WO2019015430A1 - 具有换热功能的电池箱 - Google Patents

具有换热功能的电池箱 Download PDF

Info

Publication number
WO2019015430A1
WO2019015430A1 PCT/CN2018/091770 CN2018091770W WO2019015430A1 WO 2019015430 A1 WO2019015430 A1 WO 2019015430A1 CN 2018091770 W CN2018091770 W CN 2018091770W WO 2019015430 A1 WO2019015430 A1 WO 2019015430A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
battery
case
box
square tube
Prior art date
Application number
PCT/CN2018/091770
Other languages
English (en)
French (fr)
Inventor
许玉林
龚晓冬
王爱淑
娄豫皖
顾江娜
张旭
许祎凡
Original Assignee
苏州安靠电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州安靠电源有限公司 filed Critical 苏州安靠电源有限公司
Publication of WO2019015430A1 publication Critical patent/WO2019015430A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/276Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technologies, and in particular, to a battery box having a heat exchange function.
  • the aluminum alloy battery case is light in weight, which can reduce the weight of the whole vehicle and has a certain effect on the cruising range.
  • the battery in the battery box generates a large amount of heat during charging and discharging, which causes the battery temperature to rise. If the battery heat cannot be dissipated in time, it may cause a fire or other safety accident. Moreover, in the cold season, especially in the north, the battery temperature in the battery box is too low, which will result in a decline in battery performance or even charging.
  • the battery box is made of aluminum alloy material only to reduce the weight of the battery box and improve the structural strength of the battery box.
  • the battery case itself made of aluminum alloy does not effectively control the temperature of the battery inside the box.
  • the present application proposes a battery case having a heat exchange function that is light in weight, high in structural strength, safe and reliable, and capable of ensuring that the battery in the box is maintained within a suitable temperature range.
  • a battery box having a heat exchange function comprising an open box body and a box cover disposed at an opening of the box body, wherein the box body is fixedly connected by a plurality of aluminum alloy profiles assembled together.
  • Each of the aluminum alloy profiles is formed with a plurality of cavities isolated from each other, and at least two of the cavities communicate with each other through a crossover flow passage to form a heat exchange flow path for circulating a heat exchange liquid.
  • the heat exchange flow channel has a liquid inlet interface and a liquid outlet interface
  • the bridge flow channel is a square tube with an end seal
  • the side wall of the square tube is provided with two spaced apart flow passages a liquid inlet
  • at least two of the cavity walls of the cavity are provided with a cavity inlet and outlet port
  • the square pipe is fixed to a side of the aluminum alloy profile
  • the crossover flow channel inlet and outlet ports and the mouth The cavity inlet and outlet ports are docked.
  • the application further includes the following preferred solutions:
  • Each of the aluminum alloy profiles is welded and fixed to form the casing.
  • the square tube is welded and fixed to the side of the aluminum alloy profile.
  • the square tube is disposed outside the case.
  • the outer surface of the box body is formed with a square tube mounting groove recessed inward, and the square tube is disposed in the square tube mounting groove.
  • the casing includes a bottom wall and a side wall surrounding the upper portion of the bottom wall, and the heat exchange passage is formed in the bottom wall.
  • the casing includes a bottom wall and a side wall surrounding the upper portion of the bottom wall, and the heat exchange passage is formed in the side wall.
  • the cabinet includes:
  • the heat exchange passage is formed in the partition wall.
  • the box body is made of aluminum alloy profile, which has small weight and high structural strength.
  • the heat exchange fluid in the heat exchange flow channel is in direct contact with the tank wall, and between the heat exchange fluid and the battery in the tank Only one layer of aluminum alloy case is separated, the heat transfer resistance is low, and the heat exchange efficiency between the heat exchange fluid and the battery in the box is greatly improved.
  • a special square tube structure cross-connecting flow channel is used to connect the originally isolated cavities in the aluminum alloy profile to form a heat exchange flow path for circulating heat exchange fluid, which is ingeniously designed and easy to manufacture.
  • the cross-over flow channel of the square tube structure is arranged outside the box body instead of inside the box body. Even if the heat exchange liquid leaks at the joint between the square tube and the aluminum alloy profile, the battery inside the box body will not be endangered, and the guarantee is ensured. The battery is safe to use.
  • the outer surface of the box body is formed with a square tube mounting groove, and the spanning flow channel of the square tube structure is disposed in the square tube mounting groove, so that the other tube can form a structural protection, and the possibility that the square tube is detached by the foreign object collision is reduced. .
  • the liquid inlet port and the liquid outlet port of the heat exchange channel are all arranged outside the box, not inside the box. Even if the liquid leakage problem occurs at the inlet port and the outlet port, the battery inside the box will not be endangered, and the battery is safe to use.
  • FIG. 1 is a schematic perspective view of a battery box body in an embodiment of the present application.
  • FIG. 2 is a perspective view showing a perspective view of a battery box body according to another embodiment of the present application.
  • Figure 3 is a rear elevational view of the battery case body in the embodiment of the present application.
  • Figure 4 is a cross-sectional view of the battery case body in the embodiment of the present application.
  • FIG. 5 is a schematic perspective structural view of a crossover flow channel in an embodiment of the present application.
  • FIG. 1 to 5 show a specific embodiment of the battery case of the present application, which comprises a box 1 with an open top and a box cover provided at the top opening of the box (not shown) ).
  • the key improvement of the embodiment is that the box body 1 is welded and fixed by a plurality of aluminum alloy profiles 3 assembled together (of course, other fixing methods can also be adopted), and each of the aluminum alloy profiles 3 is formed with a plurality of isolated ones.
  • a cavity 3a self-characteristics of the aluminum alloy profile
  • four cavities 3a (generally at least two) communicate with each other through three bridging channels 4 to form a heat exchange passage 5 for circulating heat exchange liquid
  • the heat exchange passage 5 has a liquid inlet port 5a and a liquid outlet port 5b.
  • the bridging flow passage 4 is a square tube with an end seal, and the side wall of the square tube is provided with two spaced-apart cross-flow passage inlet and outlet ports 4a, wherein the four cavities
  • the cavity inlet and outlet ports are opened on the cavity wall of 3a.
  • two cavity inlet and outlet ports are formed in the cavity of the two cavities 3a in the middle, and only one cavity inlet and outlet port is provided on the cavity walls of the two cavities 3a on the outer side.
  • the square tube (that is, the crossover flow channel) is welded to the side of the aluminum alloy profile 3, and the inlet and outlet ports of the cross flow channel are docked with the cavity inlet and outlet ports, so that the above four types are connected by the cross flow channel 4.
  • the chambers 3a communicate with each other to form the above-described heat exchange passage.
  • the square tube (that is, the cross-over flow path 4) and the aluminum alloy profile 3 are two separate separate parts, the two are fixed together by welding, and the respective inlet and outlet holes are connected to each other, and the two are in and out. There is a risk of liquid leakage at the junction of the liquid holes. If the square tube (that is, the cross-over flow path 4) is disposed inside the box, the heat exchange liquid (water) leaking from the joint between the two is in contact with the battery in the box, thereby damaging the structure of the battery and even A safety accident such as a short circuit or a fire is caused.
  • the square tube is disposed outside the casing 1 in this embodiment, and even if a liquid leakage problem occurs at the joint between the square tube and the aluminum alloy profile, the battery in the cabinet is not endangered, and the use of the battery is ensured. .
  • the battery box 1 is installed on a power device (such as an electric vehicle) and occupies more space outside the box.
  • a square tube mounting groove 2 is formed in an outer surface of the casing 1, and a square pipe is disposed in the square pipe mounting groove 2.
  • the square tube mounting groove 2 is designed to form a structural protection for the opposite tube, and the possibility that the square tube is detached by the foreign object collision is reduced.
  • the external water path is connected to the liquid inlet port 5a and the liquid outlet port 5b of the heat exchange channel 5.
  • the low temperature water flow is injected into the liquid inlet port 5a of the heat exchange channel 5 through the external water path, and the low temperature water flows into the heat exchange channel 5 through the liquid inlet interface 5a, and the heat of the high temperature battery in the box
  • the low-temperature water flow is transmitted to the heat exchanger flow passage 5 through the aluminum alloy profile tank, and the low-temperature water flow absorbs the heat of the battery and then heats up, and the heated water flow flows out from the liquid outlet interface 5b, thereby reducing the temperature of the battery in the tank and avoiding the heat of the battery. Out of control accident.
  • the high temperature water flow is injected into the liquid inlet port 5a of the heat exchange channel 5 through the external water path, and the high temperature water flows into the heat exchange channel 5 through the liquid inlet interface 5a, and the heat of the high temperature water flows through the aluminum.
  • the alloy profile box is transferred to the battery inside the box, and the battery in the box absorbs the heat of the high-temperature water flow and then heats up, so that the battery in the box is maintained in a normal temperature range, so that the battery can be normally charged and discharged.
  • the above aluminum alloy profile 3 is produced by a die casting process or a drawing process.
  • the liquid inlet port 5a and the liquid outlet port 5b of the heat exchange passage are both disposed outside the casing 1, not inside the casing.
  • the advantage of this is that the heat exchange fluid (usually water) in the heat exchange flow path is most likely to leak at the inlet and outlet interfaces. If the inlet and outlet ports are placed inside the tank, then The leaking heat exchange liquid is very close to the battery in the tank, thereby damaging the structure of the battery and even causing a short-circuit fire and other safety accidents.
  • the liquid inlet interface and the liquid outlet interface are all disposed outside the box body, and even if a liquid leakage problem occurs at the liquid inlet interface and the liquid outlet interface, the battery in the box body is not endangered, and the battery is safely used. . At the same time, it is more convenient to arrange the inlet and outlet interfaces on the outside of the tank to facilitate the connection between the external pipeline and the heat exchanger flow passage in the tank wall.
  • the internal cavity of the aluminum alloy profile box wall is directly used to form a heat exchange flow path for circulating heat exchange fluid, and the heat exchange fluid in the heat exchange flow channel is in direct contact with the tank wall, and the heat transfer resistance is low, and the heat exchange is greatly improved.
  • the heat exchange efficiency between the hot fluid and the battery inside the box is directly used to form a heat exchange flow path for circulating heat exchange fluid, and the heat exchange fluid in the heat exchange flow channel is in direct contact with the tank wall, and the heat transfer resistance is low, and the heat exchange is greatly improved.
  • the liquid inlet port 5a and the liquid outlet port 5b are formed by cutting the aluminum alloy profile 3, and the aluminum alloy profile 3 is cut and processed to make a part of the aluminum alloy profile 3 protrude from the aluminum.
  • the main structure of the alloy profile forms the aforementioned liquid inlet port 5a and liquid outlet port 5b.
  • the outer contour of the casing 1 is square, and includes a bottom wall 1a and four side walls 1b surrounding the upper portion of the bottom wall, and the heat exchange flow is formed only in the bottom wall 1a. Road 5.
  • the partition wall 1c will be the casing 1
  • the large volume lumen is divided into two separate small volume chambers for placement of sub-regions of other components such as batteries in the box. If necessary, we can also provide the heat exchange passage 5 of the above structure in the partition wall 1c.
  • the partition wall 1c is also made of an aluminum alloy profile.
  • the bottom wall 1a in this embodiment is welded and fixed by three aluminum alloy profiles arranged side by side.
  • the side wall 1b and the partition wall 1c are each formed directly from a single aluminum alloy profile.
  • the aluminum alloy profiles constituting the side walls 1b on the left and right sides in Fig. 4 are integrally formed with the aluminum alloy profiles constituting the left and right sides of the bottom wall 1a in Fig. 4, that is, two aluminum alloy profiles are L-shaped structures.
  • One plate surface of the aluminum alloy profile of the L-shaped structure directly forms the side wall 1b of the left or right side in Fig. 4, and the other plate surface constitutes a part of the bottom wall 1a.
  • Such a design can improve the integrity and structural strength of the casing 1.
  • a part of the cavity 3a is filled with an endothermic phase change material (not shown), and another part of the cavity 3a is provided with a PTC heater (not shown).
  • the relatively low endothermic phase change material absorbs the heat of the battery and changes from solid to liquid (the temperature of the phase change material itself does not change), thereby maintaining the battery temperature in the box normal.
  • the relatively high temperature endothermic phase change material emits heat to the battery and changes from liquid to solid (the temperature of the phase change material itself does not change), thereby maintaining the temperature of the battery in the box.
  • the endothermic phase change material has energy storage and energy absorption effects.
  • the cavity 3a of the aluminum alloy profile 3 has good sealing property, and an endothermic phase change material and a PTC heater are arranged therein, and the endothermic phase change material and the PTC heater are in a very closed independent environment, and are not subject to foreign objects. Interference, thus ensuring the normal operation of the endothermic phase change material and the PTC heater.
  • the endothermic phase change material with energy storage and energy absorption can only raise or lower the temperature of the battery in the box in a relatively small range. If the temperature of the battery in the box is too high or too low, the heat exchange needs to be performed. A heat exchange fluid is introduced into the flow passage, and the two are used together.
  • the battery temperature in the box is too low to be charged during the cold season in the north, we can connect the voltage of the charging area to the PTC heater to make the PTC heater energized and heat the battery inside the box to ensure that the battery can be charged normally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种具有换热功能的电池箱,包括敞口的箱体以及设于箱体的敞口处的箱盖,箱体由若干块拼装在一起的铝合金型材固定连接而成,各块铝合金型材内均形成有相互隔离的若干个型腔,至少其中两个型腔通过跨接流道相互连通而形成用于流通换热液体的换热流道,换热流道具有进液接口和出液接口,跨接流道是一根端部封口的方管,方管的侧壁上开设有两个隔开布置的跨接流道进出液口,至少其中两个型腔的腔壁上开设有型腔进出液口,方管固定在铝合金型材的侧部,且跨接流道进出液口与所述型腔进出液口对接。本申请这种电池箱自重轻,结构强度高,安全可靠,且能够保证箱内电池维持在合适温度范围内。

Description

具有换热功能的电池箱 技术领域
本申请涉及电池技术领域,具体涉及一种具有换热功能的电池箱。
背景技术
目前,世界各国都在大力发展新能源汽车。节能与新能源汽车的发展是减少石油消耗和降低二氧化碳排放的重要举措之一。
在良好的发展环境下,纯电动车技术日新月异,电池箱的技术成长也在不断改变。
铝合金材质的电池箱重量轻,可以降低整车的重量,对续航里程有一定的效果。
电池箱内的电池在充放电过程中会产生大量的热,从而导致电池温度升高,如果电池热量不能得到及时散发,可能会引发起火等安全事故。并且,在严寒季节,尤其是北方地区,电池箱内的电池温度过低,这将导致电池性能下降,甚至无法对其充电。
现有技术中,电池箱采用铝合金材质制作,仅仅是为了减轻电池箱的自重,提高电池箱结构强度。光靠铝合金材质的电池箱自身,并不能有效控制箱内电池的温度。
目前大多数锂离子箱体电池采用水冷箱体,在箱体内部布置冷却板,这种方式存在以下缺点:1、箱内电池单体的间距较大,导致电池能量比小;2、安全性差,存在箱体内的漏水问题。
发明内容
本申请目的是:针对上述技术问题,本申请提出一种自重轻、结构强度高、安全可靠、且能够保证箱内电池维持在合适温度范围内的具有换热功能的电池箱。
本申请的技术方案是:
一种具有换热功能的电池箱,包括敞口的箱体以及设于所述箱体的敞口处的箱盖,所述箱体由若干块拼装在一起的铝合金型材固定连接而成,各块所述铝合金型材内均形成有相互隔离的若干个型腔,至少其中两个所述型腔通过跨接流道相互连通而形成用于流通换热液体的换热流道,所述换热流道具有进液接口和出液接口,所述跨接流道是一根端部封口的方管,所述方管的侧壁上开设有两个隔开布置的跨接流道进出液口,至少其中两个所述型腔的腔壁上开设有型腔进出液口,所述方管固定在所述铝合金型材的侧部,且所述跨接流道进出液口与所述型腔进出液口对接。
本申请在上述技术方案的基础上,还包括以下优选方案:
各个所述铝合金型材焊接固定而形成所述箱体。
所述方管焊接固定在所述铝合金型材的侧部。
所述方管设置在所述箱体的外部。
所述箱体的外表面形成有向内凹陷的方管安装槽,所述方管布置在该方管安装槽内。
所述箱体包括底壁和围设在所述底壁上部四周的侧壁,所述换热流道形成于所述底壁内。
所述箱体包括底壁和围设在所述底壁上部四周的侧壁,所述换热流道形成于所述侧壁内。
所述箱体包括:
底壁,
围设在所述底壁上部四周的侧壁,以及
固定在所述底壁和所述侧壁的内侧、以将该箱体的内腔分割成至少两个独立腔体的分隔壁;
所述换热流道形成于所述分隔壁内。
本申请的优点是:
1、箱体由铝合金型材制成,重量小,且结构强度高。
2、利用铝合金型材自身所具有的内部型腔而形成可流通换热流体的换热流道,换热流道内的换热流体与箱体壁直接接触,换热流体与箱内电池之间仅隔有一层铝合金箱体,传热阻力低,大大提高了换热流体与箱内电池的换热效率。
3、采用特殊的方管结构的跨接流道来连通铝合金型材内部原本相互隔离的型腔,从而形成用于流通换热流体的换热流道,设计巧妙,而且容易制作。
4、方管结构的跨接流道布置在箱体外部而非箱体内部,即便在方管和铝合金型材连接处发生换热液体泄漏现象,也不会危及到箱体内的电池,保证了电池的使用安全。
5、箱体的外表面形成有方管安装槽,方管结构的跨接流道设置在该方管安装槽内,可对方管形成结构保护,减少方管受外物碰撞而脱落的可能性。
6、换热流道的进液接口和出液接口均设置在箱体的外部,而非箱体内部。即便在进液接口和出液接口处产生液体泄漏问题,也不会危及到箱体内的电池,保证了电池的使用安全。
7、将换热流道的进液接口和出液接口全部设置在箱体的外部也更加方便外部管路与箱壁内换热流道的连接。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中电池箱箱体的立体结构示意图;
图2为本申请实施例中电池箱箱体另一视角的立体结构示意图;
图3为本申请实施例中电池箱箱体的后视图;
图4为本申请实施例中电池箱箱体的剖视图;
图5为本申请实施例中跨接流道的立体结构示意图。
其中:1-箱体,1a-底壁,1b-侧壁,1c-分隔壁,2-方管安装槽,3-铝合金型材,3a-型腔,4-跨接流道,4a-跨接流道进出液口,5-换热流道,5a-进液接口,5b-出液接口。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本申请而不限于限制本申请的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
图1至图5示出了本申请这种电池箱的一个具体实施例,其包括顶部敞口的箱体1和设于所述箱体的顶部敞口处的箱盖(图中未画出)。
本实施例的关键改进在于,箱体1由多块拼装在一起的铝合金型材3焊接固定而成(当然也可以采用其他固定方式),各块铝合金型材3内均形成有相互隔离的若干个型腔3a(铝合金型材的自身特性),其中四个型腔3a(一般至少为两个)通过三个跨接流道4相互连通而形成用于流通换热液体的换热流道5,换热流道5具有一个进液接口5a和一个出液接口5b。
本实施例中,所述跨接流道4是一根端部封口的方管,方管的侧壁上开设有两个隔开布置的跨接流道进出液口4a,其中四个型腔3a的腔壁上均开设有型腔进出液口。在这四个型腔3a中,其中位于中间的两个型腔3a腔壁上开设两个型腔进出液口,而位于外侧的两个型腔3a腔壁上仅开设一个型腔进出液口。方管(也即跨接流道)管焊接固定在铝合金型材3的侧部,并且跨接流道进出液口与型腔进出液口对接,如此通过跨接流道4将前述四个型腔3a相互连通而形成上述的换热流道。
由于方管(也即跨接流道4)和铝合金型材3为两独立的分体部件,二者以焊接方式固定在一起,并且各自开设的进出液孔相互对接连通,那么二者在进 出液孔对接处就会存在漏液的风险。如果将方管(也即跨接流道4)设置在箱体内部,那么从二者对接处泄漏的换热液体(水)就很容接触到箱体内的电池,从而破损电池的结构、甚至引发短路起火等安全事故发生。针对这一问题,本实施例将方管设置在箱体1的外部,即便在方管和铝合金型材连接处发生液体泄漏问题,也不会危及到箱体内的电池,保证了电池的使用安全。
为了防止焊接在箱体1外部的方管结构的跨接流道4显得过于突兀,导致电池箱1安装在用电设备(比如电动汽车)上后占用较多的箱外空间,本实施例在箱体1的外表面形成有方管安装槽2,方管设置在该方管安装槽2内。而且设计方管安装槽2,可对方管形成结构保护,减少方管受外物碰撞而脱落的可能性。
实际应用时,将外界水路与换热流道5的进液接口5a和出液接口5b相连接。若箱内电池温度过高需要降温,则通过外界水路向换热流道5的进液接口5a注入低温水流,低温水流通过进液接口5a进入换热流道5内,箱内高温电池的热量经铝合金型材箱体传递至换热流道5内的低温水流,低温水流吸收电池的热量后升温,升温后的水流由出液接口5b流出,如此降低箱内电池的温度,避免发生电池热失控事故。若箱内电池温度过底需要升温,则通过外界水路向换热流道5的进液接口5a注入高温水流,高温水流通过进液接口5a进入换热流道5内,高温水流的热量经铝合金型材箱体传递至箱内电池,箱内电池吸收高温水流的热量后升温,如此使得箱内电池维持在正常的温度范围内,使电池能够正常充放电。
上述铝合金型材3采用压铸工艺或拉伸工艺制成。
本实施例将换热流道的进液接口5a和出液接口5b均设置在箱体1的外部,而非箱体内部。这样做的好处在于,因换热流道中的换热流体(通常为水)最容易在进液接口和出液接口处发生泄漏,如果将进液接口和出液接口设置在箱体内部,那么泄漏的换热液体就很容接触到箱体内的电池,从而破损电池的结 构、甚至引发短路起火等安全事故发生。而本申请将进液接口和出液接口全部设置在箱体的外部,即便在进液接口和出液接口处产生液体泄漏问题,也不会危及到箱体内的电池,保证了电池的使用安全。同时,将进液接口和出液接口全部设置在箱体的外部也更加方便外部管路与箱壁内换热流道的连接。
直接利用铝合金型材箱壁自身的内部型腔而形成用于流通换热流体的换热流道,换热流道内的换热流体与箱体壁直接接触,传热阻力低,大大提高了换热流体与箱内电池的换热效率。
本实施例中,上述进液接口5a和出液接口5b是通过对铝合金型材3进行切割加工而形成的,对铝合金型材3进行切割加工后而使铝合金型材3的一部分凸出于铝合金型材的主体结构,该凸出部分形成前述进液接口5a和出液接口5b。
本实施例中,所述箱体1的外轮廓为方形,其包括底壁1a和围设在底壁上部四周的四个侧壁1b,而且仅仅在底壁1a内形成有上述的换热流道5。当然,我们也可以根据需要在侧壁1b内也设置上述结构的换热流道。
进一步的,为了方便箱体1内各种电气元件的工整布置,并实施在上述底壁1a和侧壁1b的内侧固定设置有竖直布置的分隔壁1c,该分隔壁1c将箱体1的大容积内腔分割成两个独立的小容量腔体,以便箱内电池等其他部件的分区域布置。根据需要,我们也可以在该分隔壁1c内也设置上述结构的换热流道5。分隔壁1c也采用铝合金型材制作。
参照图4所示,考虑到底壁1a的面积比较大,而侧壁1b和分隔壁1c的面积比较小。大面积的底壁1a难以仅仅采用一个铝合金型材制成,故而本实施例中的底壁1a采用了三个并列布置的铝合金型材焊接固定而成。而侧壁1b和分隔壁1c均分别由单独的一个铝合金型材直接形成。而且,构成图4中左右两侧的侧壁1b的铝合金型材与构成图4中底壁1a左右两侧部的铝合金型材为一体式结构,即:有两个铝合金型材为L型结构,该L型结构的铝合金型材的一个 板面直接形成图4中左侧或右侧的侧壁1b,而另一个板面构成底壁1a的一部分。如此设计可提高箱体1的整体性以及结构强度。
此外,本实施例还在一部分型腔3a内填充吸热相变材料(图中未画出),另一部分型腔3a内设置有PTC加热器(图中未画出)。
当箱内电池的温度较高时,相对较低的吸热相变材料吸收电池的热量而由固态变为液态(相变材料自身的温度不会变化),从而将箱内电池温度维持在正常范围内。当箱内电池的温度较低时,温度相对较高的吸热相变材料向电池放出热量而由液态变为固态(相变材料自身的温度不会变化),从而将箱内电池温度维持在正常范围内。可见,吸热相变材料具有储能和吸能作用。
铝合金型材3的型腔3a封闭性好,在其内布置吸热相变材料和PTC加热器,吸热相变材料和PTC加热器处于非常封闭的独立的环境中,不会受到外物的干扰,如此保证了吸热相变材料和PTC加热器的正常工作。
显然,具有储能和吸能作用的吸热相变材料仅仅能够在比较小的范围内提升或降低箱内电池的温度,若箱内电池的温度过高或过低,则需要在前述换热流道内通入换热流体,二者配合使用。
如果在北方寒季,箱内电池温度过低而无法充电时,我们可将充电区的电压接至PTC加热器,使PTC加热器通电运行而对箱内电池加热,保证电池能够正常充电。
显然,上述的换热流道、吸热相变材料和PTC加热器可相互配合使用,也可以分别单独作用。
上述实施例只为说明本申请的技术构思及特点,其目的在于让人们能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请主要技术方案的精神实质所做的等效变换或修饰,都应涵盖在本申请的保护范围之内。

Claims (8)

  1. 一种具有换热功能的电池箱,包括敞口的箱体(1)以及设于所述箱体的敞口处的箱盖,其特征在于,所述箱体(1)由若干块拼装在一起的铝合金型材(3)固定连接而成,各块所述铝合金型材(3)内均形成有相互隔离的若干个型腔(3a),至少其中两个所述型腔(3a)通过跨接流道(4)相互连通而形成用于流通换热液体的换热流道(5),所述换热流道(5)具有进液接口(5a)和出液接口(5b),所述跨接流道(4)是一根端部封口的方管,所述方管的侧壁上开设有两个隔开布置的跨接流道进出液口,至少其中两个所述型腔(3a)的腔壁上开设有型腔进出液口,所述方管固定在所述铝合金型材(3)的侧部,且所述跨接流道进出液口与所述型腔进出液口对接。
  2. 如权利要求1所述的具有换热功能的电池箱,其特征在于,各个所述铝合金型材(3)焊接固定而形成所述箱体(1)。
  3. 如权利要求1所述的具有换热功能的电池箱,其特征在于,所述方管焊接固定在所述铝合金型材(3)的侧部。
  4. 如权利要求1所述的具有换热功能的电池箱,其特征在于,所述方管设置在所述箱体(1)的外部。
  5. 如权利要求4所述的具有换热功能的电池箱,其特征在于,所述箱体(1)的外表面形成有向内凹陷的方管安装槽(2),所述方管布置在该方管安装槽(2)内。
  6. 如权利要求1所述的具有换热功能的电池箱,其特征在于,所述箱体(1)包括底壁(1a)和围设在所述底壁上部四周的侧壁(1b),所述换热流道(5)形成于所述底壁内。
  7. 如权利要求1所述的具有换热功能的电池箱,其特征在于,所述箱体(1)包括底壁(1a)和围设在所述底壁上部四周的侧壁(1b),所述换热流道(5)形成于所述侧壁内。
  8. 如权利要求1所述的具有换热功能的电池箱,其特征在于,所述箱体(1) 包括:
    底壁(1a),
    围设在所述底壁上部四周的侧壁(1b),以及
    固定在所述底壁(1a)和所述侧壁(1b)的内侧、以将该箱体的内腔分割成至少两个独立腔体的分隔壁(1c);
    所述换热流道(5)形成于所述分隔壁(1c)内。
PCT/CN2018/091770 2017-07-17 2018-06-19 具有换热功能的电池箱 WO2019015430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710579799.8 2017-07-17
CN201710579799.8A CN107331812A (zh) 2017-07-17 2017-07-17 具有换热功能的电池箱

Publications (1)

Publication Number Publication Date
WO2019015430A1 true WO2019015430A1 (zh) 2019-01-24

Family

ID=60227391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091770 WO2019015430A1 (zh) 2017-07-17 2018-06-19 具有换热功能的电池箱

Country Status (2)

Country Link
CN (1) CN107331812A (zh)
WO (1) WO2019015430A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843696A (zh) * 2022-05-12 2022-08-02 三一重工股份有限公司 电池系统及车辆

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331812A (zh) * 2017-07-17 2017-11-07 苏州安靠电源有限公司 具有换热功能的电池箱
CN108039434A (zh) * 2017-12-05 2018-05-15 北京普莱德新能源电池科技有限公司 一种一体式水冷动力电池箱
CN108281731A (zh) * 2017-12-20 2018-07-13 南京创源天地动力科技有限公司 一种动力电池箱体热管理结构
CN108767151B (zh) * 2018-05-03 2021-06-22 开沃新能源汽车集团有限公司 一种动力电池模组与液冷系统一体化结构
CN108682917B (zh) * 2018-05-03 2020-10-30 惠州亿纬锂能股份有限公司 一种液冷箱体及电池模组
CN209119276U (zh) * 2018-12-21 2019-07-16 伟巴斯特车顶供暖系统(上海)有限公司 动力电池系统的冷却装置、动力电池系统及车辆
CN109638194B (zh) * 2018-12-25 2021-05-11 东风时代(武汉)电池系统有限公司 隔断式可拼接型材容器
KR20220113453A (ko) * 2020-03-27 2022-08-12 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 프레임, 전지군 및 장치
CN112151724B (zh) * 2020-10-15 2022-05-13 中国第一汽车股份有限公司 一种壳体、动力电池总成及电动车
CN112701394B (zh) * 2020-12-29 2022-09-09 长城汽车股份有限公司 用于车辆的电池包以及车辆
CN116960529A (zh) * 2023-09-21 2023-10-27 厦门海辰储能科技股份有限公司 电池包、储能系统及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160573A2 (en) * 2011-05-11 2012-11-29 Tata Motors Limited Battery thermal management arrangement
CN204315647U (zh) * 2014-12-05 2015-05-06 天津市华恒天成科技有限公司 一种带有水冷却装置的蓄电池盒
CN105932353A (zh) * 2015-02-27 2016-09-07 昭和电工株式会社 液冷式冷却装置及其制造方法
CN106935756A (zh) * 2017-03-30 2017-07-07 天津市捷威动力工业有限公司 一种冷热一体化箱体结构
CN107331812A (zh) * 2017-07-17 2017-11-07 苏州安靠电源有限公司 具有换热功能的电池箱
CN206992195U (zh) * 2017-07-17 2018-02-09 苏州安靠电源有限公司 具有换热功能的电池箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160573A2 (en) * 2011-05-11 2012-11-29 Tata Motors Limited Battery thermal management arrangement
CN204315647U (zh) * 2014-12-05 2015-05-06 天津市华恒天成科技有限公司 一种带有水冷却装置的蓄电池盒
CN105932353A (zh) * 2015-02-27 2016-09-07 昭和电工株式会社 液冷式冷却装置及其制造方法
CN106935756A (zh) * 2017-03-30 2017-07-07 天津市捷威动力工业有限公司 一种冷热一体化箱体结构
CN107331812A (zh) * 2017-07-17 2017-11-07 苏州安靠电源有限公司 具有换热功能的电池箱
CN206992195U (zh) * 2017-07-17 2018-02-09 苏州安靠电源有限公司 具有换热功能的电池箱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843696A (zh) * 2022-05-12 2022-08-02 三一重工股份有限公司 电池系统及车辆

Also Published As

Publication number Publication date
CN107331812A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2019015430A1 (zh) 具有换热功能的电池箱
WO2019034097A1 (zh) 具有换热功能的电池包壳体和电池包
CN206225441U (zh) 液冷和相变冷却结合的锂离子电池箱体
WO2023066302A1 (zh) 一种具有热疏导功能的电池箱、热疏导结构及方法
CN107112608A (zh) 一种电池组的热管理装置
CN109585727B (zh) 电池箱体
CN110350266A (zh) 一种电池液冷系统及电池
TWI765076B (zh) 電池組件和動力電池
CN208078135U (zh) 一种电芯侧放式电池模组
CN107560474B (zh) 一种板式换热器及燃气热水器
CN105895991A (zh) 锂电池动力包散热系统
CN106058367A (zh) 新能源车
CN106025436A (zh) 动力电池组
CN218511184U (zh) 燃气热水器
CN207278969U (zh) 一种太阳能热水器用稳压装置
CN217158332U (zh) 电池箱
CN106058364A (zh) 锂电动力总成散热系统
CN216980697U (zh) 液冷装置、电池包及车辆
WO2023066260A1 (zh) 电池壳体和方壳电池
CN215220817U (zh) 一体式液冷电池箱
CN207080302U (zh) 一种加热油箱
CN206992195U (zh) 具有换热功能的电池箱
CN208460924U (zh) 动力电池液冷系统和汽车
CN105895989A (zh) 可调节式动力电池散热系统
CN205960053U (zh) 一种外梁式电池箱及其电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834599

Country of ref document: EP

Kind code of ref document: A1