WO2017144004A1 - 半控型器件驱动装置 - Google Patents

半控型器件驱动装置 Download PDF

Info

Publication number
WO2017144004A1
WO2017144004A1 PCT/CN2017/074695 CN2017074695W WO2017144004A1 WO 2017144004 A1 WO2017144004 A1 WO 2017144004A1 CN 2017074695 W CN2017074695 W CN 2017074695W WO 2017144004 A1 WO2017144004 A1 WO 2017144004A1
Authority
WO
WIPO (PCT)
Prior art keywords
controlled device
transistor
semi
driving
capacitor
Prior art date
Application number
PCT/CN2017/074695
Other languages
English (en)
French (fr)
Inventor
郭桥石
Original Assignee
广州市金矢电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610117432.XA external-priority patent/CN105634457B/zh
Priority claimed from CN201710028032.6A external-priority patent/CN106788365B/zh
Application filed by 广州市金矢电子有限公司 filed Critical 广州市金矢电子有限公司
Publication of WO2017144004A1 publication Critical patent/WO2017144004A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/06Circuits specially adapted for rendering non-conductive gas discharge tubes or equivalent semiconductor devices, e.g. thyratrons, thyristors

Definitions

  • the semi-controlled device driving device of the invention belongs to the field of electricity, in particular to a semi-controlled device driving device suitable for driving a semi-controlled device such as a thyristor in an AC power grid.
  • Transformer isolation drive The thyristor drive signal is provided by the transformer, which has the disadvantages of large occupied space, low cost performance and inconvenient use.
  • High-voltage electronic switch drive The thyristor drive signal is driven by the main circuit of the thyristor through a resistor, a high-voltage electronic switch (such as a high-voltage optocoupler such as MOC3083) to the trigger pole of the thyristor, and the high-voltage electronic switch is subjected to a higher voltage, which has poor reliability and is easy to hit. The disadvantage of wearing.
  • a high-voltage electronic switch such as a high-voltage optocoupler such as MOC3083
  • the object of the present invention is to provide a semi-controlled device driving device such as a conventional thyristor, and provide a half without a transformer to provide driving energy, no high-voltage electronic switch, small space occupation, high reliability, high cost performance, and convenient use. Control device driver.
  • a semi-controlled device driving device comprises a voltage detecting switch, a first capacitor, a voltage stabilizing device, a diode, a first current limiting component, and a voltage detecting switch connected with a half-controlled device required to be driven, and a semi-controlled type
  • the power grid where the device is located is charged by the first current limiting component and the diode for the first capacitor, and the first capacitor forms a discharge loop through the voltage detecting switch, the second end of the semi-controlled device, and the first end of the semi-controlled device, and the voltage detecting switch
  • the half-controlled device is turned on, the voltage detecting switch is turned off, the voltage stabilizing device is connected in parallel with the first capacitor or the voltage stabilizing device is connected in parallel with the first capacitor through the diode.
  • a semi-controlled device driving device the first current limiting component being a resistor or a capacitor.
  • a semi-controlled device driving device the detection circuit of the voltage detecting switch is not electrically isolated from the output circuit.
  • a semi-controlled device driving device the conduction threshold of the voltage detecting switch is smaller than the on-state voltage of the semi-controlled device.
  • a semi-controlled device driving device, the voltage detecting switch is composed of a semiconductor device, a second capacitor, and a resistor.
  • a semi-controlled device driving device comprising a transistor, a base of the transistor, an emitter of the transistor, and a second capacitor forming a series circuit, wherein the series circuit is connected in parallel with both ends of the semi-controlled device.
  • a semi-controlled device driving device the voltage detecting switch is composed of a semiconductor device and a resistor, and the conduction threshold of the voltage detecting switch is greater than the on-state voltage of the semi-controlled device.
  • a semi-controlled device driving device the average current through the first current limiting component is less than the minimum current required to drive the semi-controlled device to conduct.
  • a semi-controlled device driving device wherein a neutral line of a power grid in which the half-controlled device is located or another phase power source relative to the half-controlled device charges the first capacitor through the first current limiting component and the diode.
  • a semi-controlled device driving device further includes a photocoupler connected to the voltage detecting switch.
  • a semi-controlled device driving device is a unidirectional thyristor or a bidirectional thyristor.
  • a semi-controlled device driving device is a bidirectional thyristor
  • the voltage detecting switch comprises a first transistor, a second transistor, a third transistor, a fourth transistor, a second current limiting component, a first transistor and a fourth transistor
  • the second transistor and the third transistor are PNP type tubes
  • the emitter of the second transistor is connected to the base of the third transistor
  • the base of the second transistor is connected to the emitter of the third transistor
  • the second transistor is The base of the second transistor is connected to the third end of the semi-controlled device
  • the collector of the second transistor is connected to the base of the first transistor
  • the emitter of the second transistor is connected to the first end of the semi-controlled device
  • the base of the fourth transistor is connected to the collector of the third transistor
  • the collector of the fourth transistor is connected to the emitter of the second transistor
  • the emitter of the fourth transistor is connected to the base of the first transistor
  • the first transistor The emitter is driven at the signal input end, and the collector of
  • a semi-controlled device driving device wherein the second current limiting component is a second capacitor or a series circuit composed of a resistor and a diode.
  • a semi-controlled device driving device further comprising a lead, the semi-controlled device driving device is packaged in an insulating material or the above-mentioned semi-controlled device driving device is packaged in an insulating material except the first current limiting component
  • the packaged half-controlled device driver is externally connected via the corresponding pin.
  • a semi-controlled device driver with a package process temperature of at least 125 degrees Celsius is provided.
  • the grid of the semi-controlled device to be driven is supplied to the first capacitor through the first current limiting component.
  • the first capacitor is driven by the voltage detecting switch.
  • the voltage detection switch detects that the half-controlled device is turned on, and the voltage detecting switch is turned off. The purpose of driving a half-controlled device.
  • the invention has reasonable design and utilizes the first capacitor energy storage pulse discharge form, the first capacitor capacity requirement is small, the current through the first current limiting component can be small, and the non-electrical isolation provided by the grid of the semi-controlled device to be driven is provided.
  • the utility model does not need a transformer to provide driving energy, and has the advantages of small occupied space, simple circuit, high cost performance, high reliability and convenient use.
  • Figure 1 is a circuit schematic diagram of an embodiment of a half-controlled device driving device of the present invention.
  • FIG. 2 is a schematic circuit diagram of a second embodiment of a half-controlled device driving device of the present invention.
  • Figure 3 is a series circuit diagram of the resistor and diode of the semi-controlled device of the present invention.
  • FIG. 4 is a first schematic diagram of the package of the semi-controlled device driving device of the present invention.
  • FIG. 5 is a second schematic diagram of the package of the semi-controlled device driving device of the present invention.
  • FIG. 1 One of the embodiments of the semi-controlled device driving device of the present invention is as shown in FIG. 1:
  • a semi-controlled device driving device comprises a voltage detecting switch (A), a first capacitor C1, a photocoupler OPT1, a voltage stabilizing device Z1 (stabilizing diode), a diode D1, a first current limiting component R1 (resistance), First pin P1, second pin P2, third pin P3, fourth pin P4, fifth pin P5, sixth pin P6 (note: pin is not required), voltage detection switch ( A)
  • the corresponding capacitor is connected to the half-controlled device TR1 (bidirectional thyristor) to be driven, and the first capacitor C1 passes through the voltage detecting switch (A), the second pin P2, and the second end of the half-controlled device TR1 ( Trigger pole, the first end of the half-controlled device TR1 (first anode), the first pin P1 forms a discharge loop, and the voltage detection switch (A) is turned off after detecting that the half-controlled device TR1 is turned on, the voltage regulator device Z1 is connected in parallel with the first capacitor C1 through the diode D1 (the voltage
  • Voltage detecting switch (A) The detecting circuit of the voltage detecting switch (A) is not electrically isolated from the output circuit, and the detecting end of the voltage detecting switch (A) is connected to the third end (second anode) of the half-controlled device TR1,
  • the sixth resistor R6, the first transistor Q1 and the fourth transistor Q4 are NPN-type tubes, the second transistor Q2, the third transistor Q3 are PNP-type tubes, and the emitter of the second transistor Q2 is connected to the base of the third transistor Q3.
  • the base of the second transistor Q2 is connected to the emitter of the third transistor Q3, and the base of the second transistor Q2 is connected to the third terminal (second anode) of the half-controlled device TR1 via the second capacitor C2, and the second transistor Q2
  • the collector is connected to the base of the first transistor Q1 through the third resistor R3, the photocoupler OPT1, and the emitter of the second transistor Q2 is connected to the first end (first anode) of the half-controlled device TR1, the fourth transistor
  • the base of Q4 is connected to the collector of the third transistor Q3, the collector of the fourth transistor Q4 is connected to the emitter of the second transistor Q2, and the emitter of the fourth transistor Q4 is passed through the third resistor R3, the optocoupler OPT1 and the
  • the base of one transistor Q1 is connected, the second transistor Q2 is a common emitter circuit, and the fourth transistor Q4 is used for further amplifying the output signal of the third transistor Q3, so that the voltage detecting switch (A) symmetrically amplifies the
  • the second resistor R2 The second resistor Q4 is respectively connected to the emitter of the second transistor Q2 and the base of the second transistor Q2, and the fourth resistor R4 is respectively connected to the emitter of the fourth transistor Q4 and the base of the fourth transistor Q4.
  • the second resistor R2, the fourth resistor R4, and the fifth resistor R5 are used to improve the stability of the circuit, and the third resistor R3 is used to limit the current, respectively, to the emitter of the first transistor Q1 and the base of the first transistor Q1.
  • the sixth resistor R6 is connected in series with the collector of the first transistor Q1 for current limiting, and the second resistor R2, the third resistor R3, the fourth resistor R4, the fifth resistor R5, and the sixth resistor R6 are selected as needed.
  • the photocoupler OPT1 is connected in series with the base of the first transistor Q1, and the photocoupler OPT1 may also be connected in series with the collector of the first transistor Q1, or may be connected to other positions of the circuit as a function of controlling the discharge of the first capacitor C1, when externally connected
  • the photocoupler OPT1, the fifth pin P5, and the sixth pin P6 may be omitted.
  • the voltage detecting switch (A) When turned on, the voltage detecting switch (A) is turned on when the voltage across the half-controlled device TR1 is lower than the on-state voltage of the half-controlled device TR1, and the first capacitor C1 is driven by the first transistor Q1 of the voltage detecting switch (A).
  • the voltage of the control device TR1 and the half-controlled device TR1 reaches the on-state voltage of the half-controlled device TR1, the half-controlled device TR1 is turned on, and the TR1 conduction blind region of the semi-controlled device is minimized or has no conduction dead zone.
  • half-controlled device TR1 after the half-controlled device TR1 is turned on A first end (the first anode) of the half-controlled device
  • the on-state voltage of the third end (second anode) of TR1 appears as a flat wave signal
  • the second capacitor C2 exhibits a high resistance state
  • the voltage detecting switch (A) is turned off to complete the driving process.
  • the second embodiment of the semi-controlled device driving device of the present invention is as shown in FIG. 2:
  • a semi-controlled device driving device comprises a voltage detecting switch (A), a first capacitor C1, a photocoupler OPT1, a voltage stabilizing device Z1 (stabilizing diode), a diode D1, a first current limiting component R1 (resistance), First pin P1, second pin P2, third pin P3, fourth pin P4, fifth pin P5, sixth pin P6 (note: pin is not required), voltage detection switch ( A) connected to the half-controlled device SCR1 (unidirectional thyristor) to be driven through the corresponding pin, the first capacitor C1 passes through the second end of the voltage detecting switch (A), the second pin P2, and the half-controlled device SCR1 (trigger pole), the first end (cathode) of the semi-controlled device SCR1, the first pin P1 forms a discharge loop, and the voltage detecting switch (A) is turned off after detecting that the semi-controlled device SCR1 is turned on, the voltage stabilizing device Z1
  • the diode D1 is connected in parallel with the first capacitor C
  • Voltage detection switch (A) The detection circuit of the voltage detection switch (A) is not electrically isolated from the output circuit, and the detection end of the voltage detection switch (A) is connected to the third end (anode) of the semi-controlled device SC1.
  • the photocoupler OPT1 is connected in series with the base of the first transistor Q1, and the photocoupler OPT1 may also be connected in series with the collector of the first transistor Q1, or may be connected to other positions of the circuit as a function of controlling the discharge of the first capacitor C1, when externally connected
  • the photocoupler OPT1, the fifth pin P5, and the sixth pin P6 may be omitted.
  • the second capacitor C2 passes a relatively large current, and the current through the second capacitor C2 drives the voltage detection switch (A).
  • the voltage detecting switch (A) is turned on when the voltage across the half-controlled device SCR1 is lower than the on-state voltage of the half-controlled device SCR1, the first capacitor C1 is driven by the first transistor Q1 of the voltage detecting switch (A).
  • the voltage across the control device SCR1 and the half-controlled device SCR1 reaches the on-state voltage of the semi-controlled device SCR1, the semi-controlled device SCR1 is turned on, reaching the minimum of the conduction-controlled blind region of the semi-controlled device SCR1.
  • the physical characteristics of the capacitor whose voltage across the capacitor cannot be abrupt are turned on from the half-controlled device to the half-controlled device (that is, when a voltage inflection point will appear at both ends of the half-controlled device), and the pass capacitor (
  • the current of the second capacitor C2) is the largest, and the voltage detecting switch (A) can obtain the maximum driving current, and the on-state voltage of the half-controlled device is a straight waveform at one end, which is equivalent to a DC.
  • the voltage, at this time, the current through the capacitor is almost zero, the voltage detecting switch (A) amplifies the current through the second capacitor C2, and the capacity requirement of the second capacitor C2 is low. Under normal working conditions, only 1 nF to 47 nF can be used.
  • the second capacitor C1 can also be connected in series with a current limiting resistor, the resistance is recommended to be selected around 10 ohms, the capacity of the second capacitor C2 and its series
  • the resistance of the current limiting resistor is not too large, and the voltage detecting switch (A) is only a circuit including a semiconductor device, a second capacitor C2, and a resistor, wherein the second capacitor C2 is coupled to the base of the transistor and the transistor.
  • the poles form a series circuit, the series circuit is connected in parallel with the two ends of the semi-controlled device, the threshold of the voltage detecting switch (A) is small, the conduction threshold of the voltage detecting switch (A) is smaller than the on-state voltage of the semi-controlled device, and the circuit is simple. low.
  • the second capacitor C2 of the above two embodiments may also be replaced by a series circuit composed of a resistor and a diode as shown in FIG. 3.
  • the second current limiting component is such that the voltage detecting switch (A) is turned on when the voltage across the half-controlled device is greater than the on-state voltage of the half-controlled device, and the voltage detecting switch (A) is turned off when the half-controlled device is turned on.
  • the voltage detection switch (A) has a conduction threshold greater than that of the half-controlled device, and has a certain driving dead zone, but the driving power consumption is lower.
  • the voltage detecting switch (A) is only a circuit including a semiconductor device and a resistor. The circuit is simple and low cost.
  • the first capacitor C1, the diode D1, and the first current limiting component R1 form a series circuit, and the connection order thereof can be adjusted according to an actual application.
  • One end of the series circuit is connected to the first end of the semi-controlled device.
  • the other end is connected to the input power supply.
  • the voltage regulation value of the voltage regulator device Z1 can be set to about 20V.
  • the capacitance value of the first capacitor C1 can be set to a non-polarity capacitor of one to ten microfarads (using a ceramic capacitor, it is recommended to paste Chip capacitor), the discharge current of the first capacitor C1 is sufficient to meet the instantaneous trigger current of the half-controlled device, the first current limiting component R1 can adopt a resistor, and the current through the first current limiting component R1 can be much smaller than that of the driving half-controlled device ( The minimum driving current required for conduction of the unidirectional thyristor or the triac (generally the trigger current of the reliable triggering of the tensor ampere thyristor is several tens of milliamps), and the resistance value of the first current limiting component R1 can be compared Larger, the operating current can be set to 1 mA (sufficient to drive several hundred amps of thyristors), even at 1 mA, the operating current is 380V, the first current limiting component R1 consumes only 0.38W, working When the
  • the semi-controlled device driving device described above may be packaged in an insulating material or the semi-controlled device driving device may be packaged in an insulating material in addition to the first current limiting device R1.
  • the half-controlled device driver is supplied through the corresponding pin (first pin P1, second pin P2, third pin P3, fourth pin P4, fifth pin P5, sixth pin P6).
  • External connection package schematic shown in Figure 4, when the first current limiting component R1 is external, the fourth pin P4 is used to be non-isolated from the grid through the external first current limiting component R1, without the first current limiting component R1
  • the product is still within the scope of the present invention.
  • the photocoupler OPT1, the fifth pin P5, and the sixth pin P6 may be omitted.
  • the package schematic is shown in Figure 5. Since the above first capacitor and the second capacitor have low capacity requirements, non-polar capacitors such as ceramics can be used.
  • the package process temperature of each embodiment can be up to 185 degrees Celsius (the minimum recommended is not less than 125 degrees Celsius).
  • the package schematic of the present invention is not correct Do foot mark, it is to consider the relationship between the pin connector and the corresponding circuit arrangement order may be arbitrarily arranged according to the process and the external case ancillary products, while its shape is not limited.
  • the other end of the first terminal (ie, the main loop end of the thyristor) connected to the semi-controlled device of the present invention is also defined as a neutral line.
  • the second semi-controlled device driving device of the first invention can be used to pass through the second semi-controlled device driving device of the other phase and the other phase of the semi-controlled device driving device with respect to the first inventive device. Power connection for easy anti-parallel drive in unidirectional half-controlled devices.
  • the semi-controlled device driving device of the present invention has the following advantages:
  • the driving energy of the semi-controlled device is directly provided by the AC current grid of the semi-controlled device through the first current limiting component, no transformer, no high-voltage electronic switch, high reliability, simple circuit, small footprint, high cost performance, and use. Convenience.
  • Capacitor energy storage trigger mode is adopted to detect the conduction state of the semi-controlled device through the voltage detection switch, and the detection of the semi-controlled device is turned on, and the capacitor discharge is immediately turned off, and only a very short time is required to complete the semi-controlled device.
  • the triggering process has the characteristics of large instantaneous output current and strong triggering capability.
  • the working current of the first current limiting component is much smaller than the minimum triggering current for triggering the thyristor to be turned on, and the working energy consumption is low.
  • the control mode of the voltage detection switch is turned on when the on-state voltage is not greater than the half-controlled device, which overcomes the driving blind zone, so that the semi-controlled device has no conduction blind zone or the conduction blind zone is extremely small, which greatly reduces the harmonicity to the power grid.
  • Wave pollution and interference can complete the driving process in tens of microseconds, and has the advantage of low driving energy consumption.
  • the control mode of the voltage detection switch is turned on when the on-state voltage of the device is larger than the half-controlled device, and the driving process can be completed within a few microseconds, which has the advantage of minimal driving energy consumption.
  • the utility model has the advantages of higher working energy efficiency, small thyristor conduction blind zone, no high frequency interference and lower cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

一种半控型器件驱动装置,属于电学领域,特别是一种适合在交流电网中驱动晶闸管等半控型器件的半控型器件驱动装置,包括一电压检测开关(A)、第一电容(C1)、一稳压器件(Z1)、一二极管(D1)、第一限流元件(R1),电压检测开关(A)与所需驱动的半控型器件(TR1、SCR1)连接,半控型器件(TR1、SCR1)所在的电网(L、N)通过第一限流元件(R1)、二极管(D1)对第一电容(C1)充电,第一电容(C1)通过电压检测开关(A)、半控型器件(TR1、SCR1)的第二端(P2)、半控型器件(TR1、SCR1)的第一端(P1)形成放电回路,电压检测开关(A)在检测到半控型器件(TR1、SCR1)导通后截止,稳压器件(Z1)与第一电容(C1)并联或稳压器件(Z1)通过二极管(D1)与第一电容(C1)并联,该半控型器件驱动装置具有占用空间小、可靠性高、成本低、使用方便的优点。

Description

半控型器件驱动装置 技术领域
本发明半控型器件驱动装置属于电学领域,特别是一种适合在交流电网中驱动晶闸管等半控型器件的半控型器件驱动装置。
背景技术
目前在交流电网中,广泛使用晶闸管等半控型器件对电力电容、电机、发热元件进行控制,其驱动装置采用变压器隔离驱动或高压电子开关驱动,其存在以下缺点:
1.变压器隔离驱动:晶闸管驱动信号由变压器提供,存在占用空间大及性价比低、使用不便等缺点。
2.高压电子开关驱动:晶闸管驱动信号由晶闸管的主回路通过电阻、高压电子开关(如MOC3083等高压光电耦合器)到晶闸管的触发极,高压电子开关承受较高电压,存在可靠性差、容易击穿的缺点。
发明内容
本发明的目的在于针对现有晶闸管等半控型器件驱动装置的不足之处而提供一种无需变压器提供驱动能量、无需高压电子开关、占用空间小、高可靠性、性价比高、使用方便的半控型器件驱动装置。
实现本发明的目的是通过以下技术方案来达到的:
一种半控型器件驱动装置,包括一电压检测开关、第一电容、一稳压器件、一二极管、第一限流元件,电压检测开关与所需驱动的半控型器件连接,半控型器件所在的电网通过第一限流元件、二极管为第一电容充电,第一电容通过电压检测开关、半控型器件的第二端、半控型器件的第一端形成放电回路,电压检测开关检测到半控型器件导通,电压检测开关截止,稳压器件与第一电容并联或稳压器件通过二极管与第一电容并联。
一种半控型器件驱动装置,第一限流元件为一电阻或一电容。
一种半控型器件驱动装置,电压检测开关的检测回路与输出回路非电气隔离。
一种半控型器件驱动装置,电压检测开关的导通阈值小于半控型器件的通态电压。
一种半控型器件驱动装置,电压检测开关由半导体器件、第二电容、电阻组成。
一种半控型器件驱动装置,半导体器件包括晶体管,晶体管的基极、晶体管的发射极、第二电容组成串联电路,所述串联电路与所述半控型器件两端并联。
一种半控型器件驱动装置,电压检测开关由半导体器件、电阻组成,电压检测开关的导通阈值大于半控型器件的通态电压。
一种半控型器件驱动装置,通过第一限流元件的平均电流小于驱动半控型器件导通所需的最小电流。
一种半控型器件驱动装置,半控型器件所在的电网的中性线或相对于半控型器件的另一相电源通过第一限流元件、二极管对第一电容充电。
一种半控型器件驱动装置,还包括一光电耦合器,光电耦合器与电压检测开关连接。
一种半控型器件驱动装置,半控型器件为单向晶闸管或双向晶闸管。
一种半控型器件驱动装置,半控型器件为双向晶闸管,电压检测开关包括第一晶体管、第二晶体管、第三晶体管、第四晶体管、第二限流元件,第一晶体管、第四晶体管为NPN型管,第二晶体管、第三晶体管为PNP型管,第二晶体管的发射极与第三晶体管的基极连接,第二晶体管的基极与第三晶体管的发射极连接,第二晶体管的基极通过第二限流元件与半控型器件的第三端连接,第二晶体管的集电极与第一晶体管的基极连接,第二晶体管的发射极与半控型器件的第一端连接,第四晶体管的基极与第三晶体管的集电极连接,第四晶体管的集电极与第二晶体管的发射极连接,第四晶体管的发射极与第一晶体管的基极连接,第一晶体管的发射极为驱动信号输入端,第一晶体管的集电极与半控型器件的触发极连接。
一种半控型器件驱动装置,第二限流元件为第二电容或由电阻与二极管组成的串联电路。
一种半控型器件驱动装置,还包括引脚,半控型器件驱动装置封装在一绝缘材料中或除第一限流元件外的以上所述的半控型器件驱动装置封装在一绝缘材料中,封装后的半控型器件驱动装置通过相应引脚供外部连接。
一种半控型器件驱动装置,封装工艺温度至少为125摄氏度。
工作原理:所需驱动的半控型器件所在的电网通过第一限流元件提供给第一电容充电,在半控型器件的驱动回路接通后,第一电容通过电压检测开关驱动半控型器件导通,电压检测开关检测到半控型器件导通,电压检测开关截止,达到 对半控型器件驱动的目的。
本发明设计合理,利用第一电容储能脉冲放电形式,第一电容容量要求小,通过第一限流元件的电流可以很小,由所需驱动的半控型器件所在的电网非电气隔离提供,无需变压器提供驱动能量,具有占用空间小、电路简单、性价比高、可靠性高、使用方便的优点。
附图说明
图1本发明半控型器件驱动装置实施例之一电路原理图。
图2本发明半控型器件驱动装置实施例之二电路原理图。
图3本发明半控型器件的电阻与二极管组成的串联电路图。
图4本发明半控型器件驱动装置封装示意图一。
图5本发明半控型器件驱动装置封装示意图二。
具体实施方式
本发明半控型器件驱动装置的实施例之一,如图1所示:
一种半控型器件驱动装置,包括电压检测开关(A)、第一电容C1、光电耦合器OPT1、稳压器件Z1(稳压二极管)、二极管D1、第一限流元件R1(电阻)、第一引脚P1、第二引脚P2、第三引脚P3、第四引脚P4、第五引脚P5、第六引脚P6(注:引脚为非必需项),电压检测开关(A)通过相应引脚与所需驱动的半控型器件TR1(双向晶闸管)连接,第一电容C1通过电压检测开关(A)、第二引脚P2、半控型器件TR1的第二端(触发极)、半控型器件TR1的第一端(第一阳极)、第一引脚P1形成放电回路,电压检测开关(A)在检测到半控型器件TR1导通后截止,稳压器件Z1通过二极管D1与第一电容C1并联(也可以稳压器件Z1直接与第一电容C1并联,但二极管D1耐压要求提高,第四引脚P4外面不得串联电容限流),半控型器件TR1所在的电网通过第四引脚P4、第一限流元件R1、二极管D1对第一电容C1充电,光电耦合器OPT1用于控制第一电容C1放电,第五引脚P5、第六引脚P6与光电耦合器OPT1的控制端连接。
电压检测开关(A):电压检测开关(A)的检测回路与输出回路非电气隔离,电压检测开关(A)的检测端与半控型器件TR1的第三端(第二阳极)连接,其包括第一晶体管Q1、第二晶体管Q2、第三晶体管Q3、第四晶体管Q4、第二电容C2(第二限流元件)、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、 第六电阻R6,第一晶体管Q1、第四晶体管Q4为NPN型管,第二晶体管Q2、第三晶体管Q3为PNP型管,第二晶体管Q2的发射极与第三晶体管Q3的基极连接,第二晶体管Q2的基极与第三晶体管Q3的发射极连接,第二晶体管Q2的基极通过第二电容C2与半控型器件TR1的第三端(第二阳极)连接,第二晶体管Q2的集电极通过第三电阻R3、光电耦合器OPT1与第一晶体管Q1的基极连接,第二晶体管Q2的发射极与半控型器件TR1的第一端(第一阳极)连接,第四晶体管Q4的基极与第三晶体管Q3的集电极连接,第四晶体管Q4的集电极与第二晶体管Q2的发射极连接,第四晶体管Q4的发射极通过第三电阻R3、光电耦合器OPT1与第一晶体管Q1的基极连接,第二晶体管Q2为共发射极电路,第四晶体管Q4用于进一步对第三晶体管Q3输出信号进行放大,使得电压检测开关(A)对信号的正负波对称放大,第二电阻R2两端分别与第二晶体管Q2的发射极、第二晶体管Q2的基极连接,第四电阻R4两端分别与第四晶体管Q4的发射极、第四晶体管Q4的基极连接,第五电阻R5两端分别与第一晶体管Q1的发射极、第一晶体管Q1的基极连接,第二电阻R2、第四电阻R4、第五电阻R5用于提高电路的稳定性,第三电阻R3用于限流,第六电阻R6与第一晶体管Q1的集电极串联,用于限流,第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6根据需要选用。
光电耦合器OPT1与第一晶体管Q1的基极串联,光电耦合器OPT1也可以与第一晶体管Q1的集电极串联,也可以连接电路的其它位置作为控制第一电容C1放电的作用,当外接的半控型器件TR1的第二端(触发极)连有控制开关时,光电耦合器OPT1、第五引脚P5、第六引脚P6可以省略。
工作原理:L端上电,中性线(实际使用时也可以连接相对于半控型器件TR1的另一相电源)通过第一限流元件R1、二极管D1给第一电容C1充电,第五引脚P5、第六引脚P6输入控制信号,第一电容C1通过电压检测开关(A)驱动半控型器件TR1导通,在半控型器件TR1截止到导通区间,半控型器件TR1两端存在很高的dv/dt(电压变化率),由于电容两端电压不能突变的物理特征,第二电容C2通过比较大的电流,通过第二电容C2的电流驱动电压检测开关(A)导通,电压检测开关(A)在半控型器件TR1两端的电压小于半控型器件TR1的通态电压时导通,第一电容C1通过电压检测开关(A)的第一晶体管Q1驱动半控型器件TR1,半控型器件TR1两端电压达到半控型器件TR1通态电压时,半控型器件TR1导通,达到驱动半控型器件TR1导通盲区极小或无导通盲区的目的;在半控型器件TR1导通后,半控型器件TR1的第一端(第一阳极)对半控型器件 TR1的第三端(第二阳极)通态电压呈现为平波信号,第二电容C2呈现高阻态,电压检测开关(A)截止,完成驱动过程。
本发明半控型器件驱动装置的实施例之二,如图2所示:
一种半控型器件驱动装置,包括电压检测开关(A)、第一电容C1、光电耦合器OPT1、稳压器件Z1(稳压二极管)、二极管D1、第一限流元件R1(电阻)、第一引脚P1、第二引脚P2、第三引脚P3、第四引脚P4、第五引脚P5、第六引脚P6(注:引脚为非必需项),电压检测开关(A)通过相应引脚与所需驱动的半控型器件SCR1(单向晶闸管)连接,第一电容C1通过电压检测开关(A)、第二引脚P2、半控型器件SCR1的第二端(触发极)、半控型器件SCR1的第一端(阴极)、第一引脚P1形成放电回路,电压检测开关(A)在检测到半控型器件SCR1导通后截止,稳压器件Z1通过二极管D1与第一电容C1并联(也可以稳压器件Z1直接与第一电容C1并联,但二极管D1耐压要求提高,第四引脚P4外面不得连接电容限流),半控型器件SCR1所在的电网通过第四引脚P4、第一限流元件R1、二极管D1对第一电容C1充电,光电耦合器OPT1用于控制第一电容C1放电,第五引脚P5、第六引脚P6与光电耦合器OPT1的控制端连接。
电压检测开关(A):电压检测开关(A)的检测回路与输出回路非电气隔离,电压检测开关(A)的检测端与半控型器件SC1的第三端(阳极)连接。
光电耦合器OPT1与第一晶体管Q1的基极串联,光电耦合器OPT1也可以与第一晶体管Q1的集电极串联,也可以连接电路的其它位置作为控制第一电容C1放电的作用,当外接的半控型器件SCR1的第二端(触发极)连有控制开关时,光电耦合器OPT1、第五引脚P5、第六引脚P6可以省略。
工作原理:L端上电,中性线(实际使用时也可以连接相对于半控型器件SCR1的另一相电源)通过第一限流元件R1、二极管D1给第一电容C1充电,第五引脚P5、第六引脚P6输入控制信号,第一电容C1通过电压检测开关(A)驱动半控型器件SCR1导通,在半控型器件SCR1截止到导通区间,半控型器件SCR1两端存在很高的dv/dt(电压变化率),由于电容两端电压不能突变的物理特征,第二电容C2通过比较大的电流,通过第二电容C2的电流驱动电压检测开关(A)导通,电压检测开关(A)在半控型器件SCR1两端的电压小于半控型器件SCR1的通态电压时导通,第一电容C1通过电压检测开关(A)的第一晶体管Q1驱动半控型器件SCR1,半控型器件SCR1两端电压达到半控型器件SCR1通态电压时,半控型器件SCR1导通,达到驱动半控型器件SCR1导通盲区极小或无导通盲区的目的;在半控型器件SCR1导通后,半控型器件SCR1的第三端(阳极)对半控型 器件SCR1的第一端(阴极)通态电压呈现为平波信号,第二电容C2呈现高阻态,电压检测开关(A)截止,完成驱动过程。
以上两实施例,利用电容其两端电压不能突变的物理特征,从半控型器件截止到半控型器件导通(即在半控型器件两端将出现电压拐点时),其通过电容(第二电容C2)的电流为最大,电压检测开关(A)可得到最大的驱动电流,同时半控型器件导通后其通态电压呈现的是一端较为平直的波形,其相当于一个直流电压,此时通过电容的电流几乎为零,电压检测开关(A)对通过第二电容C2的电流进行放大,对第二电容C2的容量要求低,一般工况下,只要1nF至47nF即可达到满意效果(可以采用陶瓷电容等无极性电容,建议陶瓷贴片电容),第二电容C1也可以串联一限流电阻,阻值建议在10欧姆左右选取,第二电容C2的容量及与其串联的限流电阻的阻值不宜太大,电压检测开关(A)仅为一包括半导体器件、第二电容C2、电阻的电路,其中第二电容C2与晶体管的基极、晶体管的发射极组成串联电路,该串联电路与所述半控型器件两端并联,电压检测开关(A)阈值小,电压检测开关(A)导通阈值小于半控型器件的通态电压,电路简单成本低。
以上二实施例第二电容C2也可以采用如图3所示的电阻与二极管组成的串联电路替代,为方便归纳描述,第二电容C2及如图3所示的电阻与二极管组成的串联电路定义为第二限流元件,使得电压检测开关(A)在半控型器件两端的电压大于半控型器件的通态电压时导通,当半控型器件导通后电压检测开关(A)截止,电压检测开关(A)导通阈值大于半控型器件的通态电压,其存在一定驱动盲区,但其驱动功耗更低电压检测开关(A)仅为一包括半导体器件、电阻的电路,电路简单成本低。
以上二实施例,第一电容C1、二极管D1、第一限流元件R1形成一串联电路,其连接顺序,可以根据实际应用调整,该串联电路的一端与半控型器件的第一端连接,另一端连接输入电源,稳压器件Z1的稳压值可以设定为20V左右,第一电容C1的电容值可以设定为一到十微法的无极性电容(采用陶瓷电容即可,建议贴片电容),第一电容C1的放电电流足够满足半控型器件的瞬间触发电流,第一限流元件R1可以采用电阻,通过第一限流元件R1的电流可以远小于驱动半控型器件(单向晶闸管或双向晶闸管)导通所需的最小驱动电流(一般几十安培晶闸管的可靠触发导通的触发电流为几十毫安),第一限流元件R1的电阻值可以比 较大,工作电流可以设定为1毫安内(足以驱动几百安培的晶闸管),即使按1毫安计,工作电压为380V时,第一限流元件R1功耗仅为0.38W,工作电压为220V时,第一限流元件R1功耗仅为0.22W;第一限流元件R1也可以改用一电容,或采用一电阻与一电容串联电路,工作原理相同,也在本专利保护范围内。
为方便使用,批量化自动化生产,可把以上所述的半控型器件驱动装置封装在一绝缘材料中或所述的半控型器件驱动装置除第一限流元件R1外封装在一绝缘材料中,半控型器件驱动装置通过相应引脚(第一引脚P1、第二引脚P2、第三引脚P3、第四引脚P4、第五引脚P5、第六引脚P6)供外部连接,封装示意图如图4所示,第一限流元件R1外置时,第四引脚P4用于通过外部第一限流元件R1与电网非隔离连接,不带第一限流元件R1的产品仍在本发明专利范围内,当外接的半控型器件的的第二端(触发极)连有控制开关时,光电耦合器OPT1、第五引脚P5、第六引脚P6可以省略,封装示意图如图5所示,由于以上第一电容、第二电容容量要求低,可采用陶瓷等无极性电容,各实施例封装工艺温度要求可达185摄氏度封装(最低建议不低于125摄氏度封装),本发明的封装示意图并不对引脚做标注,是考虑引脚排列顺序与对应电路的连接关系可根据工艺和外部配套产品情况可以任意排列,同时其外形不做限定。
在单相交流供电系统中使用时,与本发明半控型器件驱动装置连接的相对于半控型器件的第一端(即晶闸管的主回路端)的另一端电源也定义为中性线,在三相电使用时可以采用第一本发明半控型器件驱动装置通过另一相的第二本发明半控型器件驱动装置与相对于第一本发明半控型器件驱动装置的另一相电源连接,方便在单向半控型器件的反并联驱动使用。
综上所述,本发明半控型器件驱动装置具有以下优点:
1.半控型器件的驱动能量直接由半控型器件所在的交流电网通过第一限流元件提供,无需变压器、无需高压电子开关、可靠性高、电路简单、占用空间小、性价比高、使用方便。
2.采用电容储能触发方式,通过电压检测开关对半控型器件的导通状态进行检测,检测半控型器件导通,马上关闭电容放电,仅需极短的时间完成半控型器件的触发过程,具有瞬间输出电流大、触发能力强的特点,同时第一限流元件工作电流远小于触发晶闸管导通的最小触发电流,工作能耗低。
3.采用不大于半控型器件的通态电压时电压检测开关导通的控制方式,克服了驱动盲区,使得半控型器件无导通盲区或导通盲区极小,大大减少对电网的谐 波污染和干扰,可达几十微秒内完成驱动过程,具有驱动能耗小的优点。
4.采用大于半控型器件的通态电压时电压检测开关导通的控制方式,可达几个微秒内完成驱动过程,具有驱动能耗极小的优点。
5.与传统脉冲变压器驱动晶闸管等半控型器件相比,具有工作能效更高、晶闸管导通盲区小、无高频干扰、成本更低的优点。
6.封装集成化设计,方便使用、通用性好、成本低,有利于推广。

Claims (15)

  1. 一种半控型器件驱动装置,其特征是:包括一电压检测开关、第一电容、一稳压器件、一二极管、第一限流元件,所述电压检测开关与所需驱动的半控型器件连接,所述半控型器件所在的电网通过所述第一限流元件、所述二极管对所述第一电容充电,所述第一电容通过所述电压检测开关、所述半控型器件的第二端、所述半控型器件的第一端形成放电回路,所述电压检测开关检测到所述半控型器件导通,所述电压检测开关截止,所述稳压器件与所述第一电容并联或所述稳压器件通过所述二极管与所述第一电容并联。
  2. 根据权利要求1所述的半控型器件驱动装置,其特征是:所述第一限流元件为一电阻或一电容。
  3. 根据权利要求1所述的半控型器件驱动装置,其特征是:所述电压检测开关的检测回路与输出回路非电气隔离。
  4. 根据权利要求1所述的半控型器件驱动装置,其特征是:所述电压检测开关的导通阈值小于所述半控型器件的通态电压。
  5. 根据权利要求4所述的半控型器件驱动装置,其特征是:所述电压检测开关由半导体器件、第二电容、电阻组成。
  6. 根据权利要求5所述的半控型器件驱动装置,其特征是:所述半导体器件包括晶体管,所述晶体管的基极、所述晶体管的发射极、所述第二电容组成串联电路,所述串联电路与所述半控型器件两端并联。
  7. 根据权利要求1所述的半控型器件驱动装置,其特征是:所述电压检测开关由半导体器件、电阻组成,所述电压检测开关的导通阈值大于所述半控型器件的通态电压。
  8. 根据权利要求1所述的半控型器件驱动装置,其特征是:通过所述第一限流元件的平均电流小于驱动所述半控型器件导通所需的最小电流。
  9. 根据权利要求1所述的半控型器件驱动装置,其特征是:所述半控型器件所在电网的中性线或相对于所述半控型器件的另一相电源通过所述第一限流元件、所述二极管对所述第一电容充电。
  10. 根据权利要求1所述的半控型器件驱动装置,其特征是:还包括一光电耦合器,所述光电耦合器与所述电压检测开关连接。
  11. 根据权利要求1所述的半控型器件驱动装置,其特征是:所述半控型器件为单向晶闸管或双向晶闸管。
  12. 根据权利要求1所述的半控型器件驱动装置,其特征是:所述半控型器件为 双向晶闸管,所述电压检测开关包括第一晶体管、第二晶体管、第三晶体管、第四晶体管、第二限流元件,所述第一晶体管、所述第四晶体管为NPN型管,所述第二晶体管、所述第三晶体管为PNP型管,所述第二晶体管的发射极与所述第三晶体管的基极连接,所述第二晶体管的基极与所述第三晶体管的发射极连接,所述第二晶体管的基极通过所述第二限流元件与所述半控型器件的第三端连接,所述第二晶体管的集电极与所述第一晶体管的基极连接,所述第二晶体管的发射极与所述半控型器件的第一端连接,所述第四晶体管的基极与所述第三晶体管的集电极连接,所述第四晶体管的集电极与所述第二晶体管的发射极连接,所述第四晶体管的发射极与所述第一晶体管的基极连接,所述第一晶体管的发射极为驱动信号输入端,所述第一晶体管的集电极与所述半控型器件的触发极连接。
  13. 根据权利要求12所述的半控型器件驱动装置,其特征是:所述第二限流元件为第二电容或由电阻与二极管组成的串联电路。
  14. 根据权利要求1至13任一项所述的半控型器件驱动装置,其特征是:还包括引脚,所述的半控型器件驱动装置封装在一绝缘材料中或除所述第一限流元件外的所述的半控型器件驱动装置封装在一绝缘材料中,封装后所述的半控型器件驱动装置通过所述引脚供外部连接。
  15. 根据权利要求14所述的半控型器件驱动装置,其特征是:所述封装的封装工艺温度至少为125摄氏度。
PCT/CN2017/074695 2016-02-26 2017-02-24 半控型器件驱动装置 WO2017144004A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201610117432.X 2016-02-26
CN201610117432.XA CN105634457B (zh) 2015-02-27 2016-02-26 晶闸管驱动装置
CN201610647521 2016-08-10
CN201610647521.5 2016-08-10
CN201610758333.X 2016-08-30
CN201610758333 2016-08-30
CN201610889588.X 2016-10-12
CN201610889588 2016-10-12
CN201611030829.1 2016-11-22
CN201611030829 2016-11-22
CN201710028032.6 2017-01-16
CN201710028032.6A CN106788365B (zh) 2016-01-24 2017-01-16 半控型器件驱动方法及装置、混合式器件

Publications (1)

Publication Number Publication Date
WO2017144004A1 true WO2017144004A1 (zh) 2017-08-31

Family

ID=59684717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074695 WO2017144004A1 (zh) 2016-02-26 2017-02-24 半控型器件驱动装置

Country Status (1)

Country Link
WO (1) WO2017144004A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023742A (ja) * 1996-06-28 1998-01-23 Hitachi Ltd 半導体電力変換装置
CN202077009U (zh) * 2011-05-26 2011-12-14 比亚迪股份有限公司 一种可控硅的隔离触发电路
CN202435365U (zh) * 2011-05-18 2012-09-12 广州市金矢电子有限公司 触发节能装置及晶闸管开关
CN103683861A (zh) * 2013-11-28 2014-03-26 中冶南方(武汉)自动化有限公司 一种新型的可控硅触发电路
CN105634457A (zh) * 2015-02-27 2016-06-01 广州市金矢电子有限公司 晶闸管驱动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023742A (ja) * 1996-06-28 1998-01-23 Hitachi Ltd 半導体電力変換装置
CN202435365U (zh) * 2011-05-18 2012-09-12 广州市金矢电子有限公司 触发节能装置及晶闸管开关
CN202077009U (zh) * 2011-05-26 2011-12-14 比亚迪股份有限公司 一种可控硅的隔离触发电路
CN103683861A (zh) * 2013-11-28 2014-03-26 中冶南方(武汉)自动化有限公司 一种新型的可控硅触发电路
CN105634457A (zh) * 2015-02-27 2016-06-01 广州市金矢电子有限公司 晶闸管驱动装置

Similar Documents

Publication Publication Date Title
US10807184B2 (en) SiC inverted plasma cutting power supply
WO2017125054A1 (zh) 灭弧功率器件驱动装置及灭弧装置
WO2016134669A1 (zh) 晶闸管驱动装置
CN107394753B (zh) 一种用于功率器件的软关断保护电路及方法
CN106783297A (zh) 直流灭弧功率器件驱动装置及灭弧装置
CN205407770U (zh) 双向晶闸管触发节流电路及其触发电路
CN105656467A (zh) 单向晶闸管触发节流电路及其触发装置
WO2017125055A1 (zh) 混合式开关
CN105406714B (zh) 一种dc-dc变换器集成电路及其应用电路
WO2017125056A1 (zh) 过零检测装置及同步开关
WO2017144004A1 (zh) 半控型器件驱动装置
TWI519052B (zh) 具短路保護的橋式電路及其方法
CN107733411B (zh) 半控型器件驱动节流装置
CN202931213U (zh) 晶闸管交流调压电路
CN205265526U (zh) 一种dc-dc变换器集成电路及其应用电路
CN208805747U (zh) 一种新型节能输入整流防浪涌电流电路
CN203944975U (zh) 用于逆变焊机的缺相保护电路
EP3407495B1 (en) Half-controlled-type device drive method and apparatus, and hybrid device
WO2018161833A1 (zh) 半控型器件驱动节流装置
WO2017143586A2 (zh) 晶闸管触发装置
CN204258638U (zh) 工业x射线探伤机用高频高压电源装置
CN209535621U (zh) 一种束带机用的加热装置
CN210007637U (zh) 一种直流用电设备的驱动电路
CN108834253B (zh) 具有过压保护的led驱动节能型电源
WO2024021265A1 (zh) 自调节igbt驱动电路及电磁加热设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17755833

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17755833

Country of ref document: EP

Kind code of ref document: A1