WO2017125054A1 - 灭弧功率器件驱动装置及灭弧装置 - Google Patents

灭弧功率器件驱动装置及灭弧装置 Download PDF

Info

Publication number
WO2017125054A1
WO2017125054A1 PCT/CN2017/071791 CN2017071791W WO2017125054A1 WO 2017125054 A1 WO2017125054 A1 WO 2017125054A1 CN 2017071791 W CN2017071791 W CN 2017071791W WO 2017125054 A1 WO2017125054 A1 WO 2017125054A1
Authority
WO
WIPO (PCT)
Prior art keywords
power device
transistor
switch
arc extinguishing
voltage detecting
Prior art date
Application number
PCT/CN2017/071791
Other languages
English (en)
French (fr)
Inventor
郭桥石
Original Assignee
广州市金矢电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610116841.8A external-priority patent/CN105610301A/zh
Priority claimed from CN201710029448.XA external-priority patent/CN106847582B/zh
Application filed by 广州市金矢电子有限公司 filed Critical 广州市金矢电子有限公司
Priority to KR1020187024483A priority Critical patent/KR101978286B1/ko
Priority to JP2018557182A priority patent/JP6596781B2/ja
Priority to US16/072,142 priority patent/US10468207B2/en
Priority to EP17741085.9A priority patent/EP3407368B1/en
Priority to AU2017209635A priority patent/AU2017209635B2/en
Publication of WO2017125054A1 publication Critical patent/WO2017125054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/22Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of ac into dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/24Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil having light-sensitive input
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/544Contacts shunted by static switch means the static switching means being an insulated gate bipolar transistor, e.g. IGBT, Darlington configuration of FET and bipolar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/545Contacts shunted by static switch means comprising a parallel semiconductor switch being fired optically, e.g. using a photocoupler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K2017/515Mechanical switches; Electronic switches controlling mechanical switches, e.g. relais

Definitions

  • the arc extinguishing power device driving device and the arc extinguishing device of the invention belong to the field of electricity, in particular to an arc extinguishing power device driving device suitable for a driving power device used in an electronic arc extinguishing device of a mechanical switch, and a mechanical switch Arc extinguishing device for arc extinguishing.
  • the device for example, the patent number CN01201907.0, the name is “electronic arc extinguisher”; the patent number is CN200910306608.6, the name is "optical coupling based hybrid AC contactor passive switch drive controller", two patent offices Disclosed, the thyristor (power device) and the contactor mechanical switch are connected in parallel, the control circuit is connected with the control coil of the contactor, and before the mechanical switch of the contactor is disconnected, a control signal for controlling the conduction of the thyristor is provided, and the control of the contactor is provided.
  • the thyristor When the mechanical switch is disconnected, the thyristor is turned on, and the filter capacitor discharge delay is delayed by the control circuit, and the control signal for turning on the thyristor is turned off, the thyristor is turned off, and the arc-free breaking process is completed.
  • control circuit Before the contactor mechanical switch is turned off, the control circuit needs to provide a control signal for controlling the conduction of the thyristor in advance.
  • the driving signal of the thyristor is provided by the main circuit through the semiconductor switch, and the semiconductor switch has high withstand voltage requirement, low reliability, and easy breakdown.
  • the object of the present invention is to provide an arc extinguishing power device driving device and an arc extinguishing device capable of detecting the mechanical switch disconnection and cost-effective in real time, in view of the deficiencies of the existing electronic arc extinguishing power device driving. .
  • An arc extinguishing power device driving device wherein a power device to be driven is connected in parallel with a mechanical switch required to extinguish the arc, and includes a first voltage detecting switch, wherein an input end of the first voltage detecting switch is connected to both ends of the power device, The first voltage detecting switch is connected in series in the driving circuit of the power device, and the first voltage detecting switch is turned on when detecting a potential difference between the two ends of the power device, and the driving signal is transmitted to the power device through the first voltage detecting switch, and the driving power device is guided.
  • the first voltage detecting switch is a semi-controlled switch or a fully-controlled switch whose threshold is smaller than the on-state voltage of the power device.
  • the arc extinguishing power device driving device, the input circuit of the first voltage detecting switch, the output circuit of the first voltage detecting switch, and the power device are not insulated from each other.
  • the first voltage detecting switch comprises a second current limiting component and a semiconductor switch, wherein a potential difference signal across the power device is transmitted to a control end of the semiconductor switch through the second current limiting component, and the semiconductor switch is connected in series In the loop, the second current limiting component is a resistor or a capacitor.
  • An arc extinguishing power device driving device wherein the semiconductor switch is a circuit for driving a thyristor equivalent circuit of a transistor, or a thyristor equivalent circuit, or a thyristor.
  • An arc extinguishing power device driving device a thyristor equivalent circuit or a thyristor connected in series in a driving circuit.
  • An arc extinguishing power device driving device the thyristor equivalent circuit comprises a PNP transistor, an NPN transistor, a base of the PNP transistor is connected to a collector of the NPN transistor, a collector of the PNP transistor and an NPN transistor The base is connected, and the emitter of the PNP transistor and the emitter of the NPN transistor are connected in series in the driving circuit.
  • An arc extinguishing power device driving device includes a first capacitor, a control end of the first voltage detecting switch is connected to a first end of the power device, and the first capacitor passes through the first voltage detecting switch and the second end and the third end of the power device
  • the terminal forms a driving circuit, and the first capacitor is connected to a switch or a first current limiting element for charging the first capacitor.
  • An arc extinguishing power device driving device wherein the first voltage detecting switch discharges the first capacitor to a minimum on current of the first voltage detecting switch.
  • An arc extinguishing power device driving device wherein the power device is a unidirectional thyristor or a bidirectional thyristor, further comprising a unidirectional conduction device, a first voltage stabilizing device, a first current limiting component, a unidirectional conduction device, and a first capacitor in series a series circuit, one end of the series circuit is connected to the power supply, and the other end of the series circuit is connected to the third end of the power device, the first capacitor passes through the first voltage detecting switch, the second end of the power device, and the third of the power device
  • the terminal forms a driving circuit, and the first voltage stabilizing device is connected in parallel with the first capacitor or the first voltage stabilizing device is connected in parallel with the first capacitor through the unidirectional conduction device.
  • An arc extinguishing power device driving device wherein the first voltage detecting switch is a full wave voltage detecting circuit.
  • An arc-extinguishing power device driving device the power supply is provided by a power supply in which the power device is located.
  • An arc extinguishing power device driving device the power supply is a neutral line or another phase power source with respect to the third end of the power device.
  • An arc extinguishing device comprising the arc extinguishing power device driving device of any of the above, further comprising a power device, a first pin, a second pin, a third pin, an arc extinguishing power device driving device, and a power device package
  • the first pin and the second pin are respectively connected to the first end of the power device, the third end of the power device, and the third pin is connected to the first current limiting element end of the series circuit.
  • An arc extinguishing power device driving device further includes a second capacitor and a first photoelectric switch, wherein the first voltage detecting switch is a voltage zero-crossing detecting switch, and the first capacitor passes through the first photoelectric switch, the first voltage detecting switch, and the power device The second end of the power device forms a driving circuit.
  • the first photoelectric switch is turned on, and the electric charge of the first capacitor is stored in the second capacitor through the first photoelectric switch, and the first voltage detecting switch is When conducting, the charge of the first capacitor is turned on by the first photoelectric switch, the first voltage detecting switch, and then the mechanical switch is closed, the first voltage detecting switch is turned off, and when the mechanical switch is disconnected, the first photoelectric switch is turned off.
  • the first voltage detecting switch is turned on, and the second capacitor drives the power device to be turned on by the first voltage detecting switch.
  • An arc extinguishing power device driving device wherein a control end of the first photoelectric switch is connected to a control end of the mechanical switch through a current limiting component.
  • An arc extinguishing power device driving device comprises a second photoelectric switch, a second photoelectric switch is a photocoupler with a thyristor output, or a photocoupler drives a thyristor equivalent circuit, a control end of the second photoelectric switch and a first voltage detection The switch is connected, and the output of the second photoelectric switch is connected in series with the control coil of the mechanical switch.
  • An arc extinguishing power device driving device wherein the power device is a thyristor, and the first voltage detecting switch comprises a second current limiting component, a first transistor, a second transistor, a third transistor, a fourth transistor, and an emitter of the second transistor a base of the three transistors is connected, a base of the second transistor is connected to an emitter of the third transistor, a collector of the second transistor is connected to a base of the first transistor, and a base of the fourth transistor is connected to a collector of the third transistor Connected, the collector of the fourth transistor is connected to the emitter of the second transistor, the emitter of the fourth transistor is connected to the base of the first transistor, and the base of the second transistor is passed through the second current limiting component and the first of the power device The terminal is connected, the emitter of the second transistor is connected to the third end of the power device, and the emitter of the first transistor and the collector of the first transistor are connected in series in the driving circuit.
  • An arc extinguishing power device driving device further comprising a fifth transistor, a base of the fifth transistor and the first The collector of the transistor is connected, the collector of the fifth transistor is connected to the base of the first transistor, and the emitter of the fifth transistor is connected in series in the drive loop.
  • An arc extinguishing power device driving device wherein the power device is a thyristor, and the first voltage detecting switch comprises a second current limiting component, a first transistor, a second transistor, a third transistor, a fourth transistor, and an emitter of the second transistor a base of the three transistors is connected, a base of the second transistor is connected to an emitter of the third transistor, a collector of the second transistor is connected to a base of the first transistor, and a base of the fourth transistor is connected to a collector of the third transistor Connected, the collector of the fourth transistor is connected to the emitter of the second transistor, the emitter of the fourth transistor is connected to the base of the first transistor, and the base of the second transistor is passed through the second current limiting component and the first of the power device
  • the terminal is connected, the collector of the first transistor is connected to the base of the second transistor, the emitter of the second transistor is connected to the second end of the power device, and the emitter of the first transistor and the emitter of the second transistor are
  • An arc extinguishing power device driving device further includes a second voltage detecting switch; a first voltage detecting switch, a second end of the power device, and a third end of the power device form a power device driving circuit; and a control end of the first voltage detecting switch Connected to the first end of the power device; the second voltage detecting switch is respectively connected to the second end of the power device and the third end of the power device.
  • An arc extinguishing power device driving device wherein the second voltage detecting switch is connected in series with the first voltage detecting switch to form a first series circuit, and the control end of the second voltage detecting switch is connected to the first voltage detecting switch end of the first series circuit.
  • An arc extinguishing power device driving device wherein the second voltage detecting switch is turned on when the voltage of the driving signal cannot satisfy the saturation conduction of the power device.
  • An arc extinguishing power device driving device wherein the second voltage detecting switch comprises a resistor and a transistor.
  • the second voltage detecting switch comprises a third voltage stabilizing device, a sixth transistor, a seventh transistor, an eleventh resistor, a twelfth resistor, a thirteenth resistor, and a collector of the sixth transistor Connected to the base of the seventh transistor, the collector of the sixth transistor is connected to the collector of the seventh transistor through the twelfth resistor, and the collector of the seventh transistor and the emitter of the seventh transistor are the main loop of the second voltage detecting switch
  • the thirteenth resistor, the third voltage stabilizing device, the base of the sixth transistor and the emitter of the sixth transistor are connected in series to form a fourth series circuit, the fourth series circuit is connected in parallel with the first capacitor, and the eleventh resistor is
  • the terminals are respectively connected to the base of the sixth transistor and the emitter of the sixth transistor, and the emitter of the sixth transistor is connected to the emitter of the seventh transistor.
  • An arc extinguishing power device driving device wherein the second voltage detecting switch comprises a third voltage stabilizing device, a sixth transistor, a seventh transistor, an eleventh resistor, a twelfth resistor, a thirteenth resistor, a fourth capacitor, and a sixth
  • the collector of the transistor is connected to the base of the seventh transistor
  • the collector of the sixth transistor is connected to the collector of the seventh transistor through the twelfth resistor
  • the emitter of the seventh transistor and the emitter of the seventh transistor are detected by the second voltage.
  • the main circuit end of the switch, the thirteenth resistor, the third voltage stabilizing device, the base of the sixth transistor and the emitter of the sixth transistor are connected in series to form a series circuit, and the series circuit is connected in parallel with the main circuit end of the second voltage detecting switch.
  • the two ends of the eleventh resistor are respectively connected to the base of the sixth transistor and the emitter of the sixth transistor, the emitter of the sixth transistor is connected to the emitter of the seventh transistor, and the two ends of the fourth capacitor are respectively connected to the seventh transistor
  • the base of the seventh transistor is connected to the emitter.
  • An arc extinguishing power device driving device includes a first semiconductor switch, a first current limiting component, a first capacitor, a first semiconductor switch, a first capacitor, and a first current limiting component sequentially connected in series to form a second series circuit, and a second The series circuit is connected in parallel with the load of the mechanical switch, and the first semiconductor switch end of the second series circuit is connected to the third end of the power device, and the common end of the first semiconductor switch and the first capacitor is connected to the second end of the power device, first The third series circuit in which the semiconductor switch and the first capacitor are connected in series is connected in parallel with the first voltage detecting switch.
  • An arc extinguishing power device driving device comprises a first voltage stabilizing device, wherein the first voltage stabilizing device is connected in parallel with the first capacitor or the first voltage stabilizing device is connected in parallel with the first capacitor through the first semiconductor switch.
  • An arc extinguishing power device driving device the first semiconductor switch is a diode, the diode cathode is connected to the first capacitor, and the power device is used for DC arc extinguishing.
  • the first voltage detecting switch comprises a trigger switch, a transistor, a third capacitor, the trigger switch is connected in parallel with the third series circuit, the third end of the power device, and the first end of the power device
  • the potential difference signal is amplified by the third capacitor, and then transmitted to the trigger pole of the trigger switch.
  • the trigger switch is a thyristor or a thyristor equivalent circuit.
  • An arc extinguishing device comprising the above-mentioned arc extinguishing power device driving device, further comprising a power device, a first pin, a second pin, a third pin, an arc extinguishing power device driving device, and a power device packaged in a In the insulating material, the first pin and the second pin are respectively connected to the first end of the power device, the third end of the power device, and the third pin is connected to the first current limiting element end of the second series circuit.
  • An arc extinguishing power device driving device further includes a photocoupler for enabling a first voltage detecting switch, and a control end of the photocoupler is connected to a control end of the mechanical switch.
  • An arc extinguishing device comprising the power device driving device described above, further comprising a power device, first Pin, second pin, third pin, fourth pin, fifth pin, optocoupler, arc extinguishing power device driver, power device packaged in an insulating material, first pin, second The pin is respectively connected to the first end of the power device, the third end of the power device, the third pin is connected to the first current limiting component end of the second series circuit, and the fourth pin, the fifth pin and the optocoupler The console is connected.
  • An arc extinguishing power device driving device further comprising a control unit, a first photocoupler, a second photocoupler, an output end of the first photocoupler, a control end of the second photocoupler and a first voltage detecting switch Connected, the second optocoupler output signal is connected to the control unit, and the control end of the first optocoupler is connected to the control unit.
  • An arc extinguishing power device driving device wherein the power device is a voltage controlled device.
  • An arc extinguishing power device driving device the power device is a field effect transistor, or an IGBT.
  • An arc extinguishing power device driving device wherein the power device is used for DC arc extinguishing, further comprising a first semiconductor switch, a first current limiting component, and a first capacitor, wherein the first semiconductor switch, the first capacitor, and the first current limiting component are sequentially connected in series Forming a second series circuit, the second series circuit is connected in parallel with the load of the mechanical switch, and the first semiconductor switch end of the second series circuit is connected to the third end of the power device, the common end of the first semiconductor switch and the first capacitor and the power The second end of the device is connected, and the third series circuit in which the first semiconductor switch and the first capacitor are connected in series is connected in parallel with the first voltage detecting switch.
  • the first voltage detecting switch comprises a trigger switch, a transistor, a third capacitor, the trigger switch is connected in parallel with the third series circuit, the third end of the power device, and the first end of the power device
  • the potential difference signal is amplified by the third capacitor, and then transmitted to the trigger pole of the trigger switch.
  • the trigger switch is a thyristor or a thyristor equivalent circuit.
  • An arc extinguishing power device driving device the first semiconductor switch is a diode, and the diode cathode is connected to the first capacitor.
  • An arc extinguishing power device driving device comprises a first voltage stabilizing device, wherein the first voltage stabilizing device is connected in parallel with the first capacitor or the first voltage stabilizing device is connected in parallel with the first capacitor through the first semiconductor switch.
  • An arc extinguishing power device driving device further comprising a second voltage detecting switch
  • a first voltage detecting switch, a second end of the power device, and a third end of the power device form a power device driving circuit
  • a control end of the first voltage detecting switch is connected to the first end of the power device
  • the two ends of the second voltage detecting switch are respectively connected to the second end of the power device and the third end of the power device, The second voltage detecting switch is turned on when the voltage of the driving signal cannot satisfy the saturation of the power device.
  • An arc extinguishing power device driving device wherein the power device is a voltage controlled device.
  • An arc extinguishing power device driving device the power device is a field effect transistor, or an IGBT.
  • An arc extinguishing device comprising the above-mentioned arc extinguishing power device driving device, further comprising a power device, a first pin, a second pin, a third pin, an arc extinguishing power device driving device, and a power device packaged in a In the insulating material, the first pin and the second pin are respectively connected to the first end of the power device, the third end of the power device, and the third pin is connected to the first current limiting element end of the second series circuit.
  • An arc extinguishing power device driving device further includes a photocoupler for enabling a first voltage detecting switch, and a control end of the photocoupler is connected to a control end of the mechanical switch.
  • An arc extinguishing device the arc extinguishing power device driving device described above, further comprising a power device, a first pin, a second pin, a third pin, a fourth pin, a fifth pin, and a photocoupler
  • the arc extinguishing power device driving device and the power device are packaged in an insulating material, and the first pin and the second pin are respectively connected to the first end of the power device, the third end of the power device, and the third pin and the second pin respectively
  • the first current limiting component end of the series circuit is connected, and the fourth pin and the fifth pin are connected to the optocoupler control end.
  • the power device TR1 to be driven is connected in parallel with the mechanical switch K1 required to extinguish the arc, and includes a first voltage detecting switch (A1) and a first voltage detecting switch ( The input end of A1) is connected to both ends of the power device TR1, and the first voltage detecting switch (A1) is connected in series in the driving circuit of the power device TR1, and the first voltage detecting switch (A1) detects a potential difference across the power device TR1.
  • the driving signal is transmitted to the power device TR1 through the first voltage detecting switch (A1), and the driving power device TR1 is turned on, and the first voltage detecting switch (A1) is a half-controlled switch or the threshold is smaller than the on-state of the power device TR1. Fully controlled switch for voltage.
  • the driving signal is input to the P4 terminal.
  • the first voltage detecting switch (A1) is turned off, and the first voltage detecting switch (A1) is turned on when detecting a potential difference between the two ends of the power device TR1 ( That is, the mechanical switch K1 is turned on when it is turned off in real time, and the driving signal is transmitted to the power device TR1 through the first voltage detecting switch (A1), and the driving power device TR1 is turned on, so that the power device TR1 is turned on and driven to extinguish the arc in real time.
  • the first voltage detecting switch (A1) may be a half-controlled switch or a fully-controlled switch having a threshold value smaller than the on-state voltage of the power device TR1.
  • the invention has reasonable design, and the invention has the semiconductor device without high withstand voltage and can detect the machinery in real time. The switch is disconnected and the driving energy consumption is low.
  • FIG. 1 is a circuit diagram of a driving device for an arc extinguishing power device of the present invention.
  • FIG. 2 is a circuit schematic diagram 1 of the first embodiment of the arc extinguishing power device driving device and the arc extinguishing device of the present invention.
  • FIG. 3 is a schematic diagram 1 of a first voltage detecting switch circuit of the arc extinguishing power device driving device of the present invention.
  • FIG. 4 is a schematic diagram 2 of a first voltage detecting switch circuit of the arc extinguishing power device driving device of the present invention.
  • FIG. 5 is a circuit schematic diagram 2 of the first embodiment of the arc extinguishing power device driving device and the arc extinguishing device of the present invention.
  • FIG. 6 is a schematic diagram 3 of a first voltage detecting switch circuit of the arc extinguishing power device driving device of the present invention.
  • Fig. 7 is a fourth schematic diagram of the first voltage detecting switch circuit of the arc extinguishing power device driving device of the present invention.
  • Figure 8 is a first schematic view of the package of the arc extinguishing device of the present invention.
  • FIG. 9 is a schematic circuit diagram of a second embodiment of the arc extinguishing power device driving device and the arc extinguishing device of the present invention.
  • FIG. 10 is a schematic diagram of an equivalent circuit of a photocoupler driving thyristor driving device of the arc extinguishing power device of the present invention.
  • Figure 11 is a circuit diagram of the third embodiment of the arc extinguishing power device driving device and the arc extinguishing device of the present invention.
  • Figure 12 is a schematic diagram 5 of the first voltage detecting switch circuit of the arc extinguishing power device driving device of the present invention.
  • Figure 13 is a schematic diagram of the thyristor equivalent circuit of the arc extinguishing power device driving device of the present invention.
  • Figure 14 is a schematic diagram 1 of a second voltage detecting switch circuit of the arc extinguishing power device driving device of the present invention.
  • Figure 15 is a second schematic diagram of the second voltage detecting switch circuit of the arc extinguishing power device driving device of the present invention.
  • Figure 16 is a second schematic view of the package of the arc extinguishing device of the present invention.
  • Figure 17 is a circuit diagram showing the fourth embodiment of the arc extinguishing device of the present invention.
  • Embodiment 1 of the arc extinguishing power device driving device of the present invention is as shown in FIG. 2:
  • An arc extinguishing power device driving device the required driving power device TR1 (bidirectional thyristor) is connected in parallel with the mechanical switch K1 required to extinguish the arc, and comprises a first voltage detecting switch (A1) and a first current limiting element R1 (resistance) ), the first capacitor C1, the unidirectional conduction device D1 (diode), the first voltage stabilizing device Z1 (stabilizing diode), the control end of the first voltage detecting switch (A1) and the first end of the power device TR1 (second The anode is connected, the first current limiting element R1, the one-way conducting device D1, and the first capacitor C1 are connected in series to form a series circuit, one end of the series circuit and the power supply (the power supply can be neutral or relative to the power device TR1) The other end of the series circuit is connected, and the other end of the series circuit is connected to the third end (first anode) of the power device TR1, and the first capacitor C1 passes through the first voltage detecting switch
  • the third end of the power device TR1 forms a driving circuit, and the first voltage stabilizing device Z1 is connected in parallel with the first capacitor C1 through the unidirectional conduction device D1 (the first voltage stabilizing device Z1 can also be directly connected in parallel with the first capacitor C1)
  • the single-pass device D1 withstand voltage requirements should be improved).
  • the first voltage detecting switch (A1) can be selected according to the circuit of FIG. 3 and FIG. 4:
  • the first voltage detecting switch (A1) is a four-terminal circuit and is a full-wave voltage detecting circuit, and the first voltage detecting switch (A1) is a half-controlled switch (when the fifth transistor Q5 is omitted, it is one
  • the first voltage detecting switch (A1) includes a second current limiting element R2 (resistance), a first transistor Q1, a second transistor Q2, a third transistor Q3, and a third control transistor (A1) having a threshold value smaller than an on-state voltage of the power device TR1.
  • the base of the second transistor Q2 is coupled to the emitter of the third transistor Q3
  • the collector of the second transistor Q2 is coupled to the base of the first transistor Q1
  • the base of the fourth transistor Q4 is coupled to the third transistor Q3.
  • the electrodes are connected, the collector of the fourth transistor Q4 is connected to the emitter of the second transistor Q2, the emitter of the fourth transistor Q4 is connected to the base of the first transistor Q1, and the base of the second transistor Q2 is passed through the second current limiting element.
  • R2 is connected to the first end of the power device TR1, the second crystal
  • the emitter of Q2 is connected to the third terminal of the power device TR1, the emitter of the first transistor Q1, the collector of the first transistor Q1 are connected in series in the driving circuit of the power device TR1, and the base of the fifth transistor Q5 and the first transistor
  • the collector of Q1 is connected, the collector of the fifth transistor Q5 is connected to the base of the first transistor Q1, and the emitter of the fifth transistor Q5 is connected in series in the drive loop of the power device TR1.
  • the two ends of the fourth resistor R4 are respectively connected to the base of the second transistor Q2 and the emitter of the second transistor Q2, and the two ends of the fifth resistor R5 are respectively connected to the base of the first transistor Q1 and the emitter of the first transistor Q1.
  • the two ends of the sixth resistor R6 are respectively connected to the base of the fifth transistor Q5 and the emitter of the fifth transistor Q5, and the two ends of the seventh resistor R7 are respectively connected to the base of the fourth transistor Q4 and the fourth transistor Q4.
  • the emitter is connected, the eighth resistor R8 is used for current limiting, and the fourth resistor R4, the fifth resistor R5, the sixth resistor R6, the seventh resistor R7, and the eighth resistor R8 are selected according to requirements, and the first voltage detecting switch (A1)
  • the second current limiting component R2 (which may be a resistor or a capacitor), the semiconductor switch (the transistor circuit in FIG. 3, or a bidirectional thyristor, or the transistor circuit shown in FIG.
  • the potential difference signal of the terminal is transmitted to the control of the semiconductor switch through the second current limiting element R2
  • the semiconductor switch is connected in series in the driving circuit, and the circuit in which the first transistor Q1, the second transistor Q2, the third transistor Q3, the fourth transistor Q4, and the fifth transistor Q5 are connected is a circuit for driving a thyristor equivalent circuit of the transistor, wherein A thyristor equivalent circuit in which a transistor Q1 (NPN type transistor) and a fifth transistor Q5 (PNP type transistor) are connected is connected in series in the drive circuit of the power device TR1.
  • the first voltage detecting switch (A1) is a three-terminal circuit and is a full-wave voltage detecting circuit including a second current limiting element R2 (resistance), a first transistor Q1, a second transistor Q2, and a third
  • the transistor Q3, the fourth transistor Q4, the fourth resistor R4, the fifth resistor R5, and the seventh resistor R7 the emitter of the second transistor Q2 is connected to the base of the third transistor Q3, and the base of the second transistor Q2 is connected to the third
  • the emitter of the transistor Q3 is connected, the collector of the second transistor Q2 is connected to the base of the first transistor Q1, the base of the fourth transistor Q4 is connected to the collector of the third transistor Q3, and the collector and the fourth transistor Q4 are connected.
  • the emitter of the second transistor Q2 is connected, the emitter of the fourth transistor Q4 is connected to the base of the first transistor Q1, and the base of the second transistor Q2 is connected to the first end of the power device TR1 via the second current limiting element R2.
  • the collector of one transistor Q1 is connected to the base of the second transistor Q2, the emitter of the second transistor Q2 is connected to the second terminal of the power device TR1, and the emitter of the first transistor Q1 and the emitter of the second transistor Q2 are connected in series. In the drive circuit of the power device TR1.
  • the two ends of the fourth resistor R4 are respectively connected to the base of the second transistor Q2 and the emitter of the second transistor Q2, and the two ends of the fifth resistor R5 are respectively connected to the base of the first transistor Q1 and the emitter of the first transistor Q1.
  • both ends of the seventh resistor R7 are respectively connected to the base of the fourth transistor Q4 and the emitter of the fourth transistor Q4, and the fourth resistor R4, the fifth resistor R5, and the seventh resistor R7 are selected as needed.
  • the thyristor equivalent circuit in which the first transistor Q1 (NPN type transistor) and the second transistor Q2 (PNP type transistor) are connected is connected in series in the driving circuit of the power device TR1.
  • the first voltage detecting switch (A1) When the mechanical switch K1 is disconnected, the first voltage detecting switch (A1) is turned on when detecting a potential difference between the two ends of the power device TR1 (ie, when the mechanical switch K1 is turned off in real time, the first capacitor C1 is turned on) Forming a driving circuit through the first voltage detecting switch (A1), the second end (trigger pole) of the power device TR1, and the third end (first anode) of the power device TR1, driving the power device TR1 to be turned on, passing the first voltage
  • the first voltage detecting switch (A1) When the current of the detecting switch (A1) is less than its minimum holding current, the first voltage detecting switch (A1) rapidly discharges the first capacitor C1 to the minimum conducting current of the first voltage detecting switch (A1), and the power device TR1 is The current zero point is self-cutting, and the power device TR1 is driven in real time to extinguish the arc and is turned on. The purpose of short time.
  • the power device is a bidirectional thyristor.
  • a unidirectional thyristor is used, as shown in Fig. 5, the polarity of the relevant device can be adjusted.
  • the first voltage detecting switch (A1) can refer to the circuit shown in FIG. 6 and FIG. 7.
  • the difference between the circuit shown in FIG. 6 and FIG. 7 and the circuit shown in FIG. 3 and FIG. 4 is only to change the related PNP transistor.
  • the NPN type transistor and the NPN type transistor are changed to the PNP type transistor, and the working principle is completely the same.
  • driving the unidirectional transistor for the reverse parallel connection only two driving devices of the present invention are required.
  • the first voltage detecting switch (A1) is a full-wave voltage detecting circuit, only one unidirectional thyristor is required to be turned on each time the mechanical switch K1 is divided and extinguished.
  • One of the inventions of the arc extinguishing power device driving device is in the normally open state of the mechanical switch K1, and the first voltage detecting switch (A1) maintains the discharging state of the first capacitor C1 to prevent the corresponding power device from being turned on.
  • An arc extinguishing device comprising the above arc extinguishing power device driving device, further comprising a power device, a first pin, a second pin, a third pin, an arc extinguishing power device driving device, and a power device packaged in an insulating material
  • the first pin and the second pin are respectively connected to the first end of the power device and the third end of the power device, and the third pin and the first current limiting component R1, the one-way conduction device D1, and the first capacitor C1
  • the first current limiting component R1 end of the series circuit (note: the first current limiting component R1 end is located relative to the first capacitor C1) is connected, and the package schematic is shown in FIG. 8. It has the advantages of being convenient to use and easy to promote.
  • the power device driving energy is not required to be provided in advance, and the first voltage detecting switch (A1) is used to detect the mechanical switch K1 disconnection in real time, thereby greatly reducing the capacity requirement of the first capacitor C1 and improving the capacity requirement.
  • the charging and discharging speed of the first capacitor C1 accelerates the arc-extinguishing response time of the electronic arc extinguishing device and reduces the arc-extinguishing time of the power device (the on-time can be less than half a cycle), and the first capacitor C1 can be ceramic Chip capacitors, small size, low cost, good temperature resistance, can meet the integrated plastic packaging process.
  • the discharge circuit of the first capacitor C1 may be connected in series with a current limiting resistor, and if necessary, the first voltage detecting switch (A1) may adopt a constant current circuit.
  • the first regulator device can be set to a voltage of 20V
  • the capacity of the first capacitor C1 is one to five microfarads
  • the resistance of the first current limiting component R1 is 330 kilo ohms (power consumption is only 0.147W).
  • the driving signal of the thyristor is directly regulated by the AC power grid through the first current limiting component R1, the single-conducting device D1 is rectified, and the first capacitor C1 is stored.
  • the thyristor drive does not need to trigger the transformer, no high-voltage electronic switch is required, high reliability, and the circuit Simple, small footprint, cost-effective, especially in the case of zero current in the AC itself, without any synchronization signal, the three-terminal circuit can achieve the purpose of fast and accurate arc extinguishing, wiring Less, easy to use.
  • the arc extinguishing device using the arc extinguishing power device driving device of the invention can also be applied to arc extinguishing of a mechanical switch without a control coil such as a push button switch or a travel switch, and has the advantages of wide application range.
  • Embodiment 2 of the arc extinguishing power device driving device of the present invention is as shown in FIG. 9:
  • An arc extinguishing power device driving device the required driving power device TR1 (bidirectional thyristor) is connected in parallel with the mechanical switch K1 required to extinguish the arc, and comprises a first voltage detecting switch (A1) and a first current limiting element R1 (resistance) ), the first capacitor C1, the unidirectional conduction device D1 (diode), the first voltage stabilizing device Z1 (stabilizing diode), the second capacitor C2, the first photoelectric switch OPT1, the second photoelectric switch OPT2, the first voltage detecting switch
  • the control terminal of (A1) is connected to the first end of the power device TR1, and the first current limiting component R1, the unidirectional conduction device D1, and the first capacitor C1 are connected in series to form a series circuit, one end of the series circuit and the power supply source (the power supply can be Connected to the neutral line or another phase power supply relative to the third end of the power device TR1, the other end of the series circuit is connected to the third end of the power device
  • the first capacitor C1 forms a driving circuit through the first photoelectric switch OPT1, the first voltage detecting switch (A1), the second end of the power device TR1, and the third end of the power device TR1, and the control end of the first photoelectric switch OPT1 passes the current limiting
  • the component R10 is connected to the control end of the mechanical switch K1
  • the second photoelectric switch OPT2 is a photocoupler with a thyristor output, or the thyristor equivalent circuit is driven by the photocoupler as shown in FIG. 10, and the control end of the second photoelectric switch OPT2 Connected to the first voltage detecting switch (A1), the output of the second photoelectric switch OPT2 is connected in series with the control coil of the mechanical switch K1.
  • the first capacitor C1 and the second capacitor C2 are distinguished for convenience of description, and can be cross-defined in actual use.
  • the first voltage detecting switch (A1) can be a voltage zero-crossing detecting switch.
  • the power source charges the first capacitor C1 through the first current limiting component R1 and the one-way conduction device D1 to be equal to the voltage regulation value of the first voltage stabilizing device Z1.
  • the mechanical switch K1 Before the mechanical switch K1 is closed, the mechanical switch K1 inputs the control signal.
  • the first photoelectric switch OPT1 is turned on, and the electric charge of the first capacitor C1 is stored in the second capacitor C2 through the first photoelectric switch OPT1.
  • the first voltage detecting switch (A1) is turned on, the first capacitor C1
  • the electric charge of the two capacitor C2 is turned on by the first photoelectric switch OPT1, the first voltage detecting switch (A1), the second photoelectric switch OPT2 is turned on, the mechanical switch K1 is closed, and the first voltage detecting switch (A1) is turned off.
  • the first photoelectric switch OPT1 When the mechanical switch K1 is disconnected, the first photoelectric switch OPT1 is turned off, the first voltage detecting switch (A1) is turned on, and the second capacitor C2 is driven to pass through the first voltage detecting switch (A1) to drive the power device TR1 to pass through the first voltage.
  • the current of the detection switch (A1) When the current of the detection switch (A1) is less than its minimum holding current, it will cut off automatically.
  • the power device TR1 drives the arc extinguishing in real time and the power device TR1 has a short on-time.
  • the second photoelectric switch OPT2 can be used for the driving of the electronic arc extinguishing device that requires a zero-crossing of the mechanical switch such as a relay.
  • the use of the second photoelectric switch OPT2 is advantageous for overcoming the mechanical switch K1 to close before the zero-crossing of the power device TR1.
  • the second photoelectric switch OPT2 can be omitted, and the application of the first photoelectric switch OPT1 is beneficial to reduce the conduction time of the power device TR1 to break the arc extinguishing of the mechanical switch K1, and accelerate the second time of the device.
  • the two capacitors simultaneously provide the power of the power device TR1 to ensure that the power of the power device TR1 is not interrupted before the mechanical switch K1 is closed, and the capacitance of the second capacitor C2 is much larger than the first
  • the capacitance of a capacitor C1 is at least 10 times larger.
  • This embodiment can also be integrated as needed, and the second capacitor C2 can be externally disposed.
  • Embodiment 3 of the arc extinguishing power device driving device of the present invention is as shown in FIG. 11:
  • An arc extinguishing power device driving device the required power device QA (field effect transistor, or a voltage control device such as IGBT) is connected in parallel with the mechanical switch K1 required to extinguish the arc, and includes a first voltage detecting switch ( A1), a second voltage detecting switch (A2), a photocoupler OPT1, a first semiconductor switch D1 (diode), a first current limiting element R1, a first capacitor C1, a first voltage stabilizing device Z1 (stabilizing diode),
  • the third resistor R3, the first voltage detecting switch (A1), the second end of the power device QA, and the third end of the power device QA form a power device QA driving circuit; the control terminal and the power device of the first voltage detecting switch (A1)
  • the first end of the QA is connected; the two ends of the second voltage detecting switch (A2) are respectively connected to the second end of the power device QA, the third end of the power device QA, and the second voltage detecting switch (A
  • the coupler OPT1 is used to enable the first voltage detecting switch (A1), and the control end of the photocoupler OPT1 is connected to the control end of the mechanical switch K1.
  • the first semiconductor switch D1, the first capacitor C1, and the first current limiting element R1 are sequentially connected in series to form a second series circuit, the second series circuit is connected in parallel with the load RL of the mechanical switch K1, and the first semiconductor switch D1 end of the second series circuit Connected to the third end of the power device QA, the common terminal of the first semiconductor switch D1 and the first capacitor C1 is connected to the second end of the power device QA, and the third semiconductor switch D1 and the first capacitor C1 are connected in series.
  • the circuit is connected in parallel with the first voltage detecting switch (A1).
  • the first voltage stabilizing device Z1 is connected in parallel with the first capacitor C1 through the first semiconductor switch D1 (the first voltage stabilizing device Z1 may be directly connected in parallel with the first capacitor C1).
  • the cathode of the first semiconductor switch D1 is connected to the first capacitor C1; when the mechanical switch K1 is not operating at a high frequency In this case, the photocoupler OPT1 can be omitted.
  • the two ends of the third resistor R3 are respectively connected to the second end of the power device QA and the third end of the power device QA for providing a discharge channel of the first capacitor C1, which may be omitted when the power device QA has a built-in resistor.
  • the first voltage detecting switch (A1) includes a trigger switch TG1, an eighth transistor Q8, a third capacitor C3, a second resistor R2, a ninth resistor R9, a diode D2, a trigger switch TG1 and a first semiconductor
  • the third series circuit in which the switch D1 and the first capacitor C1 are connected in series is connected in parallel, and the potential difference signal between the third end of the power device QA and the first end of the power device QA passes through the second resistor R2 and the third capacitor C3.
  • the eight-transistor Q8 is amplified and transmitted to the trigger pole of the trigger switch TG1.
  • the ninth resistor R9 is connected in parallel with the diode D2.
  • the diode D2 is connected in anti-parallel with the base of the eighth transistor Q8 and the emitter of the eighth transistor Q8.
  • the second resistor R2 is used for current limiting, and the ninth resistor R9 is for improving the anti-interference ability of the circuit, and the second resistor R2 and the ninth resistor R9 are selected as needed.
  • the trigger switch TG1 can adopt a thyristor or a thyristor equivalent circuit as shown in FIG.
  • the second voltage detecting switch (A2) is composed of a resistor and a transistor, and includes a third voltage stabilizing device Z3, a sixth transistor Q6, a seventh transistor Q7, and an eleventh
  • the resistor R11, the twelfth resistor R12, the thirteenth resistor R13, the collector of the sixth transistor Q6 is connected to the base of the seventh transistor Q7, and the collector of the sixth transistor Q6 passes through the twelfth resistor R12 and the seventh transistor Q7.
  • the collector connection, the collector of the seventh transistor Q7, the emission of the seventh transistor Q7 is the main loop end of the second voltage detecting switch (A2), the thirteenth resistor R13, the third voltage stabilizing device Z3, and the sixth transistor Q6
  • the base is connected in series with the emitter of the sixth transistor Q6 to form a fourth series circuit, and the fourth series circuit is connected in parallel with the first capacitor C1.
  • the two ends of the eleventh resistor R11 are respectively connected to the base of the sixth transistor Q6 and the sixth
  • the emitter of the transistor Q6 is connected, and the emitter of the sixth transistor Q6 is connected to the emitter of the seventh transistor Q7.
  • the third voltage stabilizing device Z3, the sixth transistor Q6, the seventh transistor Q7, the eleventh resistor R11, and the twelfth resistor R12 are included.
  • a thirteenth resistor R13, a fourth capacitor C4, a collector of the sixth transistor Q6 is connected to a base of the seventh transistor Q7, and a collector of the sixth transistor Q6 is passed through a collector of the twelfth resistor R12 and the seventh transistor Q7.
  • the collector of the seventh transistor Q7, the emitter of the seventh transistor Q7 is the main loop end of the second voltage detecting switch (A2), the base of the thirteenth resistor R13, the third voltage stabilizing device Z3, and the sixth transistor Q6 And a series circuit connected in series with the emitter of the sixth transistor Q6, the series circuit is connected in parallel with the main circuit end of the second voltage detecting switch (A2) (ie, in parallel with the collector of the seventh transistor Q7 and the emitter of the seventh transistor Q7) ),
  • the two ends of the eleventh resistor R11 are respectively connected to the base of the sixth transistor Q6 and the emitter of the sixth transistor Q6, the emitter of the sixth transistor Q6 is connected to the emitter of the seventh transistor Q7, and the two ends of the fourth capacitor C4 are connected.
  • the terminals are respectively connected to the base of the seventh transistor Q7 and the emitter of the seventh transistor Q7.
  • An arc extinguishing device comprising the above arc extinguishing power device driving device (when the optocoupler OPT1 is omitted), further comprising a power device QA, a first pin PA, a second pin PB, a third pin PC, and an arc extinguishing device
  • the power device driving device and the power device are packaged in an insulating material, and the first pin PA and the second pin PB are respectively connected to the first end of the power device, the third end of the power device, and the third pin PC and the second pin respectively
  • the first current limiting component R1 of the series circuit is connected; the package schematic is shown in FIG. 8.
  • the fourth pin PD and the fifth pin PE are further included, and the first pin PA and the second pin PB are respectively connected to the first end of the power device and the third end of the power device.
  • the third pin PC is connected to the first current limiting component end (power supply terminal) of the second series circuit, and the fourth pin PD and the fifth pin PE are connected to the control end of the optocoupler OPT1, and the package schematic is as shown in FIG. Show.
  • the mechanical switch K1 is electrically closed, and the power source charges the first capacitor C1 through the first current limiting element R1 and the first semiconductor switch D1 to be equal to the voltage regulation value of the first voltage stabilizing device Z1, and the mechanical switch K1 is closed.
  • the first voltage detecting switch (A1) is turned off, the second voltage detecting switch (A2) is turned off, and when the mechanical switch K1 is de-energized, the photocoupler OPT1 is turned off, and the first voltage detecting switch (A1) is enabled, first When the voltage detecting switch (A1) detects a potential difference across the power device QA (ie, the mechanical switch K1 is detected to be turned off in real time), the trigger switch TG1 triggers the conduction, and the electric charge of the first capacitor C1 passes through the first voltage detecting switch ( A1) is transmitted to the power device QA, the driving power device QA is turned on, and the second voltage detecting switch (A2) is turned on when the voltage of the driving signal cannot satisfy the saturation of the power device QA, and the discharging of the first capacitor C1 is accelerated, and the power device is turned on.
  • the QA is quickly cut off, and the power device QA is turned on to drive the arc extinguishing in real time.
  • the second voltage detecting switch (A2) is for preventing the power device from operating in the amplification region, improving the power tube overload capability, reducing the temperature rise; speeding up the discharge speed of the first capacitor C1 and cutting off the second voltage detecting switch (A2) to improve the arc extinguishing
  • the response speed of the device, the power device QA is used for DC arc extinguishing, and the first capacitor C1 is charged by using a diode in series, that is, the first semiconductor switch D1, the first capacitor C1 connected in series, the third series circuit and the first voltage detecting switch (A1)
  • Parallel form, using the first capacitor C1 current pull-up driving power device QA to conduct, is beneficial to the driving of the NPN transistor, N-channel transistor, IGBT for the negative connection of the load
  • the first voltage detecting switch (A1) adopts a form of coupling of a capacitor (third capacitor C3), and when the mechanical switch K1 is turned off, the power consumption is zero, which is advantageous for use in an automobile or the like
  • the arc extinguishing device of the arc extinguishing power device driving device of the invention can be used for arc extinguishing of a mechanical switch without a control coil such as a push button switch, a ship type switch, a stroke switch, etc. without a synchronization signal, and has the advantages of wide application range.
  • Embodiment 4 of the arc extinguishing power device driving device of the present invention is as shown in FIG. 17:
  • An arc extinguishing power device driving device the required power device QA (field effect transistor, or a voltage control device such as IGBT) is connected in parallel with the mechanical switch K1 required to extinguish the arc, and includes a first voltage detecting switch ( A1), a second voltage detecting switch (A2), a first current limiting element R1, a first capacitor C1, a first voltage stabilizing device Z1 (stabilizing diode), a third resistor R3, a control unit (C), a first photoelectric
  • the third end of the power device QA is connected, the second voltage detecting switch (A2) is connected in series with the first voltage detecting switch (A1) to form a first series circuit, and the control end of the second voltage detecting switch (A2) is first The
  • the first capacitor C1 is stored, the output signal of the second photocoupler OPT2 is transmitted to the control unit (C), and the control end of the first photocoupler OPT1 is connected to the control unit (C); the first voltage regulator device Z1 and A capacitor C1 is connected in parallel.
  • the two ends of the third resistor R3 are respectively connected to the second end of the power device QA and the third end of the power device QA for providing a discharge channel of the first capacitor C1, which may be omitted when the power device QA has a built-in resistor. Note: As shown in FIG.
  • the output end of the first photocoupler OPT1, the control end of the second photocoupler OPT2 and the first voltage detecting switch (A1) are connected in series in the driving circuit of the power device QA, and can also be used in practical applications. It is connected to the internal circuit of the first voltage detecting switch (A1).
  • the device is powered, and the power source charges the first capacitor C1 through the first current limiting component R1 to be equal to the voltage regulation value of the first voltage stabilizing device Z1.
  • the first voltage detecting switch ( A1) cutoff, the second voltage detecting switch (A2) is turned off, when the mechanical switch K1 is de-energized, the first voltage detecting switch (A1) detects a potential difference across the power device QA (ie, the mechanical switch K1 is detected in real time)
  • the charge of the first capacitor C1 is transmitted to the power device QA through the control terminal of the first photocoupler OPT1, the second photocoupler OPT2, and the first voltage detecting switch (A1), and the driving power is driven.
  • the device QA is turned on, the output signal of the second photocoupler OPT2 is transmitted to the control unit (C), and the control unit (C) controls the first capacitor C1 to stop discharging through the first photocoupler OPT1, and the second voltage detecting switch (A2) is in
  • the voltage of the driving signal can not be turned on when the power device QA is saturated, and the junction capacitance of the power device QA is discharged, and the power device QA is quickly cut off, so that the power device QA real-time driving arc extinguishing and the power device QA conduction time is short.
  • the second voltage detecting switch (A2) can be omitted.
  • the first voltage detecting switch (A1) is used to drive the control power device QA to turn on the arc extinguishing
  • the second photocoupler OPT2 feeds back the signal to the control unit (C)
  • the control unit (C) passes the first photoelectric
  • the coupler OPT1 controls the power device QA to be cut off, and has the advantages that the power device QA has a high arc extinguishing speed and the power device QA has a short arc-on conduction time.
  • the capacitor may be connected in series with a resistor, or a capacitor series constant current circuit, a power device or the like, or a driving device of a fully controlled or semi-controlled device in series or in parallel.
  • the package schematic diagram of the present invention does not mark the pins, and the connection relationship between the pin arrangement order and the corresponding circuit can be arbitrarily arranged according to the process and the external supporting products, and the shape thereof is not limited, and the existing conventional package shape can be adopted. And pin mode.
  • the first voltage detecting switch of the present invention monitors the mechanical switch disconnection in real time, and can greatly reduce the driving energy required for driving the power device.
  • the control energy of the first voltage detecting switch is provided by both ends of the power device, and the first voltage detecting is performed.
  • the input loop of the switch (A1), the output loop of the first voltage detecting switch (A1), and the non-insulated isolation between the power devices have the advantages of low cost and small volume; the driving energy of the embodiment of the present invention is the power grid where the power device is located.
  • Non-isolated, using capacitor energy storage the capacitor is discharged through the first voltage detection switch (real-time monitoring of mechanical switch disconnection), driving the power device to conduct, the capacitance capacity requirement is low (several micro-methods), the capacitor can be ceramic
  • the chip capacitor has the advantages of simple circuit, low power consumption, low cost, fast response, small power-on time, and easy integration. It can be used as an integrated arc-extinguishing power device driver integrated circuit, which is beneficial to electronic arc extinguishing technology.
  • the promotion of the arc extinguishing device of the arc extinguishing power device driving device of the present invention does not require a synchronization signal when the zero crossing is not required. Can be applied without mechanical interrupter switch control winding button switch, limit switch, etc., having the advantage of wide application.
  • the invention comprises an arc extinguishing device for a power device, which has the advantages of small volume and convenient use.

Abstract

本发明灭弧功率器件驱动装置及灭弧装置属于电学领域,特别是一种适合于电子灭弧装置中使用的驱动功率器件的灭弧功率器件驱动装置,所需驱动的功率器件与所需灭弧的机械开关并联,其包括第一电压检测开关,所述第一电压检测开关的输入端与所述功率器件两端连接,所述第一电压检测开关串联在所述功率器件的驱动回路中,所述第一电压检测开关在检测到所述功率器件两端存在电位差时导通,驱动信号通过所述第一电压检测开关传递至所述功率器件,驱动所述功率器件导通,所述第一电压检测开关为半控型开关或阈值小于所述功率器件的通态电压的全控型开关,本发明具有无需耐压高的半导体器件,且能实时检测机械开关断开、驱动能耗低的优点。

Description

灭弧功率器件驱动装置及灭弧装置 技术领域
本发明灭弧功率器件驱动装置及灭弧装置属于电学领域,特别是一种适合于在机械开关的电子灭弧装置中使用的驱动功率器件的灭弧功率器件驱动装置,一种用于机械开关灭弧的灭弧装置。
背景技术
目前在电控系统,当继电器等机械开关对负载进行分断控制时,其分断电弧大,存在机械开关的电寿命很短的缺点,为此也出现了利用功率器件与机械开关并联的电子灭弧装置,如专利号为CN01201907.0,名称为“电子灭弧器”;专利号为CN200910306608.6,名称为“基于光耦的混合式交流接触器无源开关驱动控制器”,两个专利所揭示的,采用晶闸管(功率器件)与接触器机械开关并联的方式,控制电路与接触器的控制线圈连接,接触器机械开关分断前,提供有控制晶闸管导通的控制信号,在接触器的控制线圈失电,当机械开关在分离时,晶闸管导通,通过控制电路的滤波电容放电延时,延时关断晶闸管导通的控制信号,晶闸管截止,完成无电弧分断过程。
以上电子灭弧装置存在以下缺点:
接触器机械开关断开前,控制电路需要预先提供控制晶闸管导通的控制信号。
晶闸管(功率器件)的驱动信号由其主回路通过半导体开关提供,半导体开关耐压要求高,可靠性低、容易击穿。
发明内容
本发明的目的在于针对现有电子灭弧功率器件驱动的不足之处提供一种无需耐压要求、且能实时检测机械开关断开、性价比高的一种灭弧功率器件驱动装置及灭弧装置。
实现本发明的目的是通过以下技术方案来达到的:
一种灭弧功率器件驱动装置,所需驱动的功率器件与所需灭弧的机械开关并联,其包括第一电压检测开关,第一电压检测开关的输入端与功率器件两端连接, 第一电压检测开关串联在功率器件的驱动回路中,第一电压检测开关在检测到功率器件两端存在电位差时导通,驱动信号通过第一电压检测开关传递至功率器件,驱动功率器件导通,第一电压检测开关为半控型开关或阈值小于功率器件的通态电压的全控型开关。
灭弧功率器件驱动装置,第一电压检测开关的输入回路、第一电压检测开关的输出回路、功率器件之间非绝缘隔离。
一种灭弧功率器件驱动装置,第一电压检测开关包括第二限流元件、半导体开关,功率器件两端的电位差信号通过第二限流元件传递至半导体开关的控制端,半导体开关串联在驱动回路中,第二限流元件为一电阻或一电容。
一种灭弧功率器件驱动装置,半导体开关为晶体管驱动晶闸管等效电路的电路,或晶闸管等效电路,或一晶闸管。
一种灭弧功率器件驱动装置,晶闸管等效电路或晶闸管串联在驱动回路中。
一种灭弧功率器件驱动装置,晶闸管等效电路包括一PNP型晶体管、一NPN型晶体管,PNP型晶体管的基极与NPN型晶体管的集电极连接,PNP型晶体管的集电极与NPN型晶体管的基极连接,PNP型晶体管的发射极、NPN型晶体管的发射极串联在驱动回路中。
一种灭弧功率器件驱动装置,包括第一电容,第一电压检测开关的控制端与功率器件的第一端连接,第一电容通过第一电压检测开关与功率器件的第二端、第三端形成驱动回路,第一电容连接一用于对第一电容充电的开关或第一限流元件。
一种灭弧功率器件驱动装置,第一电压检测开关对第一电容放电至第一电压检测开关最小导通电流。
一种灭弧功率器件驱动装置,功率器件为一单向晶闸管或一双向晶闸管,还包括一单向导通器件、第一稳压器件,第一限流元件、单向导通器件、第一电容串联而成串联电路,串联电路的一端与供电电源连接,串联电路的另一端与功率器件的第三端连接,第一电容通过第一电压检测开关、功率器件的第二端、功率器件的第三端形成驱动回路,第一稳压器件与第一电容并联或第一稳压器件通过单向导通器件与第一电容并联。
一种灭弧功率器件驱动装置,第一电压检测开关为全波电压检测电路。
一种灭弧功率器件驱动装置,供电电源由功率器件所在的电网非隔离提供。
一种灭弧功率器件驱动装置,供电电源为中性线或相对于功率器件的第三端的另一相电源。
一种灭弧装置,包括以上任一所述的灭弧功率器件驱动装置,还包括功率器件、第一引脚、第二引脚、第三引脚,灭弧功率器件驱动装置、功率器件封装在一绝缘材料中,第一引脚、第二引脚分别与功率器件的第一端、功率器件的第三端连接,第三引脚与串联电路的第一限流元件端连接。
一种灭弧功率器件驱动装置,还包括第二电容、第一光电开关,第一电压检测开关为电压过零检测开关,第一电容通过第一光电开关、第一电压检测开关、功率器件的第二端、功率器件的第三端形成驱动回路,在机械开关闭合前,第一光电开关导通,第一电容的电荷通过第一光电开关给第二电容储能,在第一电压检测开关导通时,第一电容的电荷通过第一光电开关、第一电压检测开关驱动功率器件导通,然后机械开关闭合,第一电压检测开关截止,在机械开关分断时,第一光电开关截止,第一电压检测开关导通,第二电容通过第一电压检测开关驱动功率器件导通。
一种灭弧功率器件驱动装置,第一光电开关的控制端通过一限流元件与机械开关的控制端连接。
一种灭弧功率器件驱动装置,包括第二光电开关,第二光电开关为带晶闸管输出的光电耦合器,或光电耦合器驱动晶闸管等效电路,第二光电开关的控制端与第一电压检测开关连接,第二光电开关输出端与机械开关的控制线圈串联。
一种灭弧功率器件驱动装置,功率器件为晶闸管,第一电压检测开关包括第二限流元件、第一晶体管、第二晶体管、第三晶体管、第四晶体管,第二晶体管的发射极与第三晶体管的基极连接,第二晶体管的基极与第三晶体管的发射极连接,第二晶体管的集电极与第一晶体管的基极连接,第四晶体管的基极与第三晶体管的集电极连接,第四晶体管的集电极与第二晶体管的发射极连接,第四晶体管的发射极与第一晶体管的基极连接,第二晶体管的基极通过第二限流元件与功率器件的第一端连接,第二晶体管的发射极与功率器件的第三端连接,第一晶体管的发射极、第一晶体管的集电极串联在驱动回路中。
一种灭弧功率器件驱动装置,还包括第五晶体管,第五晶体管的基极与第一 晶体管的集电极连接,第五晶体管的集电极与第一晶体管的基极连接,第五晶体管的发射极串联在驱动回路中。
一种灭弧功率器件驱动装置,功率器件为晶闸管,第一电压检测开关包括第二限流元件、第一晶体管、第二晶体管、第三晶体管、第四晶体管,第二晶体管的发射极与第三晶体管的基极连接,第二晶体管的基极与第三晶体管的发射极连接,第二晶体管的集电极与第一晶体管的基极连接,第四晶体管的基极与第三晶体管的集电极连接,第四晶体管的集电极与第二晶体管的发射极连接,第四晶体管的发射极与第一晶体管的基极连接,第二晶体管的基极通过第二限流元件与功率器件的第一端连接,第一晶体管的集电极与第二晶体管的基极连接,第二晶体管的发射极与功率器件的第二端连接,第一晶体管的发射极、第二晶体管的发射极串联在功率器件的驱动回路中。
一种灭弧功率器件驱动装置,还包括第二电压检测开关;第一电压检测开关、功率器件的第二端、功率器件的第三端形成功率器件驱动回路;第一电压检测开关的控制端与功率器件的第一端连接;第二电压检测开关两端分别与功率器件的第二端、功率器件的第三端连接。
一种灭弧功率器件驱动装置,第二电压检测开关与第一电压检测开关串联而成第一串联电路,第二电压检测开关的控制端与第一串联电路的第一电压检测开关端连接。
一种灭弧功率器件驱动装置,第二电压检测开关在驱动信号的电压不能满足功率器件饱和导通时导通。
一种灭弧功率器件驱动装置,第二电压检测开关包括电阻、晶体管。
一种灭弧功率器件驱动装置,第二电压检测开关包括第三稳压器件、第六晶体管、第七晶体管、第十一电阻、第十二电阻、第十三电阻,第六晶体管的集电极与第七晶体管的基极连接,第六晶体管的集电极通过第十二电阻与第七晶体管的集电极连接,第七晶体管的集电极、第七晶体管的发射极为第二电压检测开关的主回路端,第十三电阻、第三稳压器件、第六晶体管的基极与第六晶体管的发射极串联而成第四串联电路,第四串联电路与第一电容并联,第十一电阻的两端分别与第六晶体管的基极、第六晶体管的发射极连接,第六晶体管的发射极与第七晶体管的发射极连接。
一种灭弧功率器件驱动装置,第二电压检测开关包括第三稳压器件、第六晶体管、第七晶体管、第十一电阻、第十二电阻、第十三电阻、第四电容,第六晶体管的集电极与第七晶体管的基极连接,第六晶体管的集电极通过第十二电阻与第七晶体管的集电极连接,第七晶体管的集电极、第七晶体管的发射极为第二电压检测开关的主回路端,第十三电阻、第三稳压器件、第六晶体管的基极与第六晶体管的发射极串联而成串联电路,串联电路与第二电压检测开关的主回路端并联,第十一电阻的两端分别与第六晶体管的基极、第六晶体管的发射极连接,第六晶体管的发射极与第七晶体管的发射极连接,第四电容的两端分别与第七晶体管的基极、第七晶体管的发射极连接。
一种灭弧功率器件驱动装置,包括第一半导体开关、第一限流元件、第一电容,第一半导体开关、第一电容、第一限流元件依次串联而成第二串联电路,第二串联电路与机械开关的负载并联,第二串联电路的第一半导体开关端与功率器件的第三端连接,第一半导体开关、第一电容的共同端与功率器件的第二端连接,第一半导体开关、第一电容串联而成的第三串联电路与第一电压检测开关并联。
一种灭弧功率器件驱动装置,包括第一稳压器件,第一稳压器件与第一电容并联或第一稳压器件通过第一半导体开关与第一电容并联。
一种灭弧功率器件驱动装置,第一半导体开关为一二极管,二极管阴极与第一电容连接,功率器件用于直流灭弧。
一种灭弧功率器件驱动装置,第一电压检测开关包括一触发开关、一晶体管、第三电容,触发开关与第三串联电路并联,功率器件的第三端、功率器件的第一端之间的电位差信号通过第三电容、晶体管放大后传递至触发开关的触发极。
一种灭弧功率器件驱动装置,触发开关为一晶闸管或一晶闸管等效电路。
一种灭弧装置,包括以上所述的灭弧功率器件驱动装置,还包括功率器件、第一引脚、第二引脚、第三引脚,灭弧功率器件驱动装置、功率器件封装在一绝缘材料中,第一引脚、第二引脚分别与功率器件的第一端、功率器件的第三端连接,第三引脚与第二串联电路的第一限流元件端连接。
一种灭弧功率器件驱动装置,还包括一光电耦合器,光电耦合器用于使能第一电压检测开关,光电耦合器的控制端与机械开关的控制端连接。
一种灭弧装置,包括以上所述的功率器件驱动装置,还包括功率器件、第一 引脚、第二引脚、第三引脚、第四引脚、第五引脚,光电耦合器、灭弧功率器件驱动装置、功率器件封装在一绝缘材料中,第一引脚、第二引脚分别与功率器件的第一端、功率器件的第三端连接,第三引脚与第二串联电路的第一限流元件端连接,第四引脚、第五引脚与光电耦合器控制端连接。
一种灭弧功率器件驱动装置,还包括一控制单元、第一光电耦合器、第二光电耦合器,第一光电耦合器的输出端、第二光电耦合器的控制端与第一电压检测开关连接,第二光电耦合器输出信号连接至控制单元,第一光电耦合器的控制端与控制单元连接。
一种灭弧功率器件驱动装置,功率器件为压控型器件。
一种灭弧功率器件驱动装置,功率器件为场效应管,或IGBT。
一种灭弧功率器件驱动装置,功率器件用于直流灭弧,还包括第一半导体开关、第一限流元件、第一电容,第一半导体开关、第一电容、第一限流元件依次串联而成第二串联电路,第二串联电路与机械开关的负载并联,第二串联电路的第一半导体开关端与功率器件的第三端连接,第一半导体开关、第一电容的共同端与功率器件的第二端连接,第一半导体开关、第一电容串联而成的第三串联电路与第一电压检测开关并联。
一种灭弧功率器件驱动装置,第一电压检测开关包括一触发开关、一晶体管、第三电容,触发开关与第三串联电路并联,功率器件的第三端、功率器件的第一端之间的电位差信号通过第三电容、晶体管放大后传递至触发开关的触发极。
一种灭弧功率器件驱动装置,触发开关为一晶闸管或一晶闸管等效电路。
一种灭弧功率器件驱动装置,第一半导体开关为一二极管,二极管阴极与第一电容连接。
一种灭弧功率器件驱动装置,包括第一稳压器件,第一稳压器件与第一电容并联或第一稳压器件通过第一半导体开关与第一电容并联。
一种灭弧功率器件驱动装置,还包括第二电压检测开关;
第一电压检测开关、功率器件的第二端、功率器件的第三端形成功率器件驱动回路;
第一电压检测开关的控制端与功率器件的第一端连接;
第二电压检测开关两端分别与功率器件的第二端、功率器件的第三端连接, 第二电压检测开关在驱动信号的电压不能满足功率器件饱和导通时导通。
一种灭弧功率器件驱动装置,功率器件为压控型器件。
一种灭弧功率器件驱动装置,功率器件为场效应管,或IGBT。
一种灭弧装置,包括以上所述的灭弧功率器件驱动装置,还包括功率器件、第一引脚、第二引脚、第三引脚,灭弧功率器件驱动装置、功率器件封装在一绝缘材料中,第一引脚、第二引脚分别与功率器件的第一端、功率器件的第三端连接,第三引脚与第二串联电路的第一限流元件端连接。
一种灭弧功率器件驱动装置,还包括一光电耦合器,光电耦合器用于使能第一电压检测开关,光电耦合器的控制端与机械开关的控制端连接。
一种灭弧装置,以上所述的灭弧功率器件驱动装置,还包括功率器件、第一引脚、第二引脚、第三引脚、第四引脚、第五引脚,光电耦合器、灭弧功率器件驱动装置、功率器件封装在一绝缘材料中,第一引脚、第二引脚分别与功率器件的第一端、功率器件的第三端连接,第三引脚与第二串联电路的第一限流元件端连接,第四引脚、第五引脚与光电耦合器控制端连接。
一种灭弧功率器件驱动装置,如图1所示,所需驱动的功率器件TR1与所需灭弧的机械开关K1并联,其包括第一电压检测开关(A1),第一电压检测开关(A1)的输入端与功率器件TR1两端连接,第一电压检测开关(A1)串联在功率器件TR1的驱动回路中,第一电压检测开关(A1)在检测到功率器件TR1两端存在电位差时导通,驱动信号通过第一电压检测开关(A1)传递至功率器件TR1,驱动功率器件TR1导通,第一电压检测开关(A1)为半控型开关或阈值小于功率器件TR1的通态电压的全控型开关。
工作原理:P4端输入驱动信号,在机械开关K1闭合状态下,第一电压检测开关(A1)截止,第一电压检测开关(A1)在检测到功率器件TR1两端存在电位差时导通(即实时检测到机械开关K1断开时导通),驱动信号通过第一电压检测开关(A1)传递至功率器件TR1,驱动功率器件TR1导通,达到功率器件TR1实时导通驱动灭弧的目的,无需提前给出驱动能量,减少驱动信号所需的工作能量。在此第一电压检测开关(A1)可以采用半控型开关,或采用阈值小于功率器件TR1的通态电压的全控型开关。
本发明设计合理,本发明具有无需耐压高的半导体器件,且能实时检测机械 开关断开、驱动能耗低的优点。
附图说明
图1是本发明灭弧功率器件驱动装置电路原理图。
图2是本发明灭弧功率器件驱动装置及灭弧装置实施例一电路原理图一。
图3是本发明灭弧功率器件驱动装置的第一电压检测开关电路原理图一。
图4是本发明灭弧功率器件驱动装置的第一电压检测开关电路原理图二。
图5是本发明灭弧功率器件驱动装置及灭弧装置实施例一电路原理图二。
图6是本发明灭弧功率器件驱动装置的第一电压检测开关电路原理图三。
图7是本发明灭弧功率器件驱动装置的第一电压检测开关电路原理图四。
图8是本发明灭弧装置的封装示意图一。
图9是本发明灭弧功率器件驱动装置及灭弧装置实施例二电路原理图。
图10是本发明灭弧功率器件驱动装置的光电耦合器驱动晶闸管等效电路原理图。
图11是本发明灭弧功率器件驱动装置及灭弧装置实施例三电路原理图。
图12是本发明灭弧功率器件驱动装置的第一电压检测开关电路原理图五。
图13是本发明灭弧功率器件驱动装置的晶闸管等效电路原理图。
图14是本发明灭弧功率器件驱动装置的第二电压检测开关电路原理图一。
图15是本发明灭弧功率器件驱动装置的第二电压检测开关电路原理图二。
图16是本发明灭弧装置的封装示意图二。
图17是本发明灭弧装置的实施例四电路原理图。
具体实施方式
本发明灭弧功率器件驱动装置的实施例一,如图2所示:
一种灭弧功率器件驱动装置,所需驱动的功率器件TR1(双向晶闸管)与所需灭弧的机械开关K1并联,其包括第一电压检测开关(A1)、第一限流元件R1(电阻)、第一电容C1、单向导通器件D1(二极管)、第一稳压器件Z1(稳压二极管),第一电压检测开关(A1)的控制端与功率器件TR1的第一端(第二阳极)连接,第一限流元件R1、单向导通器件D1、第一电容C1串联而成串联电路,串联电路的一端与供电电源(供电电源可以为中性线或相对于功率器件TR1的第 三端的另一相电源)连接,串联电路的另一端与功率器件TR1的第三端(第一阳极)连接,第一电容C1通过第一电压检测开关(A1)、功率器件TR1的第二端(触发极)、功率器件TR1的第三端形成驱动回路,第一稳压器件Z1通过单向导通器件D1与第一电容C1并联(第一稳压器件Z1也可以直接与第一电容C1并联,但单向导通器件D1耐压要求要提高)。
第一电压检测开关(A1),可以按图3、图4电路选取:
如图3所示,第一电压检测开关(A1)为四端电路,且为全波电压检测电路,第一电压检测开关(A1)为半控型开关(省略第五晶体管Q5时,为一阈值小于功率器件TR1的通态电压的全控型开关),第一电压检测开关(A1)包括第二限流元件R2(电阻)、第一晶体管Q1、第二晶体管Q2、第三晶体管Q3、第四晶体管Q4、第五晶体管Q5、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8,第二晶体管Q2的发射极与第三晶体管Q3的基极连接,第二晶体管Q2的基极与第三晶体管Q3的发射极连接,第二晶体管Q2的集电极与第一晶体管Q1的基极连接,第四晶体管Q4的基极与第三晶体管Q3的集电极连接,第四晶体管Q4的集电极与第二晶体管Q2的发射极连接,第四晶体管Q4的发射极与第一晶体管Q1的基极连接,第二晶体管Q2的基极通过第二限流元件R2与功率器件TR1的第一端连接,第二晶体管Q2的发射极与功率器件TR1的第三端连接,第一晶体管Q1的发射极、第一晶体管Q1的集电极串联在功率器件TR1的驱动回路中,第五晶体管Q5的基极与第一晶体管Q1的集电极连接,第五晶体管Q5的集电极与第一晶体管Q1的基极连接,第五晶体管Q5的发射极串联在功率器件TR1的驱动回路中。第四电阻R4的两端分别与第二晶体管Q2的基极、第二晶体管Q2的发射极连接,第五电阻R5的两端分别与第一晶体管Q1的基极、第一晶体管Q1的发射极连接,第六电阻R6的两端分别与第五晶体管Q5的基极、第五晶体管Q5的发射极连接,第七电阻R7的两端分别与第四晶体管Q4的基极、第四晶体管Q4的发射极连接,第八电阻R8为用于限流,第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8根据需要选用,第一电压检测开关(A1)包括第二限流元件R2(为一电阻,也可以采用一电容)、半导体开关(图3为晶体管电路,也可以用一双向晶闸管,或如图4所示的晶体管电路),功率器件TR1两端的电位差信号通过第二限流元件R2传递至半导体开关的控制 端,半导体开关串联在驱动回路中,第一晶体管Q1、第二晶体管Q2、第三晶体管Q3、第四晶体管Q4、第五晶体管Q5连接成的电路为晶体管驱动晶闸管等效电路的电路,其中第一晶体管Q1(NPN型晶体管)、第五晶体管Q5(PNP型晶体管)连接成的晶闸管等效电路串联在功率器件TR1的驱动回路中。
如图4所示,第一电压检测开关(A1)为三端电路,且为全波电压检测电路,包括第二限流元件R2(电阻)、第一晶体管Q1、第二晶体管Q2、第三晶体管Q3、第四晶体管Q4、第四电阻R4、第五电阻R5、第七电阻R7,第二晶体管Q2的发射极与第三晶体管Q3的基极连接,第二晶体管Q2的基极与第三晶体管Q3的发射极连接,第二晶体管Q2的集电极与第一晶体管Q1的基极连接,第四晶体管Q4的基极与第三晶体管Q3的集电极连接,第四晶体管Q4的集电极与第二晶体管Q2的发射极连接,第四晶体管Q4的发射极与第一晶体管Q1的基极连接,第二晶体管Q2的基极通过第二限流元件R2与功率器件TR1的第一端连接,第一晶体管Q1的集电极与第二晶体管Q2的基极连接,第二晶体管Q2的发射极与功率器件TR1的第二端连接,第一晶体管Q1的发射极、第二晶体管Q2的发射极串联在功率器件TR1的驱动回路中。第四电阻R4的两端分别与第二晶体管Q2的基极、第二晶体管Q2的发射极连接,第五电阻R5的两端分别与第一晶体管Q1的基极、第一晶体管Q1的发射极连接,第七电阻R7的两端分别与第四晶体管Q4的基极、第四晶体管Q4的发射极连接,第四电阻R4、第五电阻R5、第七电阻R7根据需要选用。其中第一晶体管Q1(NPN型晶体管)、第二晶体管Q2(PNP型晶体管)连接成的晶闸管等效电路串联在功率器件TR1的驱动回路中。
工作原理:机械开关K1闭合,负载RL得电,负载RL两端的电压通过第一限流元件R1、单向导通器件D1对第一电容C1充电至约等于第一稳压器件Z1的稳压值,当机械开关K1分断过程中,第一电压检测开关(A1)在检测到功率器件TR1两端存在电位差时导通(即实时检测到机械开关K1断开时导通),第一电容C1通过第一电压检测开关(A1)、功率器件TR1的第二端(触发极)、功率器件TR1的第三端(第一阳极)形成驱动回路,驱动功率器件TR1导通,在通过第一电压检测开关(A1)的电流小于其最小保持电流时自行截止,即第一电压检测开关(A1)对第一电容C1快速放电至第一电压检测开关(A1)最小导通电流,功率器件TR1在电流零点自行截止,达到功率器件TR1实时驱动灭弧且导通 时间短的目的。
图2所示,功率器件为双向晶闸管,当采用单向晶闸管时,如图5所示,只要把相关器件极性调整即可。第一电压检测开关(A1),可以参照如图6、图7所示的电路,图6、图7所示电路与图3、图4所示电路的区别只是把相关的PNP型晶体管改为NPN型晶体管,NPN型晶体管改为PNP型晶体管,工作原理完全相同,当对反向并联的单向晶管驱动时,只需两个本发明驱动装置即可。由于第一电压检测开关(A1)为全波电压检测电路,每次机械开关K1分断灭弧时仅需一个单向晶闸管导通。其中一路发明灭弧功率器件驱动装置在机械开关K1常开状态下,第一电压检测开关(A1)会对第一电容C1保持放电状态,防止与其对应的功率器件导通。
一种灭弧装置,包括以上的灭弧功率器件驱动装置,还包括功率器件、第一引脚、第二引脚、第三引脚,灭弧功率器件驱动装置、功率器件封装在一绝缘材料中,第一引脚、第二引脚分别与功率器件的第一端、功率器件的第三端连接,第三引脚与第一限流元件R1、单向导通器件D1、第一电容C1串联电路的第一限流元件R1端(注:第一限流元件R1端为相对于第一电容C1位置)连接,封装示意图见图8所示。其具有使用方便,容易推广的优点。
以上实施例,在机械开关K1断开之前,无需提前提供功率器件驱动能量,采用第一电压检测开关(A1)实时检测机械开关K1断开,大大降低了第一电容C1的容量要求,提高了第一电容C1的充电及放电速度,加快了电子灭弧装置的灭弧响应时间、减少了功率器件的灭弧导通时间(导通时间可小于半个周波),第一电容C1可以采用陶瓷贴片电容,体积小、成本低、耐温性能好,可以满足集成化塑封工艺。实际使用时第一电容C1的放电回路可以串联一限流电阻,必要时第一电压检测开关(A1)可以采用恒流电路。在交流220V系统中,驱动几十安培的晶闸管,可以设定第一稳压器件稳压值为20V,第一电容C1的容量为一到五微法,第一限流元件R1的阻值为330千欧(功耗仅为0.147W)。晶闸管的驱动信号直接由交流电网通过第一限流元件R1限流、单向导通器件D1整流、第一电容C1储能提供,具有晶闸管驱动无需触发变压器、无需高压电子开关、可靠性高、电路简单、占用空间小、性价比高的优点,特别是在交流电本身存在零点的情况下,无需任何同步信号,三端电路即可达到快速准确灭弧的目的,接线 少,使用方便。采用本发明灭弧功率器件驱动装置的灭弧装置也可以应用在按钮开关、行程开关等无控制线圈的机械开关灭弧,具有适用范围广的优点。
本发明灭弧功率器件驱动装置的实施例二,如图9所示:
一种灭弧功率器件驱动装置,所需驱动的功率器件TR1(双向晶闸管)与所需灭弧的机械开关K1并联,其包括第一电压检测开关(A1)、第一限流元件R1(电阻)、第一电容C1、单向导通器件D1(二极管)、第一稳压器件Z1(稳压二极管)、第二电容C2、第一光电开关OPT1、第二光电开关OPT2,第一电压检测开关(A1)的控制端与功率器件TR1的第一端连接,第一限流元件R1、单向导通器件D1、第一电容C1串联而成串联电路,串联电路的一端与供电电源(供电电源可以为中性线或相对于功率器件TR1的第三端的另一相电源)连接,串联电路的另一端与功率器件TR1的第三端连接,第一稳压器件Z1通过单向导通器件D1与第一电容C1并联(第一稳压器件Z1也可以直接与第一电容C1并联,但单向导通器件D1耐压要求要提高)。第一电容C1通过第一光电开关OPT1、第一电压检测开关(A1)、功率器件TR1的第二端、功率器件TR1的第三端形成驱动回路,第一光电开关OPT1的控制端通过限流元件R10与机械开关K1的控制端连接,第二光电开关OPT2为带晶闸管输出的光电耦合器,或采用如图10所示的光电耦合器驱动晶闸管等效电路,第二光电开关OPT2的控制端与第一电压检测开关(A1)连接,第二光电开关OPT2输出端与机械开关K1的控制线圈串联。注:第一电容C1与第二电容C2为方便描述区分,实际使用时可以交叉定义。
第一电压检测开关(A1):可以为电压过零检测开关。
工作原理:电源通过第一限流元件R1、单向导通器件D1对第一电容C1充电至约等于第一稳压器件Z1的稳压值,在机械开关K1闭合前,机械开关K1输入控制信号,第一光电开关OPT1导通,第一电容C1的电荷通过第一光电开关OPT1给第二电容C2储能,在第一电压检测开关(A1)过零导通时,第一电容C1、第二电容C2的电荷通过第一光电开关OPT1、第一电压检测开关(A1)驱动功率器件TR1导通,第二光电开关OPT2导通,机械开关K1闭合,第一电压检测开关(A1)截止,在机械开关K1分断时,第一光电开关OPT1截止,第一电压检测开关(A1)导通,第二电容C2通过第一电压检测开关(A1)驱动功率器件TR1导通,在通过第一电压检测开关(A1)的电流小于其最小保持电流时自行截止,达 到功率器件TR1实时驱动灭弧且功率器件TR1导通时间短的目的。
本实施例,可以用于继电器等机械开关需要过零接通的电子灭弧装置的驱动,第二光电开关OPT2的使用有利于克服机械开关K1在功率器件TR1过零导通前闭合,当机械开关K1为动作速度大于半个周波时,第二光电开关OPT2可以省略,第一光电开关OPT1的应用有利于减少功率器件TR1对机械开关K1分断灭弧的导通时间,加快本装置的二次响应速度,同时在过零接通时,由两个电容同时提供功率器件TR1驱动能量,保证在机械开关K1闭合前,功率器件TR1驱动能量不中断,第二电容C2的电容量要远大于第一电容C1的电容量,至少大于10倍,本实施例根据需要也可以集成化,第二电容C2可外置。
本发明灭弧功率器件驱动装置的实施例三,如图11所示:
一种灭弧功率器件驱动装置,所需驱动的功率器件QA(场效应管,也可以采用IGBT等压控型器件)与所需灭弧的机械开关K1并联,其包括第一电压检测开关(A1)、第二电压检测开关(A2)、光电耦合器OPT1、第一半导体开关D1(二极管)、第一限流元件R1、第一电容C1、第一稳压器件Z1(稳压二极管)、第三电阻R3,第一电压检测开关(A1)、功率器件QA的第二端、功率器件QA的第三端形成功率器件QA驱动回路;第一电压检测开关(A1)的控制端与功率器件QA的第一端连接;第二电压检测开关(A2)两端分别与功率器件QA的第二端、功率器件QA的第三端连接,第二电压检测开关(A2)与第一电压检测开关(A1)串联而成第一串联电路,第二电压检测开关(A2)的控制端与第一串联电路的第一电压检测开关(A1)端连接,第二电压检测开关(A2)在驱动信号的电压不能满足功率器件QA饱和导通时导通,光电耦合器OPT1用于使能第一电压检测开关(A1),光电耦合器OPT1的控制端与机械开关K1的控制端连接。第一半导体开关D1、第一电容C1、第一限流元件R1依次串联而成第二串联电路,第二串联电路与机械开关K1的负载RL并联,第二串联电路的第一半导体开关D1端与功率器件QA的第三端连接,第一半导体开关D1、第一电容C1的共同端与功率器件QA的第二端连接,第一半导体开关D1、第一电容C1串联而成的第三串联电路与第一电压检测开关(A1)并联。第一稳压器件Z1通过第一半导体开关D1与第一电容C1并联(也可以第一稳压器件Z1直接与第一电容C1并联)。第一半导体开关D1的阴极与第一电容C1连接;当机械开关K1动作频率不高的情 况下,光电耦合器OPT1可以省略。第三电阻R3的两端分别与功率器件QA的第二端、功率器件QA的第三端连接,用于提供第一电容C1的放电通道,当功率器件QA内置电阻时可省略。
第一电压检测开关(A1):如图12所示,包括触发开关TG1、第八晶体管Q8、第三电容C3、第二电阻R2、第九电阻R9、二极管D2,触发开关TG1与第一半导体开关D1、第一电容C1串联而成的第三串联电路并联,功率器件QA的第三端、功率器件QA的第一端之间的电位差信号通过第二电阻R2、第三电容C3、第八晶体管Q8放大后传递至触发开关TG1的触发极,第九电阻R9与二极管D2并联,二极管D2与第八晶体管Q8的基极、第八晶体管Q8的发射极反向并联。第二电阻R2用于限流,第九电阻R9为提高电路抗干扰能力,第二电阻R2、第九电阻R9根据需要选用。触发开关TG1可以采用一晶闸管或如图13所示的晶闸管等效电路。
第二电压检测开关(A2):如图14所示,第二电压检测开关(A2)由电阻、晶体管组成,包括第三稳压器件Z3、第六晶体管Q6、第七晶体管Q7、第十一电阻R11、第十二电阻R12、第十三电阻R13,第六晶体管Q6的集电极与第七晶体管Q7的基极连接,第六晶体管Q6的集电极通过第十二电阻R12与第七晶体管Q7的集电极连接,第七晶体管Q7的集电极、第七晶体管Q7的发射极为第二电压检测开关(A2)的主回路端,第十三电阻R13、第三稳压器件Z3、第六晶体管Q6的基极与第六晶体管Q6的发射极串联而成第四串联电路,第四串联电路与第一电容C1并联,第十一电阻R11的两端分别与第六晶体管Q6的基极、第六晶体管Q6的发射极连接,第六晶体管Q6的发射极与第七晶体管Q7的发射极连接。
当第二电压检测开关(A2)采用二端电路时,如图15所示,包括第三稳压器件Z3、第六晶体管Q6、第七晶体管Q7、第十一电阻R11、第十二电阻R12、第十三电阻R13、第四电容C4,第六晶体管Q6的集电极与第七晶体管Q7的基极连接,第六晶体管Q6的集电极通过第十二电阻R12与第七晶体管Q7的集电极连接,第七晶体管Q7的集电极、第七晶体管Q7的发射极为第二电压检测开关(A2)的主回路端,第十三电阻R13、第三稳压器件Z3、第六晶体管Q6的基极与第六晶体管Q6的发射极串联而成串联电路,该串联电路与第二电压检测开关(A2)的主回路端并联(即与第七晶体管Q7的集电极、第七晶体管Q7的发射极并联), 第十一电阻R11的两端分别与第六晶体管Q6的基极、第六晶体管Q6的发射极连接,第六晶体管Q6的发射极与第七晶体管Q7的发射极连接,第四电容C4的两端分别与第七晶体管Q7的基极、第七晶体管Q7的发射极连接。
一种灭弧装置,包括以上的灭弧功率器件驱动装置(省略光电耦合器OPT1时)、还包括功率器件QA、第一引脚PA、第二引脚PB、第三引脚PC,灭弧功率器件驱动装置、功率器件封装在一绝缘材料中,第一引脚PA、第二引脚PB分别与功率器件的第一端、功率器件的第三端连接,第三引脚PC与第二串联电路的第一限流元件R1端连接;封装示意图如图8所示。
当包括光电耦合器OPT1时,还包括第四引脚PD、第五引脚PE,第一引脚PA、第二引脚PB分别与功率器件的第一端、功率器件的第三端连接,第三引脚PC与第二串联电路的第一限流元件端(供电电源端)连接,第四引脚PD、第五引脚PE与光电耦合器OPT1控制端连接,封装示意图如图16所示。
工作原理:机械开关K1得电闭合,电源通过第一限流元件R1、第一半导体开关D1对第一电容C1充电至约等于第一稳压器件Z1的稳压值,在机械开关K1闭合状态下,第一电压检测开关(A1)截止,第二电压检测开关(A2)截止,在机械开关K1失电时,光电耦合器OPT1截止,第一电压检测开关(A1)被使能,第一电压检测开关(A1)在检测到功率器件QA两端存在电位差时(即实时检测到机械开关K1断开),触发开关TG1触发导通,第一电容C1的电荷通过第一电压检测开关(A1)传递至功率器件QA,驱动功率器件QA导通,第二电压检测开关(A2)在驱动信号的电压不能满足功率器件QA饱和导通时导通,加快对第一电容C1放电,功率器件QA快速截止,达到功率器件QA导通实时驱动灭弧的目的。
本实施例灭弧功率器件驱动装置具有以下优点:
第二电压检测开关(A2)用于防止功率器件工作在放大区,提高功率管过载能力,减少温升;加快第一电容C1的放电速度及第二电压检测开关(A2)截止,提高灭弧装置的响应速度,功率器件QA用于直流灭弧,第一电容C1充电采用了串联一二极管,即第一半导体开关D1、第一电容C1串联而成的第三串联电路与第一电压检测开关(A1)并联的形式,利用第一电容C1电流上拉驱动功率器件QA导通,有利于对负载接负极的NPN型三极管、N沟道效应管、IGBT的驱动, 加上第一电压检测开关(A1)采用电容(第三电容C3)耦合的形式,其在机械开关K1断开状态下,功耗为零,有利于汽车等场合使用。同时采用本发明灭弧功率器件驱动装置的灭弧装置,可以无需同步信号,可应用在按钮开关、船型开关、行程开关等无控制线圈的机械开关灭弧,具有适用范围广的优点。
本发明灭弧功率器件驱动装置的实施例四,如图17所示:
一种灭弧功率器件驱动装置,所需驱动的功率器件QA(场效应管,也可以采用IGBT等压控型器件)与所需灭弧的机械开关K1并联,其包括第一电压检测开关(A1)、第二电压检测开关(A2)、第一限流元件R1、第一电容C1、第一稳压器件Z1(稳压二极管)、第三电阻R3、控制单元(C)、第一光电耦合器OPT1、第二光电耦合器OPT2,第一电压检测开关(A1)的控制端与功率器件QA的第一端连接;第二电压检测开关(A2)两端分别与功率器件QA的第二端、功率器件QA的第三端连接,第二电压检测开关(A2)与第一电压检测开关(A1)串联而成第一串联电路,第二电压检测开关(A2)的控制端与第一串联电路的第一电压检测开关(A1)端连接,第一光电耦合器OPT1的输出端、第二光电耦合器OPT2的控制端与第一电压检测开关(A1)连接,第一光电耦合器OPT1、功率器件QA的驱动电源由PC端电源通过第一限流元件R1、第一电容C1储能提供,第二光电耦合器OPT2输出信号传递至控制单元(C),第一光电耦合器OPT1的控制端与控制单元(C)连接;第一稳压器件Z1与第一电容C1并联。第三电阻R3的两端分别与功率器件QA的第二端、功率器件QA的第三端连接,用于提供第一电容C1的放电通道,当功率器件QA内置电阻时可省略。注:图17所示,第一光电耦合器OPT1的输出端、第二光电耦合器OPT2的控制端与第一电压检测开关(A1)串联在功率器件QA的驱动回路中,实际应用时也可以与第一电压检测开关(A1)的内部电路连接。
工作原理:本装置得电,电源通过第一限流元件R1对第一电容C1充电至约等于第一稳压器件Z1的稳压值,在机械开关K1闭合状态下,第一电压检测开关(A1)截止,第二电压检测开关(A2)截止,在机械开关K1失电时,第一电压检测开关(A1)在检测到功率器件QA两端存在电位差时(即实时检测到机械开关K1断开时)导通,第一电容C1的电荷通过第一光电耦合器OPT1、第二光电耦合器OPT2的控制端、第一电压检测开关(A1)传递至功率器件QA,驱动功率 器件QA导通,第二光电耦合器OPT2输出信号传递至控制单元(C),控制单元(C)通过第一光电耦合器OPT1控制第一电容C1停止放电,第二电压检测开关(A2)在驱动信号的电压不能满足功率器件QA饱和导通时导通,对功率器件QA结电容放电,功率器件QA快速截止,达到功率器件QA实时驱动灭弧且功率器件QA导通时间短的目的。注:当功率器件QA为晶闸管时,第二电压检测开关(A2)可以省略。
本实施例,利用第一电压检测开关(A1)实时驱动控制功率器件QA导通灭弧,第二光电耦合器OPT2反馈信号给控制单元(C),再由控制单元(C)通过第一光电耦合器OPT1控制功率器件QA截止,具有功率器件QA灭弧速度快,且功率器件QA灭弧导通时间短的优点。
以上实施例,可以根据需要,电容均可串联一电阻,或电容串联恒流电路,功率器件等全控型或半控型器件的驱动端串联或并联电阻。本发明的封装示意图并不对引脚做标注,是考虑引脚排列顺序与对应电路的连接关系可根据工艺和外部配套产品情况可以任意排列,同时其外形不做限定,可按现有传统封装外形及引脚方式。
综上所述,本发明第一电压检测开关实时监测机械开关断开,可大大减少驱动功率器件所需的驱动能量,第一电压检测开关的控制能量由功率器件两端提供,第一电压检测开关(A1)的输入回路、第一电压检测开关(A1)的输出回路、功率器件之间非绝缘隔离,具有成本低、体积小的优点;本发明实施例的驱动能量由功率器件所在的电网非隔离提供,采用电容储能,电容通过第一电压检测开关(实时监测机械开关断开)放电的方式,驱动功率器件导通,电容容量要求低(几微法即可),电容可以采用陶瓷贴片电容,具有电路简单、功耗小、成本低、响应速度快、功率器件导通时间小、容易集成化的优点,可以做成集成化灭弧功率器件驱动集成电路,有利电子灭弧技术的推广,同时采用本发明灭弧功率器件驱动装置的灭弧装置,在不需要过零接通时,无需同步信号,可应用在按钮开关、行程开关等无控制线圈的机械开关灭弧,具有适用范围广的优点。本发明包括了功率器件的灭弧装置,具有体积小、使用方便的优点。

Claims (47)

  1. 一种灭弧功率器件驱动装置,所需驱动的功率器件与所需灭弧的机械开关并联,其特征是:其包括第一电压检测开关,所述第一电压检测开关的输入端与所述功率器件两端连接,所述第一电压检测开关串联在所述功率器件的驱动回路中,所述第一电压检测开关在检测到所述功率器件两端存在电位差时导通,驱动信号通过所述第一电压检测开关传递至所述功率器件,驱动所述功率器件导通,所述第一电压检测开关为半控型开关或阈值小于所述功率器件的通态电压的全控型开关。
  2. 根据权利要求1所述的灭弧功率器件驱动装置,其特征是:所述第一电压检测开关的输入回路、所述第一电压检测开关的输出回路、所述功率器件之间非绝缘隔离。
  3. 根据权利要求1所述的灭弧功率器件驱动装置,其特征是:所述第一电压检测开关包括第二限流元件、半导体开关,所述功率器件两端的电位差信号通过所述第二限流元件传递至所述半导体开关的控制端,所述半导体开关串联在所述驱动回路中,所述第二限流元件为一电阻或一电容。
  4. 根据权利要求3所述的灭弧功率器件驱动装置,其特征是:所述半导体开关为晶体管驱动晶闸管等效电路的电路,或晶闸管等效电路,或一晶闸管。
  5. 根据权利要求4所述的灭弧功率器件驱动装置,其特征是:所述晶闸管等效电路或所述晶闸管串联在所述驱动回路中。
  6. 根据权利要求5所述的灭弧功率器件驱动装置,其特征是:所述晶闸管等效电路包括一PNP型晶体管、一NPN型晶体管,所述PNP型晶体管的基极与所述NPN型晶体管的集电极连接,所述PNP型晶体管的集电极与所述NPN型晶体管的基极连接,所述PNP型晶体管的发射极、所述NPN型晶体管的发射极串联在所述驱动回路中。
  7. 根据权利要求1所述的灭弧功率器件驱动装置,其特征是:包括第一电容,所述第一电压检测开关的控制端与所述功率器件的第一端连接,所述第一电容通过所述第一电压检测开关与所述功率器件的第二端、第三端形成驱动回路,所述第一电容连接一用于对所述第一电容充电的开关或第一限流元件。
  8. 根据权利要求7所述的灭弧功率器件驱动装置,其特征是:所述第一电压检测开关对所述第一电容放电至所述第一电压检测开关最小导通电流。
  9. 根据权利要求7所述的灭弧功率器件驱动装置,其特征是:所述功率器件为一单向晶闸管或一双向晶闸管,还包括一单向导通器件、第一稳压器件,所述第一限流元件、所述单向导通器件、所述第一电容串联而成串联电路,所述串联电 路的一端与供电电源连接,所述串联电路的另一端与所述功率器件的第三端连接,所述第一电容通过所述第一电压检测开关、所述功率器件的第二端、所述功率器件的第三端形成驱动回路,所述第一稳压器件与所述第一电容并联或所述第一稳压器件通过所述单向导通器件与所述第一电容并联。
  10. 根据权利要求9所述的灭弧功率器件驱动装置,其特征是:所述第一电压检测开关为全波电压检测电路。
  11. 根据权利要求9所述的灭弧功率器件驱动装置,其特征是:所述供电电源由所述功率器件所在的电网非隔离提供。
  12. 根据权利要求9所述的灭弧功率器件驱动装置,其特征是:所述供电电源为中性线或相对于所述功率器件的第三端的另一相电源。
  13. 一种灭弧装置,其特征是:包括根据权利要求9至12任一项所述的灭弧功率器件驱动装置,还包括所述功率器件、第一引脚、第二引脚、第三引脚,所述灭弧功率器件驱动装置、所述功率器件封装在一绝缘材料中,所述第一引脚、所述第二引脚分别与所述功率器件的第一端、所述功率器件的第三端连接,所述第三引脚与所述串联电路的第一限流元件端连接。
  14. 根据权利要求9所述的灭弧功率器件驱动装置,其特征是:还包括第二电容、第一光电开关,所述第一电压检测开关为电压过零检测开关,所述第一电容通过所述第一光电开关、所述第一电压检测开关、所述功率器件的第二端、所述功率器件的第三端形成驱动回路,在所述机械开关闭合前,所述第一光电开关导通,所述第一电容的电荷通过所述第一光电开关给所述第二电容储能,在所述第一电压检测开关导通时,所述第一电容的电荷通过所述第一光电开关、所述第一电压检测开关驱动所述功率器件导通,然后所述机械开关闭合,所述第一电压检测开关截止,在所述机械开关分断时,所述第一光电开关截止,所述第一电压检测开关导通,所述第二电容通过所述第一电压检测开关驱动所述功率器件导通。
  15. 根据权利要求14所述的灭弧功率器件驱动装置,其特征是:所述第一光电开关的控制端通过一限流元件与所述机械开关的控制端连接。
  16. 根据权利要求14所述的灭弧功率器件驱动装置,其特征是:包括第二光电开关,所述第二光电开关为带晶闸管输出的光电耦合器,或光电耦合器驱动晶闸管等效电路,所述第二光电开关的控制端与所述第一电压检测开关连接,所述第二光电开关输出端与所述机械开关的控制线圈串联。
  17. 根据权利要求1所述的灭弧功率器件驱动装置,其特征是:所述功率器件为 晶闸管,所述第一电压检测开关包括第二限流元件、第一晶体管、第二晶体管、第三晶体管、第四晶体管,所述第二晶体管的发射极与所述第三晶体管的基极连接,所述第二晶体管的基极与所述第三晶体管的发射极连接,所述第二晶体管的集电极与所述第一晶体管的基极连接,所述第四晶体管的基极与所述第三晶体管的集电极连接,所述第四晶体管的集电极与所述第二晶体管的发射极连接,所述第四晶体管的发射极与所述第一晶体管的基极连接,所述第二晶体管的基极通过第二限流元件与所述功率器件的第一端连接,所述第二晶体管的发射极与所述功率器件的第三端连接,所述第一晶体管的发射极、所述第一晶体管的集电极串联在所述驱动回路中。
  18. 根据权利要求17所述的灭弧功率器件驱动装置,其特征是:还包括第五晶体管,所述第五晶体管的基极与所述第一晶体管的集电极连接,所述第五晶体管的集电极与所述第一晶体管的基极连接,所述第五晶体管的发射极串联在所述驱动回路中。
  19. 根据权利要求1所述的灭弧功率器件驱动装置,其特征是:所述功率器件为晶闸管,所述第一电压检测开关包括第二限流元件、第一晶体管、第二晶体管、第三晶体管、第四晶体管,所述第二晶体管的发射极与所述第三晶体管的基极连接,所述第二晶体管的基极与所述第三晶体管的发射极连接,所述第二晶体管的集电极与所述第一晶体管的基极连接,所述第四晶体管的基极与所述第三晶体管的集电极连接,所述第四晶体管的集电极与所述第二晶体管的发射极连接,所述第四晶体管的发射极与所述第一晶体管的基极连接,所述第二晶体管的基极通过第二限流元件与所述功率器件的第一端连接,所述第一晶体管的集电极与所述第二晶体管的基极连接,所述第二晶体管的发射极与所述功率器件的第二端连接,所述第一晶体管的发射极、所述第二晶体管的发射极串联在所述功率器件的驱动回路中。
  20. 根据权利要求1所述的灭弧功率器件驱动装置,其特征是:还包括第二电压检测开关;
    所述第一电压检测开关、所述功率器件的第二端、所述功率器件的第三端形成所述功率器件驱动回路;
    所述第一电压检测开关的控制端与所述功率器件的第一端连接;
    所述第二电压检测开关两端分别与所述功率器件的第二端、所述功率器件的第三端连接。
  21. 根据权利要求20所述的灭弧功率器件驱动装置,其特征是:所述第二电压检测开关与所述第一电压检测开关串联而成第一串联电路,所述第二电压检测开关的控制端与所述第一串联电路的所述第一电压检测开关端连接。
  22. 根据权利要求20所述的灭弧功率器件驱动装置,其特征是:所述第二电压检测开关在所述驱动信号的电压不能满足所述功率器件饱和导通时导通。
  23. 根据权利要求20所述的灭弧功率器件驱动装置,其特征是:所述第二电压检测开关包括电阻、晶体管。
  24. 根据权利要求20所述的灭弧功率器件驱动装置,其特征是:所述第二电压检测开关包括第三稳压器件、第六晶体管、第七晶体管、第十一电阻、第十二电阻、第十三电阻,所述第六晶体管的集电极与所述第七晶体管的基极连接,所述第六晶体管的集电极通过所述第十二电阻与所述第七晶体管的集电极连接,所述第七晶体管的集电极、所述第七晶体管的发射极为所述第二电压检测开关的主回路端,所述第十三电阻、所述第三稳压器件、所述第六晶体管的基极与所述第六晶体管的发射极串联而成第四串联电路,所述第四串联电路与所述第一电容并联,所述第十一电阻的两端分别与所述第六晶体管的基极、所述第六晶体管的发射极连接,所述第六晶体管的发射极与所述第七晶体管的发射极连接。
  25. 根据权利要求20所述的灭弧功率器件驱动装置,其特征是:所述第二电压检测开关包括第三稳压器件、第六晶体管、第七晶体管、第十一电阻、第十二电阻、第十三电阻、第四电容,所述第六晶体管的集电极与所述第七晶体管的基极连接,所述第六晶体管的集电极通过所述第十二电阻与所述第七晶体管的集电极连接,所述第七晶体管的集电极、所述第七晶体管的发射极为所述第二电压检测开关的主回路端,所述第十三电阻、所述第三稳压器件、所述第六晶体管的基极与所述第六晶体管的发射极串联而成串联电路,所述串联电路与所述第二电压检测开关的主回路端并联,所述第十一电阻的两端分别与所述第六晶体管的基极、所述第六晶体管的发射极连接,所述第六晶体管的发射极与所述第七晶体管的发射极连接,所述第四电容的两端分别与所述第七晶体管的基极、所述第七晶体管的发射极连接。
  26. 根据权利要求20所述的灭弧功率器件驱动装置,其特征是:包括第一半导体开关、第一限流元件、第一电容,所述第一半导体开关、所述第一电容、所述第一限流元件依次串联而成第二串联电路,所述第二串联电路与所述机械开关的负载并联,所述第二串联电路的所述第一半导体开关端与所述功率器件的第三端连接,所述第一半导体开关、所述第一电容的共同端与所述功率器件的第二端连接, 所述第一半导体开关、所述第一电容串联而成的第三串联电路与所述第一电压检测开关并联。
  27. 根据权利要求26所述的灭弧功率器件驱动装置,其特征是:包括第一稳压器件,所述第一稳压器件与所述第一电容并联或所述第一稳压器件通过所述第一半导体开关与所述第一电容并联。
  28. 根据权利要求26所述的灭弧功率器件驱动装置,其特征是:所述第一半导体开关为一二极管,所述二极管阴极与所述第一电容连接,所述功率器件用于直流灭弧。
  29. 根据权利要求26所述的灭弧功率器件驱动装置,其特征是:所述第一电压检测开关包括一触发开关、一晶体管、第三电容,所述触发开关与所述第三串联电路并联,所述功率器件的第三端、所述功率器件的第一端之间的电位差信号通过所述第三电容、所述晶体管放大后传递至所述触发开关的触发极。
  30. 根据权利要求29所述的灭弧功率器件驱动装置,其特征是:所述触发开关为一晶闸管或一晶闸管等效电路。
  31. 一种灭弧装置,其特征是:包括根据权利要求26至30任一项所述的灭弧功率器件驱动装置,还包括所述功率器件、第一引脚、第二引脚、第三引脚,所述灭弧功率器件驱动装置、所述功率器件封装在一绝缘材料中,所述第一引脚、所述第二引脚分别与所述功率器件的第一端、所述功率器件的第三端连接,所述第三引脚与所述第二串联电路的第一限流元件端连接。
  32. 根据权利要求26至30任一项所述的灭弧功率器件驱动装置,其特征是:还包括一光电耦合器,所述光电耦合器用于使能所述第一电压检测开关,所述光电耦合器的控制端与所述机械开关的控制端连接。
  33. 一种灭弧装置,其特征是:包括根据权利要求32所述的灭弧功率器件驱动装置,还包括所述功率器件、第一引脚、第二引脚、第三引脚、第四引脚、第五引脚,所述光电耦合器、所述灭弧功率器件驱动装置、所述功率器件封装在一绝缘材料中,所述第一引脚、所述第二引脚分别与所述功率器件的第一端、所述功率器件的第三端连接,所述第三引脚与所述第二串联电路的第一限流元件端连接,第四引脚、第五引脚与所述光电耦合器控制端连接。
  34. 根据权利要求1或20所述的灭弧功率器件驱动装置,其特征是:还包括一控制单元、第一光电耦合器、第二光电耦合器,所述第一光电耦合器的输出端、所述第二光电耦合器的控制端与所述第一电压检测开关连接,所述第二光电耦合器输出信号连接至所述控制单元,所述第一光电耦合器的控制端与所述控制单元连 接。
  35. 根据权利要求20所述的灭弧功率器件驱动装置,其特征是:所述功率器件为压控型器件。
  36. 根据权利要求35所述的灭弧功率器件驱动装置,其特征是:所述功率器件为场效应管,或IGBT。
  37. 根据权利要求1所述的灭弧功率器件驱动装置,其特征是:所述功率器件用于直流灭弧,还包括第一半导体开关、第一限流元件、第一电容,所述第一半导体开关、所述第一电容、所述第一限流元件依次串联而成第二串联电路,所述第二串联电路与所述机械开关的负载并联,所述第二串联电路的所述第一半导体开关端与所述功率器件的第三端连接,所述第一半导体开关、所述第一电容的共同端与所述功率器件的第二端连接,所述第一半导体开关、所述第一电容串联而成的第三串联电路与所述第一电压检测开关并联。
  38. 根据权利要求37所述的灭弧功率器件驱动装置,其特征是:所述第一电压检测开关包括一触发开关、一晶体管、第三电容,所述触发开关与所述第三串联电路并联,所述功率器件的第三端、所述功率器件的第一端之间的电位差信号通过所述第三电容、所述晶体管放大后传递至所述触发开关的触发极。
  39. 根据权利要求37所述的灭弧功率器件驱动装置,其特征是:所述触发开关为一晶闸管或一晶闸管等效电路。
  40. 根据权利要求37所述的灭弧功率器件驱动装置,其特征是:所述第一半导体开关为一二极管,所述二极管阴极与所述第一电容连接。
  41. 根据权利要求37所述的灭弧功率器件驱动装置,其特征是:包括第一稳压器件,所述第一稳压器件与所述第一电容并联或所述第一稳压器件通过所述第一半导体开关与所述第一电容并联。
  42. 根据权利要求37所述的灭弧功率器件驱动装置,其特征是:还包括第二电压检测开关;
    所述第一电压检测开关、所述功率器件的第二端、所述功率器件的第三端形成所述功率器件驱动回路;
    所述第一电压检测开关的控制端与所述功率器件的第一端连接;
    所述第二电压检测开关两端分别与所述功率器件的第二端、所述功率器件的第三端连接,所述第二电压检测开关在所述驱动信号的电压不能满足所述功率器件饱和导通时导通。
  43. 根据权利要求42所述的灭弧功率器件驱动装置,其特征是:所述功率器件为压控型器件。
  44. 根据权利要求43所述的灭弧功率器件驱动装置,其特征是:所述功率器件为场效应管,或IGBT。
  45. 一种灭弧装置,其特征是:包括根据权利要求37至44任一项所述的灭弧功率器件驱动装置,还包括所述功率器件、第一引脚、第二引脚、第三引脚,所述灭弧功率器件驱动装置、所述功率器件封装在一绝缘材料中,所述第一引脚、所述第二引脚分别与所述功率器件的第一端、所述功率器件的第三端连接,所述第三引脚与所述第二串联电路的第一限流元件端连接。
  46. 根据权利要求37至44任一项所述的灭弧功率器件驱动装置,其特征是:还包括一光电耦合器,所述光电耦合器用于使能所述第一电压检测开关,所述光电耦合器的控制端与所述机械开关的控制端连接。
  47. 一种灭弧装置,其特征是:包括根据权利要求46所述的灭弧功率器件驱动装置,还包括所述功率器件、第一引脚、第二引脚、第三引脚、第四引脚、第五引脚,所述光电耦合器、所述灭弧功率器件驱动装置、所述功率器件封装在一绝缘材料中,所述第一引脚、所述第二引脚分别与所述功率器件的第一端、所述功率器件的第三端连接,所述第三引脚与所述第二串联电路的第一限流元件端连接,第四引脚、第五引脚与所述光电耦合器控制端连接。
PCT/CN2017/071791 2016-01-24 2017-01-20 灭弧功率器件驱动装置及灭弧装置 WO2017125054A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187024483A KR101978286B1 (ko) 2016-01-24 2017-01-20 소호용 파워 디바이스의 구동 장치 및 소호 장치
JP2018557182A JP6596781B2 (ja) 2016-01-24 2017-01-20 消弧用パワーデバイスの駆動装置及び消弧装置
US16/072,142 US10468207B2 (en) 2016-01-24 2017-01-20 Arc-extinguishing power device driving apparatus and arc extinguishing apparatus
EP17741085.9A EP3407368B1 (en) 2016-01-24 2017-01-20 Arc-extinguishing power device driving apparatus and arc-extinguishing apparatus
AU2017209635A AU2017209635B2 (en) 2016-01-24 2017-01-20 Arc-extinguishing power device driving apparatus and arc-extinguishing apparatus

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
CN201610070145.8 2016-01-24
CN201610070145 2016-01-24
CN201610116841.8A CN105610301A (zh) 2015-02-27 2016-02-26 晶闸管触发装置
CN201610116841.8 2016-02-26
CN201610133080 2016-03-02
CN201610133080.7 2016-03-02
CN201610176973 2016-03-18
CN201610176973.X 2016-03-18
CN201610307735 2016-05-03
CN201610307735.8 2016-05-03
CN201610392525 2016-05-22
CN201610392525.3 2016-05-22
CN201610403426.0 2016-06-02
CN201610403426 2016-06-02
CN201610946077 2016-10-26
CN201610946077.7 2016-10-26
CN201610923032 2016-10-29
CN201610923032.8 2016-10-29
CN201710029448.XA CN106847582B (zh) 2016-01-24 2017-01-16 灭弧功率器件驱动装置及灭弧装置
CN201710029448.X 2017-01-16

Publications (1)

Publication Number Publication Date
WO2017125054A1 true WO2017125054A1 (zh) 2017-07-27

Family

ID=59361482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071791 WO2017125054A1 (zh) 2016-01-24 2017-01-20 灭弧功率器件驱动装置及灭弧装置

Country Status (6)

Country Link
US (1) US10468207B2 (zh)
EP (1) EP3407368B1 (zh)
JP (1) JP6596781B2 (zh)
KR (1) KR101978286B1 (zh)
AU (1) AU2017209635B2 (zh)
WO (1) WO2017125054A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514940A (zh) * 2019-09-27 2019-11-29 国网四川省电力公司电力科学研究院 一种直流接地极线路电弧熄灭特性试验装置及试验方法
CN111527575A (zh) * 2017-09-14 2020-08-11 广州市金矢电子有限公司 直流灭弧装置
US20210375561A1 (en) * 2018-09-19 2021-12-02 Qiaoshi Guo Arc-extinguishing circuit and apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003851B (zh) * 2017-07-24 2020-01-14 广州市金矢电子有限公司 直流灭弧电路及装置
CN110350899A (zh) * 2019-08-09 2019-10-18 广东福田电器有限公司 无触点开关
FR3107987A1 (fr) * 2020-03-09 2021-09-10 Hager-Electro Sas Dispositif d’interrupteur hybride et de commande
CN111711202A (zh) * 2020-06-30 2020-09-25 合肥众甫工业技术有限公司 基于三相四线制电网的无功补偿电容投切装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153905A (ja) * 1984-12-14 1986-07-12 ゼネラル・エレクトリツク・カンパニイ 消弧装置
CN102323472A (zh) * 2011-09-08 2012-01-18 广州市金矢电子有限公司 电压过零检测装置及过零投切开关
CN103035445A (zh) * 2012-12-17 2013-04-10 江苏元中直流微电网有限公司 大电流直流开关灭弧装置电路
CN103325591A (zh) * 2013-05-28 2013-09-25 北京联动天翼科技有限公司 直流机械开关的包含可控开关的灭弧装置及灭弧方法
CN104392860A (zh) * 2014-03-07 2015-03-04 广州市金矢电子有限公司 电容耦合式灭弧电路及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783305A (en) * 1972-08-18 1974-01-01 Heinemann Electric Co Arc elimination circuit
JPH01313817A (ja) * 1988-06-10 1989-12-19 Matsushita Electric Ind Co Ltd 開閉装置
JP3132589B2 (ja) * 1991-12-09 2001-02-05 富士電機株式会社 開閉装置
JP3441813B2 (ja) * 1994-10-05 2003-09-02 アルプス電気株式会社 機械式スイッチの接点間アークの消去装置
US5703743A (en) * 1996-04-29 1997-12-30 Schweitzer Engineering Laboratories, Inc. Two terminal active arc suppressor
US6621668B1 (en) * 2000-06-26 2003-09-16 Zytron Control Products, Inc. Relay circuit means for controlling the application of AC power to a load using a relay with arc suppression circuitry
AU2002953498A0 (en) * 2002-12-20 2003-01-09 Integrated Electronic Solutions Pty Ltd Relay contact protection
TWM349544U (en) * 2008-07-11 2009-01-21 Goodwell Electric Corp Electronic switch structure capable of eliminating electric arc
US8619395B2 (en) * 2010-03-12 2013-12-31 Arc Suppression Technologies, Llc Two terminal arc suppressor
CN104465167B (zh) 2014-04-04 2017-01-25 广州市金矢电子有限公司 电流监控式电子灭弧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153905A (ja) * 1984-12-14 1986-07-12 ゼネラル・エレクトリツク・カンパニイ 消弧装置
CN102323472A (zh) * 2011-09-08 2012-01-18 广州市金矢电子有限公司 电压过零检测装置及过零投切开关
CN103035445A (zh) * 2012-12-17 2013-04-10 江苏元中直流微电网有限公司 大电流直流开关灭弧装置电路
CN103325591A (zh) * 2013-05-28 2013-09-25 北京联动天翼科技有限公司 直流机械开关的包含可控开关的灭弧装置及灭弧方法
CN104392860A (zh) * 2014-03-07 2015-03-04 广州市金矢电子有限公司 电容耦合式灭弧电路及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407368A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527575A (zh) * 2017-09-14 2020-08-11 广州市金矢电子有限公司 直流灭弧装置
US20210375561A1 (en) * 2018-09-19 2021-12-02 Qiaoshi Guo Arc-extinguishing circuit and apparatus
CN110514940A (zh) * 2019-09-27 2019-11-29 国网四川省电力公司电力科学研究院 一种直流接地极线路电弧熄灭特性试验装置及试验方法

Also Published As

Publication number Publication date
KR101978286B1 (ko) 2019-05-14
EP3407368B1 (en) 2021-03-03
JP2019506131A (ja) 2019-02-28
JP6596781B2 (ja) 2019-10-30
US10468207B2 (en) 2019-11-05
EP3407368A4 (en) 2019-10-23
US20190035571A1 (en) 2019-01-31
AU2017209635B2 (en) 2019-05-02
AU2017209635A1 (en) 2018-09-13
KR20180102668A (ko) 2018-09-17
EP3407368A1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2017125054A1 (zh) 灭弧功率器件驱动装置及灭弧装置
CN106847582B (zh) 灭弧功率器件驱动装置及灭弧装置
WO2015131718A1 (zh) 电子灭弧装置
CN204189670U (zh) 电流反馈式电子灭弧装置
WO2017125053A1 (zh) 直流灭弧功率器件驱动装置及灭弧装置
US10236879B2 (en) Thyristor driving apparatus
WO2016091178A1 (zh) 灭弧器件
CN205407770U (zh) 双向晶闸管触发节流电路及其触发电路
CN205407767U (zh) 单向晶闸管触发节流电路及其触发装置
WO2017125058A1 (zh) 电子灭弧反馈装置及灭弧装置
WO2017125055A1 (zh) 混合式开关
CN107046418B (zh) 一种单火线取电电路
WO2017143586A2 (zh) 晶闸管触发装置
CN110286263A (zh) 过零检测装置及同步开关
WO2017144004A1 (zh) 半控型器件驱动装置
WO2020259424A1 (zh) 灭弧功率器件驱动装置
CN206629042U (zh) 混合式开关
CN206627562U (zh) 过零检测装置及同步开关
WO2017125057A1 (zh) 功率器件驱动装置
WO2017125085A1 (zh) 半控型器件驱动方法及装置、混合式器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187024483

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024483

Country of ref document: KR

Ref document number: 2017741085

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741085

Country of ref document: EP

Effective date: 20180824

ENP Entry into the national phase

Ref document number: 2017209635

Country of ref document: AU

Date of ref document: 20170120

Kind code of ref document: A