WO2019016918A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2019016918A1
WO2019016918A1 PCT/JP2017/026285 JP2017026285W WO2019016918A1 WO 2019016918 A1 WO2019016918 A1 WO 2019016918A1 JP 2017026285 W JP2017026285 W JP 2017026285W WO 2019016918 A1 WO2019016918 A1 WO 2019016918A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor
heat exchange
outdoor heat
exchange support
Prior art date
Application number
PCT/JP2017/026285
Other languages
English (en)
French (fr)
Inventor
美沙紀 幸田
誉也 中原
敬三 鎌田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1918070.2A priority Critical patent/GB2577825B/en
Priority to PCT/JP2017/026285 priority patent/WO2019016918A1/ja
Priority to JP2019530308A priority patent/JP6755401B2/ja
Publication of WO2019016918A1 publication Critical patent/WO2019016918A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof

Definitions

  • the present invention relates to an air conditioner applied to a multi-air conditioner for buildings and the like.
  • Some conventional air conditioners perform a defrost operation that melts the frost attached to the heat exchanger of the outdoor unit during the heating operation in the winter.
  • air conditioners that perform such a defrost operation there is one in which an outdoor heat exchanger is disposed on all the four sides of the outdoor unit in order to increase the heat exchange area (see, for example, Patent Document 1).
  • an outdoor fan is mounted on the upper portion, and a machine room in which a compressor or the like is installed is provided on the lower portion.
  • a flat support member is provided on the upper side of the machine chamber, and the outdoor heat exchanger is mounted on the support member.
  • the support member is provided over the entire area below the outdoor heat exchanger so as to form the upper surface of the machine room.
  • the present invention has been made to solve the problems as described above, and has a structure in which the outdoor heat exchanger is installed at the upper portion of the outdoor unit, while retaining stagnation of defrost water etc. in the outdoor unit.
  • An object of the present invention is to provide a suppressed air conditioner.
  • the air conditioner according to the present invention comprises an indoor unit having an indoor heat exchanger, an outdoor heat exchanger, a heat exchange supporting member for supporting the outdoor heat exchanger from below, and the heat exchange supporting member.
  • An outdoor unit having a base portion mounted thereon, wherein the heat exchange support member is disposed between a plurality of heat exchange support columns provided on the base portion and the adjacent heat exchange support columns And a plurality of heat exchange support plates provided at both ends of the heat exchange support column.
  • the plurality of heat exchange support columns provided on the base portion and the adjacent heat exchange support columns are provided, and the plurality of heat exchange support columns supported by both ends And the heat exchange support plate, and the outdoor heat exchanger is supported from below by the heat exchange support member. Therefore, it is possible to suppress stagnation of defrost water or the like in the outdoor unit while having a structure in which the outdoor heat exchanger is installed above the outdoor unit.
  • FIG. 1 is a schematic refrigerant circuit diagram showing an example of an air conditioner according to an embodiment of the present invention.
  • the air conditioner according to the present embodiment includes an outdoor unit 10 and a plurality of indoor units 20 (20a to 20d), and the outdoor unit 10 and the indoor units 20 are refrigerant pipes. Connected by 30.
  • the compressor 11, the flow switching device 12, the outdoor heat exchanger 13, the expansion device 21, and the indoor heat exchanger 22 are sequentially connected by the refrigerant pipe 30, and the refrigerant circuit is circulated Have.
  • four indoor units 20 are connected in parallel to the outdoor unit 10.
  • four indoor units 20 are connected to the outdoor unit 10 as an example, but the number of indoor units 20 is not limited.
  • the outdoor unit 10 is an upper blowout type, and includes a compressor 11, a flow path switching device 12 such as a four-way valve, an outdoor heat exchanger 13 (13a, 13b), an accumulator 15, and an outdoor heat exchanger 13. And an outdoor fan (not shown) for supplying air to the
  • the compressor 11 is, for example, an inverter compressor or the like capable of capacity control, and sucks a low-temperature low-pressure gas refrigerant, compresses the gas refrigerant, and discharges it as a high-temperature high-pressure gas refrigerant.
  • the flow path switching device 12 switches the flow of the refrigerant in the heating operation mode and the flow of the refrigerant in the cooling operation mode or the defrost operation.
  • FIG. 2 is a refrigerant circuit diagram in which the outdoor heat exchanger 13a of FIG. 1 is enlarged.
  • the numbers in FIG. 2 indicate the number of stages of the heat transfer tubes 14.
  • the solid line in FIG. 2 indicates the flow path of the refrigerant.
  • the refrigerant circuit diagram of the outdoor side heat exchanger 13a is shown in FIG. 2, the refrigerant circuit diagram of the outdoor side heat exchanger 13b is also the same structure.
  • the outdoor heat exchangers 13a and 13b are, as shown in FIG. 2, a plurality of fins 17 stacked in the horizontal direction and a heat transfer tube 14 provided in a plurality of stages in the vertical direction so as to be orthogonal to the fins 17; Is equipped.
  • the first stage is the uppermost stage, and the 60th stage is the lowermost stage.
  • the heat transfer tubes 14 are provided so as to overlap 60 stages, but the number of stages of the heat transfer tubes 14 is not limited.
  • the outdoor heat exchangers 13a and 13b function as an evaporator in the heating operation mode, function as a condenser in the cooling operation mode and the defrost operation mode, and between the air supplied by the outdoor blower and the refrigerant. Heat exchange.
  • the accumulator 15 is provided on the suction side of the compressor 11, and stores an excess refrigerant due to the difference between the heating operation mode and the cooling operation mode, and an excess refrigerant due to a transient change in operation.
  • the outdoor unit 10 side of the refrigerant circuit is provided with a bypass circuit that allows the high temperature and high pressure gas refrigerant discharged from the compressor 11 to flow into the outdoor heat exchanger 13.
  • the bypass circuit is composed of each bypass pipe and the valve opening / closing device 35.
  • the bypass piping is configured by the first bypass piping 31, the second bypass piping 32 (32a, 32b), the third bypass piping 33 (33a, 33b), and the fourth bypass piping 34.
  • the first bypass pipe 31 is a pipe branched from the refrigerant pipe 30 between the compressor 11 and the flow path switching device 12.
  • the second bypass pipes 32a and 32b are pipes which are branched from the first bypass pipe 31 and connected to one end of the heat transfer pipe 14 disposed at the lowermost stage of the outdoor heat exchangers 13a and 13b.
  • the third bypass piping 33a, 33b is a piping whose one end is connected to the other end of the heat transfer pipe 14 disposed at the lowermost stage of the outdoor heat exchangers 13a, 13b and whose other end is connected to the junction 36 .
  • the fourth bypass pipe 34 is a pipe branched from the refrigerant pipe 30 between the flow path switching device 12 and the accumulator 15 and connected to the junction 36.
  • the valve opening and closing device 35 is provided in the fourth bypass pipe 34, and is configured of, for example, a solenoid valve or the like.
  • the second bypass piping 32 and the third bypass piping 33 are connected to the heat transfer pipe 14 disposed at the lowermost stage of the outdoor heat exchangers 13a and 13b, but the invention is limited thereto. I will not. As long as the pressure difference can be obtained, it may be connected to the heat transfer tubes 14 disposed in other stages instead of the lowermost stage.
  • FIG. 3 is a refrigerant circuit diagram showing the flow of the refrigerant in the heating operation mode of the air conditioning apparatus according to the embodiment of the present invention. Note that FIG. 3 shows the case where all the indoor units 20 are driven, and the arrows shown in the drawing indicate the flow direction of the refrigerant.
  • the low temperature and low pressure gas refrigerant flows into the compressor 11 to be compressed, and is discharged as the high temperature and high pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 by the flow path switching device 12 and flows into the indoor heat exchanger 22 of each indoor unit 20 through the refrigerant pipe 30.
  • the high-temperature and high-pressure gas refrigerant flowing into the indoor heat exchanger 22 exchanges heat with the air supplied from the indoor fan, dissipates heat to the surrounding air, condenses, and becomes a low-temperature and high-pressure liquid refrigerant. It flows out of the exchanger 22.
  • the low-temperature and high-pressure liquid refrigerant flowing out of the indoor heat exchanger 22 is expanded and decompressed by the expansion device 21 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows out of the indoor unit 20.
  • the gas-liquid two-phase refrigerant flowing out of the indoor unit 20 flows into the outdoor heat exchanger 13 of the outdoor unit 10 through the refrigerant pipe 30.
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 13 absorbs heat from the surrounding air by heat exchange with the air supplied from the outdoor blower, evaporates, and becomes a low-pressure gas refrigerant to form the outdoor heat. It flows out of the exchanger 13.
  • the gas refrigerant passes through the flow path switching device 12 and enters the accumulator 15.
  • the gas refrigerant that has entered the accumulator 15 is separated into a liquid refrigerant and a gas refrigerant, and the low-temperature low-pressure gas refrigerant is again drawn into the compressor 11.
  • the sucked gas refrigerant is compressed again by the compressor 11 and discharged, and circulation of the refrigerant is repeated.
  • FIG. 4 is a refrigerant circuit diagram showing the flow of the refrigerant in the defrost operation mode of the air conditioning apparatus according to the embodiment of the present invention.
  • FIG. 4 shows the case where all the indoor units 20 are driven, and the arrows shown in the figure indicate the flow direction of the refrigerant.
  • the defrosting operation the normal heating operation is interrupted, and the flow path switching device 12 makes the same circulation direction of the refrigerant as the cooling operation.
  • the low-temperature low-pressure gas refrigerant flows into the compressor 11 to be compressed, and is discharged as the high-temperature high-pressure gas refrigerant.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 by the flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 dissipates heat to the surrounding air by heat exchange with the air supplied from the outdoor blower, and becomes a low-temperature and high-pressure liquid refrigerant.
  • the heat radiation melts the frost adhering to the surface of the outdoor heat exchanger 13.
  • the outdoor fan is often stopped.
  • the low-temperature high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 flows into the indoor unit 20 through the refrigerant pipe 30.
  • the low temperature and high pressure liquid refrigerant flowing into the indoor unit 20 is expanded and decompressed by the expansion device 21 to become a low temperature and low pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows to the indoor heat exchanger 22, flows out from the indoor heat exchanger 22 without heat exchange, and flows out from the indoor unit 20 in the gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant flowing out of the indoor unit 20 flows into the outdoor unit 10, passes through the flow path switching device 12, and enters the accumulator 15.
  • the refrigerant that has entered the accumulator 15 is separated into a liquid refrigerant and a gas refrigerant, and the low-temperature low-pressure gas refrigerant is again drawn into the compressor 11.
  • the sucked gas refrigerant is compressed again by the compressor 11 and discharged, and circulation of the refrigerant is repeated.
  • FIG. 5 is a refrigerant circuit diagram in the case where the refrigerant flows in the bypass circuit in the defrost operation mode of the air conditioning apparatus according to the embodiment of the present invention.
  • FIG. 5 shows the case where all the indoor units 20 are driven, and the arrows shown in the figure indicate the flow direction of the refrigerant.
  • the valve opening / closing device 35 By opening the valve opening / closing device 35, the high temperature / high pressure gas refrigerant flows into the bypass circuit.
  • the defrosting operation is ended when the temperature of the heat transfer pipe 14 of the outdoor heat exchanger 13 reaches T1 ° C., for example, the timing at which the valve opening / closing device 35 is opened is higher than T1 ° C.
  • the valve opening / closing device 35 When the valve opening / closing device 35 is opened, the high pressure / high temperature gas refrigerant flows into the bypass circuit and flows to the lowermost heat transfer pipe 14 of the outdoor heat exchanger 13, so the lowermost portion of the outdoor heat exchanger 13 It can be heated. For this reason, it suppresses icing, re-icing and root ice of the defrost water accumulated in the lower part of the outdoor heat exchanger 13 and the rain water etc. (hereinafter referred to as defrost water etc.) entering the inside of the outdoor unit 10. be able to.
  • defrost water etc. the defrost water etc.
  • FIG. 6 is a schematic perspective view showing the structure of the outdoor unit 10 of the air conditioning apparatus according to the embodiment of the present invention.
  • the outdoor unit 10 has a rectangular parallelepiped shape, and a rectangular base portion 41 provided at the bottom, a heat exchange support member 42 provided on the base portion 41, and a chamber supported by the heat exchange support member 42.
  • An outer heat exchanger 13 and an outdoor fan (not shown) provided at the top are provided.
  • a machine room 43 in which the compressor 11, the flow path switching device 12, the accumulator 15 and the like are installed is provided below the outdoor heat exchanger 13, and the compressor 11 and the like are mounted on the base portion 41. It is placed.
  • Defrosted water and the like during the defrosting operation flow downward along the fins 17 of the outdoor heat exchanger 13 by gravity.
  • a drainage hole is formed in the base portion 41 which is the bottom portion of the outdoor unit 10, and the drainage hole is the outdoor heat exchanger 13, for example, the outdoor heat exchanger 13 is placed on a table higher than the base portion. If it is not immediately below or at a close distance, the distance from the defrost water etc. to the drainage hole after passing through the fins 17 of the outdoor heat exchanger 13 becomes long. That is, since the drainage path becomes long, it becomes easy to freeze before being discharged from the drainage hole to the outside of the outdoor unit 10.
  • defrost water in the outdoor unit having a structure in which the outdoor fan is mounted on the upper side and the outdoor heat exchanger is supported from below by the support member.
  • defrost water or the like stagnates on the contact surface of the outdoor heat exchanger with the support member at the portion where the outdoor heat exchanger and its support member are in contact.
  • the accumulated defrost water or the like is cooled to a temperature equal to or lower than the outside air temperature by the outdoor heat exchanger functioning as an evaporator during the heating operation, and thus freezes.
  • the defrosting operation is usually performed in a cycle of about once per hour, a large amount of defrost water is generated in a high humidity environment. Defrosted water drips from the outdoor heat exchanger to the supporting member, the base portion of the outdoor unit, the panel, and the like, and when it is frozen, a large amount of ice may grow in the outdoor unit 10. And if it becomes so, possibility of breakage of a heat exchanger tube will become higher by freezing, such as defrost water.
  • the outdoor heat exchanger 13 is supported in the outdoor unit 10 to suppress sinking and bending due to its own weight, and defrost water etc. are retained in the lower part of the outdoor heat exchanger 13.
  • a heat exchange supporting member 42 is provided to prevent the heat exchange.
  • the heat exchange support member 42 is configured of a plurality of columnar heat exchange support columns 50 and a plurality of plate-like heat exchange support plates 60.
  • the heat exchange supporting column 50 is provided on the corner of the base 41 and supports the lower end of the corner of the outdoor heat exchanger 13.
  • the heat exchange support plate 60 is provided between the adjacent heat exchange support columns 50, both ends of which are supported by the heat exchange support columns 50, and supports the lower end of the side portion between the corners of the outdoor heat exchanger 13. It is
  • the outdoor heat exchanger 13 supported by the heat exchange support member 42 is provided along the upper four side surfaces of the outdoor unit 10.
  • the outdoor heat exchanger 13 is constituted of, for example, two outdoor heat exchangers 13a and 13b formed in an L-shape, and are disposed so that the bent portions of the R shapes are diagonally opposite to each other. ing. By arranging the outdoor heat exchangers 13 a and 13 b in this manner, four corners are formed in the outdoor heat exchanger 13.
  • the lower end side of the outdoor heat exchanger 13 is opened as much as possible, and the lower end of the outdoor heat exchanger 13 is It is better to have fewer contacts with the department. Therefore, a columnar heat exchange supporting column 50 having a small contact area with the lower end portion of the outdoor heat exchanger 13 is provided.
  • the heat exchange supporting column 50 supports the corners of the outdoor heat exchanger 13, the side portions between the corners may be bent or sunk by the weight of the outdoor heat exchanger 13. I have some troubles.
  • the heat exchange support plate 60 having both ends supported by the heat exchange support column 50 is provided so as to bridge between the adjacent heat exchange support columns 50, and the heat exchange support plate 60 is provided with the outdoor heat exchanger 13. Place the lower end between the corners. By doing so, the heat exchange supporting member 42 can support the entire lower end of the outdoor heat exchanger 13 from below.
  • the heat exchange support columns 50 are provided at the three corner portions of the lower portion of the outdoor unit 10, and are not provided at the remaining one corner portion. Moreover, the pillar 49 is provided on the upper part of the corner where the heat exchange support column 50 is not provided, and one end of the heat exchange support plate 60 is fixed by the pillar 49 and a screw. I will not.
  • the heat exchange support columns 50 may be provided at the four corners of the lower portion of the outdoor unit 10, and both ends of all the four heat exchange support plates 60 may be supported by the heat exchange support columns 50.
  • FIG. 7 is a schematic view showing a longitudinal cross section of the outdoor heat exchanger 13 and the heat exchange support plate 60 of the outdoor unit 10 of the air conditioning apparatus according to the embodiment of the present invention.
  • FIG. 7 is a longitudinal cross-sectional view of the outdoor heat exchanger 13 and the heat exchange support plate 60 cut in the width direction (or short direction).
  • a plurality of first drainage holes 62 are formed in the bottom portion 61 of the heat exchange support plate 60.
  • the first drainage hole 62 is a hole for draining defrost water or the like generated from the outdoor heat exchanger 13 supported by the heat exchange support plate 60, and the defrost water or the like can be discharged from the outdoor heat exchanger 13 by this hole. It can control that it stays in the lower part of and improve drainage property.
  • FIG. 9 is a schematic view of a heat exchange support plate 60 for a small model of the outdoor unit 10 of the air conditioning apparatus according to the embodiment of the present invention.
  • FIG. 10 is a schematic view of a heat exchange support plate 60 for a large model of the outdoor unit 10 of the air conditioning apparatus according to the embodiment of the present invention.
  • the shape of the first drainage hole 62 of the heat exchange support plate 60 differs depending on the size of the outdoor heat exchanger 13 mounted on the outdoor unit 10.
  • the outdoor heat exchanger 13 mounted on the outdoor unit 10 is small in size with small horsepower, the product length and the number of rows (number of rows) of the outdoor heat exchanger 13 are small, and the outdoor side supported by the heat exchange support plate 60 The area of the heat exchanger 13 is small, and the strength can be secured with a small pressure receiving area. Therefore, in the heat exchanger support plate 60 for small model, as shown in FIG. 9, the diameter of the first drainage hole 62 of the bottom portion 61 of the heat exchanger support plate 60 is the heat exchanger support plate 60 for large model shown in FIG. The diameter of the first drainage hole 62 is larger than the diameter of the first drainage hole 62. By doing so, it can suppress that the 1st drainage hole 62 is obstruct
  • the diameter of the first drainage hole 62 of the bottom portion 61 of the heat exchange support plate 60 is the heat exchange support plate 60 for a small model shown in FIG.
  • the diameter of the first drainage hole 62 is smaller than that of the first drainage hole 62.
  • the first drainage holes 62 of the heat exchange support plate 60 for a large-sized model are arranged such that the pressure receiving area in each row of the outdoor heat exchangers 13 is uniformly secured.
  • the diameter of the first drainage hole 62 may be made as large as possible in order to prevent the closure of the first drainage hole 62 due to surface tension.
  • the high-temperature high-temperature gas refrigerant is caused to flow into the lowermost heat transfer pipe 14 of the outdoor heat exchanger 13 by the bypass circuit to suppress icing such as defrost water.
  • the lowermost stage of the outdoor heat exchanger 13 is heated more than the other stages.
  • the drain pan may be disposed below the outdoor heat exchanger 13 with a space in between, when the drain pan is disposed, defrost water etc. are not particularly frozen in the lower part of the outdoor heat exchanger 13.
  • the heat exchange supporting plate 60 be made of metal having good heat conductivity.
  • FIG. 11 is a schematic perspective view of the heat exchange support plate 60 of the outdoor unit 10 of the air conditioning apparatus according to the embodiment of the present invention.
  • a side wall portion 63 protruding upward is provided at the longitudinal end of the bottom portion 61 of the heat exchange support plate 60, and a second drainage hole 64 is provided in the side wall portion 63. Multiple are formed.
  • defrosting is performed at the lower portion of the outdoor heat exchanger 13. Water and the like continue to stagnate and freeze, which may cause the heat transfer tube 14 to break.
  • FIG. 12 is a perspective view of the heat exchange supporting column 50 of the outdoor unit 10 of the air conditioning apparatus according to the embodiment of the present invention.
  • FIG. 13 is an enlarged top view of the heat exchange support column 50 shown in FIG.
  • FIG. 14 is a schematic view showing a longitudinal cross section of the outdoor heat exchanger 13 and the heat exchange support column 50 of the outdoor unit 10 of the air conditioning apparatus according to the embodiment of the present invention.
  • FIG. 14 is a longitudinal cross-sectional view at the time of cut
  • a flat portion 51 for supporting the lower end portion of the outdoor heat exchanger 13 is provided on the upper portion of the heat exchange support column 50, and the longitudinal end of the flat portion 51 is provided.
  • the side wall part 52 which protruded upwards is provided.
  • a water channel 53 through which defrost water or the like flows is formed in part of the flat portion 51.
  • the water channel 53 is formed by denting the vicinity of the center in the width direction (or short direction) of the flat portion 51 downward, and when the outdoor heat exchanger 13 is placed on the flat portion 51, It does not come in contact with the outer heat exchanger 13.
  • the water channel 53 By providing the water channel 53 with a slope, it is possible to shorten the distance in which the defrost water or the like flows. Moreover, even if the depth of the water channel 53 from the outdoor heat exchanger 13 is reduced, the contact between the defrost water flowing in the water channel 53 and the lower end of the outdoor heat exchanger 13 can be avoided. Therefore, it is possible to drain while heating by heat transfer by effectively utilizing the heat quantity of the outdoor heat exchanger 13.
  • the air conditioning apparatus includes the indoor unit 20 having the indoor heat exchanger 22, the outdoor heat exchanger 13, and the heat exchange supporting member 42 for supporting the outdoor heat exchanger 13 from below. And an outdoor unit 10 having a base portion 41 on which the heat exchange support member 42 is mounted.
  • the heat exchange support member 42 is provided between a plurality of heat exchange support columns 50 provided on the base portion 41 and the adjacent heat exchange support columns 50, and both ends thereof are supported by the heat exchange support columns 50.
  • a plurality of heat exchange support plates 60 are provided.
  • the outdoor unit 10 of the air conditioning apparatus has a rectangular parallelepiped shape, and the outdoor heat exchanger 13 is provided along the four side surfaces of the outdoor unit 10.
  • the heat exchange support column 50 supports the corners of the outdoor heat exchanger 13, and the heat exchange support plate 60 supports the corners of the outdoor heat exchanger 13.
  • the air conditioner according to the present invention not only the corners of the outdoor heat exchanger 13 are supported by the heat exchange support column 50, but also between the corners of the outdoor heat exchanger 13 by the heat exchange support plate 60. In order to support, it is possible to suppress deflection and sinking due to the weight of the outdoor heat exchanger 13.
  • the air conditioning apparatus it is possible to drain the defrost water or the like generated from the outdoor heat exchanger 13 supported by the heat exchange support plate 60 from the first drainage hole 62, so defrost water It can suppress that etc. stay in the lower part of outdoor side heat exchanger 13, and can improve drainage nature.
  • the heat exchange support plate 60 of the air conditioning apparatus has the side wall 63 projecting upward from the end of the bottom 61, and the plurality of second drainage holes 64 are provided in the side wall 63. It is formed.
  • the second drainage hole 64 is formed at a position which is equal to or lower than the heat transfer pipe 14 in the lowermost stage of the outdoor heat exchanger 13.
  • the air conditioning apparatus of the present invention even when drainage from the first drainage hole 62 becomes impossible, drainage can be performed from the second drainage hole 64 through the second drainage hole 64. Further, since the second drainage hole 64 is formed at a position which is equal to or lower than the heat transfer pipe 14 of the lowermost stage of the outdoor heat exchanger 13 placed in the bottom portion 61, the second drainage hole 64 is removed from the lower heat transfer pipe 14. Since frost water and the like can also be drained, drainage can be further improved.
  • the heat exchange supporting column 50 of the air conditioner according to the present embodiment includes the flat portion 51 on which the outdoor heat exchanger 13 is mounted, and a part of the flat portion 51 is a water channel recessed downward. 53 are formed. Further, the water channel 53 is provided with a slope.
  • the water channel 53 is a flow channel through which defrost water or the like flows, stagnation of defrost water or the like in the lower part of the outdoor heat exchanger 13 can be suppressed. Further, since the water channel 53 is provided with a gradient, the distance through which the defrost water or the like flows is as short as possible, and the depth of the water channel 53 from the outdoor heat exchanger 13 is reduced. It is possible to drain while heating by heat transfer using heat effectively.
  • the heat exchange supporting column 50 of the air conditioning apparatus which concerns on this Embodiment is resin.
  • the heat transfer supporting column 50 is made of resin having a low heat conductivity, thereby suppressing the heat radiation of the heat of the outdoor heat exchanger 13, and the heat of the outdoor heat exchanger 13. Heat can be retained in the lower part and near the water channel 53, and the water temperature can be secured to ensure drainage performance.
  • the heat exchanger support plate 60 of the air conditioning apparatus which concerns on this Embodiment is metal.
  • the heat of the outdoor heat exchanger 13 is easily transmitted to the heat exchange support plate 60 by making the heat exchange support plate 60 of metal, and the heat exchange support plate 60 has a temperature rise It becomes easy to do. Therefore, drainage can be performed without blocking the first drainage hole 62 even under low ambient air conditions.
  • the air conditioner according to the present embodiment is a refrigerant in which the compressor 11, the flow path switching device 12, the outdoor heat exchanger 13, the expansion device 21, and the indoor heat exchanger 22 are connected by the refrigerant pipe 30. It has a circuit.
  • the refrigerant circuit also includes a bypass pipe branched from the refrigerant pipe 30 between the compressor 11 and the flow path switching device 12 and connected to the heat transfer pipe 14 at the lowermost stage of the outdoor heat exchanger 13.
  • the high pressure and high temperature gas refrigerant can be made to flow into the lowermost heat transfer pipe 14 of the outdoor heat exchanger 13 by the bypass piping. Therefore, it is possible to suppress the icing, re-icing and root ice of the defrosting water and the like accumulated in the lower part of the outdoor heat exchanger 13.
  • the present invention can also be applied to an outdoor unit of an air conditioner that does not include the configuration of the bypass circuit described in the present embodiment.
  • the outdoor heat exchanger 13 is provided on any of the four side surfaces regardless of the outdoor unit having the outdoor heat exchanger 13 provided along the four side surfaces. It can also be applied to machines.

Abstract

空気調和装置は、室内側熱交換器を有する室内機と、室外側熱交換器と、室外側熱交換器を下方から支持する熱交支持部材と、熱交支持部材が載置されるベース部と、を有する室外機と、を備え、熱交支持部材は、ベース部上に設けられた複数の熱交支持柱と、隣接する熱交支持柱の間に設けられ、該熱交支持柱に両端が支持された複数の熱交支持プレートと、を備えたものである。

Description

空気調和装置
 本発明は、ビル用マルチエアコン等に適用される空気調和装置に関するものである。
 従来の空気調和装置において、冬場の暖房運転時に室外機の熱交換器に付着した霜を融解するデフロスト運転を行うものがある。このようなデフロスト運転を行う空気調和装置には、熱交換面積を増大するため、室外機の四面全てに室外側熱交換器が配置されたものがある(例えば、特許文献1参照)。
 特許文献1の空気調和装置の室外機では、上部に室外側送風機が搭載されており、下部に圧縮機等が設置される機械室が設けられている。そして、機械室の上側には平板状の支持部材が設けられており、この支持部材上に室外側熱交換器が載置されている。この支持部材は、機械室の上面を形成するように、室外側熱交換器の下方の全範囲に渡って設けられている。このように、支持部材で室外側熱交換器を支持することにより、室外側熱交換器を室外機の上部に設けることで、室外側送風機による風を有効に利用することができる。
特開2001-201111号公報
 特許文献1の空気調和装置の室外機において、支持部材の一部には、排水穴が形成されている。そして、空気調和装置のデフロスト運転時に発生した除霜水、室外機内部に浸入した雨水等が室外側熱交換器のフィンを伝って重力によって下方向へと流れ、支持部材の排水穴から排水されるようになっている。しかし、除霜水等が室外側熱交換器のフィンを伝う位置によっては、排水穴までの距離が長くなり、排水経路が長くなる。そのため、除霜水等が支持部材上に滞留しやすく、排水されづらいという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、室外側熱交換器が室外機の上部に設置された構造を有しつつ、室外機内での除霜水等の滞留を抑制した空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、室内側熱交換器を有する室内機と、室外側熱交換器と、前記室外側熱交換器を下方から支持する熱交支持部材と、前記熱交支持部材が載置されるベース部と、を有する室外機と、を備え、前記熱交支持部材は、前記ベース部上に設けられた複数の熱交支持柱と、隣接する前記熱交支持柱の間に設けられ、該熱交支持柱に両端が支持された複数の熱交支持プレートと、を備えたものである。
 本発明に係る空気調和装置によれば、ベース部上に設けられた複数の熱交支持柱と、隣接する熱交支持柱の間に設けられ、該熱交換支持柱に両端が支持された複数の熱交支持プレートと、を備えた熱交支持部材で室外側熱交換器を下方から支持する。そのため、室外側熱交換器が室外機の上部に設置された構造を有しつつ、室外機内での除霜水等の滞留を抑制することができる。
本発明の実施の形態に係る空気調和装置の一例を示す概略構成の冷媒回路図である。 図1の室外側熱交換器を拡大した冷媒回路図である。 本発明の実施の形態に係る空気調和装置の暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置のデフロスト運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置のデフロスト運転モード時にバイパス回路に冷媒を流した場合の冷媒回路図である。 本発明の実施の形態に係る空気調和装置の室外機の構造を示す概略斜視図である。 本発明の実施の形態に係る空気調和装置の室外機の室外側熱交換器および熱交支持プレートの縦断面を示す概略図である。 本発明の形態に係る空気調和装置の室外機の室外側熱交換器の重量に対する必要重圧面積を示す図である。 本発明の実施の形態に係る空気調和装置の室外機の小型機種用の熱交支持プレートを平面視した概略図である。 本発明の実施の形態に係る空気調和装置の室外機の大型機種用の熱交支持プレートを平面視した概略図である。 本発明の実施の形態に係る空気調和装置の室外機の熱交支持プレートの概略斜視図である。 本発明の実施の形態に係る空気調和装置の室外機の熱交支持柱の斜視図である。 図12に示す熱交支持柱の上部拡大図である。 本発明の実施の形態に係る空気調和装置の室外機の室外側熱交換器および熱交支持柱の縦断面を示す概略図である。
 以下、本発明に係る空気調和装置の実施の形態について、図面を用いて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。本実施の形態は、例えば、ビル用マルチエアコンの熱交換器を支持する強度を持ちつつ、デフロスト運転で発生した除霜水等を室外側熱交換器の下に滞留しないよう排水性を向上させて熱交換器周辺での氷結を緩和しガス冷媒の漏れを抑制したものである。
 図1は本発明の実施の形態に係る空気調和装置の一例を示す概略構成の冷媒回路図である。
 本実施の形態に係る空気調和装置は、図1に示すように、室外機10と、複数の室内機20(20a~20d)と、を備え、室外機10と室内機20とが、冷媒配管30で接続されている。また、空気調和装置は、圧縮機11、流路切替装置12、室外側熱交換器13、絞り装置21、室内側熱交換器22が冷媒配管30で順次接続され、冷媒が循環する冷媒回路を備えている。
 本実施の形態に係る空気調和装置は、4台の室内機20が室外機10に対し並列に接続されている。なお、本実施の形態では、室内機20が室外機10に対して4台接続されている場合を例に示しているが、室内機20の台数は限定されるものではない。
[室外機]
 室外機10は、上吹出しタイプであり、圧縮機11と、四方弁等の流路切替装置12と、室外側熱交換器13(13a、13b)と、アキュムレータ15と、室外側熱交換器13に空気を供給する室外側送風機(図示せず)と、を備えている。圧縮機11は、例えば、容量制御可能なインバータ圧縮機等で構成され、低温低圧のガス冷媒を吸入しそのガス冷媒を圧縮して高温高圧のガス冷媒にして吐出するものである。流路切替装置12は、暖房運転モード時における冷媒の流れと、冷房運転モード時またはデフロスト運転における冷媒の流れとを切り替えるものである。
 図2は、図1の室外側熱交換器13aを拡大した冷媒回路図である。なお、図2中の数字は伝熱管14の段数を示している。なお、図2中の実線は冷媒の流路を示している。また、図2では、室外側熱交換器13aの冷媒回路図を示しているが、室外側熱交換器13bの冷媒回路図も同様の構成である。
 室外側熱交換器13a、13bは、図2に示すように、水平方向に複数積層されたフィン17と、フィン17と直交するように鉛直方向に複数段重ねて設けられた伝熱管14と、を備えている。室外側熱交換器13a、13bの伝熱管14は、1段目が最上段であり、60段目が最下段である。なお、本実施の形態に係る室外側熱交換器13a、13bでは、伝熱管14が60段重ねて設けられているが、伝熱管14の段数は限定されるものではない。
 また、室外側熱交換器13a、13bは、暖房運転モード時には蒸発器として機能し、冷房運転モード時およびデフロスト運転モード時には凝縮器として機能し、室外側送風機によって供給される空気と冷媒との間で熱交換を行なうものである。アキュムレータ15は、圧縮機11の吸入側に設けられており、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化における余剰冷媒を蓄えるものである。
 また、冷媒回路の室外機10側は、圧縮機11から吐出された高温高圧のガス冷媒を室外側熱交換器13に流入させるバイパス回路を備えている。バイパス回路は、各バイパス配管と弁開閉装置35とで構成されている。また、バイパス配管は、第1バイパス配管31と、第2バイパス配管32(32a、32b)と、第3バイパス配管33(33a、33b)と、第4バイパス配管34とで構成されている。
 第1バイパス配管31は、圧縮機11と流路切替装置12との間の冷媒配管30から分岐した配管である。第2バイパス配管32a、32bは、第1バイパス配管31から分岐して室外側熱交換器13a、13bの最下段に配置された伝熱管14の一端部に接続された配管である。第3バイパス配管33a、33bは、一端が室外側熱交換器13a、13bの最下段に配置された伝熱管14の他端部に接続され、他端が合流点36に接続された配管である。第4バイパス配管34は、流路切替装置12とアキュムレータ15との間の冷媒配管30から分岐して合流点36に接続された配管である。弁開閉装置35は、第4バイパス配管34に設けられており、例えば電磁弁等で構成されている。
 なお、本実施の形態では、第2バイパス配管32および第3バイパス配管33は、室外側熱交換器13a、13bの最下段に配置された伝熱管14に接続された構成としたが、それに限定されない。圧力差が取れる位置であれば最下段ではなく、その他の段に配置された伝熱管14に接続された構成としてもよい。
[室内機]
 室内機20(20a~20d)は、絞り装置21(21a~21d)と、室内側熱交換器22(22a~22d)と、室内側熱交換器22に空気を供給する室内側送風機(図示せず)と、を備えている。絞り装置21は、減圧弁または膨張弁としての機能を持ち、冷媒を減圧して膨張させるものであり、弁の開度が制御可能な電子式膨張弁等で構成されている。室内側熱交換器22は、暖房運転モード時には凝縮器として機能し、冷房運転モード時には蒸発器として機能し、室内側送風機によって供給される空気と冷媒との間で熱交換を行ない、空調対象の空間に冷房用空気または暖房用空気を供給するものである。
 次に、本実施の形態における空気調和装置の運転動作について説明する。
[暖房運転モード]
 図3は、本発明の実施の形態に係る空気調和装置の暖房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図3では全ての室内機20が駆動している場合を示しており、図中に示す矢印は、冷媒の流れ方向を示している。
 圧縮機11が駆動されると、低温低圧のガス冷媒が圧縮機11に流入して圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、流路切替装置12により室外機10から流出し、冷媒配管30を通って各室内機20の室内側熱交換器22に流入する。室内側熱交換器22に流入した高温高圧のガス冷媒は、室内側送風機から供給される空気との熱交換により、周囲空気へ放熱して凝縮し、低温高圧の液冷媒となって室内側熱交換器22から流出する。室内側熱交換器22から流出した低温高圧の液冷媒は、絞り装置21で膨張および減圧され、低温低圧の気液二相冷媒となり、室内機20から流出する。
 室内機20から流出した気液二相冷媒は、冷媒配管30を通って室外機10の室外側熱交換器13に流入する。室外側熱交換器13に流入した気液二相冷媒は、室外側送風機から供給される空気との熱交換により、周囲の空気から吸熱して蒸発し、低圧のガス冷媒となって室外側熱交換器13から流出する。そのガス冷媒は、流路切替装置12を通って、アキュムレータ15に入る。アキュムレータ15に入ったガス冷媒は、液冷媒とガス冷媒とに分離され、低温低圧のガス冷媒が再び圧縮機11へと吸入される。この吸入されたガス冷媒は、圧縮機11で再び圧縮されて吐出され、冷媒の循環が繰り返し行われる。
 蒸発温度が0℃以下となる低温の外気下で暖房運転が連続して行われた場合、室外側熱交換器13で熱交換される空気に含まれる水分が、蒸発器として吸熱している室外側熱交換器13の表面で結露するため、室外側熱交換器13の表面に霜が発生する。室外側熱交換器13の表面の着霜量が多くなると、熱抵抗が大きくなるとともに風量が低下し、これに伴って室外側熱交換器13の伝熱管14の温度および蒸発温度も低下するため、空気調和装置の暖房能力を十分に発揮することができなくなる。そのため、空気調和装置の暖房能力を十分に発揮させるために、デフロスト運転によって除霜することが必要となる。
[デフロスト運転モード]
 図4は、本発明の実施の形態に係る空気調和装置のデフロスト運転モード時における冷媒の流れを示す冷媒回路図である。なお、図4では全ての室内機20が駆動している場合を示しており、図中に示す矢印は、冷媒の流れ方向を示している。
 デフロスト運転は、通常の暖房運転を中断し、流路切替装置12によって冷房運転と同じ冷媒の循環方向にする。この場合、低温低圧のガス冷媒が圧縮機11に流入して圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、流路切替装置12により、室外側熱交換器13に流入する。
 室外側熱交換器13に流入した高温高圧のガス冷媒は、室外側送風機から供給される空気との熱交換により、周囲の空気へ放熱し、低温高圧の液冷媒となる。この放熱により、室外側熱交換器13の表面に付着した霜を融解する。このとき、室外側送風機は停止していることが多い。室外側熱交換器13から流出した低温高圧の液冷媒は、冷媒配管30を通って室内機20に流入する。
 室内機20に流入した低温高圧の液冷媒は、絞り装置21で膨張、減圧され、低温低圧の気液二相冷媒となる。気液二相となった冷媒は室内側熱交換器22へ流れ、熱交換することなく室内側熱交換器22から流出し、気液二相の状態のまま室内機20から流出する。室内機20から流出した気液二相冷媒は、室外機10に流入し、流路切替装置12を通ってアキュムレータ15に入る。アキュムレータ15に入った冷媒は、液冷媒とガス冷媒とに分離され、低温低圧のガス冷媒が再び圧縮機11へと吸入される。この吸入されたガス冷媒は、圧縮機11で再び圧縮されて吐出され、冷媒の循環が繰り返し行われる。
 次に、バイパス回路の動作について説明する。
 図5は、本発明の実施の形態に係る空気調和装置のデフロスト運転モード時にバイパス回路に冷媒を流した場合の冷媒回路図である。なお、図5では全ての室内機20が駆動している場合を示しており、図中に示す矢印は、冷媒の流れ方向を示している。
 バイパス回路には、弁開閉装置35を開にすることで、高温高圧のガス冷媒が流れ込む。ここで、弁開閉装置35を開にするタイミングは、例えば、室外側熱交換器13の伝熱管14の温度がT1℃に達したときにデフロスト運転を終了させるとしたときに、T1℃よりも一定温度低いT2℃(T1>T2)に達したときである。なお、室外側熱交換器13の伝熱管14の温度は、伝熱管14にサーミスタ等の温度検知手段(図示せず)を設けて検知するとよい。
 弁開閉装置35を開状態にした場合、バイパス回路に高圧高温のガス冷媒が流入し、室外側熱交換器13の最下段の伝熱管14に流れるため、室外側熱交換器13の最下部を加熱することができる。このため、室外側熱交換器13の下部に溜まった除霜水、室外機10内部に浸入した雨水等(以下、除霜水等と称する)の氷結、再氷結、および、根氷を抑制することができる。
 図6は、本発明の実施の形態に係る空気調和装置の室外機10の構造を示す概略斜視図である。
 室外機10は、直方体形状を有し、その底部に設けられた矩形状のベース部41と、ベース部41上に設けられた熱交支持部材42と、熱交支持部材42に支持された室外側熱交換器13と、上部に設けられた室外側送風機(図示せず)とを備えている。また、室外側熱交換器13の下方には、圧縮機11、流路切替装置12、アキュムレータ15等が設置される機械室43が設けられており、圧縮機11等は、ベース部41に載置されている。
 デフロスト運転時の除霜水等は、室外側熱交換器13のフィン17を伝って重力によって下方向へと流れる。このとき、室外機10の底部であるベース部41に排水穴が形成されており、室外側熱交換器13がベース部より高い台に乗せられている等、排水穴が室外側熱交換器13の直下または至近距離にない場合は、除霜水等が室外側熱交換器13のフィン17を伝ってから排水穴までの距離が長くなる。つまり、排水経路が長くなるため、排水穴から室外機10の外へ排出されるまでに氷結しやすくなる。
 ここで、室外側送風機が上部に搭載され、室外側熱交換器が支持部材により下方から支持された構造の室外機において、室外機内での除霜水等の氷結には2つのパターンが考えられる。
 1つ目のパターンに関して、室外側熱交換器とその支持部材とが接触する部分には、室外側熱交換器の支持部材との接触面に除霜水等が滞留する。その滞留した除霜水等は、暖房運転時では、蒸発器として機能する室外側熱交換器によって外気温度以下に冷却されるため、氷結する。また、その氷結した除霜水等は、デフロスト運転時では、凝縮器として機能する室外側熱交換器によって外気温度以上に加熱されるため、融解される。そして、空気調和装置が暖房運転およびデフロスト運転を繰り返すことで、支持部材とそれに隣接する室外側熱交換器の伝熱管の周囲の除霜水等は膨張を繰り返し、伝熱管が折損することがある。
 また、2つ目のパターンに関して、デフロスト運転は、通常1時間に1度程度のサイクルで行われるため、高湿度の環境では大量の除霜水が発生する。その除霜水が室外側熱交換器からその支持部材、室外機のベース部、パネル等に垂れ流され、氷結すると室外機10内で氷が大量に成長することがある。そして、そうなると除霜水等の氷結によって伝熱管の折損の可能性がより高くなる。
 そこで、本実施の形態では、室外機10内において、室外側熱交換器13を支持し、自重による沈みおよび撓みを抑制し、かつ、室外側熱交換器13の下部に除霜水等を滞留させないように、熱交支持部材42が設けられている。
 熱交支持部材42は、図6に示すように、複数の柱状の熱交支持柱50と、複数のプレート状の熱交支持プレート60と、で構成されている。熱交支持柱50は、ベース部41の角部上に設けられ、室外側熱交換器13の角部の下端部を支持するものである。熱交支持プレート60は、隣接する熱交支持柱50の間に設けられ、該熱交支持柱50に両端が支持され、室外側熱交換器13の角部間の辺部分の下端部を支持するものである。
 熱交支持部材42によって支持された室外側熱交換器13は、室外機10の上部の四側面に沿って設けられている。室外側熱交換器13は例えばL字状に形成されている二つの室外側熱交換器13a、13bにより構成されており、お互いのR形状の曲げ部が対角上となるようにそれぞれ配置されている。室外側熱交換器13a、13bがこのように配置されることで、室外側熱交換器13に4つの角部が形成される。
 また、熱交支持柱50は、室外機10の下部の角部に設けられており、隣接する熱交支持柱50の間には開口部45と、この開口部45を閉塞するパネル(図示せず)と、が設けられている。この開口部45は、室外機10内部のメンテナンスを行うために設けられている。
 ここで、除霜水等が室外側熱交換器13の下部に滞留しないようにするためには、室外側熱交換器13の下端部側はできる限り開放し、室外側熱交換器13の下端部と接するものが少ない方がよい。そのため、室外側熱交換器13の下端部との接触面積が小さい柱状の熱交支持柱50が設けられている。ただし、熱交支持柱50で室外側熱交換器13の各角部を支持する構造だと、室外側熱交換器13の自重によって角部間の辺部分が撓んでしまったり、沈み込んでしまったりすることがある。
 そこで、隣接する熱交支持柱50の間を橋渡しするように、両端が熱交支持柱50に支持された熱交支持プレート60を設け、その熱交支持プレート60に室外側熱交換器13の角部間の下端部を載置する。そうすることで、熱交支持部材42によって室外側熱交換器13の全体の下端部を下方から支持することができる。
 なお、本実施の形態に係る室外機10では、熱交支持柱50は、室外機10の下部の3つの角部にそれぞれ設けられており、残りの1つの角部には設けられていない。また、熱交支持柱50が設けられていない角部の上部にピラー49が設けられており、ピラー49とネジとにより熱交支持プレート60の一端を固定する構造となっているが、それに限定されない。熱交支持柱50は、室外機10の下部の4つの角部にそれぞれ設けられ、4つの熱交支持プレート60全てにおいて、その両端が熱交支持柱50に支持されている構造としてもよい。
 図7は、本発明の実施の形態に係る空気調和装置の室外機10の室外側熱交換器13および熱交支持プレート60の縦断面を示す概略図である。なお、図7は、室外側熱交換器13および熱交支持プレート60を幅方向(または短手方向)に切断した際の縦断面図である。
 図7に示すように、熱交支持プレート60の底部61には、複数の第1排水穴62が形成されている。この第1排水穴62は、熱交支持プレート60が支持する室外側熱交換器13から発生した除霜水等を排水する穴であり、この穴によって除霜水等が室外側熱交換器13の下部に滞留するのを抑制し、排水性を向上させることができる。
 図8は、本発明の形態に係る空気調和装置の室外機10の室外側熱交換器13の重量に対する必要重圧面積を示す図である。
 熱交支持プレート60の底部61の面積に対する第1排水穴62の開口率は、室外側熱交換器13を支持するために必要な受圧面積から決まり、図8に示すように、必要受圧面積は室外側熱交換器13の重量から求めることができる。
 図9は、本発明の実施の形態に係る空気調和装置の室外機10の小型機種用の熱交支持プレート60を平面視した概略図である。図10は、本発明の実施の形態に係る空気調和装置の室外機10の大型機種用の熱交支持プレート60を平面視した概略図である。
 また、熱交支持プレート60の第1排水穴62の形状は、室外機10に搭載される室外側熱交換器13の大きさによって異なる。室外機10に搭載される室外側熱交換器13が小馬力の小型である場合、室外側熱交換器13の積長および列数(枚数)が少なく、熱交支持プレート60が支持する室外側熱交換器13の面積が小さく、少ない受圧面積で強度が確保できる。そのため、小型機種用の熱交支持プレート60では、図9に示すように、熱交支持プレート60の底部61の第1排水穴62の径が図10に示す大型機種用の熱交支持プレート60の第1排水穴62の径に比べて大きくなっている。そうすることで、除霜水等の凍結によって第1排水穴62が閉塞するのを抑制することができる。
 また、室外機10に搭載される室外側熱交換器13が大馬力の大型である場合、小型に比べ受圧面積が必要になる。そのため、大型機種用の熱交支持プレート60では、図10に示すように、熱交支持プレート60の底部61の第1排水穴62の径が図9に示す小型機種用の熱交支持プレート60の第1排水穴62の径に比べて小さくなっている。また、大型機種用の熱交支持プレート60の第1排水穴62は、室外側熱交換器13の各列での受圧面積が均等に確保されるように配置されている。ただし、表面張力によって第1排水穴62が閉塞するのを抑制するため、第1排水穴62の径はできる限り大きくするとよい。
 また、本実施の形態では、バイパス回路によって高圧高温のガス冷媒を室外側熱交換器13の最下段の伝熱管14に流入させることで、除霜水等の氷結を抑制しているが、この場合、室外側熱交換器13の最下段は、他の段に比べて加熱量が多くなる。さらに、室外側熱交換器13の下方に空間を隔ててドレンパンを配置することがあるが、ドレンパンが配置されるときは、特に室外側熱交換器13の下部に除霜水等を氷結させないように、室外側熱交換器13の下部、および、ドレンパン内の加熱が必要となる。
 そこで、室外側熱交換器13の下部を加熱するために、室外側熱交換器13に流入させる高圧高温のガス冷媒の熱量を有効に利用し、伝熱によって空間およびドレンパンを加熱できるようにするため、熱交支持プレート60は伝熱性のよい金属製が望ましい。熱交支持プレート60を金属製とすることで、室外側熱交換器13の熱が熱交支持プレート60に伝わりやすく、熱交支持プレート60が温度上昇しやすくなるため、低外気条件下でも第1排水穴62が閉塞されることなく排水が可能となる。
 図11は、本発明の実施の形態に係る空気調和装置の室外機10の熱交支持プレート60の概略斜視図である。
 図11に示すように、熱交支持プレート60の底部61の長手側の端部には、上方に突出した側壁部63が設けられており、その側壁部63には、第2排水穴64が複数形成されている。熱交支持プレート60の底部61に形成された第1排水穴62からの排水が、積雪、雪吹付け、ゴミの堆積等で不可能になった場合、室外側熱交換器13の下部に除霜水等が滞留し続け、氷結し、伝熱管14が折損してしまう可能性がある。そこで、熱交支持プレート60の底部61に載置された室外側熱交換器13の最下段の伝熱管14以下の位置に第2排水穴64を形成する。そうすることで、第1排水穴62からの排水が不可能になった場合でも第2排水穴64から排水することができ、伝熱管14が水没することがなくなるため、排水性をさらに向上させることができる。
 図12は、本発明の実施の形態に係る空気調和装置の室外機10の熱交支持柱50の斜視図である。図13は、図12に示す熱交支持柱50の上部拡大図である。図14は、本発明の実施の形態に係る空気調和装置の室外機10の室外側熱交換器13および熱交支持柱50の縦断面を示す概略図である。なお、図14は、室外側熱交換器13および熱交支持柱50を幅方向(または短手方向)に切断した際の縦断面図である。
 図12~図14に示すように、熱交支持柱50の上部には、室外側熱交換器13の下端部を支持する平面部51が設けられており、平面部51の長手側の端部には、上方に突出した側壁部52が設けられている。また、平面部51の一部には、除霜水等が流れる水路53が形成されている。この水路53は、平面部51の幅方向(または短手方向)の中央付近を下方に凹ませて形成されており、室外側熱交換器13が平面部51に載置された際に、室外側熱交換器13と接触しないようになっている。
 水路53は、除霜水等が流れる流路となっているため、室外側熱交換器13の下部に除霜水等が滞留するのを抑制することができる。また、水路53は、平面部51の長手方向の両端に向かって勾配が設けられている。なお、この勾配は、1.14°以上にするとよい。
 水路53に勾配を設けることで、除霜水等が流れる距離を短くすることができる。また、室外側熱交換器13からの水路53の深さを小さくしても水路53を流れる除霜水等と室外側熱交換器13の下端部との接触を回避することができる。そのため、室外側熱交換器13の熱量を有効に利用して伝熱により加熱しながら排水をすることができる。
 また、熱交支持柱50はベース部41に設けられて室外側熱交換器13を支持する大きな部材であるため、室外側熱交換器13から得た熱を放熱しやすい。よって、熱交支持柱50は、熱伝導率の低い樹脂製とすることで、室外側熱交換器13の熱の放熱を抑制し、室外側熱交換器13の下部および水路53付近に熱を滞留させ、水温を確保して排水性を確保することができる。
 以上、本実施の形態に係る空気調和装置は、室内側熱交換器22を有する室内機20と、室外側熱交換器13と、室外側熱交換器13を下方から支持する熱交支持部材42と、熱交支持部材42が載置されるベース部41と、を有する室外機10と、を備えている。そして、熱交支持部材42は、ベース部41上に設けられた複数の熱交支持柱50と、隣接する熱交支持柱50の間に設けられ、該熱交支持柱50に両端が支持された複数の熱交支持プレート60と、を備えている。
 本発明に係る空気調和装置によれば、ベース部41上に設けられた複数の熱交支持柱50と、隣接する熱交支持柱50に両端が支持された複数の熱交支持プレート60と、を備えた熱交支持部材42で室外側熱交換器13を下方から支持する。そのため、除霜水等が滞留する箇所を減らすことができ、室外側熱交換器13が室外機10の上部に設置された構造を有しつつ、室外機10内での除霜水等の滞留を抑制することができる。
 また、本実施の形態に係る空気調和装置の室外機10は直方体形状を有し、室外側熱交換器13は室外機10の四側面に沿って設けられている。そして、熱交支持柱50は、室外側熱交換器13の角部を支持するものであり、熱交支持プレート60は、室外側熱交換器13の角部間を支持するものである。
 本発明に係る空気調和装置によれば、熱交支持柱50で室外側熱交換器13の角部を支持するだけでなく、熱交支持プレート60で室外側熱交換器13の角部間も支持するため、室外側熱交換器13の自重による撓みや沈み込みを抑制することができる。
 また、本実施の形態に係る空気調和装置の熱交支持プレート60は、室外側熱交換器13が載置される底部61を有し、底部61に複数の第1排水穴62が形成されている。
 本発明に係る空気調和装置によれば、第1排水穴62から、熱交支持プレート60が支持する室外側熱交換器13から発生した除霜水等を排水することができるため、除霜水等が室外側熱交換器13の下部に滞留するのを抑制し、排水性を向上させることができる。
 また、本実施の形態に係る空気調和装置の熱交支持プレート60は、底部61の端部から上方に向かって突出した側壁部63を有し、側壁部63に複数の第2排水穴64が形成されている。また、第2排水穴64は、室外側熱交換器13の最下段の伝熱管14以下となる位置に形成されている。
 本発明に係る空気調和装置によれば、第1排水穴62からの排水が不可能になった場合にも、第2排水穴64から第2排水穴64から排水することができる。また、第2排水穴64は、底部61に載置された室外側熱交換器13の最下段の伝熱管14以下となる位置に形成されているため、最下段の伝熱管14から発生した除霜水等も排水することができるため、排水性をさらに向上させることができる。
 また、本実施の形態に係る空気調和装置の熱交支持柱50は、室外側熱交換器13が載置される平面部51を備え、平面部51の一部には、下方に凹んだ水路53が形成されている。また、水路53には勾配が設けられている。
 本発明に係る空気調和装置によれば、水路53は除霜水等が流れる流路となるため、室外側熱交換器13の下部に除霜水等が滞留するのを抑制することができる。また、水路53に勾配が設けられているため、除霜水等が流れる距離が極力短くなり、室外側熱交換器13からの水路53の深さが小さくなるため、室外側熱交換器13の熱量を有効に利用して伝熱により加熱しながら排水をすることができる。
 また、本実施の形態に係る空気調和装置の熱交支持柱50は樹脂製である。
 本発明に係る空気調和装置によれば、熱交支持柱50を熱伝導率の低い樹脂製とすることで、室外側熱交換器13の熱の放熱を抑制し、室外側熱交換器13の下部および水路53付近に熱を滞留させ、水温を確保して排水性を確保することができる。
 また、本実施の形態に係る空気調和装置の熱交支持プレート60は金属製である。
 本発明に係る空気調和装置によれば、熱交支持プレート60を金属製とすることで、室外側熱交換器13の熱が熱交支持プレート60に伝わりやすく、熱交支持プレート60が温度上昇しやすくなる。そのため、低外気条件下でも第1排水穴62が閉塞されることなく排水が可能となる。
 また、本実施の形態に係る空気調和装置は、圧縮機11、流路切替装置12、室外側熱交換器13、絞り装置21、室内側熱交換器22、が冷媒配管30で接続された冷媒回路を備えている。また、冷媒回路は、圧縮機11と流路切替装置12との間の冷媒配管30から分岐し、室外側熱交換器13の最下段の伝熱管14に接続されたバイパス配管を備えている。
 本発明に係る空気調和装置によれば、バイパス配管によって高圧高温のガス冷媒を室外側熱交換器13の最下段の伝熱管14に流入させることができる。そのため、室外側熱交換器13の下部に溜まった除霜水等の氷結、再氷結、および、根氷を抑制することができる。
 なお、本発明は、本実施の形態で説明したバイパス回路の構成を含まない空気調和装置の室外機にも適用できる。また、本発明は、室外側熱交換器13が四側面に沿って設けられた構成の室外機に関わらず、室外側熱交換器13が四側面うちいずれかの面に設けられた構成の室外機にも適用できる。
 10 室外機、11 圧縮機、12 流路切替装置、13 室外側熱交換器、13a 室外側熱交換器、13b 室外側熱交換器、14 伝熱管、15 アキュムレータ、17 フィン、20 室内機、21 絞り装置、22 室内側熱交換器、30 冷媒配管、31 第1バイパス配管、32 第2バイパス配管、32a 第2バイパス配管、32b 第2バイパス配管、33 第3バイパス配管、33a 第3バイパス配管、33b 第3バイパス配管、34 第4バイパス配管、35 弁開閉装置、36 合流点、41 ベース部、42 熱交支持部材、43 機械室、45 開口部、49 ピラー、50 熱交支持柱、51 平面部、52 側壁部、53 水路、60 熱交支持プレート、61 底部、62 第1排水穴、63 側壁部、64 第2排水穴。

Claims (10)

  1.  室内側熱交換器を有する室内機と、
     室外側熱交換器と、前記室外側熱交換器を下方から支持する熱交支持部材と、前記熱交支持部材が載置されるベース部と、を有する室外機と、を備え、
     前記熱交支持部材は、
     前記ベース部上に設けられた複数の熱交支持柱と、
     隣接する前記熱交支持柱の間に設けられ、該熱交支持柱に両端が支持された複数の熱交支持プレートと、を備えた
     空気調和装置。
  2.  前記室外機は直方体形状を有し、
     前記室外側熱交換器は前記室外機の四側面に沿って設けられており、
     前記熱交支持柱は、前記室外側熱交換器の角部を支持するものであり、
     前記熱交支持プレートは、前記室外側熱交換器の前記角部間を支持するものである
     請求項1に記載の空気調和装置。
  3.  前記熱交支持プレートは、前記室外側熱交換器が載置される底部を有し、該底部に複数の第1排水穴が形成されている
     請求項1または2に記載の空気調和装置。
  4.  前記熱交支持プレートは、前記底部の端部から上方に向かって突出した側壁部を有し、該側壁部に複数の第2排水穴が形成されている
     請求項3に記載の空気調和装置。
  5.  前記第2排水穴は、
     前記底部に載置された前記室外側熱交換器の最下段の伝熱管以下となる位置に形成されている
     請求項4に記載の空気調和装置。
  6.  前記熱交支持柱は、前記室外側熱交換器が載置される平面部を備え、
     前記平面部の一部には、下方に凹んだ水路が形成されている
     請求項1~5のいずれか一項に記載の空気調和装置。
  7.  前記水路は、前記平面部の長手方向に勾配が設けられている
     請求項6に記載の空気調和装置。
  8.  前記熱交支持柱は樹脂製である
     請求項1~7のいずれか一項に記載の空気調和装置。
  9.  前記熱交支持プレートは金属製である
     請求項1~8のいずれか一項に記載の空気調和装置。
  10.  圧縮機、流路切替装置、前記室外側熱交換器、絞り装置、前記室内側熱交換器、が冷媒配管で接続された冷媒回路を備え、
     前記冷媒回路は、前記圧縮機と前記流路切替装置との間の前記冷媒配管から分岐し、前記室外側熱交換器の最下段の伝熱管に接続されたバイパス配管を備えた
     請求項1~9のいずれか一項に記載の空気調和装置。
PCT/JP2017/026285 2017-07-20 2017-07-20 空気調和装置 WO2019016918A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1918070.2A GB2577825B (en) 2017-07-20 2017-07-20 Air-conditioning apparatus
PCT/JP2017/026285 WO2019016918A1 (ja) 2017-07-20 2017-07-20 空気調和装置
JP2019530308A JP6755401B2 (ja) 2017-07-20 2017-07-20 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026285 WO2019016918A1 (ja) 2017-07-20 2017-07-20 空気調和装置

Publications (1)

Publication Number Publication Date
WO2019016918A1 true WO2019016918A1 (ja) 2019-01-24

Family

ID=65016622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026285 WO2019016918A1 (ja) 2017-07-20 2017-07-20 空気調和装置

Country Status (3)

Country Link
JP (1) JP6755401B2 (ja)
GB (1) GB2577825B (ja)
WO (1) WO2019016918A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185961A (ja) * 1983-04-08 1984-10-22 株式会社日立製作所 空気調和機の室外側ユニツト構造
JP2000046375A (ja) * 1998-07-27 2000-02-18 Mitsubishi Heavy Ind Ltd 室外ユニット及び空気調和機
JP2008138921A (ja) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp 空気調和装置
WO2016203549A1 (ja) * 2015-06-16 2016-12-22 三菱電機株式会社 空気調和機の室外機、及び空気調和機の室外機の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185961A (ja) * 2017-04-26 2018-11-22 日立化成株式会社 電池パック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185961A (ja) * 1983-04-08 1984-10-22 株式会社日立製作所 空気調和機の室外側ユニツト構造
JP2000046375A (ja) * 1998-07-27 2000-02-18 Mitsubishi Heavy Ind Ltd 室外ユニット及び空気調和機
JP2008138921A (ja) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp 空気調和装置
WO2016203549A1 (ja) * 2015-06-16 2016-12-22 三菱電機株式会社 空気調和機の室外機、及び空気調和機の室外機の製造方法

Also Published As

Publication number Publication date
JP6755401B2 (ja) 2020-09-16
GB2577825B (en) 2021-07-21
JPWO2019016918A1 (ja) 2020-02-06
GB201918070D0 (en) 2020-01-22
GB2577825A (en) 2020-04-08

Similar Documents

Publication Publication Date Title
CN112204312B (zh) 空气调节装置的室外机及空气调节装置
EP3156752B1 (en) Heat exchanger
JP6827542B2 (ja) 冷凍サイクル装置
CN103857976A (zh) 制冷循环装置
EP3392589A1 (en) Heat exchanger and freezing cycle device
JPWO2018078800A1 (ja) 熱交換器及び冷凍サイクル装置
JP5398283B2 (ja) 空調室外機
WO2021234958A1 (ja) 熱交換器、熱交換器を備えた室外機、および、室外機を備えた空気調和装置
JP6692495B2 (ja) 熱交換器及び冷凍サイクル装置
JP6755401B2 (ja) 空気調和装置
JP6758386B2 (ja) 空気調和装置
US11578930B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP6808059B2 (ja) 空気調和装置の室外機
WO2020121517A1 (ja) 室内機および空気調和機
US20200256597A1 (en) Heat exchanger and air conditioning device provided with same
WO2019106755A1 (ja) 空気調和機
GB2589811A (en) Air conditioning device
JP6608946B2 (ja) 空気調和装置及び空気調和装置の室外機
JP2013050265A (ja) 空気調和装置の室外機
JP2006132847A (ja) 熱交換器およびこれを備えた空気調和機の室外ユニット
US10920998B2 (en) Outdoor unit for air-conditioning apparatus
WO2020012548A1 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
JP2014219138A (ja) 空気調和装置の室外機
JP2005308252A (ja) 熱交換器およびこれを備えた空気調和機の室外ユニット
JPWO2017195296A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530308

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201918070

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170720

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918411

Country of ref document: EP

Kind code of ref document: A1