06-19 General Electric Co., Schenectady, N.Y. Schalter mit lichtbogenkommutierung
CN87211980U (zh) * 1987-08-17 1988-08-17 湖北省鄂州市精华电器厂 低压开关的触头灭弧装置
JPH0256331U (zh) * 1988-10-18 1990-04-24
CN1082247A (zh) * 1993-04-08 1994-02-16 陈光冶 几种直流开关灭弧电路
JP3848205B2 (ja) * 2002-04-26 2006-11-22 シャープ株式会社 電源供給装置
JP5144394B2 (ja) 2008-06-23 2013-02-13 株式会社東芝 直流真空遮断装置
JP5207131B2 (ja) 2008-09-25 2013-06-12 学校法人神奈川大学 直流遮断装置
JP5511599B2 (ja) 2010-09-08 2014-06-04 三菱電機株式会社 転流式遮断装置
EP2469552B1 (en) 2010-12-23 2014-02-26 ABB Technology AG Method, circuit breaker and switching unit for switching off high-voltage DC currents
EP2523204B1 (en) * 2011-05-12 2019-09-04 ABB Schweiz AG Circuit arrangement and method for interrupting a current flow in a DC current path
WO2013098906A1 (ja) * 2011-12-26 2013-07-04 エヌ・ティ・ティ・データ先端技術株式会社 アーク放電阻止回路及びアーク放電阻止装置
CN102723700A (zh) * 2012-04-24 2012-10-10 上海诺雅克电气有限公司 一种直流触点开关分断保护电路和接触器
JP6186144B2 (ja) 2013-03-14 2017-08-23 昇 若月 直流電流遮断装置
EP2801994B1 (en) * 2013-05-07 2019-02-20 ABB S.p.A. DC current switching apparatus, electronic device, and method for switching an associated DC circuit
CN104465166B (zh) * 2013-09-12 2018-06-08 何曙光 直流软关断模块
KR101569195B1 (ko) * 2013-12-26 2015-11-13 주식회사 효성 자계를 이용한 직류차단기
KR20150078491A (ko) * 2013-12-30 2015-07-08 주식회사 효성 고전압 dc 차단기
KR101679722B1 (ko) 2013-12-31 2016-11-25 주식회사 효성 Dc 차단기
KR101550374B1 (ko) * 2013-12-31 2015-09-04 주식회사 효성 고전압 dc 차단기
CN204189670U (zh) * 2014-03-07 2015-03-04 广州市金矢电子有限公司 电流反馈式电子灭弧装置
CN104392860B (zh) * 2014-03-07 2017-04-12 广州市金矢电子有限公司 电容耦合式灭弧电路及装置
CN204204692U (zh) * 2014-04-04 2015-03-11 广州市金矢电子有限公司 电流监控式电子灭弧装置
DK3200213T3 (da) * 2014-09-26 2020-08-24 Mitsubishi Electric Corp Jævnstrømsafbryder
CN105428117B (zh) * 2014-12-11 2017-06-30 广州市金矢电子有限公司 灭弧器件
CN105610301A (zh) * 2015-02-27 2016-05-25 广州市金矢电子有限公司 晶闸管触发装置
US10236682B2 (en) * 2015-02-27 2019-03-19 Qiaoshi Guo Inrush current free switching apparatus and control method thereof
KR101688921B1 (ko) * 2015-06-22 2017-01-02 주식회사 효성 Dc 차단기
CN105304413B (zh) 2015-11-06 2017-11-21 沈红 消除直流器件触头电弧的方法及其装置和应用
CN206432170U (zh) 2016-01-24 2017-08-22 广州市金矢电子有限公司 灭弧功率器件驱动装置及灭弧装置
WO2017125054A1 (zh) * 2016-01-24 2017-07-27 广州市金矢电子有限公司 灭弧功率器件驱动装置及灭弧装置
CN106783297B (zh) * 2016-01-24 2018-04-20 广州市金矢电子有限公司 直流灭弧功率器件驱动装置及灭弧装置
CN106786348B (zh) * 2016-11-11 2019-04-16 西安交通大学 一种基于桥式感应转移直流断路器及其使用方法
CN110993403B (zh) * 2017-07-24 2023-07-25 广州市金矢电子有限公司 直流灭弧电路及装置
CN113345741B (zh) * 2017-07-24 2022-09-27 广州市金矢电子有限公司 直流灭弧装置
WO2020057551A1 (zh) * 2018-09-19 2020-03-26 郭桥石 灭弧电路及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2244769Y (zh) * 1995-05-18 1997-01-08 李春峰 直流有触点电器无弧分断装置
US6621668B1 (en) * 2000-06-26 2003-09-16 Zytron Control Products, Inc. Relay circuit means for controlling the application of AC power to a load using a relay with arc suppression circuitry
CN104392859A (zh) * 2014-03-07 2015-03-04 广州市金矢电子有限公司 电子灭弧装置
CN107863956A (zh) * 2016-11-12 2018-03-30 广州市金矢电子有限公司 动态电极灭弧装置

Also Published As

Publication number Publication date
JP6901183B2 (ja) 2021-07-14
CN109003851A (zh) 2018-12-14
CN109003851B (zh) 2020-01-14
AU2018308487B2 (en) 2020-04-02
CN110993403B (zh) 2023-07-25
AU2018308487A1 (en) 2020-01-30
JP2020527285A (ja) 2020-09-03
KR102570020B1 (ko) 2023-08-22
US20210159031A1 (en) 2021-05-27
EP3648133B1 (en) 2022-04-13
US11373817B2 (en) 2022-06-28
CN110993403A (zh) 2020-04-10
EP3648133A1 (en) 2020-05-06
KR20200028455A (ko) 2020-03-16
EP3648133A4 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2019019950A1 (zh) 直流灭弧电路及装置
EP3644336B1 (en) Direct-current arc-extinguishing device
US9640983B2 (en) Bidirectional hybrid breaker
US9692225B2 (en) Hybrid DC breaker
EP3093941B1 (en) Direct current circuit breaker and method using the same
CN204204692U (zh) 电流监控式电子灭弧装置
CN104779593A (zh) 一种直流固态断路器及其控制方法
CN102074394B (zh) 灭弧开关及其切换方法
WO2016134670A1 (zh) 智能开关及其应用系统
US12014893B2 (en) Arc-extinguishing circuit with two power supplies and apparatus
CN112753084B (zh) 交流灭弧电路及装置、开关系统
CN112740352B (zh) 灭弧电路及装置、开关系统
WO2020233151A1 (zh) 灭弧电路及装置
WO2019029550A1 (zh) 灭弧方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018308487

Country of ref document: AU

Date of ref document: 20180719

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018838450

Country of ref document: EP

Effective date: 20200131

ENP Entry into the national phase

Ref document number: 20207004709

Country of ref document: KR

Kind code of ref document: A