WO2020057551A1 - 灭弧电路及装置 - Google Patents

灭弧电路及装置 Download PDF

Info

Publication number
WO2020057551A1
WO2020057551A1 PCT/CN2019/106451 CN2019106451W WO2020057551A1 WO 2020057551 A1 WO2020057551 A1 WO 2020057551A1 CN 2019106451 W CN2019106451 W CN 2019106451W WO 2020057551 A1 WO2020057551 A1 WO 2020057551A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
capacitor
arc extinguishing
control unit
circuit
Prior art date
Application number
PCT/CN2019/106451
Other languages
English (en)
French (fr)
Inventor
郭桥石
Original Assignee
郭桥石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭桥石 filed Critical 郭桥石
Priority to US17/277,753 priority Critical patent/US20210375561A1/en
Priority to CN201980044837.7A priority patent/CN112673442B/zh
Priority to AU2019341286A priority patent/AU2019341286B2/en
Publication of WO2020057551A1 publication Critical patent/WO2020057551A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current

Definitions

  • the invention relates to an arc extinguishing circuit and device, in particular to an arc extinguishing circuit and device suitable for arc switching of a mechanical switch such as a contactor (relay), and can also be used for other break points (such as the fuse of a fuse body, a plug Break point with the socket, wire break point).
  • a mechanical switch such as a contactor (relay)
  • other break points such as the fuse of a fuse body, a plug Break point with the socket, wire break point.
  • the purpose of the present invention is to solve the problem of short electrical life of mechanical switches in existing electrical control systems, and to provide an arc extinguishing circuit and device with high capacity capacity utilization rate, simple circuit, good arc extinguishing effect and high reliability.
  • An arc extinguishing circuit A mechanical switch that needs to be extinguished and a load are connected in series to form a first series circuit, which includes a first switch, a first charging unit, and a first capacitor.
  • the first power source charges the first capacitor through the first charging unit, and the second power source supplies power to the load through the first switch and the first capacitor when the mechanical switch is disconnected;
  • the first charging unit is a first element, or a second switch, or is composed of a first element and a second switch connected in series.
  • the first power source charges the first capacitor through the first charging unit.
  • the second power source supplies power to the load through the first switch and the first capacitor (that is, the voltage of the second power source and the The voltage of the first capacitor is superimposed and provided to the load), so as to achieve the purpose of arc switching of the mechanical switch.
  • the invention has reasonable design, and has the advantages of high utilization of capacitor capacity, simple circuit, good arc extinguishing effect, and high reliability.
  • FIG. 1 is a circuit schematic diagram of an arc extinguishing circuit and an arc extinguishing device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a photocoupler voltage detection unit circuit of the arc extinguishing circuit of the present invention.
  • FIG. 3 is one of the circuit schematic diagrams of the second embodiment of the arc extinguishing circuit and the arc extinguishing device of the present invention.
  • FIG. 4 is the second schematic circuit diagram of the second embodiment of the arc extinguishing circuit and the arc extinguishing device of the present invention.
  • FIG. 5 is one of the circuit schematic diagrams of the third embodiment of the arc extinguishing circuit of the present invention.
  • FIG. 6 is a second schematic circuit diagram of the third embodiment of the arc extinguishing circuit of the present invention and a third schematic circuit diagram of the third embodiment of the arc extinguishing device of the present invention.
  • FIG. 7 is a third schematic circuit diagram of the third embodiment of the arc extinguishing circuit of the present invention and a fourth schematic circuit diagram of the fourth embodiment of the arc extinguishing device of the present invention.
  • FIG. 8 is a ninth switching circuit of the arc extinguishing circuit of the present invention.
  • FIG. 9 is a schematic diagram of a fourth switch and a diode series circuit of the arc extinguishing circuit of the present invention.
  • FIG. 10 is a schematic diagram of a fifth embodiment of an arc extinguishing device according to the present invention.
  • FIG. 11 is one of the circuit schematic diagrams of the sixth embodiment of the arc extinguishing device of the present invention.
  • FIG. 12 is the second schematic circuit diagram of the sixth embodiment of the arc extinguishing device of the present invention.
  • FIG. 13 is the third schematic circuit diagram of the sixth embodiment of the arc extinguishing device of the present invention.
  • FIG. 14 is the fourth schematic circuit diagram of the sixth embodiment of the arc extinguishing device of the present invention.
  • 15 is the fifth schematic circuit diagram of the sixth embodiment of the arc extinguishing device of the present invention.
  • FIG. 16 is the sixth schematic circuit diagram of the sixth embodiment of the arc extinguishing device of the present invention.
  • FIG. 17 is a schematic diagram of a seventh embodiment of an arc extinguishing device according to the present invention.
  • FIG. 1 The first embodiment of the arc extinguishing circuit and the arc extinguishing device of the present invention is shown in FIG. 1:
  • An arc extinguishing circuit includes a first switch S1, a first capacitor C1, a first charging unit U1 (a first element R1, and a second switch) connected in series with a mechanical switch K and a load RL.
  • S2 is composed in series); the mechanical switch K is closed, and the first power supply connected to the first series circuit (provided by the power supply connected at both ends of the load RL, that is, the output of the mechanical switch K, or another power supply) is passed through the first charging unit U1 charges the first capacitor C1 (reverse precharge), that is, a series circuit composed of the first capacitor C1 and the first charging unit U1 is connected in parallel with the load RL.
  • the second power source (the first series circuit is connected
  • the power supply is provided by the mechanical switch K input, or it can be connected to another power supply.
  • the load RL is powered by the first switch S1 and the first capacitor C1 (that is, the series circuit and the mechanical switch composed of the first switch S1 and the first capacitor C1).
  • K is connected in parallel), that is, the power at the input end of the mechanical switch K forwardly charges the first capacitor C1 through the first switch S1 (the second power supply voltage is superimposed with the voltage of the first capacitor C1), so as to extinguish the arc of the mechanical switch K.
  • the first capacitor C1 is discharged through the first element R1, the second switch S2, and the load RL (the load RL can also be connected in parallel with a diode bypass discharge).
  • the next working process The first element R1 and the second switch S2 of the first charging unit U1 can be selected from two alternatives.
  • This embodiment has the characteristics of simple circuit and no inrush current upon power-on.
  • An arc extinguishing device including the arc extinguishing circuit described above:
  • the control unit U It also includes a control unit U.
  • the control signals of the first switch S1 and the second switch S2 are provided by the control unit U.
  • the voltage signal across the mechanical switch K is transmitted to the control unit U (the signal of the auxiliary switch of the mechanical switch K can also be transmitted to Control unit U), the control unit U is used to detect the opening of the mechanical switch K, the control unit U is used to detect the charging voltage (the terminal voltage of the C) of the first capacitor C1, and the voltage across the first capacitor C1 can also be detected by an optocoupler voltage
  • the unit (as shown in Figure 2) is provided to the control unit U (the optocoupler voltage detection unit can be built in the control unit U).
  • the optocoupler voltage detection unit consists of a diode DA and a voltage regulator ZA (voltage regulator diodes, voltage And other equivalent devices), optocoupler OPT1, and resistor RA are connected in series; during the arc extinguishing operation, when the control unit U detects an arc extinguishing failure (that is, the first switch S1 is turned off, the second power source cannot correct the first capacitor C1). Charging), the control unit U controls the second switch S2 to be turned on, quickly charges the first capacitor C1 in reverse, and then performs the second arc extinguishing.
  • ZA voltage regulator diodes, voltage And other equivalent devices
  • An arc extinguishing circuit includes a first switch S1, a second switch S2, a third switch S3, a fourth switch S4, and a first capacitor C1.
  • the first element R1, the first diode D1 (for discharging the first capacitor C1), the second diode D2, the second element R2; the first element R1, and the second switch S2 are connected in series to connect the first element R1 and the second switch S2.
  • a first charging unit of a capacitor C1, a second element R2 (optional), a third switch S3, a first capacitor C1, a first element R1 (optional), and a second switch S2 form a third series circuit, and the first series
  • the circuit-connected first power supply power supply connected at both ends of the first series circuit, provided by the mechanical switch K input, or another power supply
  • the third series circuit is used to connect the first capacitor C1 Charging (reverse precharging); the first switch S1, the first capacitor C1, and the fourth switch S4 form a second series circuit.
  • the second power source (provided by the power supply connected at both ends of the first series circuit, Provided by the mechanical switch K input, or can be connected to another power supply) through the second series circuit pair Carry RL power supply (the second power supply voltage is superimposed with the voltage of the first capacitor C1) to achieve the purpose of arc extinguishing the mechanical switch K; it also includes a sixth element R6, an eighth switch S8, an eighth switch S8 and a fourth switch S4.
  • the technical solution of the common terminal voltage signal (can be the common terminal to ground voltage signal or the voltage between the common terminal and the sixth element R6 connected to the power supply) is transmitted to the control unit U, which can be used to detect the fourth switch S4 and the third switch S3 working state (off, on, breakdown).
  • the first capacitor C1 is fully charged in the forward direction, and the third switch S3 is turned on.
  • the first capacitor C1 is discharged through the first diode D1, the second element R2, and the third switch S3 (Note: the circuit also It can be changed that one end of the first diode D1 is grounded, and the other end of the first diode D1 is connected to the first capacitor C1, that is, the A terminal is connected, and the first capacitor C1 is connected through the first element R1, the second switch S2,
  • the first diode D1 is discharged), ready for the next working process; the second element R2 (optional), the third switch S3, and the fourth switch S4 form a fourth series circuit.
  • the second power supply supplies power to the load RL through a fourth series circuit, which is used to close the arc switch of the mechanical switch K or to precharge the load RL (such as a capacitive load, a motor controller, a DC converter, etc.), which can effectively overcome the capacity The impact of the electrical load on the mechanical switch K.
  • a fourth series circuit which is used to close the arc switch of the mechanical switch K or to precharge the load RL (such as a capacitive load, a motor controller, a DC converter, etc.), which can effectively overcome the capacity The impact of the electrical load on the mechanical switch K.
  • the load RL such as a capacitive load, a motor controller, a DC converter, etc.
  • the second diode D2 is used for grounding the first capacitor C1, which is convenient for the control unit U to sample the voltage at the terminal A, and select it as required (when the second switch S2 has a built-in diode), it can be omitted; when the first power source is not connected in series by the first
  • the power connected by the circuit is provided by the A terminal input, and the second element R2 and the third switch S3 are selected according to needs.
  • Figure 4 is based on Figure 3, adding a sixth switch S6, a third capacitor C3, and a fifth switch S5 (preferably a diode; or a controllable switch using a control signal provided by the control unit, such as a unidirectional thyristor), Eighth switch S8 (preferably a diode; or a controllable switch provided by a control unit such as a unidirectional thyristor), a sixth element R6 (resistance), a second element R2 (optional), a third switch S3,
  • the third capacitor C3, the fifth switch S5, the first element R1 (optional), and the second switch S2 form a fifth series circuit.
  • the fifth series circuit is used to charge the third capacitor C3; the sixth switch S6 and the third capacitor C3, the eighth switch S8 (optional), and the fourth switch S4 form a sixth series circuit.
  • the second power supply supplies power to the load RL through the sixth series circuit.
  • the Two types of arc extinguishing control methods The first is an arc extinguishing method that uses the first capacitor C1 and the third capacitor C3 to simultaneously supply power to the load RL (for improving the reliability of the arc switch of the mechanical switch K connected to a large current load);
  • the two are the first capacitor C1 and the third capacitor C3.
  • the arc-extinguishing method with RL power supply can extinguish the same mechanical switch K (improve the reliability of mechanical switch K and prevent re-ignition, especially suitable for mechanical switches that do not have the breaking current of the working current), or
  • the arc-extinguishing of the mechanical switch K of different circuits can greatly improve the response speed of the second arc-extinguishing.
  • the discharge of the third capacitor C3 can refer to the discharge working process of the first capacitor C1.
  • the discharge circuit of the third capacitor C3 shares the first
  • the discharge circuit of the capacitor C1 and the charging circuit of the third capacitor C3 share the charging circuit of the first capacitor C1, which greatly simplifies the circuit, reduces costs, and reduces volume.
  • a power supply (the power supply at the input of the mechanical switch K can also be provided by another power supply) passes the sixth element R6 (its resistance value satisfies the current through the sixth element R6 is less than the minimum sustaining current of the fourth switch S4) and the eighth switch S8 It is connected to the common end of the fourth switch S4, and a series circuit composed of the first capacitor C1 and the eighth switch S8 is connected to the first switch S4, which is beneficial when the first capacitor C1 completes the power supply to the load RL or the first capacitor C1 Before charging, the control unit U can quickly detect whether the fourth switch S4 breaks down according to the voltage of the common terminal, preventing the third switch S3 from being unable to be turned off when charging the first capacitor C1, or a photoelectric coupling in series with the sixth element R6 (Defined as the second photocoupler, which detects the voltage between the common end and the sixth element R6 connected to the power supply), and the output signal from the photocoupler is transmitted to the control unit U as a detection of whether the fourth switch S4
  • the control signals of the switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the sixth switch S6 (as shown in FIG.
  • the control unit U the voltage signal of the first capacitor C1 is transmitted To the control unit U, for detecting the working state (breakdown, on, and off) of the first switch S1, the second switch S2, the third switch S3, and the fourth switch S4; the voltage signal of the first capacitor C1 may be the first
  • the voltage signal between the two ends of a capacitor C1 can also be the voltage signal between the two ends of the first capacitor C1 respectively; the voltage signal of the power supply at the input end of the mechanical switch K (through terminal B), the mechanical switch K is connected to the load RL
  • the common terminal's voltage signal (via terminal C) is passed to the control unit U.
  • the control unit U After the input of the mechanical switch K is powered on, the control unit U provides a control signal to the second switch S2 (for controlling conduction), a pulse signal triggers the third switch S3 to be turned on, and charges the first capacitor C1 During the charging of the first capacitor C1, the control unit U can adjust the charging voltage of the first capacitor C1 by detecting the terminal voltage of A, and can learn the capacity of the first capacitor C1 (used to determine whether the capacity of the first capacitor C1 is normal or not). Based on the collected data, the arc extinguishing control program is optimized.) By detecting the charging voltage of the first capacitor C1, it can be known whether the fourth switch S4 is broken down (if there is a breakdown condition, the control unit U will not perform another fourth switch).
  • a detection unit for detecting the charging current of the first capacitor C1 may also be added, and an output signal of the detection unit is transmitted to the control unit U for detecting whether the fourth switch S4 breaks down).
  • the control unit U provides a pulse signal to trigger the third switch S3 and the fourth switch S4 to be turned on (the control process can be selected as required).
  • the control unit U detects the endpoint A (that is, the third switch S3). , The common terminal of the fourth switch S4), it can be known whether the third switch S3 and the fourth switch S4 are off. If it is off, it means that the mechanical switch K is closed (or the capacitive load is fully charged).
  • the third switch S3 is in the off state (for example, when the third switch S3 uses a full-control type device, it may also be in the on state).
  • the control unit U detects that the contact of the mechanical switch K is open (may The voltage at the common end of the mechanical switch K and the load RL is detected, or the auxiliary switch of the mechanical switch K is used to detect that the contact of the mechanical switch K is open), and then the first switch S1 (or the sixth switch S6) and the fourth switch S4 are turned on.
  • the built-in microcontroller can complete the delay (optional) to control the first switch S1 (or the sixth switch S6) and the fourth switch S4 to be turned on.
  • the time value of the delay is related to the breaking speed of the corresponding mechanical switch K.
  • the first capacitor C1 starts to discharge, preventing the pre-charge voltage of the first capacitor C1 from forming a loop through the mechanical switch K), the voltage across the load RL rises, and the mechanical switch K's
  • the intensity of the electric field between the contacts decreases rapidly, and the purpose of quickly extinguishing the mechanical switch K is achieved.
  • the control unit U detects the end of A (F) (that is, the series circuit composed of the first switch S1 and the first capacitor C1 and the fourth switch S4). Common, or D). In that a first switch S1, the fourth switch S4 state (on or off) to determine whether the first capacitor C1 is completed positively charged, discharge the first capacitor C1 for the preparation.
  • both the first power source and the second power source are provided by both ends of the first series circuit, which has the advantages of simple circuit and high cost performance.
  • the embodiments described above can realize the arc-extinguishing voltage increase without the need for a transformer, a single capacitor, and the charging voltage of the capacitor is not higher than the system operating voltage. It has the advantages of simple circuit, small size and high reliability.
  • FIG. 5 One of the principle diagrams of the third embodiment of the arc extinguishing circuit of the present invention, as shown in FIG. 5:
  • An arc extinguishing circuit includes a first switch S1, a first capacitor C1, and a first charging unit U1 (the first element R1 and the second The switch S2 is constituted in series), the second capacitor C2, and the second charging unit U2 (is composed of the second element R2 and the seventh switch S7 in series).
  • the mechanical switch K is closed, and the first power source connected to the first series circuit (provided by the power source connected at both ends of the load RL, and provided at the output end of the mechanical switch K, or can be connected to another power source) through the first charging unit U1 to the first capacitor C1 At the same time, the first power source charges the second capacitor C2 through the second charging unit U2.
  • the second power source (provided by the second capacitor C2) passes through the first switch S1 and the first capacitor C1 to the load RL. Power is supplied (the voltage of the second capacitor C2 and the voltage of the first capacitor C1 are superimposed), so as to extinguish the arc of the mechanical switch K.
  • the first element R1 and the second switch S2 of the first charging unit U1 can be selected one; the second element R2 and the seventh switch S7 of the second charging unit U2 (a unidirectional thyristor or a diode) can be selected one ; When the second capacitor C2 is charged, the second charging unit U2 may be omitted.
  • This embodiment has the advantages of simple circuit, high cost performance, and good security.
  • FIG. 6 An arc extinguishing circuit.
  • a third switch S3, a fourth switch S4, a fourth capacitor C4, a first diode D1, a second diode D2, and a fourth element R4 are added to FIG. 5.
  • (Resistance), fifth element R5 (resistance), second element R2 (optional), third switch S3 (optional), first capacitor C1, first element R1 (optional), and second switch S2 constitute the first
  • a three series circuit is used to charge the first capacitor C1; a first power source connected to the first series circuit (provided by a power source connected at both ends of the first series circuit or an additional power source) passes through the first
  • the three series circuit charges the first capacitor C1, and at the same time, the first power source passes the second element R2, the third switch S3, and the seventh switch S7 (a unidirectional thyristor, which can also use a diode and a resistor in series) to charge the second capacitor C2.
  • the first switch S1, the first capacitor C1, and the fourth switch S4 form a second series circuit.
  • the second power source provided by the second capacitor C2 supplies power to the load RL through the second series circuit.
  • the second capacitor C2 is discharged through the first switch S1, the first diode D1, the fourth switch S4, and the load RL; if the charge of the first capacitor C1 is greater than the second capacitor C2 After the second capacitor C2 is discharged, the first capacitor C1 is discharged through the fourth switch S4, the load RL, and the second diode D2.
  • the second element R2 (optional), the third switch S3, and the fourth switch S4 form a fourth series circuit.
  • the first power supply supplies power to the load RL through the fourth series circuit.
  • the mechanical switch K is closed and arc-extinguished, or used to pre-charge the load RL (such as capacitive load, motor controller, DC converter, etc.), which can effectively overcome the impact of the capacitive load on the mechanical switch K.
  • the load RL such as capacitive load, motor controller, DC converter, etc.
  • Mechanical switch K Before closing, the first capacitor C1 may not be charged, and only the second capacitor C2 may be charged.
  • the arc switch will be closed when the mechanical switch K is closed. Even better, because the second capacitor C2 keeps supplying power to the load RL, the third switch S3 also charges the second capacitor C2 at the same time.
  • Embodiment 3 of the arc extinguishing device of the present invention is a diagrammatic representation of Embodiment 3 of the arc extinguishing device of the present invention.
  • An arc extinguishing device including the third embodiment of the arc extinguishing circuit: an arc extinguishing device (i.e., a mechanical device) suitable for single or multiple mechanical switch electronic control systems such as new energy vehicles, rail transit, aviation, and automation control.
  • an arc extinguishing device i.e., a mechanical device
  • a mechanical device suitable for single or multiple mechanical switch electronic control systems such as new energy vehicles, rail transit, aviation, and automation control.
  • Switch intelligent management system further comprising a control unit U, the control signals of the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the seventh switch S7 are provided by the control unit U; the first capacitor C1
  • the voltage signal is transmitted to the control unit U, and is used to detect the working state (breakdown, on, and off) of the first switch S1, the second switch S2, the third switch S3, and the fourth switch S4; the voltage of the first capacitor C1
  • the signal may be a voltage signal between the two ends of the first capacitor C1, or a voltage signal between the two ends of the first capacitor C1 respectively to the ground;
  • the voltage of the second capacitor C2 is transmitted to the control unit U;
  • the voltage signal is transmitted (through terminal B) to the control unit U.
  • the control unit U After the input of the mechanical switch K is powered on, the control unit U provides a control signal to the second switch S2 (for controlling conduction), and a pulse signal triggers the third switch S3 and the seventh switch S7 to be turned on.
  • the first capacitor C1 and the second capacitor C2 are charged.
  • the control unit U can adjust the charging voltage of the first capacitor C1 by detecting the terminal voltage of A, and can obtain the capacity of the first capacitor C1 ( It is used to determine whether the capacity of the first capacitor C1 is normal.
  • the arc extinguishing control program is optimized.
  • the control unit U By detecting the charging voltage of the first capacitor C1, it can be known whether the fourth switch S4 is broken down (if there is a breakdown condition) , The control unit U will not control the conduction of the other fourth switch S4; a detection unit for detecting the charging current of the first capacitor C1 may be added, and the output signal of the detection unit is transmitted to the control unit U for detecting the fourth Whether the switch S4 breaks down); the control unit U can detect the terminal voltage of E and can know the capacity of the second capacitor C2 (used to determine whether the capacity of the second capacitor C2 is normal. Based on the collected data, the arc extinguishing control process is optimized.
  • the control unit U By detecting the charging voltage of the second capacitor C2, it can be known whether the fourth switch S4 is broken down (if there is a breakdown situation, the control unit U will not conduct the conduction control of the other fourth switch S4; it can also be used for one In the detection unit that detects the charging current of the second capacitor C2, the output signal of the detection unit is transmitted to the control unit U for detecting whether the fourth switch S4 is broken down); during the closing of the mechanical switch K, the control unit U provides a pulse signal The third switch S3 and the fourth switch S4 are turned on (the control process can be selected as required). The control unit U can know whether the third switch S3 and the fourth switch S4 are off by detecting the endpoint A. If it is off, it means that The mechanical switch K is closed (or the capacitive load is fully charged);
  • the third switch S3 is in the off state (for example, when the third switch S3 uses a full-control type device, it may also be in the on state).
  • the control unit U detects that the contact of the mechanical switch K is open (may By detecting the voltage at the common end of the mechanical switch K and the load RL, or by using the auxiliary switch of the mechanical switch K to detect the opening of the contact of the mechanical switch K), the time delay (optional) controls the first switch S1 and the fourth switch S4 to be turned on.
  • the built-in microcontroller completes the delay control.
  • the time value of the delay is related to the breaking speed of the corresponding mechanical switch K, so that when there is a certain distance between the contacts of the mechanical switch K, the first capacitor C1 starts to discharge to prevent arcing. Re-ignition to improve the reliability of arc extinguishing.
  • the control unit U can obtain the voltage by detecting the voltage at the terminal A (that is, the common circuit of the first switch S1, the first capacitor C1 and the fourth switch S4, or point D). It is known whether the first switch S1, the fourth switch S4 are in a conducting state, the voltage across the load RL rises, and the electric field strength between the contacts of the mechanical switch K decreases rapidly, thereby achieving the purpose of quickly extinguishing the arc of the mechanical switch K.
  • the control unit U may By detecting the A end (Or D point) of the voltage, that a first switch S1, the fourth switch S4 is in the OFF state, the first capacitor C1 determines whether the complete discharge of the first capacitor C1 is to prepare the next charging. Note: During the arc extinguishing operation, when the first capacitor C1 is discharged and the mechanical switch K arc is still present (the first switch S1 is turned off and the fourth switch S4 is turned off, the second capacitor C2 cannot be discharged, the control unit U (It can be known by detecting the voltage at the terminal A and the voltage at the point E of the second capacitor C2).
  • the control unit U provides a pulse signal to trigger the third switch S3, the second switch S2, and the seventh switch S7 to be turned on, and the first capacitor C1 is restarted.
  • the second capacitor C2 is charged, and then the arc extinguishing work process is performed again.
  • the control unit U increases the charging voltage to the first capacitor C1, or the control unit U adjusts the delay time.
  • the first capacitor C1 in this embodiment may be connected to the photocoupler voltage detection unit shown in FIG. 2 and is configured to detect a charging voltage of the first capacitor C1.
  • a third switch S3, a fourth switch S4, a third element R3 (resistance or inductance), a fourth capacitor C4, and a first voltage stabilization device Z1 Zener diode, or a voltage-sensitive, can also use a resistor for voltage stabilization), first diode D1, second switch S2 (second diode), fourth element R4 (resistor), fifth Element R5 (resistance);
  • Third element R3 (optional), third switch S3 (optional), first capacitor C1, second switch S2 (uncontrolled switch, diode; or half-controlled switch, such as unidirectional thyristor), second Capacitor C2 constitutes a third series circuit; the first power supply connected to the first series circuit (provided by the power supply connected at both ends of the first series circuit, or another power supply can be provided) is connected to the first capacitor C1, second through the third series circuit Capacitor C2 is charged, and the first power is supplied through the third element R3 (optional), the third switch S3, the second element R2, and the seventh switch S7 (uncontrolled switch, diode; or a half-controlled switch, such as a unidirectional thyristor
  • the second element R2 and the seventh switch S7 form a second charging unit) to charge the second capacitor C2; the first voltage stabilizing device Z1 (or using a resistor) is connected in parallel with the first capacitor C1 to limit the first capacitor C1 to two Terminal voltage, an eighth series circuit
  • the capacity of the first capacitor C1 is greater than the capacity of the second capacitor C2 (the capacity of the first capacitor C1 is greater than twice the capacity of the second capacitor C2).
  • the charge of the first capacitor C1 is greater than the charge of the second capacitor C2.
  • the capacity of the second capacitor C2 is greater than the capacity of the first capacitor C1 (the capacity of the second capacitor C2 is greater than twice the capacity of the first capacitor C1), the charge of the second capacitor C2 is greater than the charge of the first capacitor C1.
  • the second capacitor C2 is discharged through the first switch S1, the fourth diode D4, the fourth switch S4, and the load RL, and the first voltage stabilization device Z1 is connected in parallel with the second capacitor C2.
  • the charging method using the first capacitor C1 and the second capacitor C2 in series has the advantages of fast charging speed and small loss.
  • the third element R3 (optional), the third switch S3, and the fourth switch S4 form a fourth series circuit.
  • the first power supply supplies power to the load RL through the fourth series circuit for
  • the mechanical switch K is closed and extinguished, or used to pre-charge the load RL (such as a capacitive load, a motor controller, a DC converter, etc.), which can effectively overcome the current impact of the capacitive load on the mechanical switch K.
  • Embodiment 4 of the arc extinguishing device of the present invention is an arc extinguishing device including the arc extinguishing circuit described above:
  • An arc extinguishing device suitable for single or multiple mechanical switch electronic control systems such as new energy vehicles, rail transit, aviation, and automation control that is, a mechanical switch intelligent management system
  • a control unit U The control signals of the switch S1, the second switch S2, the third switch S3, and the fourth switch S4 are provided by the control unit U; the voltage signal of the first capacitor C1 (a series circuit of the first capacitor C1 and the second capacitor C2) is transmitted to the control unit U is used to detect the working state (breakdown, on, and off) of the first switch S1, the third switch S3, and the fourth switch S4; the voltage signal of the power supply at the input end of the mechanical switch K is transmitted to the control unit (through the terminal B) U.
  • the control unit U After the input of the mechanical switch K is powered on, the control unit U provides a pulse signal to trigger the third switch S3 to be turned on to charge the first capacitor C1 and the second capacitor C2. During the entire charging process, the control unit U can pass By detecting the voltage, the capacitance of the series circuit of the first capacitor C1 and the second capacitor C2 can be obtained (for determining whether the capacities of the first capacitor C1 and the second capacitor C2 are normal, and the arc extinguishing control program is optimized based on the collected data); The control unit U can detect the voltage at the D terminal (or the E terminal) and can learn the capacity of the second capacitor C2 (for determining whether the capacity of the second capacitor C2 is normal, and optimize the arc extinguishing control program based on the collected data); During the closing of the mechanical switch K, the control unit U provides a pulse signal to trigger the third switch S3 and the fourth switch S4 to be turned on (the control process can be selected as required).
  • the control unit U detects the endpoint A (that is, the third switch S3). , The common terminal of the fourth switch S4), it can be known whether the third switch S3 and the fourth switch S4 are off. If it is off, it means that the mechanical switch K is closed (or the capacitive load is fully charged).
  • the third switch S3 is in the off state (for example, when the third switch S3 uses a full-control device, it may also be in the on state).
  • the control unit U detects that the contact of the mechanical switch K is disconnected and delays. (Optional) to control the first switch S1 and the fourth switch S4 to be turned on, and the built-in microcontroller can complete the delay control.
  • the time value of the delay is related to the breaking speed of the corresponding mechanical switch K.
  • the control unit U can learn by detecting the voltage at the terminal A (that is, the common terminal of the series circuit composed of the first switch S1, the first capacitor C1 and the fourth switch S4, or point D). Whether the first switch S1 and the fourth switch S4 are in the off state to determine whether the first capacitor C1 has been discharged, and to prepare for the next charging of the first capacitor C1.
  • the control unit U provides a pulse signal to trigger the third switch S3 to be turned on, recharge the first capacitor C1, the second capacitor C2, and then perform the arc extinguishing work process again. In the next work process, the control unit U adjusts the delay time .
  • the fourth capacitor C4 (the ground terminal of the fourth capacitor C4) connected to the common end of the second element R2 (shown in FIG. 6 or the third element R3 and shown in FIG. 7) and the third switch S3 may be connected in series.
  • the fourth capacitor C4 is connected in parallel with the third switch S3 through the controllable semiconductor switch.
  • the controllable semiconductor switch is preferably a unidirectional thyristor.
  • the control signal of the controllable semiconductor switch is provided by the control unit U.
  • This controllable semiconductor switch is defined as the eleventh switch), which is used to overcome the over-current caused by the mechanical switch K being cut off too fast and the over-voltage caused by the mechanical switch K input power line to prevent the third switch S3 from being turned on incorrectly and broken down;
  • the power supply (the power supply at the input end of the mechanical switch K) is connected to the first capacitor C1 and the second capacitor C2 through the fourth element R4 and the fifth element R5, respectively. It is not necessary to frequently control the third switch S3 to be turned on to the first capacitor C1 and the second capacitor C1.
  • the capacitor C2 is supplemented and charged to overcome the effect on the response speed of the arc extinguishing; the current through the fourth element R4 and the fifth element R5 is smaller than the third switch S3 (such as a semi-control device) and the fourth switch S4 maintains the minimum on-current, When the third switch S3 uses full When type device, the fourth element R4, R5 fifth element may be omitted.
  • the third switch S3 such as a semi-control device
  • 6 and 7 can refer to the circuit of the sixth element R6 and the eighth switch S8 added as shown in FIG. 4 to achieve the same technical effect (see related description of the second embodiment of the present invention).
  • the ninth switch S9 in FIG. 6 and FIG. 7 is connected in series with the ninth terminal shown in FIG. 8 (a controllable switch using a unidirectional thyristor whose control signal is provided by the control unit U), that is, the first capacitor C1 and
  • the ninth switch S9 constitutes a series circuit, and the series circuit is connected to the control unit U with a voltage signal at the common terminal (terminal A) of the third switch S3 and the fourth switch S4 to facilitate the detection of the work of the third switch S3 and the fourth switch S4.
  • the tenth switch S10 is not limited to be connected in parallel with the ninth switch S9, and the anode of the tenth switch S10 (if a unidirectional thyristor is used, whose control signal is provided by the control unit U) is passed through a current limiting element (as shown in Figure 6)
  • the second element R2 or the third element R3) of FIG. 7 is connected to the input power terminal of the mechanical switch K.
  • the charging power of the first capacitor C1 and the second capacitor C2 are all provided by a power supply (first power supply) connected at both ends of the first series circuit, and the second power supply is provided by the second capacitor C2, which has a simple circuit, high cost performance and good safety.
  • first power supply When the system voltage is high, the first capacitor C1 is an electrolytic capacitor, and the second capacitor C2 is a non-polar capacitor, which can greatly reduce the volume and reduce the cost.
  • the fourth switch S4 is not limited to the control signal provided by the control unit U.
  • the control pole of the fourth switch S4 can also be grounded through a capacitor (fifth capacitor), or through a capacitor (fifth capacitor) and mechanical
  • the input of the switch K is connected to detect the disconnection of the mechanical switch K. It is recommended that the third switch S3 be a full-control switch.
  • the control unit recommends detecting the working state (on, off, and breakdown) of the fourth switch, and recommending that at least one of each fourth switch is connected in series.
  • the diode guarantees the safety of the system's work, because once one of the fourth switches breaks down, the current output by the mechanical switch connected to the fourth switch that is prone to breakdown is connected to other loads.
  • the control unit U of the arc extinguishing device of the present invention is the control unit U of the arc extinguishing device of the present invention.
  • the programmable device can choose a common ground design with the load RL, which is beneficial to the non-electrical isolation (non-optical isolation, non-electromagnetic isolation) AD acquisition of each voltage signal.
  • the voltage signal of each terminal is the voltage signal of each terminal to ground; or level acquisition (the voltage signal of each terminal is driven by a resistor to drive the transistor, and the output signal of the transistor is passed to the input port of the programmable device, each terminal
  • the voltage signal is the voltage signal from each terminal to ground); or the voltage comparison (the voltage across the mechanical switch K); it is convenient for the programmable device to control the second switch S2 (or the third switch S3), and the mechanical switch K and the load RL
  • the common terminal voltage signal can also be provided to the control unit U (the voltage signal can be the voltage across the mechanical switch K, across the fourth switch S4, and across the load RL;)
  • the control unit U can collect each voltage signal through a photocoupler; such as level acquisition at each endpoint (the voltage signal at each endpoint is driven by a resistor) Photocoupler, the output signal of the photocoupler is passed to the input port of the programmable device, and the voltage signal at each terminal is the voltage signal from each terminal to ground).
  • the common terminal voltage signal of the mechanical switch K and the load RL can also pass through the photocoupler Provided to the control unit U (The voltage signal can be the voltage across the mechanical switch K, across the fourth switch S4, and across the load RL. This voltage signal can drive the photocoupler through the resistor, and the output signal of the photocoupler is transmitted to the Programming device input port);
  • the control unit U is an intelligent unit with a built-in control program. Without increasing hardware resources or adding very few hardware resources, the multi-load RL can be adjusted and controlled according to their different conditions (capacitive, inductive, resistive, and current). Method to improve the arc extinguishing effect and effectively increase the electrical life of the multi-channel mechanical switch K. It can complete timing (delayed control switch, switch on), A / D (or level) acquisition, voltage comparison (such as the two ends of the mechanical switch).
  • the control unit U performs arc extinguishing control on the multiple mechanical switches K (the mechanical switches can be in series or parallel relationship with each other), the mechanical switch K is closed and arc extinguished (or the load RL is pre-charged) and detected (closed, open, fired) Arc, and whether each state is stable and normal), calculate the life of mechanical switch K according to the arcing condition of the mechanical switch K, the number of operations, and transmit or display relevant information (fault code, number of operations of the mechanical switch, electrical life, mechanical (Lifetime, working status, etc.), is conducive to improving the overall safety of the electronic control system, easy to maintain, and has a higher cost performance.
  • An intelligent management system for a multi-channel mechanical switch which increases the electrical life of the mechanical switch, calculates the life of the mechanical switch, predicts the end of life, and detects the working state of the mechanical switch.
  • the control unit U stores parameters related to the current of the load RL, or inputs the current of the load RL Relevant parameters or signals, or the operating time parameters of the mechanical switch K, the charging voltage of the first capacitor C1 is proportional to the current through the mechanical switch K that needs to be extinguished (the control unit U controls the second switch S2 to perform the charging voltage (Adjustment), during the mechanical switch K breaking operation, the delay time of the first switch S1, the fourth switch S4 is proportional to the current of the load RL, and the delay time parameter can be completed by the programmable device built in the control unit U ; It is beneficial to overcome the impact of overvoltage on the system during the arc extinguishing process and achieve the best arc extinguishing effect.
  • the control signal of the mechanical switch K (not limited to be provided by the control terminal of the mechanical switch K, but also provided by the J2 port) is transmitted to the control unit U, or the control signal of the mechanical switch K is provided by the control unit U, or a mechanical switch K is used.
  • the auxiliary switch signal is transmitted to the control unit U, which is conducive to controlling the fourth switch S4 and the third switch S3 to be turned on in advance before the mechanical switch K is closed, and it is helpful to improve the arc extinguishing accuracy and real-time performance, and it is also beneficial to each mechanical switch. Optimized control of motion logic and arc-extinguishing control logic, select according to needs;
  • the control unit U is used to record the number of operations of the mechanical switch, and the control unit U detects that the contact of the mechanical switch K is opened.
  • the control unit U may include a display unit, or a display unit (connected through a communication port) may be used to display the operating state of the mechanical switch K, the number of operations of the mechanical switch K, the state of the arc extinguishing operation, and the remaining life of the mechanical switch K (mechanical life, Electrical life) and other information; the control unit U may include an input unit (keys, etc.), or may be connected to the input unit (which may be connected via a communication port).
  • the mechanical switch K required for the arc extinguishing device of the present invention can be a mechanical switch (relay, contactor, stroke switch, etc.) that does not have a breaking force (voltage, current breaking force) under operating conditions, which can greatly reduce costs.
  • the mechanical switch without breaking force has a slower breaking and closing speed of the mechanical contact, a smaller mechanical shock, and a higher operating electrical life than a mechanical switch with a breaking force.
  • the mechanical switch When the mechanical switch is in motion and may appear In the case of accidental mechanical shock (such as collision, rollover, etc.), the mechanical switch K may be closed and disconnected unexpectedly in the normally open state, or the opening distance is reduced, or an impact voltage appears across the mechanical switch K. At this time, fire may occur.
  • the control unit U detects the arcing in the off state of the mechanical switch K, the control unit U controls the first switch S1 and the fourth switch S4 to be turned on to extinguish the arc.
  • the first capacitor C1, the first switch S1, the second switch S2, the third switch S3, and the control unit U (share a programmable device) )
  • the arcing voltage is higher than the load RL working voltage, which can effectively overcome the distributed layout of the multiple mechanical switches K, which causes the first capacitor C1 to pass through the arcing circuit of each load RL.
  • the line loss caused by the long provides sufficient arc-extinguishing current to improve the arc-extinguishing effect; the use of a capacitor to limit the effective value of the arc-extinguishing current (the first capacitor C1 can also be connected in series with a current-limiting element, such as an inductor, but also the arc-extinguishing current
  • the rising rate is limited to reduce the peak current) to prevent the risk of powering other circuit loads RL from being caused by the breakdown of a fourth switch S4; the mechanical switch K that needs to extinguish the arcs and the common end of the load RL pass the fourth
  • the switches S4 are connected to each other, and the fourth switches S4 of each channel are connected in reverse series (the withstand voltage of the two fourth switches S4 is added).
  • the load RL has a power supply problem, and has a high withstand voltage between the output terminals of the mechanical switches K (the fourth switch S4 can easily reach 4,000 volts when a unidirectional thyristor is used), and the response speed is fast (by selecting a suitable capacity of the first A capacitor C1, this device can easily meet the needs of dozens or even hundreds of interrupting arc extinguishing in one second), small size, low cost, no limitation of the number of arc extinguishing operations;
  • the fourth switch S4 can be controlled by half of the control devices (such as unidirectional thyristors, its conventional models can withstand voltage of 1500 to 2000 volts, using a unidirectional thyristor with a rated current of 25 amps, can be thousands of Ampere current mechanical switch arc extinguishing) consists of one or more diodes in series
  • the first element R1, the second element R2, and the third element R3 are used as current limiting elements, which are a resistor, an inductor, or a second switch S2, a third switch S3, and a fourth switch.
  • the first capacitor C1 is connected in series with an inductor as a charging current limit, and the control unit U uses a pulse (pulse group) to drive the second switch S2 (while the third switch S3 is also a full-control switch or a mechanical switch).
  • the capacitor C1 is charged to achieve the purpose of adjusting the charging voltage of the first capacitor C1.
  • the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, and the sixth switch S6 are preferably controllable switches (semiconductor switches, controllable semiconductor devices).
  • the third switch S3 can be a semi-controlled switch (semiconductor switch, semi-controlled semiconductor device, unidirectional thyristor) or a fully-controlled switch (semiconductor switch, fully-controlled semiconductor device), which can be used to adjust the first capacitor.
  • the charging voltage of C1) has the advantage of fast response speed;
  • the first switch S1, the fourth switch S4, and the sixth switch S6 are preferably half-controlled switches (semiconductor switches, half-controlled semiconductor devices, and the control unit U drives the half through a transformer).
  • Control switch is turned on), with extremely high overload force (when the first switch S1, the fourth switch S4 uses a unidirectional thyristor with a rated operating current of 25 amps, which can be used for mechanical switches that pass hundreds of amperes or even thousands of amperes.
  • K safe and reliable arc extinguishing has the advantages of high forward and reverse withstand voltage, low cost, convenient control (transformer pulse triggering); when the second switch S2 (or the third switch S3) uses a full-control switch (full-control semiconductor) Device (Such as triode, field effect transistor, IGBT), it is convenient to adjust the charging voltage of the first capacitor C1 (recommended that the charging voltage is not greater than 50% of the working voltage of the load RL, and the charging voltage can be adjusted according to the load RL current.
  • a capacitor C1) to prevent the impact of overvoltage on the load RL.
  • the first capacitor C1 (or the second capacitor C2, the first switch S1, and the first capacitor C1) is provided in a series circuit.
  • the pulse voltage to the load RL is greater than the working voltage of the load RL and not more than 2 times the working voltage of the load RL (preferably not more than 1.5 times the working voltage of the load RL).
  • the control unit U under the condition that the control unit U detects an arc extinguishing failure (the detection of the control unit U detects whether the first switch S1 or the fourth switch S4 is turned off; or it is known according to the voltage of the first capacitor C1; or according to the first A capacitor C1 and a voltage of the second capacitor C2 are obtained), the first capacitor C1 is charged again through the second switch S2 (or the third switch S3; or the second switch S2 and the third switch S3), and then the second capacitor
  • the secondary arc extinguishing can greatly improve the reliability and the response speed of the secondary arc extinguishing.
  • the mechanical switch K can be connected in series with a unidirectional conducting device (diode or unidirectional thyristor) to prevent the reverse current of the first capacitor C1.
  • a unidirectional conducting device diode or unidirectional thyristor
  • the unidirectional conducting device can be connected in parallel.
  • the circuit breaker (mechanical switch) and the control signal of the bypass switch are provided by the control unit U.
  • J1 can be connected to an external power port (optional); J2 is a communication port for transmitting and receiving related information.
  • FIG. 10 The fifth embodiment of the arc extinguishing device of the present invention is shown in FIG. 10:
  • a single or multiple mechanical switch management system single or multiple mechanical switch arc management system
  • the arc extinguishing device described above is placed in a housing as a product with high versatility, which is connected to the external circuit through the terminal.
  • the mechanical switch and host computer are connected for convenient safety certification and popularization.
  • the specific shape can be flexibly designed according to needs.
  • the first capacitor C1, the first switch S1, the second switch S2, the third switch S3, and the control unit U shared A programmable device
  • the control unit U shared A programmable device
  • the first capacitor C1, the first switch S1, the second switch S2, the third switch S3, and the control unit U which use semiconductor devices to interconnect each load, which can achieve significant cost savings, reduce volume, and improve the response speed of electronic arc extinguishing. It is not only an intelligent device that increases the electrical life of mechanical switches.
  • Electronic arc extinguishing system and without increasing hardware resources, it can be used as a multi-channel mechanical switch intelligent management system for mechanical switch life calculation and end of life forecast, mechanical switch operation times recording, and mechanical switch working state detection, which can also greatly reduce System (electrical control system) manual maintenance cost and operating cost, improve the safety of system operation, and improve the intelligence level of the equipment.
  • System electrical control system
  • the environmental pollution caused by frequent replacement of switches has high economic and social value, which is extremely beneficial to changing electronics Arc current situation is difficult to spread.
  • Embodiment 6 of the arc extinguishing device of the present invention is shown in FIG. 11:
  • a mechanical switch K that needs to be extinguished is connected in series with a load RL to form a first series circuit, which includes a first switch S1, a first capacitor C1, and a first charging unit U1 (a first element R1, a resistor). 2.
  • the second charging unit U2 (the second diode D2 is connected in series with the second element R2, or one of the two can be selected)
  • the third charging unit U3 (the third diode D3 is connected in series with the third element R3, or it can be One of the two options).
  • the second capacitor C2, the mechanical switch K is closed, and the first capacitor C1 is charged by the first power source U1 provided by the power source connected to the two ends of the load RL, that is, the first capacitor C1 and the first element.
  • the series circuit composed of R1 is connected in parallel with the load RL; the first power source charges the second capacitor C2 through the second charging unit U2; the first capacitor C1, the third charging unit U3, and the second capacitor C2 form a tenth series circuit, the first power source The first capacitor C1 and the second capacitor C2 are charged through a tenth series circuit.
  • the second power source provided by the second capacitor C2 supplies power to the load RL through the first switch S1, the first capacitor C1 (the first switch S1, the first capacitor C1 constitutes a second series circuit), and
  • the purpose of the arc switch of the mechanical switch K is to superimpose the voltage of the second capacitor C2 and the first capacitor C1;
  • the capacity of the first capacitor C1 (an electrolytic capacitor may be used) is larger than the capacity of the second capacitor C2 (the capacity of the first capacitor C1 is greater than twice the capacity of the second capacitor C2), and the first capacitor C1 is connected in parallel with the first voltage stabilizing device Z1 Or a resistor for limiting the charging voltage of the first capacitor C1; the first diode D1 is connected in parallel with the second capacitor C2; the first capacitor C1 is connected in parallel with the fourth diode D4; the charge of the first capacitor C1 is greater than the second capacitor The charge of C2, after the second capacitor C2 is discharged, the first capacitor C1 is discharged through the load RL, the first diode D1, and the first switch S1;
  • the capacity of the second capacitor C2 (an electrolytic capacitor can be used) is larger than the capacity of the first capacitor C1 (the capacity of the second capacitor C2 is greater than twice the capacity of the first capacitor C1), the charge of the second capacitor C2 is larger than that of the first capacitor C1.
  • the charge of a capacitor C1 after the first capacitor C1 is discharged, the second capacitor C2 is discharged through the first switch S1, the fourth diode D4, and the load RL, and the first voltage stabilizing device Z1 is changed to the second capacitor C2. in parallel.
  • the charging method using the first capacitor C1 and the second capacitor C2 in series has the advantages of fast charging speed and small loss.
  • the first switch S1 is a voltage detection switch for detecting a potential difference or a rate of voltage change between the first capacitor C1 and the second capacitor C2, or for detecting a rate of voltage drop across the load RL;
  • the voltage between the capacitor C1 and the second capacitor C2 is provided by the non-isolated voltage across the load RL; the voltage input terminal of the voltage detection switch is not electrically isolated from the output terminal, and the first switch S1 is divided into a detection potential difference type or a detection Two types of voltage change rate:
  • the first switch S1 shown in FIG. 11 is a detection potential difference type, and is used to detect the potential difference between the first capacitor C1 and the second capacitor C2.
  • the fifth switch D1, the second voltage stabilizing device Z2, the first The first capacitor C2 is composed of half the control device SCR1.
  • the second capacitor C2 passes the second voltage stabilization device Z2 (the voltage regulation value of the second voltage stabilization device Z2 needs to be greater than the peak-to-peak value of the ripple voltage), and the fifth diode D5 triggers the first half.
  • the control device SCR1 is turned on, and the second capacitor C2, the first half-control device SCR1, and the first capacitor C1 form a pair of power supply circuits for supplying power to the load RL, and are used to interrupt and extinguish the mechanical switch K.
  • the first switch S1 detects a voltage change rate type.
  • the first switch S1 includes a third capacitor C3 and a first half-control device SCR1.
  • the third capacitor C3 inputs a voltage signal, and the first switch S1 is used for detection.
  • the first switch S1 shown in FIG. 13 detects a voltage change rate type.
  • the first switch S1 is composed of a third capacitor C3, a first half-control device SCR1, and a delay unit B.
  • the third capacitor C3 inputs a voltage signal.
  • the switch S1 is used to detect the rate of voltage change between the first capacitor C1 and the second capacitor C2.
  • the first switch S1 When the fourth terminal of the delay unit B is connected to the common terminal of the mechanical switch K and the load RL, the first switch S1 is used to Detects the rate of voltage change between the common end of the mechanical switch K and the load RL and the second capacitor C2; when the third capacitor C3 is connected to the ground of the load RL, the first switch S1 is used to detect the voltage change across the load RL Rate (the voltage across the load RL triggers the first half-control device SCR1 to turn on through the third capacitor C3);
  • Delay unit B The specific circuit can use the circuit shown in Figure 14, which consists of a power supply circuit (the fourth element R4, the third voltage stabilization device Z3), a delay circuit (the fifth element R5, the sixth element R6, The fourth capacitor C4, the first transistor Q1, and the fourth voltage stabilization device Z4 are composed, and a first-stage current amplification circuit can be added to the output of the first transistor Q1 as required, and a semi-controlled switching circuit (seventh diode D7, second It is composed of semi-controlling switch SCR2 and seventh element R7).
  • the working power provided by the second capacitor C2 is limited by the fourth element R4.
  • the third voltage regulator Z3 provides working energy for the delay circuit.
  • the moment when the mechanical contact breaks the voltage drop across the load RL is extremely fast.
  • the current through the third capacitor C3 is sufficient to drive the second half-control switch SCR2 to turn on, and the second half-control switch SCR2 to be turned on.
  • the conduction signal is transmitted to the delay circuit to drive the first half-control device SCR1 to be turned on to achieve the purpose of extinguishing the arc of the mechanical switch K.
  • the second half-control switch SCR2 can use a unidirectional thyristor. In order to save costs and facilitate adjustment of electrical parameters, it is recommended to use a thyristor equivalent circuit instead. As shown in Figure 15, it uses a thyristor equivalent circuit composed of two transistors. A fifth voltage stabilizing device Z5 is also connected in parallel.
  • the third capacitor C3 be connected in series with a parallel circuit composed of a resistor R10 (tenth element) and a diode D8 (eighth diode) (as shown in FIG. 16).
  • the inrush current generated during closing does not affect the accuracy of the first switch S1 detecting the voltage change rate.
  • the first switch S1 is a voltage change rate detection type switch, it is particularly suitable for use in places with large voltage fluctuations or ripples, such as in battery-powered systems such as electric vehicles, or in AC rectified power supply systems.
  • This embodiment is a two-terminal circuit, which has the advantages of simple circuit, high reliability, and convenient use.
  • FIG. 17 The seventh embodiment of the arc extinguishing device of the present invention is shown in FIG. 17:
  • the sixth embodiment of the arc extinguishing device of the present invention is packaged as a device with an insulating material.
  • As a universal product it is convenient for safety certification, and its specific shape can be flexibly designed according to needs.
  • the capacity of the first capacitor C1 is preferably selected such that the on-time of the first switch S1 is not greater than 1 millisecond (preferably within 200 microseconds), as long as a pulse current of dozens of microseconds is provided to the load to achieve satisfaction Arc extinguishing effect).
  • the first power source for charging the first capacitor C1 is provided by the power source connected by the first series circuit non-isolated, that is, provided by non-electromagnetic isolation.
  • the above full-control type switch is preferably a full-control type semiconductor device (semiconductor switch), such as a transistor, a field effect transistor, an IGBT, and other types of devices (with built-in diodes);
  • semiconductor switch such as a transistor, a field effect transistor, an IGBT, and other types of devices (with built-in diodes);
  • the above half-controlled switch is preferably a half-controlled semiconductor device (semiconductor switch), such as a unidirectional thyristor or the like.
  • the first switch S1 or the fourth switch S4 preferably has at least one diode connected in series to prevent a sudden reverse voltage (such as a bounce of the mechanical switch K) from damaging the first switch S1 or the fourth switch in the on state.
  • Switch S4 a sudden reverse voltage (such as a bounce of the mechanical switch K) from damaging the first switch S1 or the fourth switch in the on state.
  • the first capacitor C1 may be connected in series with an inductor for current limiting (which may be omitted when the internal resistance of the first capacitor C1 to the load RL is large), which is used to improve the power supply time of the first capacitor C1 to the load RL and reduce the current.
  • the current rising rate through the first switch S1 is smaller than the limit rising rate of the first switch S1; in order to achieve the best performance and safety, You can use a wire to short the two ends of the load RL; or use a capacitor (or other capacitive or resistive load) to connect the two ends of the load RL in parallel; the first capacitor C1 is charged, then the first switch S1 is turned on, and the second The voltage of the power source and the first capacitor C1 is superimposed, so that the current rising rate through the first switch S1 is less than the limit rising rate of the first switch S1.
  • High capacity utilization of capacitors fast charging of capacitors, can adjust the charging voltage of capacitors, and reduce the impact on system overvoltage.
  • the capacitor's charging power is provided by the non-isolated power supply (electromagnetic isolation, transformer isolation) connected to the mechanical switch. No transformer is needed to increase the arc extinguishing voltage, and there is no need to increase the capacitor's withstand voltage requirements.
  • the circuit is simple, small in size, and low in cost. High reliability.

Abstract

一种灭弧电路及装置,特别是一种适合于对机械开关灭弧的灭弧电路及装置,所需灭弧的机械开关(K)与负载(RL)串联组成第一串联电路,其包括第一开关(S1)、第一充电单元(U1)、第一电容(C1);第一电源通过第一充电单元(U1)对第一电容(C1)充电,机械开关(K)分断过程中,第二电源通过第一开关(S1)、第一电容(C1)对负载(RL)供电;第一充电单元(U1)为第一元件,或为第二开关,或由第一元件与第二开关串联组成。该灭弧电路及装置具有电容容量利用率高,电路简单的优点。

Description

灭弧电路及装置 技术领域
本发明涉及一种灭弧电路及装置,特别是一种适合于对接触器(继电器)等机械开关灭弧的灭弧电路及装置,也可以用于其它断点(如熔断体的熔断、插头与插座之间的断点、导线断点)的灭弧。
背景技术
目前在新能源汽车、轨道交通、舰船、自动化控制等电控系统中,普遍使用接触器(继电器)等机械开关对负载进行频繁接通和分断控制,由于机械开关存在分断电弧,特别是直流电,由于其没有零点,分断电弧更大,存在机械开关电寿命短的缺点,随着机械开关的分断电压和分断电流提升,其电寿命将大幅度降低。
发明内容
本发明的目的在于解决现有电控系统中机械开关的电寿命短的问题,提供一种电容容量利用率高、电路简单、灭弧效果好、可靠性高的灭弧电路及装置。
实现本发明的目的是通过以下技术方案来达到的:
一种灭弧电路,所需灭弧的机械开关与负载串联组成第一串联电路,其包括第一开关、第一充电单元、第一电容;
第一电源通过第一充电单元对第一电容充电,机械开关分断过程中,第二电源通过第一开关、第一电容对负载供电;
第一充电单元为第一元件,或为第二开关,或由第一元件与第二开关串联组成。
工作原理:机械开关分断前,第一电源通过第一充电单元对第一电容充电,机械开关分断过程中,第二电源通过第一开关、第一电容对负载供电(即第二电源的电压与第一电容的电压叠加提供给负载),达到机械开关灭弧的目的。
本发明设计合理,具有电容容量利用率高、电路简单、灭弧效果好、可靠性高的优点。
附图说明
图1是本发明灭弧电路及灭弧装置实施例一电路原理图。
图2是本发明灭弧电路的光耦电压检测单元电路原理图。
图3是本发明灭弧电路及灭弧装置实施例二电路原理图之一。
图4是本发明灭弧电路及灭弧装置实施例二电路原理图之二。
图5是本发明灭弧电路实施例三电路原理图之一。
图6是本发明灭弧电路实施例三电路原理图之二及本发明灭弧装置实施例三电路原理图。
图7是本发明灭弧电路实施例三电路原理图之三及本发明灭弧装置实施例四电路原理图。
图8是本发明灭弧电路的第九开关电路。
图9是本发明灭弧电路的第四开关与二极管串联电路原理图。
图10是本发明灭弧装置实施例五示意图。
图11是本发明灭弧装置实施例六电路原理图之一。
图12是本发明灭弧装置实施例六电路原理图之二。
图13是本发明灭弧装置实施例六电路原理图之三。
图14是本发明灭弧装置实施例六电路原理图之四。
图15是本发明灭弧装置实施例六电路原理图之五。
图16是本发明灭弧装置实施例六电路原理图之六。
图17是本发明灭弧装置实施例七示意图。
具体实施方式
本发明灭弧电路及灭弧装置实施例一,如图1所示:
一种灭弧电路,所需灭弧的机械开关K与负载RL串联组成第一串联电路,其包括第一开关S1、第一电容C1、第一充电单元U1(第一元件R1、第二开关S2串联组成);机械开关K闭合,第一串联电路连接的第一电源(由负载RL两端连接的电源提供,即机械开关K输出端提供,也可另接电源提供)通过第一充电单元U1对第一电容C1充电(反向预充电),即第一电容C1、第一充电单元U1组成的串联电路与负载RL并联,机械开关K分断过程中,第二电源(第一串联电路连接的电源提供,机械开关K输入端提供,也可另接电源提供)通过第一开关S1、第一电容C1对负载RL供电(即第一开关S1、第一电容C1组成的串联电路与机械开关K并联),即机械开关K的输入端电源通过第一开关S1对第一电容C1正向充电(第二电源电压与第一电容C1的电压叠加),达到对机械开关K灭弧的目的,机械开关K分断完成后,第一电容C1正向充满电,然后第二开关S2导通,第一电容C1通过第一元件R1、第二开关S2、负载RL(也可以负载RL并联一二极管旁路放电)放电,准备下一个工作过程。注:第一充电单元U1的第一元件R1、第二开关S2可二选一。
本实施例,具有电路简单,上电无冲击电流的特点。
一种包括前面所述灭弧电路的灭弧装置:
还包括控制单元U,第一开关S1、第二开关S2的控制信号由控制单元U提供,机械开关K两端的电压信号传递至控制单元U(也可以采用机械开关K的辅助开关的信号传递至 控制单元U),控制单元U用于检测机械开关K断开,控制单元U用于检测第一电容C1的充电电压(C端点电压),第一电容C1两端的电压也可以采用光耦电压检测单元(如图2所示)提供给控制单元U(该光耦电压检测单元可内置在控制单元U),光耦电压检测单元由二极管DA、稳压器ZA(可采用稳压二极管、压敏等等同器件)、光电耦合器OPT1、电阻RA串联组成;在灭弧工作过程中,当控制单元U检测到灭弧失败时(即第一开关S1截止,第二电源无法对第一电容C1正向充电),控制单元U控制第二开关S2导通,对第一电容C1快速反向充电,然后进行第二次灭弧。
本发明灭弧电路及灭弧装置实施例二,如图3、图4所示:
一种灭弧电路,所需灭弧的机械开关K与负载RL串联组成第一串联电路,其包括第一开关S1、第二开关S2、第三开关S3、第四开关S4、第一电容C1、第一元件R1、第一二极管D1(用于对第一电容C1放电)、第二二极管D2、第二元件R2;第一元件R1、第二开关S2串联组成用于对第一电容C1的第一充电单元,第二元件R2(可选)、第三开关S3、第一电容C1、第一元件R1(可选)、第二开关S2组成第三串联电路,第一串联电路连接的第一电源(第一串联电路两端连接的电源提供,机械开关K输入端提供,也可另接电源提供)与第三串联电路连接,第三串联电路用于对第一电容C1充电(反向预充电);第一开关S1、第一电容C1、第四开关S4组成第二串联电路,机械开关K分断过程中,第二电源(第一串联电路两端连接的电源提供,机械开关K输入端提供,也可另接电源提供)通过第二串联电路对负载RL供电(第二电源电压与第一电容C1的电压叠加),达到对机械开关K灭弧的目的;还包括第六元件R6、第八开关S8,第八开关S8与第四开关S4的共同端的电压信号(可以为共同端对地电压信号;或共同端对第六元件R6连接电源之间的电压)传递至控制单元U的技术方案,可以用于检测第四开关S4、第三开关S3的工作状态(截止、导通、击穿)。
机械开关K分断完成后,第一电容C1正向充满电,第三开关S3导通,第一电容C1通过第一二极管D1、第二元件R2、第三开关S3放电(注:电路也可以改为,第一二极管D1的一端接地,第一二极管D1的另一端与第一电容C1连接,即A端点连接,第一电容C1通过第一元件R1、第二开关S2、第一二极管D1放电),准备下一个工作过程;第二元件R2(可选)、第三开关S3、第四开关S4组成第四串联电路,在机械开关K闭合前或闭合过程中,第二电源通过第四串联电路对负载RL供电,用于机械开关K闭合灭弧,或用于对负载RL预充电(如容性负载、电机控制器、直流变换器等),可有效克服容性负载对机械开关K的电流冲击,注:在机械开关K闭合过程中,如果第一开关S1也导通,对机械开关K 闭合弹跳灭弧效果更佳,因为第三开关S3对第一电容C1提供了放电回路,同时第三开关S3保持对负载RL供电,第一电容C1也对负载RL供电;
第二二极管D2用于对第一电容C1接地,方便控制单元U对A端点电压进行采样,根据需要选用(当第二开关S2内置二极管时可以省略);当第一电源不由第一串联电路连接的电源提供,且由A端点输入,第二元件R2、第三开关S3根据需要选用。
图4为在图3的基础上,增加了第六开关S6、第三电容C3、第五开关S5(优选二极管;或采用控制信号由控制单元提供的可控型开关,如单向晶闸管)、第八开关S8(优选二极管;或采用控制信号由控制单元提供的可控型开关,如单向晶闸管)、第六元件R6(电阻),第二元件R2(可选)、第三开关S3、第三电容C3、第五开关S5、第一元件R1(可选)、第二开关S2组成第五串联电路,第五串联电路用于对第三电容C3充电;第六开关S6、第三电容C3、第八开关S8(可选)、第四开关S4组成第六串联电路,机械开关K分断过程中,第二电源通过第六串联电路对负载RL供电,机械开关K分断过程中,可以采用两种灭弧控制方式,第一种为采用第一电容C1、第三电容C3同时给负载RL供电的灭弧方式(用于提高连接大电流负载的机械开关K灭弧的可靠性);第二种为采用第一电容C1、第三电容C3先后为负载RL供电的灭弧方式,可对同一路机械开关K灭弧(提高机械开关K灭弧的可靠性,防止电弧重燃,尤其适合本身不具备工作电流分断力的机械开关灭弧),或对不同路的机械开关K灭弧,可大幅度提升二次灭弧的响应速度,第三电容C3的放电可以参考前面第一电容C1的放电工作过程,第三电容C3的放电电路共用第一电容C1的放电电路,第三电容C3的充电电路共用第一电容C1的充电电路,大幅度简化了电路,降低成本,减少体积。
一电源(机械开关K的输入端的电源,也可另接电源提供)通过第六元件R6(其阻值满足通过第六元件R6的电流小于第四开关S4的最小维持电流)与第八开关S8与第四开关S4的共同端连接,第一电容C1与第八开关S8组成的串联电路与第一开关S4连接,有利于当第一电容C1对负载RL供电完成后,或对第一电容C1充电前,控制单元U可根据共同端的电压,快速检测出第四开关S4是否击穿,防止第三开关S3对第一电容C1充电时无法关断,也可以在第六元件R6串联一光电耦合器(定义为第二光电耦合器,检测共同端对第六元件R6连接电源之间的电压),由光电耦合器输出信号传递至控制单元U,作为检测第四开关S4是否击穿。
本发明灭弧装置实施例二,一种包括前面本发明灭弧电路实施例二的灭弧装置:
即一种适合于新能源汽车、轨道交通、航空、自动化控制等单或多路机械开关电控系统使用的灭弧装置(即为一机械开关智能管理系统),还包括一控制单元U,第一开关S1、第 二开关S2、第三开关S3、第四开关S4、第六开关S6(如图4所示,可选)的控制信号由控制单元U提供;第一电容C1的电压信号传递至控制单元U,用于检测第一开关S1、第二开关S2、第三开关S3、第四开关S4的工作状态(击穿、导通、截止);第一电容C1的电压信号可以为第一电容C1两端之间的电压信号,也可以为第一电容C1两端分别对地的电压信号;机械开关K输入端的电源的电压信号(通过B端点)、机械开关K与负载RL连接的共同端的电压信号(通过C端点)传递至控制单元U。
工作原理:机械开关K的输入端上电后,控制单元U提供一控制信号给第二开关S2(用于控制导通)、一脉冲信号触发第三开关S3导通,对第一电容C1充电,整个第一电容C1充电过程中,控制单元U可通过检测A端点电压,调整第一电容C1充电电压,并可得知第一电容C1的容量(用于判断第一电容C1的容量是否正常,根据采集的数据,优化灭弧控制程序),通过对第一电容C1充电电压的检测可得知第四开关S4是否击穿(如存在击穿情况,控制单元U将不对另一第四开关S4进行导通控制;也可以增加一检测第一电容C1充电电流的检测单元,检测单元的输出信号传递至控制单元U,用于检测第四开关S4是否击穿)。机械开关K闭合工作过程中,控制单元U提供一脉冲信号触发第三开关S3、第四开关S4导通(可根据需要选择该控制过程),控制单元U通过检测A端点(即第三开关S3、第四开关S4的共同端)的电压,可得知第三开关S3、第四开关S4是否截止,如截止,则表示机械开关K完成闭合(或容性负载充满电);
机械开关K分断过程中,第三开关S3处于截止状态(如第三开关S3采用全控型器件时,也可以为导通状态),控制单元U检测到机械开关K的触点断开(可利用检测机械开关K与负载RL共同端的电压,或利用机械开关K的辅助开关检测机械开关K触点断开),然后控制第一开关S1(或第六开关S6)、第四开关S4导通,可由内置的微控制器完成延时(可选)控制第一开关S1(或第六开关S6)、第四开关S4导通,延时的时间值与对应的机械开关K的分断速度有关,使得机械开关K的触点间存在一定开距时,第一电容C1才开始放电,防止第一电容C1的预充电压通过机械开关K形成回路),负载RL两端电压上升,机械开关K的触点间电场强度快速下降,达到对机械开关K快速灭弧的目的,控制单元U通过检测A(F)端点(即第一开关S1、第一电容C1组成的串联电路与第四开关S4的共同端,或D端点)的电压,可以得知第一开关S1、第四开关S4工作状态(导通或截止),来判断第一电容C1是否完成正向充电,为对第一电容C1放电做准备。
本实施例,第一电源、第二电源都由第一串联电路两端提供,具有电路简单、性价比高的优点。
以上所述的实施例,可在无需变压器、单一电容且电容的充电电压不高于系统工作电压的条件下实现灭弧电压提升,具有电路简单,体积小、可靠性高的优点。
本发明灭弧电路实施例三原理图之一,如图5所示:
一种灭弧电路,所需灭弧的机械开关K与负载RL串联组成第一串联电路,其包括第一开关S1、第一电容C1、第一充电单元U1(由第一元件R1与第二开关S2串联组成)、第二电容C2、第二充电单元U2(由第二元件R2与第七开关S7串联组成)。
机械开关K闭合,第一串联电路连接的第一电源(由负载RL两端连接的电源提供,机械开关K输出端提供,也可另接电源提供)通过第一充电单元U1对第一电容C1充电,同时第一电源通过第二充电单元U2对第二电容C2充电,机械开关K分断过程中,第二电源(由第二电容C2提供)通过第一开关S1、第一电容C1对负载RL供电(第二电容C2的电压与第一电容C1的电压叠加),达到对机械开关K灭弧的目的。注:第一充电单元U1的第一元件R1、第二开关S2可选一;第二充电单元U2的第二元件R2、第七开关S7(一单向晶闸管,或为一二极管)可选一;当第二电容C2充有电荷时,第二充电单元U2可省略。
本实施例,具有电路简单、性价比高、安全性好的优点。
本发明灭弧电路实施例三原理图之二及本发明灭弧装置实施例三原理图,如图6所示:
一种灭弧电路,图6是在图5的基础上增加了第三开关S3、第四开关S4、第四电容C4、第一二极管D1、第二二极管D2、第四元件R4(电阻)、第五元件R5(电阻),第二元件R2(可选)、第三开关S3(可选)、第一电容C1、第一元件R1(可选)、第二开关S2组成第三串联电路,该第三串联电路用于对第一电容C1充电;第一串联电路连接的第一电源(由第一串联电路两端连接的电源提供,也可另接电源提供)通过该第三串联电路对第一电容C1充电,同时第一电源通过第二元件R2、第三开关S3、第七开关S7(单向晶闸管,也可采用一二极管与一电阻串联组成)对第二电容C2充电,第一开关S1、第一电容C1、第四开关S4组成第二串联电路,机械开关K分断过程中,第二电容C2提供的第二电源通过该第二串联电路对负载RL供电,达到对机械开关K灭弧的目的,如果第一电容C1的电荷小于第二电容C2的电荷,在第一电容C1放完电后,第二电容C2通过第一开关S1、第一二极管D1、第四开关S4、负载RL放电;如果第一电容C1的电荷大于第二电容C2的电荷,在第二电容C2放完电后,第一电容C1通过第四开关S4、负载RL、第二二极管D2放电。
第二元件R2(可选)、第三开关S3与第四开关S4组成第四串联电路,在机械开关K闭合前或闭合过程中,第一电源通过第四串联电路对负载RL供电,用于机械开关K闭合灭弧,或用于对负载RL预充电(如容性负载、电机控制器、直流变换器等),可有效克服容性负 载对机械开关K的电流冲击,注:机械开关K闭合前,可不对第一电容C1充电,只对第二电容C2充电,在机械开关K闭合过程中,如果第一开关S1、第七开关S7也导通,对机械开关K闭合弹跳灭弧效果更佳,因为第二电容C2同时保持对负载RL供电,第三开关S3同时补充对第二电容C2充电。
注:当第一电源不由第一串联电路连接的电源提供,且由A端点输入,第二元件R2、第三开关S3根据需要选用。
本发明灭弧装置实施例三:
一种包括灭弧电路实施例三的灭弧装置:即一种适合于新能源汽车、轨道交通、航空、自动化控制等单或多路机械开关电控系统使用的灭弧装置(即为一机械开关智能管理系统),还包括一控制单元U,第一开关S1、第二开关S2、第三开关S3、第四开关S4、第七开关S7的控制信号由控制单元U提供;第一电容C1的电压信号传递至控制单元U,用于检测第一开关S1、第二开关S2、第三开关S3、第四开关S4的工作状态(击穿、导通、截止);第一电容C1的电压信号可以为第一电容C1两端之间的电压信号,也可以为第一电容C1两端分别对地的电压信号;第二电容C2的电压传递至控制单元U;机械开关K输入端的电源的电压信号(通过B端点)传递至控制单元U。
工作原理:机械开关K的输入端上电后,控制单元U提供一控制信号给第二开关S2(用于控制导通)、一脉冲信号触发第三开关S3、第七开关S7导通,对第一电容C1、第二电容C2充电,整个第一电容C1充电过程中,控制单元U可通过检测A端点电压,调整第一电容C1的充电电压,并可得知第一电容C1的容量(用于判断第一电容C1的容量是否正常,根据采集的数据,优化灭弧控制程序),通过对第一电容C1充电电压的检测可得知第四开关S4是否击穿(如存在击穿情况,控制单元U将不对另一第四开关S4进行导通控制;也可以增加一用于检测第一电容C1充电电流的检测单元,检测单元的输出信号传递至控制单元U,用于检测第四开关S4是否击穿);控制单元U可通过检测E端点电压,并可得知第二电容C2的容量(用于判断第二电容C2的容量是否正常,根据采集的数据,优化灭弧控制程序),通过对第二电容C2充电电压的检测可得知第四开关S4是否击穿(如存在击穿情况,控制单元U将不对另一第四开关S4进行导通控制;也可以增加一用于检测第二电容C2充电电流的检测单元,检测单元的输出信号传递至控制单元U,用于检测第四开关S4是否击穿);机械开关K闭合工作过程中,控制单元U提供一脉冲信号触发第三开关S3、第四开关S4导通(可根据需要选择该控制过程),控制单元U通过检测A端点,可得知第三开关S3、第四开关S4是否截止,如截止,则表示机械开关K完成闭合(或容性负载充满 电);
机械开关K分断过程中,第三开关S3处于截止状态(如第三开关S3采用全控型器件时,也可以为导通状态),控制单元U检测到机械开关K的触点断开(可利用检测机械开关K与负载RL共同端的电压,或利用机械开关K的辅助开关检测机械开关K触点断开),延时(可选)控制第一开关S1、第四开关S4导通,可由内置的微控制器完成延时控制,延时的时间值与对应的机械开关K的分断速度有关,使得机械开关K的触点间存在一定开距时,第一电容C1才开始放电,防止电弧重燃,提升灭弧的可靠性,控制单元U通过检测A端点(即第一开关S1、第一电容C1组成的串联电路与第四开关S4的共同端,或D点)的电压,可以得知第一开关S1、第四开关S4是否处于导通状态,负载RL两端电压上升,机械开关K的触点间电场强度快速下降,达到对机械开关K快速灭弧的目的,控制单元U可通过检测A端点(或D点)的电压,得知第一开关S1、第四开关S4是否处于截止状态,来判断第一电容C1是否完成放电,为对第一电容C1下次充电做准备。注:在灭弧工作过程中,当第一电容C1放电完成,且机械开关K电弧仍然存在时(第一开关S1截止、第四开关S4截止,第二电容C2无法放完电,控制单元U可以通过检测A端点电压、第二电容C2的E点电压得知),控制单元U提供脉冲信号触发第三开关S3、第二开关S2、第七开关S7导通,重新对第一电容C1、第二电容C2充电,然后再次进行灭弧工作过程,在下一个工作过程,控制单元U提升对第一电容C1的充电电压,或控制单元U调整延时时间。
本实施例的第一电容C1可以连接图2所示的光耦电压检测单元,用于检测第一电容C1的充电电压。
本发明灭弧电路实施例三原理图之三及本发明灭弧装置实施例四原理图,如图7所示:
一种灭弧电路,图7是在图5的基础上增加了第三开关S3、第四开关S4、第三元件R3(电阻,或电感)、第四电容C4、第一稳压器件Z1(稳压二极管,或一压敏,也可以采用一用于稳压的电阻)、第一二极管D1、第二开关S2(第二二极管)、第四元件R4(电阻)、第五元件R5(电阻);
第三元件R3(可选)、第三开关S3(可选)、第一电容C1、第二开关S2(不控型开关,二极管;或采用一半控型开关,如单向晶闸管)、第二电容C2组成第三串联电路;第一串联电路连接的第一电源(由第一串联电路两端连接的电源提供,也可另接电源提供)通过第三串联电路对第一电容C1、第二电容C2充电,第一电源通过第三元件R3(可选)、第三开关S3、第二元件R2、第七开关S7(不控型开关,二极管;或采用一半控型开关,如单向晶闸管,第二元件R2与第七开关S7组成第二充电单元)对第二电容C2充电;第一稳压器件 Z1(或采用一电阻)与第一电容C1并联,用于限制第一电容C1两端的电压,第三元件R3(可选)、第三开关S3(可选)、第一电容C1、第一元件R1(第一充电单元)组成的第八串联电路,第一电源通过第八串联电路对第一电容C1充电;第一开关S1、第一电容C1、第四开关S4组成第二串联电路,机械开关K分断过程中,第二电容C2提供的第二电源通过第二串联电路对负载RL供电,达到对机械开关K灭弧的目的;
第一电容C1的容量大于第二电容C2的容量(第一电容C1的容量大于第二电容C2的容量的两倍),第一电容C1的电荷大于第二电容C2的电荷,在第二电容C2放完电后,第一电容C1通过第四开关S4、负载RL、第一二极管D1、第一开关S1放电;
如果采用第二电容C2的容量大于第一电容C1的容量(第二电容C2的容量大于第一电容C1的容量的两倍)设计,第二电容C2的电荷大于第一电容C1的电荷,在第一电容C1放完电后,第二电容C2通过第一开关S1、第四二极管D4、第四开关S4、负载RL放电,第一稳压器件Z1改为与第二电容C2并联。
采用第一电容C1、第二电容C2串联的充电方式,具有充电速度快速,损耗小的优点。
注:当第一电源不由第一串联电路连接的电源提供,且由A端点输入,第三元件R3、第三开关S3根据需要选用。
第三元件R3(可选)、第三开关S3与第四开关S4组成第四串联电路,在机械开关K闭合前或闭合过程中,第一电源通过第四串联电路对负载RL供电,用于机械开关K闭合灭弧,或用于对负载RL预充电(如容性负载、电机控制器、直流变换器等),可有效克服容性负载对机械开关K的电流冲击。
本发明灭弧装置实施例四,一种包括前面所述的灭弧电路的灭弧装置:
一种适合于新能源汽车、轨道交通、航空、自动化控制等单或多路机械开关电控系统使用的灭弧装置(即为一机械开关智能管理系统),还包括一控制单元U,第一开关S1、第二开关S2、第三开关S3、第四开关S4的控制信号由控制单元U提供;第一电容C1(第一电容C1与第二电容C2串联电路)的电压信号传递至控制单元U,用于检测第一开关S1、第三开关S3、第四开关S4的工作状态(击穿、导通、截止);机械开关K输入端的电源的电压信号(通过B端点)传递至控制单元U。
工作原理:机械开关K的输入端上电后,控制单元U提供一脉冲信号触发第三开关S3导通,对第一电容C1、第二电容C2充电,整个充电过程中,控制单元U可通过检测电压,可得知第一电容C1、第二电容C2串联电路的电容量(用于判断第一电容C1、第二电容C2的容量是否正常,根据采集的数据,优化灭弧控制程序);控制单元U可通过检测D端点 (或E端点)电压,并可得知第二电容C2的容量(用于判断第二电容C2的容量是否正常,根据采集的数据,优化灭弧控制程序);机械开关K闭合工作过程中,控制单元U提供一脉冲信号触发第三开关S3、第四开关S4导通(可根据需要选择该控制过程),控制单元U通过检测A端点(即第三开关S3、第四开关S4的共同端)的电压,可得知第三开关S3、第四开关S4是否截止,如截止,则表示机械开关K完成闭合(或容性负载充满电);
机械开关K分断过程中,第三开关S3处于截止状态(如第三开关S3采用全控型器件时,也可以为导通状态),控制单元U检测到机械开关K的触点断开,延时(可选)控制第一开关S1、第四开关S4导通,可由内置的微控制器完成延时控制,延时的时间值与对应的机械开关K的分断速度有关,使得机械开关K的触点间存在一定开距时,第一电容C1才开始放电,防止电弧重燃,提升灭弧的可靠性,负载RL两端电压上升,机械开关K的触点间电场强度快速下降,达到对机械开关K快速灭弧的目的,控制单元U可通过检测A端点(即第一开关S1、第一电容C1组成的串联电路与第四开关S4的共同端,或D点)的电压,得知第一开关S1、第四开关S4是否处于截止状态,来判断第一电容C1是否完成放电,为对第一电容C1下次充电做准备。注:在灭弧工作过程中,当第一电容C1放电完成,且机械开关K电弧仍然存在时(第一开关S1截止、第四开关S4截止,第二电容C2,或第一电容C1无法放完电,控制单元U提供脉冲信号触发第三开关S3导通,重新对第一电容C1、第二电容C2充电,然后再次进行灭弧工作过程,在下一个工作过程,控制单元U调整延时时间。
第二元件R2(图6所示;或第三元件R3,图7所示)、第三开关S3的共同端连接的第四电容C4(第四电容C4的接地端,可以改为串联一可控型半导体开关,第四电容C4通过该可控型半导体开关与第三开关S3并联,该可控型半导体开关优选为一单向晶闸管,该可控型半导体开关的控制信号由控制单元U提供,该可控型半导体开关定义为第十一开关),用于克服机械开关K断流过快,由机械开关K输入电源线路引起的过电压,防止第三开关S3误导通、击穿损坏;电源(机械开关K的输入端的电源)通过第四元件R4、第五元件R5分别与第一电容C1、第二电容C2连接,无须频繁控制第三开关S3导通对第一电容C1、第二电容C2补充充电,克服对灭弧响应速度的影响;通过第四元件R4、第五元件R5的电流小于第三开关S3(如采用半控型器件)、第四开关S4最小维持导通电流,当第三开关S3采用全控型器件时,第四元件R4、第五元件R5可省略。
图6、图7可参照如图4所示增加的第六元件R6、第八开关S8的电路,达到相同的技术效果(可参见本发明实施例二相关描述)。
图6、图7的A端点与K端点串联如图8所示的第九开关S9(一可控型开关,采用单向晶闸管,其控制信号由控制单元U提供),即第一电容C1与第九开关S9组成串联电路,该串联电路与第三开关S3、第四开关S4的共同端(A端点)的电压信号连接至控制单元U,方便检测第三开关S3、第四开关S4的工作状态(导通、截止、击穿,且不受第四元件R4、第五元件R5、第一电容C1影响;无需高分辨率AD采集,也可采用高低电平采集),用于检测当第九开关S9采用双向晶闸管时,与第九开关S9连接(并联)的第十开关S10(二极管),可省略。注:第十开关S10不限与第九开关S9并联连接,也可以采用第十开关S10(如采用单向晶闸管,其控制信号由控制单元U提供)的阳极通过一限流元件(如图6的第二元件R2、或图7的第三元件R3)与机械开关K的输入电源端连接。
第一电容C1、第二电容C2的充电电源都由第一串联电路两端连接的电源(第一电源)提供,第二电源由第二电容C2提供,具有电路简单、性价比高、安全性好的优点;在系统电压较高时,第一电容C1采用电解电容,第二电容C2采用无极性电容,可大幅度减少体积、减低成本。
本发明灭弧装置,第四开关S4非限于由控制单元U提供控制信号,第四开关S4的控制极也可以通过一电容(第五电容)接地,或通过一电容(第五电容)与机械开关K的输入端连接,用于检测机械开关K分断,第三开关S3建议采用全控型开关。
本发明灭弧装置实施例二、三、四存在两路或以上第四开关时,控制单元建议检测第四开关工作状态(导通、截止、击穿),并建议各第四开关串联至少一二极管,保证系统工作的安全性,因为一旦其中一路第四开关出现击穿时,将容易出现击穿的第四开关连接的机械开关输出的电流串入其它负载。
本发明灭弧装置的控制单元U:
内置一可编程器件(如微控制器),为简化控制单元电路,可编程器件可选择与负载RL共地设计,有利于对各个电压信号非电气隔离(非光电隔离、非电磁隔离)AD采集,或电平采集,或电压比较;如对A端点、B端点、C端点、D端点、E端点(如存在)、F端点(如存在)进行AD采集(各端点电压信号通过电阻分压传递至可编程器件的输入端口,各端点电压信号为各端点对地电压信号);或电平采集(各端点电压信号通过电阻驱动晶体管,由晶体管输出信号传递至可编程器件的输入端口,各端点电压信号为各端点对地电压信号);或电压比较(机械开关K两端的电压);方便可编程器件对第二开关S2(或第三开关S3)进行控制,同时机械开关K与负载RL的共同端电压信号也可提供给控制单元U(该电压信号可以为机械开关K两端、第四开关S4两端、负载RL两端的电压;)
当可编程器件选择与负载RL电气隔离(光电隔离、电磁隔离)设计,控制单元U可通过光电耦合器对各个电压信号进行采集;如对各端点进行电平采集(各端点电压信号通过电阻驱动光电耦合器,由光电耦合器输出信号传递至可编程器件的输入端口,各端点电压信号为各端点对地电压信号),同时机械开关K与负载RL的共同端电压信号也可通过光电耦合器提供给控制单元U(该电压信号可以为机械开关K两端、第四开关S4两端、负载RL两端的电压,该电压信号可通过电阻驱动光电耦合器,由光电耦合器输出信号传递至可编程器件的输入端口);
控制单元U内置控制程序的智能化单元,在不增加硬件资源或增加极少硬件资源的条件下,实现对多路负载RL依据各自的不同状况(容性,感性、阻性、电流)调整控制方式,提高灭弧效果,有效提升多路机械开关K的电寿命,可以完成定时(延时控制开关、开关导通)、A/D(或电平)采集、电压比较(如机械开关两端的电压)、逻辑处理、控制第一电容C1(或第三电容C3,或第二电容C2)充放电等,有利于简化电路;共用第一电容C1(或第三电容C3、第二电容C2)、控制单元U对多路机械开关K(机械开关可以互为串联或并联关系)进行灭弧控制、机械开关K闭合灭弧(或负载RL预充电)和检测(闭合状态、断开状态、燃弧,及各状态是否稳定正常),根据机械开关K的燃弧情况、操作次数对机械开关K寿命进行计算,并传输或显示相关信息(故障代码、机械开关的操作次数、电寿命、机械寿命、工作状态等),有利于提高电控系统的整体安全性,方便维修,具有更高性价比的特点,可广泛应用于新能源汽车、轨道交通、舰船、航空、自动化控制等领域,作为一种具有增加机械开关电寿命、机械开关寿命计算及寿命终结预告、机械开关工作状态检测的多路机械开关智能管理系统。
由于与控制单元U连接的多路机械开关K及多路负载RL电特性未必一致,为达到最佳灭弧效果,控制单元U储存与负载RL的电流相关的参数,或输入与负载RL的电流相关的参数或信号,或机械开关K的动作时间参数,第一电容C1的充电电压与通过所需灭弧的机械开关K的电流成正比(利用控制单元U控制第二开关S2对充电电压进行调整),机械开关K分断工作过程中,第一开关S1、第四开关S4延时导通的时间与负载RL的电流成正比,延时的时间参数可以由控制单元U内置的可编程器件完成;有利于克服在灭弧过程中过电压对系统的影响,并达到最佳灭弧效果。
机械开关K的控制信号(不限于由机械开关K的控制端提供,也可以由J2端口提供)传递至控制单元U,或机械开关K的控制信号由控制单元U提供,或采用机械开关K的辅助开关信号传递至控制单元U,有利于机械开关K闭合完成前提前控制第四开关S4、第三 开关S3导通,并有利于提高灭弧准确性、实时性,更有利于对各个机械开关的动作逻辑、灭弧控制逻辑优化控制,根据需要选用;
控制单元U用于记录机械开关的操作次数,控制单元U检测到机械开关K的触点断开。
控制单元U可包括显示单元,或连接有显示单元(可采用通信口连接),用于显示机械开关K动作状态、机械开关K操作次数、灭弧动作状态、机械开关K剩余寿命(机械寿命、电寿命)等信息;控制单元U可包括输入单元(按键等),或连接有输入单元(可采用通信口连接)。
本发明灭弧装置所需灭弧的机械开关K可以采用在工作条件下本身不具备分断力(电压、电流分断力)的机械开关(继电器、接触器、行程开关等),达到大幅度减低成本、减重、减少机械开关体积的目的;
同时不具分断力的机械开关与具有分断力的机械开关相比其机械触点的分断和闭合速度更慢,机械冲击更小,具有更高的操作电寿命,当机械开关处于运动状态并可能出现意外机械冲击(如碰撞、翻车等)的工况下,机械开关K在常开状态下可能意外闭合又分断,或开距变小,或机械开关K两端出现冲击电压,这时可能出现燃弧,当控制单元U在机械开关K分断状态下检测到燃弧时,控制单元U控制第一开关S1、第四开关S4导通进行灭弧。
当机械开关K、负载RL、第四开关S4数量为二,或二以上,共用第一电容C1、第一开关S1、第二开关S2、第三开关S3、控制单元U(共用一可编程器件),可达到大幅度节约成本、减少体积的目的,同时灭弧电压采用高于负载RL工作电压,具有有效克服多路机械开关K布局分散造成第一电容C1相对各负载RL灭弧回路线路过长带来的线损,提供足够的灭弧电流,提升灭弧效果;采用电容对灭弧电流有效值的限制(第一电容C1也可串联限流元件,如一电感,还可以对灭弧电流上升速率进行限制,减少峰值电流),防止某第四开关S4击穿带来对其它回路负载RL供电的风险;各路所需灭弧的机械开关K与负载RL的共同端之间通过第四开关S4相连接,各路的第四开关S4之间为反向串联连接(耐压值为二个第四开关S4的耐压值相加),不存在误导通造成的机械开关K对另一路机械开关K连接的负载RL供电的问题,且具备各路机械开关K输出端之间的耐压高(当第四开关S4采用单向晶闸管时轻松可达4000伏特)、响应速度快(通过选用合适容量的第一电容C1,本装置可以轻松满足1秒钟内完成几十次甚至超百次分断灭弧的需求)、体积小、成本低、不存在灭弧操作次数的限定的局限等优点;在系统电压较高时为进一步提高安全性,第四开关S4可由一半控型器件(如单向晶闸管,其常规型号耐压可以达1500到2000伏特,采用额定电流25安培的单向晶闸管,可对上千安培电流的机械开关灭弧)串联一个或以上数量的二极 管(常规耐压可以达1000到2000伏特,采用额定电流10安培二极管,可对上千安培电流的机械开关灭弧)组成,并定义为第九串联电路(各第九串联电路之间连接关系,为反向串联关系,如图9所示),可大幅度提升各路机械开关输出端之间的绝缘耐压(轻松可达6000伏特,或万伏特以上),具有成本低、高耐压能力、过流能力强、可靠性高的优点。
以上实施例,第一元件R1、第二元件R2、第三元件R3作为限流元件,为一电阻,也可以为一电感,或为一作为第二开关S2、第三开关S3、第四开关S4任一或二出现异常导通时用于保护的可断开(熔断)元件,用于限流或断开保护,根据需要选用(或选一使用,当线路存在其它限流时,可省略);第一电容C1串联一电感作为充电限流,控制单元U采用脉冲(脉冲群)驱动第二开关S2(同时第三开关S3也为全控型开关,也可以为机械开关)对第一电容C1充电,达到调整第一电容C1的充电电压的目的。
以上实施例,第一开关S1、第二开关S2、第三开关S3、第四开关S4、第六开关S6(第五开关S5)优选为可控型开关(半导体开关,可控型半导体器件),第三开关S3可以采用半控型开关(半导体开关,半控型半导体器件,单向晶闸管),也可以采用全控型开关(半导体开关,全控型半导体器件,可以用于调整第一电容C1的充电电压),具有响应速度快的优点;第一开关S1、第四开关S4、第六开关S6优选为半控型开关(半导体开关,半控型半导体器件,控制单元U通过变压器驱动半控型开关导通),具有极高的过载力(当第一开关S1、第四开关S4采用额定工作电流为25安培的单向晶闸管,可对通过数百安培甚至上千安培电流的机械开关K安全可靠灭弧),具有正反耐压高、成本低、控制方便(可变压器脉冲触发)的优点;第二开关S2(或第三开关S3)采用全控型开关时(全控型半导体器件,如三极管、场效应管、IGBT),方便对第一电容C1的充电电压进行调整(建议充电电压不大于负载RL工作电压的50%,可根据负载RL电流的大小调整充电电压,充电电压为第一电容C1两端的电压),防止过电压对负载RL的影响,机械开关K分断过程中,第一电容C1(或第二电容C2、第一开关S1、第一电容C1组成的串联电路)提供给负载RL的脉冲电压大于负载RL工作电压,且不大于负载RL工作电压的2倍(优选不大于负载RL工作电压的1.5倍)。
以上实施例,在控制单元U检测到灭弧失败的工况下(通过检测控制单元U检测第一开关S1或第四开关S4是否截止;或根据第一电容C1的电压得知;或根据第一电容C1、第二电容C2的电压得知),通过第二开关S2(或第三开关S3;或第二开关S2和第三开关S3)再次对第一电容C1进行充电,然后进行第二次灭弧,可以极大的提高灭弧的可靠性、二次灭弧的响应速度。
以上实施例的基础上,机械开关K可串联一单向导通器件(二极管、或单向晶闸管),用于防止第一电容C1的倒灌电流,在电流大时,该单向导通器件可并联一旁路开关(机械开关),旁路开关的控制信号由控制单元U提供。
以上实施例,J1可外接电源端口(可选);J2为通信端口,用于传输和接受相关信息。
本发明灭弧装置实施例五,如图10所示:
即一单路或多路机械开关管理系统(单路或多路机械开关电弧管理系统),对以上所述灭弧装置放置一外壳内,作为一通用性强的产品,通过端子与外部各路机械开关、上位机连接,方便安全认证,普及推广使用,其具体外形可以根据需要灵活设计。
以上实施例,当机械开关K、负载RL、第四开关S4数量为二,或二以上,共用第一电容C1、第一开关S1、第二开关S2、第三开关S3、控制单元U(共用一可编程器件)等资源,其利用半导体器件对各路负载相互连接,可达到大幅度节约成本、减少体积、提高电子灭弧的响应速度,其不但是一种具有增加机械开关电寿命的智能电子灭弧系统,且在不增加硬件资源的条件下可作为机械开关寿命计算及寿命终结预告、机械开关操作次数记录、机械开关工作状态检测的多路机械开关智能管理系统,还可以大幅度减少系统(电控系统)的人工维护成本、运行成本,提高系统运行的安全性,提升设备的智能化水平,无需采用笨重昂贵的高分断力的机械开关(改变原有的电气设计标准),减少频繁更换开关造成的环境污染,具有很高的经济价值和社会价值,极其有利于改变电子灭弧难以普及的现状。
本发明灭弧装置实施例六,如图11所示:
一种灭弧装置,所需灭弧的机械开关K与负载RL串联组成第一串联电路,其包括第一开关S1、第一电容C1、第一充电单元U1(第一元件R1,一电阻)、第二充电单元U2(第二二极管D2与第二元件R2串联组成,也可以二选一)、第三充电单元U3(第三二极管D3与第三元件R3串联组成,也可以二选一)、第二电容C2,机械开关K闭合,由负载RL两端连接的电源提供的第一电源通过第一充电单元U1对第一电容C1充电,即第一电容C1、第一元件R1组成的串联电路与负载RL并联;第一电源通过第二充电单元U2对第二电容C2充电;第一电容C1、第三充电单元U3、第二电容C2组成第十串联电路,第一电源通过第十串联电路对第一电容C1、第二电容C2充电。
机械开关K分断过程中,由第二电容C2提供的第二电源通过第一开关S1、第一电容C1(第一开关S1、第一电容C1组成第二串联电路)对负载RL供电,达到对机械开关K灭弧的目的,即第二电容C2与第一电容C1的电压叠加;
第一电容C1(可采用一电解电容)的容量大于第二电容C2的容量(第一电容C1的容 量大于第二电容C2的容量的两倍),第一电容C1并联第一稳压器件Z1或一电阻,用于限制第一电容C1的充电电压;第一二极管D1与第二电容C2并联;第一电容C1并联第四二极管D4;第一电容C1的电荷大于第二电容C2的电荷,在第二电容C2放完电后,第一电容C1通过负载RL、第一二极管D1、第一开关S1放电;
如果采用第二电容C2(可采用一电解电容)的容量大于第一电容C1的容量(第二电容C2的容量大于第一电容C1的容量的两倍)设计,第二电容C2的电荷大于第一电容C1的电荷,在第一电容C1放完电后,第二电容C2通过第一开关S1、第四二极管D4、负载RL放电,第一稳压器件Z1改为与第二电容C2并联。
采用第一电容C1、第二电容C2串联的充电方式,具有充电速度快速,损耗小的优点。
第一开关S1:为一电压检测开关,用于检测第一电容C1与第二电容C2之间的电位差或电压变化速率,或用于检测负载RL两端的电压下降速率;供电电源由第一电容C1与第二电容C2之间的电压提供,或由负载RL两端电压非隔离提供;电压检测开关的电压输入端与输出端非电气隔离,第一开关S1分为检测电位差型或检测电压变化速率型两种:
图11所示的第一开关S1为检测电位差型,用于检测第一电容C1与第二电容C2之间的电位差,其由第五二极管D5、第二稳压器件Z2、第一半控型器件SCR1组成,第二电容C2通过第二稳压器件Z2(第二稳压器件Z2的稳压值需大于纹波电压的峰峰值)、第五二极管D5触发第一半控型器件SCR1导通,第二电容C2、第一半控型器件SCR1、第一电容C1组成一对负载RL供电的供电电路,用于对机械开关K分断灭弧。
如图12所示的第一开关S1检测电压变化速率型,第一开关S1包括第三电容C3、第一半控型器件SCR1组成,第三电容C3输入电压信号,第一开关S1用于检测第一电容C1、第二电容C2之间的电压变化速率;当第三电容C3改为与负载RL的地连接时,第一开关S1用于负载RL两端的电压变化速率;
如图13所示的第一开关S1检测电压变化速率型,第一开关S1由第三电容C3、第一半控型器件SCR1、延时单元B组成,第三电容C3输入电压信号,第一开关S1用于检测第一电容C1、第二电容C2之间电压变化速率;当延时单元B的第四端改为与机械开关K与负载RL的共同端连接时,第一开关S1用于检测机械开关K与负载RL的共同端与第二电容C2之间的电压变化速率;当第三电容C3改为与负载RL的地连接时,第一开关S1用于检测负载RL两端的电压变化速率(负载RL两端的电压通过第三电容C3触发第一半控型器件SCR1导通);
延时单元B:具体电路可采用如图14所示的电路,其由供电电路(第四元件R4、第三稳 压器件Z3组成)、延时电路(第五元件R5、第六元件R6、第四电容C4、第一晶体管Q1、第四稳压器件Z4组成,根据需要第一晶体管Q1输出端可增加一级电流放大电路)、半控型开关电路(第七二极管D7、第二半控型开关SCR2、第七元件R7组成)组成,第二电容C2提供的工作电源通过第四元件R4限流,第三稳压器件Z3稳压为延时电路提供工作能量,在机械开关K的分断过程中,在机械触点分断的瞬间,负载RL两端电压的下降速率极大,通过第三电容C3的电流足以驱动第二半控型开关SCR2导通,第二半控型开关SCR2导通信号传递至延时电路延时驱动第一半控型器件SCR1导通,达到机械开关K灭弧的目的。
第二半控型开关SCR2可以采用一单向晶闸管,为节约成本,方便调整电参数,建议采用晶闸管等效电路替代,如图15所示,其采用两只晶体管组成的晶闸管等效电路,其还并联第五稳压器件Z5。
本实施例,第三电容C3建议串联一有电阻R10(第十元件)与二极管D8(第八二极管)组成的并联电路(如图16所示),该并联电路能克服由于机械开关K闭合所产生的冲击电流,且不影响第一开关S1对电压变化速率检测的准确度。
当第一开关S1采用电压变化速率检测型开关时,尤其适合于电压波动大或纹波大的场合使用,如电动汽车等电池供电系统、或交流整流供电系统中使用。
本实施例,为二端电路,具有电路简单,可靠性高,使用方便的优点。
本发明灭弧装置实施例七,如图17所示:
为方便使用及普及推广,将本发明灭弧装置实施例六采用绝缘材料封装为一器件,作为一通用性强的产品,方便安全认证,其具体外形可以根据需要灵活设计。
以上实施例,第一电容C1的容量的选取优选为第一开关S1的导通时间不大于1毫秒(200微秒内为佳,只要提供负载有几十个微秒的脉冲电流即可达到满意的灭弧效果)。
以上实施例对第一电容C1充电的第一电源由第一串联电路连接的电源非隔离提供,即非电磁隔离提供。
以上全控型开关优选为一全控型半导体器件(半导体开关),如三极管、场效应管、IGBT等类型器件(可内置二极管);
以上半控型开关优选为一半控型半导体器件(半导体开关),如单向晶闸管等类型器件。
以上实施例,第一开关S1,或第四开关S4优选至少串联一二极管,防止其导通状态下,突然出现反向电压(如机械开关K出现弹跳),损坏第一开关S1,或第四开关S4。
以上实施例,第一电容C1可串联一电感限流(当第一电容C1对负载RL工作线路内阻较大时可以省略),用于提升第一电容C1对负载RL的供电时间、减低电流的上升速率;串 联电感参数的选取:本装置在实际工况条件下,使得通过第一开关S1的电流上升速率小于第一开关S1的极限上升速率;为达到最佳效能和安全性,在现场,可利用一导线对负载RL两端短接;或利用一电容(或其它容性或阻性负载)对负载RL两端并联;第一电容C1充电,然后第一开关S1导通,第二电源与第一电容C1的电压叠加,使得通过第一开关S1的电流上升速率小于第一开关S1的极限上升速率。
综上所述,本发明以上实施例具有以下优点:
1、电容容量利用率高,对电容的充电速度快,可以调节电容的充电电压,减少对系统过电压的影响。
2、可以提供大于机械开关的输入电源电压的电压给负载,在灭弧回路线路长、线径小、内阻较大的条件下也能输出极大的灭弧电流(1平方的导线可传输几百至上千安培的电流)。
3、电容的充电电源由机械开关连接的电源非隔离(电磁隔离,变压器隔离)提供,无需变压器实现灭弧电压的提升,且无需提高电容的耐压要求,电路简单,体积小、成本低、可靠性高。
4、响应速度快、输出电流大、灭弧效果好的优点。

Claims (59)

  1. 一种灭弧电路,所需灭弧的机械开关与负载串联组成第一串联电路,其特征是:包括第一开关、第一充电单元、第一电容;
    第一电源通过所述第一充电单元对所述第一电容充电,所述机械开关分断过程中,第二电源通过所述第一开关、所述第一电容对所述负载供电;
    所述第一充电单元包括第一元件,或为第二开关,或由第一元件与第二开关串联组成。
  2. 根据权利要求1所述的灭弧电路,其特征是:所述第一电源由所述第一串联电路连接的电源提供。
  3. 根据权利要求1所述的灭弧电路,其特征是:所述第一开关、所述第二开关为半导体开关。
  4. 根据权利要求1所述的灭弧电路,其特征是:所述第二开关用于调整所述第一电容充电电压。
  5. 根据权利要求1所述的灭弧电路,其特征是:所述机械开关串联一单向导通器件,所述单向导通器件或并联一旁路开关。
  6. 根据权利要求1所述的灭弧电路,其特征是:所述第一电容通过所述第一元件、所述第二开关放电。
  7. 根据权利要求1所述的灭弧电路,其特征是:所述第一电源由所述负载的两端提供,所述第二电源由所述第一串联电路两端连接的电源提供。
  8. 根据权利要求1至5任一项所述的灭弧电路,其特征是:还包括第三开关、第四开关,所述第三开关、所述第一电容、所述第二开关组成第三串联电路,所述第三串联电路用于对所述第一电容充电;所述第一开关、所述第一电容、所述第四开关组成第二串联电路,所述机械开关分断过程中,所述第二电源通过所述第二串联电路对所述负载供电;所述机械开关、所述负载、所述第四开关数量为一,或为二,或二以上。
  9. 根据权利要求8所述的灭弧电路,其特征是:所述第一电源、所述第二电源由所述第一串联电路两端连接的电源提供。
  10. 根据权利要求8所述的灭弧电路,其特征是:所述第三开关与所述第四开关组成第四串联电路,在所述机械开关闭合前或闭合过程中,所述第二电源通过所述第四串联电路对所述负载供电,所述第三开关或串联第二元件。
  11. 根据权利要求8所述的灭弧电路,其特征是:还包括第一二极管,所述第一电容通过所述第一二极管、所述第三开关放电电路;或所述第一电容通过所述第二开关、所述第一二极管放电。
  12. 根据权利要求8所述的灭弧电路,其特征是:所述第三开关为全控型开关,或半控型开关;所述第四开关为半控型开关。
  13. 根据权利要求8所述的灭弧电路,其特征是:所述第四开关为半导体开关。
  14. 根据权利要求13所述的灭弧电路,其特征是:所述第四开关串联至少一二极管。
  15. 根据权利要求1至6任一项所述的灭弧电路,其特征是:还包括第二电容,所述第二电源由所述第二电容提供。
  16. 根据权利要求15所述的灭弧电路,其特征是:所述第一电源由所述负载的两端提供,或由所述第一串联电路两端连接的电源提供。
  17. 根据权利要求15所述的灭弧电路,其特征是:还包括用于对所述第二电容充电的第二充电单元,所述第二充电单元为第二元件,或为第七开关,或由第二元件与第七开关串联组成。
  18. 根据权利要求17所述的灭弧电路,其特征是:还包括第三开关、第四开关,所述第三开关、所述第一电容、所述第二开关组成第三串联电路,所述第三串联电路用于对所述第一电容充电;所述第一电源通过所述第三开关、所述第二充电单元对所述第二电容充电,所述第一开关、所述第一电容、所述第四开关组成第二串联电路,所述机械开关分断过程中,所述第二电源通过所述第二串联电路对所述负载供电,所述机械开关、所述负载、所述第四开关数量为一,或二,或二以上。
  19. 根据权利要求18所述的灭弧电路,其特征是:所述第三串联电路还包括第二元件,所述第一电源通过所述第二元件与所述第三开关连接,所述第二元件与所述第三开关的共同端连接第四电容。
  20. 根据权利要求18所述的灭弧电路,其特征是:还包括第一元件、第二元件,所述第三串联电路还包括第三元件,所述第二开关为不控型开关,或为半控型开关;所述第一电源通过所述第三元件、所述第三开关、所述第二元件、所述第七开关对所述第二电容充电;所述第三元件、所述第三开关、所述第一电容、所述第一元件组成的第八串联电路,所述第一电源通过所述第八串联电路对第一电容充电;所述第七开关为不控型开关,或为可控型开关。
  21. 根据权利要求20所述的灭弧电路,其特征是:所述第二电容的容量大于所述第一电容的容量,所述第二电容与第一稳压器件并联;或所述第一电容的容量大于所述第二电容的容量,所述第一电容与第一稳压器件并联。
  22. 根据权利要求20所述的灭弧电路,其特征是:所述第一电源通过所述第三串联电路对所述第二电容充电。
  23. 根据权利要求20所述的灭弧电路,其特征是:所述第三串联电路还包括第三元件,所述第一电源通过所述第三元件与所述第三开关连接,所述第三元件与所述第三开关的共同端连接第四电容。
  24. 一种包括权利要求1至6任一项所述的灭弧电路的灭弧装置,其特征是:还包括一控制单元,所述第一开关、所述第二开关的控制信号由所述控制单元提供。
  25. 根据权利要24所述的灭弧装置,其特征是:所述控制单元用于检测所述第一电容的充电电压。
  26. 根据权利要24所述的灭弧装置,其特征是:所述机械开关两端的电压信号传递至所述控制单元,或所述机械开关的辅助开关的信号传递至所述控制单元。
  27. 根据权利要求24所述的灭弧装置,其特征是:其放置一外壳内,通过端子与所述机械开关连接。
  28. 一种包括权利要求8任一项所述的灭弧电路的灭弧装置,其特征是:还包括一控制单元,所述第一开关、所述第二开关、所述第三开关的控制信号由所述控制单元提供;所述第四开关的控制信号由所述控制单元提供,或所述第四开关的控制极通过一电容与所述负载地连接,或所述第四开关的控制极通过一电容与所述机械开关的输入端连接。
  29. 根据权利要求28所述的灭弧装置,其特征是:所述第一电容的电压信号传递至所述控制单元。
  30. 根据权利要求28所述的灭弧装置,其特征是:所述机械开关的输入端电源的电压信号连接至所述控制单元。
  31. 根据权利要求28所述的灭弧装置,其特征是:所述机械开关与所述负载的共同端的电压信号传递至所述控制单元。
  32. 根据权利要求28所述的灭弧装置,其特征是:所述机械开关的控制信号传递至所述控制单元,或所述控制单元提供所述机械开关的控制信号,或所述机械开关的辅助开关信号传递至所述控制单元。
  33. 根据权利要求28所述的灭弧装置,其特征是:所述控制单元根据通过所述机械开关的电流,调整所述第一电容的充电电压。
  34. 根据权利要求28所述的灭弧装置,其特征是:还包括第六开关、第三电容、第五开关,所述第六开关的控制信号由所述控制单元提供,所述第三开关、所述第三电容、所述第五开关、所述第二开关组成第五串联电路,所述第五串联电路用于对所述第三电容充电;所述第六开关、所述第三电容、所述第四开关组成第六串联电路,所述机械开关分断过程中,所述 第二电源通过所述第六串联电路对所述负载供电,所述第五开关为二极管,或为控制信号由所述控制单元提供的可控型开关。
  35. 根据权利要求28所述的灭弧装置,其特征是:还包括第八开关、第六元件,所述机械开关的输入端的电源通过所述第六元件与所述第八开关与第四开关的共同端连接,所述共同端的电压信号传递至所述控制单元。
  36. 根据权利要求28所述的灭弧装置,其特征是:其放置一外壳内,通过端子与所述机械开关连接。
  37. 一种包括权利要求18任一项所述的灭弧电路的灭弧装置,其特征是:还包括一控制单元,所述第一开关、所述第二开关、所述第三开关的控制信号由所述控制单元提供;所述第四开关的控制信号由所述控制单元提供,或所述第四开关的控制极通过一电容与所述负载地连接,或所述第四开关的控制极通过一电容与所述机械开关的输入端连接,所述机械开关、所述负载、所述第四开关数量为一,或二,或二以上。
  38. 根据权利要求37所述的灭弧装置,其特征是:所述第一电容的电压信号传递至所述控制单元。
  39. 根据权利要求37所述的灭弧装置,其特征是:所述机械开关的输入端电源的电压信号连接至所述控制单元。
  40. 根据权利要求37所述的灭弧装置,其特征是:所述机械开关与所述负载的共同端的电压信号传递至所述控制单元。
  41. 根据权利要求37所述的灭弧装置,其特征是:所述机械开关的控制信号传递至所述控制单元,或所述控制单元提供所述机械开关的控制信号,或所述机械开关的辅助开关信号传递至所述控制单元。
  42. 根据权利要求37所述的灭弧装置,其特征是:所述控制单元根据通过所述机械开关的电流,调整所述第一电容的充电电压。
  43. 根据权利要求37所述的灭弧装置,其特征是:还包括第八开关、第六元件,所述机械开关的输入端的电源通过所述第六元件与所述第八开关与第四开关的共同端连接,所述共同端的电压信号传递至所述控制单元。
  44. 根据权利要求37所述的灭弧装置,其特征是:还包括第九开关,所述第一电容与所述第九开关组成的串联电路与所述第四开关连接,所述串联电路与所述第四开关的共同端的电压信号传递至所述控制单元。
  45. 根据权利要求37所述的灭弧装置,其特征是:其放置一外壳内,通过端子与所述机械 开关连接。
  46. 一种包括权利要求15所述的灭弧电路的灭弧装置,其特征是:所述第一电源由所述负载两端提供,还包括第二充电单元,所述第一电源通过所述第一元件对所述第一电容充电,所述第一电源通过所述第二充电单元对所述第二电容充电,所述第一电容并联一稳压器件或一电阻,所述第一开关为电压检测开关,所述电压检测开关用于检测所述第一电容与所述第二电容之间的电位差或电压变化速率,或用于检测所述负载两端的电压下降速率。
  47. 根据权利要求46所述的灭弧装置,其特征是:还包括第三充电单元,所述第一电容、所述第二充电单元、所述第二电容组成第十串联电路,所述第一电源通过所述第十串联电路对所述第一电容、所述第二电容充电。
  48. 根据权利要求46所述的灭弧装置,其特征是:还包括第三充电单元,所述第一电容、所述第三充电单元、所述第二电容组成第十串联电路,所述第一电源通过所述第十串联电路对所述第一电容、所述第二电容充电;所述第三充电单元由第三二极管与第三元件串联组成;或为第三元件;或为第三二极管。
  49. 根据权利要求46所述的灭弧装置,其特征是:所述第三充电单元由第二二极管与第二元件串联组成;或为第二元件;或为第二二极管。
  50. 根据权利要求46所述的灭弧装置,其特征是:所述第一电容的容量大于所述第二电容的容量,所述第一电容与第一稳压器件并联;或所述第二电容的容量大于所述第一电容的容量,所述第二电容与第一稳压器件并联。
  51. 根据权利要求46所述的灭弧装置,其特征是:所述第一开关由第五二极管、第二稳压器件、第一半控型器件组成,所述第二电容通过所述第二稳压器件、所述第五二极管触发所述第一半控型器件导通。
  52. 根据权利要求46所述的灭弧装置,其特征是:所述第一开关包括第三电容,所述第三电容用于输入电压信号。
  53. 根据权利要求52所述的灭弧装置,其特征是:所述第一开关由所述第三电容、第一半控型器件组成;所述第二电容通过所述第三电容触发所述第一半控型器件导通,或所述负载的电压通过所述第三电容触发所述第一半控型器件导通。
  54. 根据权利要求52所述的灭弧装置,其特征是:所述第一开关由所述第三电容、第一半控型器件、延时单元组成,所述电压信号通过所述第三电容传递至所述延时单元,所述延时单元驱动所述第一半控型器件导通。
  55. 根据权利要求54所述的灭弧装置,其特征是:所述延时单元由供电电路、延时电路、 半控型开关电路组成,所述供电电路由第四元件、第三稳压器件组成,所述第二电容提供的工作电源通过所述第四元件限流,所述第三稳压器件稳压为所述延时电路提供工作能量。
  56. 根据权利要求46所述的灭弧装置,其特征是:所述电压检测开关的供电电源由所述第一电容与所述第二电容之间的电压提供,或由所述负载两端电压非隔离提供。
  57. 根据权利要求46所述的灭弧装置,其特征是:所述电压检测开关的电压输入端与输出端非电气隔离。
  58. 根据权利要求46所述的灭弧装置,其特征是:其采用绝缘材料封装为一器件。
  59. 根据权利要求24、28、37、46任一项所述的灭弧装置,其特征是:所述控制单元还包括一通信端口。
PCT/CN2019/106451 2018-09-19 2019-09-18 灭弧电路及装置 WO2020057551A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/277,753 US20210375561A1 (en) 2018-09-19 2019-09-18 Arc-extinguishing circuit and apparatus
CN201980044837.7A CN112673442B (zh) 2018-09-19 2019-09-18 灭弧电路及装置
AU2019341286A AU2019341286B2 (en) 2018-09-19 2019-09-18 Arc-extinguishing circuit and apparatus

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
CN201811095757 2018-09-19
CN201811095757.8 2018-09-19
CN201811111501.1 2018-09-23
CN201811111501 2018-09-23
CN201811252682 2018-10-26
CN201811252682.X 2018-10-26
CN201811290483 2018-10-31
CN201811290483.8 2018-10-31
CN201811499241 2018-12-08
CN201811499241.X 2018-12-08
CN201910017434 2019-01-08
CN201910017434.5 2019-01-08
CN201910415886.9 2019-05-18
CN201910415886 2019-05-18
CN201910450041 2019-05-28
CN201910453830.2 2019-05-28
CN201910450041.3 2019-05-28
CN201910453830 2019-05-28
CN201910556843.2 2019-06-25
CN201910556843 2019-06-25
CN201910632857 2019-07-14
CN201910632857.8 2019-07-14
CN201910714682.5 2019-08-04
CN201910714682 2019-08-04
CN201910860132.4 2019-09-11
CN201910860132 2019-09-11

Publications (1)

Publication Number Publication Date
WO2020057551A1 true WO2020057551A1 (zh) 2020-03-26

Family

ID=69888276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106451 WO2020057551A1 (zh) 2018-09-19 2019-09-18 灭弧电路及装置

Country Status (4)

Country Link
US (1) US20210375561A1 (zh)
CN (1) CN112673442B (zh)
AU (1) AU2019341286B2 (zh)
WO (1) WO2020057551A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003851B (zh) * 2017-07-24 2020-01-14 广州市金矢电子有限公司 直流灭弧电路及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086231A1 (en) * 2001-11-02 2003-05-08 Mitsubishi Denki Kabushiki Kaisha Power conversion apparatus
CN103325591A (zh) * 2013-05-28 2013-09-25 北京联动天翼科技有限公司 直流机械开关的包含可控开关的灭弧装置及灭弧方法
CN105185623A (zh) * 2014-07-30 2015-12-23 广州市金矢电子有限公司 直流电子灭弧装置
CN105610301A (zh) * 2015-02-27 2016-05-25 广州市金矢电子有限公司 晶闸管触发装置
CN106783297A (zh) * 2016-01-24 2017-05-31 广州市金矢电子有限公司 直流灭弧功率器件驱动装置及灭弧装置
WO2017125056A1 (zh) * 2016-01-24 2017-07-27 广州市金矢电子有限公司 过零检测装置及同步开关

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074394B (zh) * 2010-11-18 2014-07-09 Asco电力技术公司 灭弧开关及其切换方法
KR101522412B1 (ko) * 2013-12-26 2015-05-26 주식회사 효성 양방향 직류 차단장치
KR101569195B1 (ko) * 2013-12-26 2015-11-13 주식회사 효성 자계를 이용한 직류차단기
CN106783293B (zh) * 2014-03-07 2019-05-10 广州市金矢电子有限公司 电容耦合式灭弧电路
EP3407368B1 (en) * 2016-01-24 2021-03-03 Guangzhou Kingser Electronics Co., Ltd Arc-extinguishing power device driving apparatus and arc-extinguishing apparatus
CN109003851B (zh) * 2017-07-24 2020-01-14 广州市金矢电子有限公司 直流灭弧电路及装置
CN108962647B (zh) * 2017-07-24 2021-08-27 广州市金矢电子有限公司 直流灭弧装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086231A1 (en) * 2001-11-02 2003-05-08 Mitsubishi Denki Kabushiki Kaisha Power conversion apparatus
CN103325591A (zh) * 2013-05-28 2013-09-25 北京联动天翼科技有限公司 直流机械开关的包含可控开关的灭弧装置及灭弧方法
CN105185623A (zh) * 2014-07-30 2015-12-23 广州市金矢电子有限公司 直流电子灭弧装置
CN105610301A (zh) * 2015-02-27 2016-05-25 广州市金矢电子有限公司 晶闸管触发装置
CN106783297A (zh) * 2016-01-24 2017-05-31 广州市金矢电子有限公司 直流灭弧功率器件驱动装置及灭弧装置
WO2017125056A1 (zh) * 2016-01-24 2017-07-27 广州市金矢电子有限公司 过零检测装置及同步开关

Also Published As

Publication number Publication date
AU2019341286A1 (en) 2021-05-13
CN112673442A (zh) 2021-04-16
AU2019341286B2 (en) 2023-01-19
CN112673442B (zh) 2023-06-20
US20210375561A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
EP3648133B1 (en) Direct-current arc-extinguishing circuit and device
CN108962647B (zh) 直流灭弧装置
US10229794B2 (en) Circuit breaker for interrupting DC current using magnetic field
EP3089301A1 (en) Bidirectional direct current circuit breaker
US11211215B2 (en) Switch, and control method thereof
CN105428118A (zh) 灭弧装置及无弧开关
WO2020057551A1 (zh) 灭弧电路及装置
CN106849327B (zh) 一种交直流混合型的断路器及控制方法
WO2016134670A1 (zh) 智能开关及其应用系统
CN107843807B (zh) 一种在电压跌落的瞬间可及时关断电网的监测系统
WO2020083179A1 (zh) 灭弧电路及装置、开关系统
CN102857102A (zh) 电流保护装置的电流提供组件
WO2020233151A1 (zh) 灭弧电路及装置
CN112753084B (zh) 交流灭弧电路及装置、开关系统
CN111527575A (zh) 直流灭弧装置
CN210668160U (zh) 一种中压隔离开关
WO2020083323A1 (zh) 灭弧装置
WO2019029550A1 (zh) 灭弧方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019341286

Country of ref document: AU

Date of ref document: 20190918

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19861382

Country of ref document: EP

Kind code of ref document: A1