WO2019015322A1 - 封装结构、显示面板、显示装置和用于检测封装结构的方法 - Google Patents

封装结构、显示面板、显示装置和用于检测封装结构的方法 Download PDF

Info

Publication number
WO2019015322A1
WO2019015322A1 PCT/CN2018/076800 CN2018076800W WO2019015322A1 WO 2019015322 A1 WO2019015322 A1 WO 2019015322A1 CN 2018076800 W CN2018076800 W CN 2018076800W WO 2019015322 A1 WO2019015322 A1 WO 2019015322A1
Authority
WO
WIPO (PCT)
Prior art keywords
detecting
package structure
oxygen
phosphorescent
electromagnetic radiation
Prior art date
Application number
PCT/CN2018/076800
Other languages
English (en)
French (fr)
Inventor
徐栋
李亚君
王凯
余峰
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/305,566 priority Critical patent/US11508932B2/en
Publication of WO2019015322A1 publication Critical patent/WO2019015322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant

Definitions

  • the present disclosure relates to the field of packaging technology. More particularly, it relates to a package structure, a display panel, a display device, and a method for detecting a package structure.
  • the packaging effect has an effect on the package.
  • an embodiment of the present disclosure provides a package structure.
  • the package structure includes: a first encapsulation layer and a second encapsulation layer disposed opposite to each other, a sealing portion between the first encapsulation layer and the second encapsulation layer to be in the first encapsulation layer and the first Forming a sealed space between the two encapsulating layers, wherein the encapsulating structure further comprises: a detecting portion located in the sealed space, the detecting portion comprising an oxygen sensitive material, wherein the oxygen sensitive material comprises after being exposed to oxygen A material whose light emission characteristics change.
  • the oxygen sensitive material comprises at least one of the following: a phosphorescent material, a fluorescent phosphorescent dual emissive material.
  • the fluorescent phosphorescent dual emissive material comprises a copolymer of aromatic ketone monomer units.
  • the copolymer comprises at least one of the following: polyurethane, polylactide, polyacrylate.
  • the polyurethane has the following structure:
  • the polylactide has the following structure:
  • the polyacrylate has the following structure:
  • an embodiment of the present disclosure provides a display panel.
  • the display panel includes the package structure of the embodiment described above, wherein the first encapsulation layer is a first substrate of the display panel, and the second encapsulation layer is a second substrate of the display panel.
  • the sealing portion is a sealant.
  • the detecting portion is configured to perform a secondary sealing on the display panel.
  • an embodiment of the present disclosure provides a display device.
  • the display device includes the display panel of the embodiment described above.
  • an embodiment of the present disclosure provides a method for detecting a package structure.
  • the method includes:
  • Whether or not oxygen leakage occurs in the sealing portion is determined based on light emission characteristics of the detecting portion.
  • the oxygen sensitive material includes a phosphorescent material
  • determining whether the seal portion exhibits oxygen leakage according to a light emission characteristic of the detecting portion includes:
  • the method further comprises:
  • a portion of the sealing portion corresponding to at least a portion of the detecting portion that does not emit phosphorescence is determined as a leak occurrence portion.
  • the oxygen sensitive material comprises a fluorescent phosphorescent double emitting material or a combination of a fluorescent phosphorescent dual emitting material and a phosphorescent material, and determining whether the sealing portion exhibits oxygen leakage according to a light emission characteristic of the detecting portion comprises:
  • the method further comprises:
  • the portion of the sealing portion corresponding to at least a portion of the non-phosphorescence of the detecting portion after the irradiation with the electromagnetic radiation is a leak occurrence portion.
  • the fluorescent phosphorescent dual emissive material comprises a copolymer of aromatic ketone monomer units.
  • the copolymer comprises at least one of the following: polyurethane, polylactide, polyacrylate.
  • the electromagnetic radiation is ultraviolet light, and wherein
  • the polyurethane has the following structure:
  • the polylactide has the following structure:
  • the polyacrylate has the following structure:
  • an embodiment of the present disclosure provides a detecting device configured to detect whether the package structure described above is subjected to oxygen attack; the detecting device includes an illumination source configured to emit electromagnetic radiation to the package structure; A sensor configured to detect a change in light emission characteristics of the oxygen sensitive material in the package structure.
  • the illumination source comprises an ultraviolet light source.
  • the senor comprises a spectrometer.
  • FIG. 1 is a schematic view of a package structure in accordance with an embodiment of the present disclosure
  • FIG. 2 is a schematic view of a display panel in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 4 is a flow diagram of a method for detecting a package structure in accordance with an embodiment of the present disclosure
  • FIG. 5 is a flow diagram of a method for detecting a package structure in accordance with an embodiment of the present disclosure
  • FIG. 6 is a flow diagram of a method for detecting a package structure in accordance with an embodiment of the present disclosure
  • FIG. 7 is a spectrogram of an oxygen sensitive material of a detection portion of a package structure in accordance with an embodiment of the present disclosure.
  • the terms “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom” and The derivative should refer to the public text.
  • the terms “overlay”, “on top of”, “positioned on” or “positioned on top of” mean that a first element, such as a first structure, exists in a second element, such as a second structure. Above, wherein an intermediate element such as an interface structure may exist between the first element and the second element.
  • the term “contacting” means connecting a first element such as a first structure and a second element such as a second structure, with or without other elements at the interface of the two elements.
  • some detection schemes determine whether the package is damaged based on the poor characterization of the package erosion.
  • Such technical solutions have a large hysteresis and are based on indirect detection and reliable. Sexuality and accuracy are insufficient; some detection schemes are based on visual observation of the package to determine whether there is package damage.
  • Such technical solutions cannot detect small damages such as pores, cracks, etc., and experience of the inspectors.
  • Such technical solutions can only be used to detect long-term accumulation of high-concentration water vapor erosion or low-concentration water vapor erosion, and the detection efficiency is low.
  • the hysteresis is large, and it is not applicable to non-water vapor erosion or trace water vapor infiltration; some technical solutions are based on the indirect determination of the damage of the resistivity of the active metal in the presence of air. Such technical solutions are based on the detection of active metals.
  • the device has strict sealing requirements such as no water and no oxygen, and it needs to be equipped with matching inspection. Road, high cost, difficult to maintain.
  • Embodiments of the present disclosure provide a package structure, a display panel, a display device, and a method for detecting a package structure, which are at least partially capable of solving the above-described sealing effect detection method.
  • the so-called oxygen sensitivity may be, for example, sensitive to air, such as may be sensitive to oxygen, such as may be sensitive to moisture, such as may be sensitive to water oxygen, and the like.
  • the so-called oxygen-sensitive material undergoes a change in light emission characteristics after exposure to oxygen, including changes in light emission characteristics when subjected to common sealing and etching conditions such as air, water vapor, and oxygen.
  • the light-emitting portion may be a light-emitting device in various display structures, such as an electroluminescent device, such as a QLED, such as an OLED or the like.
  • the so-called light emission characteristics may include a hue of whether or not to emit light and/or emit light, such as a wavelength of light emission and a color associated therewith.
  • FIG. 1 is a schematic diagram of a package structure in accordance with an embodiment of the present disclosure.
  • the package structure 1000 of the embodiment of the present disclosure includes: a first encapsulation layer 1 and a second encapsulation layer 2 disposed opposite to each other, and a sealing portion 3 between the first encapsulation layer 1 and the second encapsulation layer 2 A sealed space is formed between the first encapsulation layer and the second encapsulation layer.
  • the package structure further includes: a detecting portion 4 located in the sealed space, the detecting portion including an oxygen sensitive material, wherein the light emitting property of the oxygen sensitive material after exposure to oxygen is changed, and a convenient oxygen leak detecting scheme can be provided.
  • the package structure according to the embodiment of the present disclosure is placed in a daily use environment, and can be easily judged. Whether the package structure has broken.
  • the first and second encapsulation layers may be joined together by using a detecting portion, for example, the projection area of the detecting portion in a direction perpendicular to the first and second encapsulating layers is at least not lower than the sealing portion.
  • the projected area in the direction perpendicular to the first and second encapsulating layers can thereby further constitute a secondary sealing of the sealed space, enhancing the sealing effect of the package structure.
  • the detecting portion is configured as a film layer having a projected area in a direction perpendicular to the first and second encapsulating layers at least not lower than the sealing portion in a direction perpendicular to the first and second packages
  • the projected area in the layer direction enhances the sealing effect of the package structure.
  • the oxygen sensitive material comprises at least one of the following: a phosphorescent material, a fluorescent phosphorescent dual emissive material.
  • the fluorescent phosphorescent dual emissive material includes a fluorescent phosphorescent dual emissive material such as an organic high molecular polymer such as a copolymer of aromatic ketone monomer units.
  • the copolymer of the aromatic ketone monomer unit may include at least one of the following: polyurethanes, polylactides, polyacrylates.
  • polyurethane can have the following structure:
  • polylactide can have the following structure:
  • the polyacrylate can have the following structure:
  • the detection circuit is not required, and the material used is non-corrosive and oxidizable, the manufacturing process is simple, the environmental requirements are low, and the cost is low. At the same time, the materials used above have good sensitivity to various oxygen environments and have a wide range of applications.
  • FIG. 2 is a schematic diagram of a display panel 2000 in accordance with an embodiment of the present disclosure.
  • the display panel shown in FIG. 2 may include a package structure as described above, the first encapsulation layer is a first substrate of the display panel, and the second encapsulation layer is a second substrate of the display panel.
  • the first substrate may be a cover plate and the second substrate may be a TFT array substrate.
  • the display panel further includes a light emitting portion 5, and the light emitting portion 5 is encapsulated in a sealed space. According to the structural design of the display panel, it can be located on the first or second substrate.
  • the light emitting portion may be an organic light emitting OLED device, and the organic light emitting OLED device is located on the second substrate.
  • the detection portion can be adjacent to the seal, for example, inside the seal.
  • the sealing portion is usually realized by a sealant, and the detecting portion can be configured as a film.
  • the vacuum package cavity is formed when the sealing is completed.
  • the embodiment of the present disclosure provides an efficient and simple solution for detecting the packaging effect, and the detecting portion can further block the air, thereby improving the packaging effect.
  • the detecting portion and the sealing portion extend simultaneously between the first and second substrates, which helps to further determine the position of the leak when oxygen leakage occurs in the sealing portion; and at the same time, since the detecting portion itself has a certain The bonding strength is beneficial to enhance the bonding effect of the sealing portion, such as the sealant.
  • the detecting portion may coat a film layer surrounding the light emitting portion between the inside of the sealing portion and the light emitting portion, so that the detection of the sealing can be completely realized.
  • the package structure provided by the embodiment of the present disclosure is applied to the display panel, which not only greatly facilitates the detection of oxygen erosion quickly and highly sensitively, but also can significantly improve the bonding effect and sealing effect of the display panel.
  • the film thickness of the colloidal thickness of about 0.65 mm can achieve a positive tensile bond strength of up to about 12 MPa, and further adjust the thickness to about 26.7 MPa.
  • the shear bond strength of the metal substrate at a shear rate of about 10 mm/min can be about 150 Kg/cm 2 (147 MPa), which is similar to the glass substrate.
  • FIG. 3 is a schematic diagram of a display device 3000 in accordance with an embodiment of the present disclosure.
  • the display device 3000 may include the display panel 2000 as described above.
  • the display device in the embodiment of the present disclosure may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • Embodiments of the present disclosure also provide a method for detecting a package structure.
  • FIG. 4 is a flow diagram of a method for detecting a package structure in accordance with an embodiment of the present disclosure.
  • a method for detecting a package structure includes:
  • irradiating the package structure according to an embodiment of the present disclosure with excitation electromagnetic radiation that is, a package structure including a first package layer and a second package layer disposed opposite to each other, located in the first package layer and the second package layer a sealing portion to form a sealed space between the first encapsulating layer and the second encapsulating layer, wherein the encapsulating structure further comprises: a detecting portion located in the sealed space, the detecting portion comprising an oxygen sensitive material, wherein the oxygen sensitive material is The light emission characteristics change after exposure to oxygen.
  • FIG. 5 is a flow diagram of a method for detecting a package structure in accordance with an embodiment of the present disclosure.
  • the oxygen sensitive material includes a phosphorescent material
  • determining whether the seal portion exhibits oxygen leakage according to a light emission characteristic of the detecting portion includes: when the package structure is irradiated with the excitation electromagnetic radiation or after, if at least the detecting portion When a part is not phosphorescent, the sealing portion is judged to have an oxygen leak.
  • the method for detecting a package structure may further include determining a portion of the sealing portion corresponding to at least a portion of the detecting portion that does not emit phosphorescence as a leak occurrence portion.
  • the method for detecting a package structure may include:
  • the package structure according to an embodiment of the present disclosure is irradiated with excitation electromagnetic radiation.
  • the sealing portion when at least a part of the detecting portion does not emit phosphorescence when the package structure is irradiated with the excitation electromagnetic radiation, the sealing portion is determined to have an oxygen leak.
  • the portion of the sealing portion corresponding to at least a portion of the detecting portion that does not emit phosphorescence is determined as a leak occurrence portion.
  • FIG. 6 is a flow diagram of a method for detecting a package structure in accordance with an embodiment of the present disclosure.
  • the oxygen sensitive material comprises a fluorescent phosphorescent double emitting material or a combination of a fluorescent phosphorescent double emitting material and a phosphorescent material
  • determining whether the sealing portion exhibits oxygen leakage according to a light emission characteristic of the detecting portion includes: When irradiated with electromagnetic radiation, if at least a part of the detecting portion emits only fluorescence, the sealing portion is determined to have oxygen leakage; or, after irradiation with electromagnetic radiation, if at least a portion of the detecting portion does not emit phosphorescence, the sealing portion is judged For the appearance of oxygen leaks.
  • the method for detecting a package structure may further include: determining a portion of the sealing portion corresponding to at least a portion of the only portion that emits fluorescence when irradiated with electromagnetic radiation as a leak occurrence portion; or A portion of the sealing portion corresponding to at least a portion of the non-phosphorescent light of the detecting portion after the irradiation with the electromagnetic radiation is determined as a leak occurrence portion.
  • a method for detecting a package structure includes:
  • the package structure according to an embodiment of the present disclosure is irradiated with excitation electromagnetic radiation.
  • the sealing portion When irradiated with electromagnetic radiation, if at least a part of the detecting portion emits only fluorescence, the sealing portion is determined to have an oxygen leak.
  • a portion of the sealing portion corresponding to at least a part of the fluorescence emitted by the detecting portion when irradiated with electromagnetic radiation is determined as a leak occurrence portion.
  • the package structure according to an embodiment of the present disclosure is irradiated with excitation electromagnetic radiation.
  • the sealing portion is determined to have an oxygen leak.
  • the portion of the sealing portion corresponding to at least a portion of the non-phosphorescent light of the detecting portion after the irradiation with the electromagnetic radiation is determined as a leak occurrence portion.
  • the fluorescent phosphorescent dual emissive material may comprise a copolymer of aromatic ketone monomer units.
  • the copolymer may include at least one of the following: polyurethanes, polylactides, polyacrylates.
  • the electromagnetic radiation can be ultraviolet light.
  • polyurethane can have the following structure:
  • polylactide can have the following structure:
  • the polyacrylate can have the following structure:
  • the method for detecting a package structure provided by the embodiments of the present disclosure is simple, has wide application range, high precision, low cost, and can further enhance the sealing effect.
  • the principle of the above method for detecting the package structure is related to the luminescent properties of fluorescence and phosphorescence.
  • Fluorescence is due to the fact that electrons are from the lowest vibrational level of the first excited singlet state to the ground state. Fluorescence has a relatively short luminescence time of about 10 -7 to 10 -9 s. After the excitation of the electromagnetic radiation is stopped, the luminescence phenomenon of the fluorescence does not exist. Phosphorescence is caused by electrons from the lowest vibrational level of the first excited triplet state to the ground state. Phosphorescence has a longer luminescence time of about 10 -6 s. After the excitation of the electromagnetic radiation, such as ultraviolet light, stops, the phosphorescence phenomenon continues to exist (phosphorescence afterglow). When oxygen is present, it causes the luminescence of the phosphorescent material to annihilate and does not emit phosphorescence.
  • FIG. 7 is a spectrogram of an oxygen-sensitive material of a detecting portion of a package structure in which an organic fluorescent phosphorescent dual-emission material is employed, according to an embodiment of the present disclosure.
  • Ex represents the excitation spectrum of the fluorescent phosphorescent double-emission material, and it can be seen that the emission intensity reaches the maximum when the excitation wavelength is around 367 nm (ultraviolet light). Therefore, ultraviolet light can be used as the excitation electromagnetic radiation to illuminate the package structure.
  • Em-a represents the emission spectrum of a fluorescent phosphorescent double-emitting material under an air atmosphere.
  • phosphorescence quenching is caused by oxygen, and therefore, the fluorescent phosphorescent double-emitting material emits only fluorescence. It can be seen that the intensity of the emitted light of about 445 nm is the largest. At this time, the fluorescent phosphorescent double-emitting material can be observed by the naked eye to emit blue-violet light.
  • Em-n represents the emission spectrum of the fluorescent phosphorescent double-emitting material under a nitrogen atmosphere. Since nitrogen is an inert gas, it does not affect the luminescent properties of the oxygen-sensitive material, and therefore, the luminescence spectrum obtained under a nitrogen atmosphere is consistent with the luminescence spectrum of a package structure such as a display panel when the seal is intact.
  • the fluorescent phosphorescent double-emitting material is capable of emitting fluorescent phosphorescent mixed light under excitation of electromagnetic radiation, and the mixed light has the highest intensity of emitted light at around 470 nm. Therefore, under a nitrogen atmosphere, when irradiated with ultraviolet light, it is observed by the naked eye that the fluorescent phosphorescent double-emitting material emits blue light.
  • Em-d represents the phosphorescence afterglow spectrum of the fluorescent phosphorescent double-emitting material under a nitrogen atmosphere.
  • the phosphorescence of the phosphorescent dual-emitting material does not annihilate, and therefore, after the excitation of the electromagnetic radiation such as ultraviolet light is turned off, phosphorescence is also present.
  • the phosphorescence afterglow has the highest intensity of emitted light at around 505 nm. Therefore, after the ultraviolet light is turned off under a nitrogen atmosphere, the fluorescent phosphorescent double-emitting material can be observed by the naked eye to emit green phosphorescence afterglow.
  • Fig. 7 It can be seen from Fig. 7 that if the package structure is intact, when the package structure is irradiated with ultraviolet light, it can emit blue fluorescent phosphorescent light; when the ultraviolet light is turned off, green phosphorescence afterglow can be seen. If the package structure is broken, since the oxygen enters, it will affect the phosphorescence emission of the oxygen sensitive material. When the package structure is irradiated with ultraviolet light, it can emit blue fluorescence; when the ultraviolet light is turned off, the package structure does not emit light. Therefore, it is possible to determine whether or not oxygen leakage has occurred in the package structure by the light emission.
  • embodiments of the present disclosure also provide a detecting apparatus for detecting whether the package structure is subjected to oxygen attack, including an illumination source for emitting electromagnetic radiation to the package structure, and a sensor for detecting A change in the light emission characteristics of the oxygen-sensitive material in the package structure.
  • the illumination source employs an ultraviolet light source.
  • the senor employs a spectrometer.
  • the automatic package structure seal detection can be realized.
  • the size of the package seal damage location can be used to determine the position of the package destruction.
  • Embodiments of the present disclosure also provide a method of fabricating a package structure, comprising: providing an oxygen sensitive material; placing an oxygen sensitive material on the first encapsulation layer and/or the second encapsulation layer; and the first encapsulation layer and the second encapsulation layer The layers are aligned, and a sealed space is formed between the first encapsulation layer and the second encapsulation layer by a sealing portion.
  • An embodiment of the present disclosure further provides a manufacturing method of a display panel, which is based on the manufacturing method of the package structure, comprising: providing an oxygen sensitive material; placing an oxygen sensitive material and a sealant on the substrate; and comparing the substrate and the cover quasi.
  • the oxygen sensitive material is a high molecular polymer and the oxygen sensitive material provided may be a solution or a melt.
  • Locating the oxygen sensitive material on the substrate may include uniformly coating a polymer liquid or a molten liquid in a space between the sealant and the light emitting device, wherein the height of the polymer liquid or the melt may be sealed.
  • the method of manufacturing the display panel may further include performing curing.
  • the curing may be a high temperature curing to cure the sealant, while also allowing the polymer liquid or melt to solidify to form a film for use as a test film.
  • the detection method as described above can be used to detect the package effect.
  • the display panel in the case of the display panel, the display panel can be detected by ultraviolet light for a week, and the change of the light emission characteristics of the display panel can be observed, and the packaging effect of the display panel can be judged.
  • the crack position In the case where the package is broken, the crack position can also be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种封装结构、显示面板、显示装置和用于检测封装结构的方法。封装结构(1000)包括:相对设置的第一封装层(1)和第二封装层(2),位于第一封装层(1)和第二封装层(2)之间的密封部以在第一封装层(1)和第二封装层(2)之间形成密封空间,其中封装结构(1000)还包括:位于密封空间中的检测部(4),检测部包括氧敏感材料,其中氧敏感材料在暴露到氧之后的光发射特性发生改变。

Description

封装结构、显示面板、显示装置和用于检测封装结构的方法
相关申请的交叉引用
本申请要求于2017年07月19日递交的中国专利申请第201710589756.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及封装技术领域。更具体地,涉及一种封装结构、显示面板、显示装置和用于检测封装结构的方法。
背景技术
封装效果对其中封装物具有影响。例如,对于显示器,尤其是OLED显示器,其使用寿命、生产良率会受封装效果的影响。所以,高效简便的封装效果检测具有重大意义,本领域存在对封装结构的密封性检测的迫切需求。
发明内容
根据第一方面,本公开的实施例提供了一种封装结构。所述封装结构包括:相对设置的第一封装层和第二封装层,位于所述第一封装层和所述第二封装层之间的密封部以在所述第一封装层和所述第二封装层之间形成密封空间,其中,所述封装结构还包括:位于所述密封空间中的检测部,所述检测部包括氧敏感材料,其中,所述氧敏感材料包括在暴露到氧之后的光发射特性发生改变的材料。
在一个实施例中,所述氧敏感材料包括下列的至少一种:磷光材料,荧光磷光双发射材料。
在一个实施例中,所述荧光磷光双发射材料包括芳香酮单体单元的共聚物。
在一个实施例中,所述共聚物包括下列的至少一种:聚氨酯、聚丙交酯、聚丙烯酸酯。
在一个实施例中,所述聚氨酯具有如下结构:
Figure PCTCN2018076800-appb-000001
所述聚丙交酯具有如下结构:
Figure PCTCN2018076800-appb-000002
所述聚丙烯酸酯具有如下结构:
Figure PCTCN2018076800-appb-000003
根据第二方面,本公开的实施例提供了一种显示面板。所述显示面板包括如上所述实施例的封装结构,其中,所述第一封装层为所述显示面板 的第一基板,所述第二封装层为所述显示面板的第二基板。
在一个实施例中,所述密封部为封框胶。
在一个实施例中,所述检测部配置成对所述显示面板进行二次密封。
根据第三方面,本公开的实施例提供了一种显示装置。所述显示装置包括如上所述实施例的显示面板。
根据第四方面,本公开的实施例提供了一种用于检测封装结构的方法。所述方法包括:
用激励电磁辐射照射所述的封装结构;
根据所述检测部的光发射特性来判断所述密封部是否出现氧泄露。
在一个实施例中,所述氧敏感材料包括磷光材料,根据所述检测部的光发射特性来判断所述密封部是否出现氧泄露包括:
当用激励电磁辐射照射所述封装结构时或之后,响应于所述检测部的至少一部分不发磷光,判断所述密封部出现氧泄露。
在一个实施例中,所述方法进一步包括:
将与所述检测部的不发磷光的至少一部分相对应的所述密封部的部分判断为泄露出现部分。
在一个实施例中,所述氧敏感材料包括荧光磷光双发射材料或者荧光磷光双发射材料与磷光材料的组合,根据所述检测部的光发射特性来判断所述密封部是否出现氧泄露包括:
当用电磁辐射照射时,响应于所述检测部的至少一部分仅发射荧光,判断所述密封部出现氧泄露;或者,
在用电磁辐射照射之后,响应于所述检测部的至少一部分不发磷光,判断所述密封部出现氧泄露。
在一个实施例中,所述方法进一步包括:
判断与用电磁辐射照射时所述检测部的仅发射荧光的至少一部分相对应的所述密封部的部分为泄露出现部分;或者,
判断与用电磁辐射照射之后所述检测部的不发磷光的至少一部分相对应的所述密封部的部分为泄露出现部分。
在一个实施例中,所述荧光磷光双发射材料包括芳香酮单体单元的共聚物。
在一个实施例中,所述共聚物包括下列的至少一种:聚氨酯、聚丙交酯、聚丙烯酸酯。
在一个实施例中,所述电磁辐射为紫外光,并且其中,
所述聚氨酯具有如下结构:
Figure PCTCN2018076800-appb-000004
所述聚丙交酯具有如下结构:
Figure PCTCN2018076800-appb-000005
所述聚丙烯酸酯具有如下结构:
Figure PCTCN2018076800-appb-000006
根据第五方面,本公开的实施例提供了一种检测装置,配置为检测上述所述的封装结构是否受到氧侵蚀;所述检测装置包括照射源,配置成向所述封装结构发出电磁辐射;感测器,配置成检测封装结构中氧敏感材料光发射特性的变化。
在一个实施例中,所述照射源包括紫外光源。
在一个实施例中,所述感测器包括光谱仪。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制,其中:
图1为根据本公开的实施例的封装结构的示意图;
图2为根据本公开的实施例的显示面板的示意图;
图3根据本公开的实施例的显示装置的示意图;
图4为根据本公开的实施例的用于检测封装结构的方法的流程示意图;
图5为根据本公开的实施例的用于检测封装结构的方法的流程示意图;
图6为根据本公开的实施例的用于检测封装结构的方法的流程示意图;
图7为根据本公开实施例的封装结构的检测部的氧敏感材料的光谱图。
具体实施方式
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将接合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其他实施例,也都属于本公开保护的范围。
当介绍本公开的元素及其实施例时,除非上下文中另外明确地指出, 否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。用语“包含”、“包括”、“含有”和“具有”旨在包括性的并且表示可以存在除所列要素之外的另外的要素。
出于下文表面描述的目的,如其在附图中被标定方向那样,术语“上”、“下”、“左”、“右”“垂直”、“水平”、“顶”、“底”及其派生词应涉及公开文本。术语“上覆”、“在……顶上”、“定位在……上”或者“定位在……顶上”意味着诸如第一结构的第一要素存在于诸如第二结构的第二要素上,其中,在第一要素和第二要素之间可存在诸如界面结构的中间要素。术语“接触”意味着连接诸如第一结构的第一要素和诸如第二结构的第二要素,而在两个要素的界面处可以有或者没有其它要素。
在发明人所知的技术中,对封装结构的密封性检测,有的检测方案基于封装出现侵蚀时的不良表征判断是否出现封装破损,这类技术方案滞后性较大,且基于间接检测,可靠性和精确度均存在不足;有的检测方案基于对封装进行视觉观察,以判断其是否出现封装破损,这类技术方案对于微小破损,例如气孔、裂纹等无法检出,且对检测人员的经验有依赖;有的检测方案基于金属化合物的盐对水的结合变色效应进行检测,这类技术方案只能用于检测较高浓度的水汽侵蚀或低浓度水汽侵蚀的长时间积累,检测效率较低,滞后性大,对于非水汽侵蚀或者微量水汽渗透,无法适用;有的技术方案基于活泼金属在遇到空气时电阻率的变化间接判断封装出现了破损,这类技术方案对基于活泼金属的检测装置有严格的无水无氧等密封要求,且需要设置配套的检测电路,成本较高,难于维护。
本公开的实施例提供了一种封装结构、显示面板、显示装置和用于检测封装结构的方法,至少能够部分解决上述封装效果的密封检测方法存在的不足。
在下述实施的具体描述中,所称的氧敏感,例如可以是对空气敏感,例如可以是对氧气敏感,例如可以是对水汽敏感,例如可以是对水氧敏感等。所称的氧敏感材料在暴露到氧之后的光发射特性发生改变包括遇到空 气、水汽、氧气等常见密封侵蚀条件时光发射特性发生改变。
在下述实施的具体描述中,所称的发光部,可以是各种显示结构中的发光器件,例如可以是电致发光器件,例如可以是QLED,例如可以是OLED等。
在下述实施的具体描述中,所称光发射特性可以包括是否发光和/或发光的色调,例如发光的波长以及由此相关的颜色等。
图1为根据本公开的实施例的封装结构的示意图。
如图1所示,本公开实施例的封装结构1000包括:相对设置的第一封装层1和第二封装层2,位于第一封装层1和第二封装层2之间的密封部3以在第一封装层和第二封装层之间形成密封空间。该封装结构还包括:位于密封空间中的检测部4,该检测部包括氧敏感材料,其中,氧敏感材料在暴露到氧之后的光发射特性发生改变,能够提供便捷的氧泄露检测方案。
通过设置这样的检测部,能够便捷地判断出封装结构是否发生氧泄露。日常环境中,无论是空气还是水汽等易于对密封的封装结构产生侵蚀的成分中均含有大量的氧,因此,将根据本公开的实施例的封装结构置于日常使用环境,能够便捷地判断出封装结构是否发生了破裂。
在本公开的一些实施例中,可以通过使用检测部将第一和第二封装层接合到一起,例如检测部在垂直于第一和第二封装层方向上的投影面积至少不低于密封部在垂直于第一和第二封装层方向上的投影面积,由此还可以进一步构成对密封空间的二次密封,增强封装结构的密封效果。
在本公开的一些实施例中,检测部被构造为一层膜层,其在垂直于第一和第二封装层方向上的投影面积至少不低于密封部在垂直于第一和第二封装层方向上的投影面积,增强封装结构的密封效果。
在本公开的一些实施例中,氧敏感材料包括下列的至少一种:磷光材料,荧光磷光双发射材料。
在本公开的一些实施例中,荧光磷光双发射材料包括诸如芳香酮单体单元的共聚物的有机高分子聚合物等荧光磷光双发射材料。
例如,芳香酮单体单元的共聚物可以包括下列的至少一种:聚氨酯类、 聚丙交酯类、聚丙烯酸酯类。
例如,聚氨酯可以具有如下结构:
Figure PCTCN2018076800-appb-000007
例如,聚丙交酯可以具有如下结构:
Figure PCTCN2018076800-appb-000008
例如,聚丙烯酸酯可以具有如下结构:
Figure PCTCN2018076800-appb-000009
申请人广泛研究了本申请技术方案的技术效果。由于无需制作检测电路,并且所用的材料无腐蚀性和易氧化性,制作工艺简单、环境要求低,成本低。同时,上述所用材料对各种氧环境均具有良好的敏感度,适用范围广。
本公开实施例的技术方案,实验显示,在普通工作真空条件(约10 3-10 2Pa)下,出现密封泄漏、氧侵蚀时就能实现光发射特性的改变,产生明显的颜色变化,尤其是在使用荧光和磷光双发射材料时,光发射特性的变化更加显著。上述工作条件远大于已有工艺中相关的真空度(10Pa左右),检测限高,可视性强、灵敏度高。
图2为根据本公开的实施例的显示面板2000的示意图。图2示出的显示面板可以包括如上所述的封装结构,第一封装层为显示面板的第一基板,第二封装层为显示面板的第二基板。
例如,第一基板可以是盖板,第二基板可以是TFT阵列基板。
可以理解,显示面板还包括发光部5,发光部5被封装在密封空间。根据显示面板的结构设计可位于第一或第二基板上。
例如,发光部可以为有机发光OLED器件,有机发光OLED器件位于第二基板上。
例如,检测部可以邻近密封部,例如位于密封部内侧。
可以理解,具体到显示面板这一结构,通常密封部采用封框胶实现,检测部可以构造为一层薄膜。此时,密封部与发光部之间、密封部与检测 部之间、检测部与发光部之间,在密封完整的情况下均构成真空封装空腔。
由于有机发光器件对空气、水汽等敏感,因此,封装效果的好坏对有机器件更为重要。而本公开的实施例,则提供了高效简便的检测封装效果的方案,并且,检测部也可以进一步阻挡空气,进而提高了封装效果。
在本公开的一些实施例中,检测部与密封部同时在第一和第二基板之间延伸,这有助于当密封部出现氧气泄漏时进一步确定泄漏的位置;同时由于检测部自身具有一定的粘结强度,有利于增强密封部,例如封框胶,的粘结效果。
在本公开的一些实施例中,检测部可以在密封部内侧与发光部之间涂布构成一圈环绕发光部的膜层,从而能够完整的实现对密封的检测。
本公开实施例提供的封装结构应用在显示面板,不仅极大的便于快捷、高灵敏的实现氧侵蚀的检测,而且能够显著改善显示面板的粘结效果和密封效果。
以采用聚氨酯结构为例,在约120℃、约1.2MPa热压条件下,胶体厚度约为0.65mm的膜层即可实现正拉粘结强度高达约12MPa,通过进一步调节厚度可达约26.7MPa;以采用聚丙烯酸酯结构为例,对金属基质,在剪切速率约为10mm/Min条件下的剪切粘结强度可达约150Kg/cm 2(147MPa),对玻璃基板效果类似。
图3根据本公开的实施例的显示装置3000的示意图。
如图3所示,根据本公开实施例的显示装置3000可以包括如上所述的显示面板2000。本公开的实施例中的显示装置可以为:手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开的实施例还提供了一种用于检测封装结构的方法。
图4为根据本公开的实施例的用于检测封装结构的方法的流程示意图。
如图4所示,根据本公开的实施例的用于检测封装结构的方法包括:
S1、用激励电磁辐射照射根据本公开的实施例的封装结构,即,这样的封装结构:其包括相对设置的第一封装层和第二封装层,位于第一封装 层和第二封装层之间的密封部以在第一封装层和第二封装层之间形成密封空间,其中,该封装结构还包括:位于密封空间中的检测部,检测部包括氧敏感材料,其中,氧敏感材料在暴露到氧之后的光发射特性发生改变。
S3、根据检测部的光发射特性来判断密封部是否出现氧泄露。
图5为根据本公开的实施例的用于检测封装结构的方法的流程示意图。
在本公开的一些实施例中,氧敏感材料包括磷光材料,根据检测部的光发射特性来判断密封部是否出现氧泄露包括:当用激励电磁辐射照射封装结构时或之后,若检测部的至少一部分不发磷光,则将密封部判断为出现氧泄露。用于检测封装结构的方法,可以进一步包括:将与检测部的不发磷光的至少一部分相对应的密封部的部分判断为泄露出现部分。
如图5所示,用于检测封装结构的方法可以包括:
S1、用激励电磁辐射照射根据本公开的实施例的封装结构。
S31、当用激励电磁辐射照射封装结构时或之后,若检测部的至少一部分不发磷光,则将密封部判断为出现氧泄露。
S41、将与检测部的不发磷光的至少一部分相对应的密封部的部分判断为泄露出现部分。
图6为根据本公开的实施例的用于检测封装结构的方法的流程示意图。
在本公开的一些实施例中,氧敏感材料包括荧光磷光双发射材料或者荧光磷光双发射材料与磷光材料的组合,根据检测部的光发射特性来判断所述密封部是否出现氧泄露包括:当用电磁辐射照射时,若检测部的至少一部分仅发射荧光,则将密封部判断为出现氧泄露;或者,在用电磁辐射照射之后,若检测部的至少一部分不发磷光,则将密封部判断为出现氧泄露。
在本公开的一些实施例中,用于检测封装结构的方法可以进一步包括:将与用电磁辐射照射时检测部的仅发射荧光的至少一部分相对应的密封部的部分判断为泄露出现部分;或者,将与用电磁辐射照射之后检测部的不发磷光的至少一部分相对应的密封部的部分判断为泄露出现部分。
如图6所示,根据本公开的实施例的用于检测封装结构的方法包括:
S1、用激励电磁辐射照射根据本公开的实施例的封装结构。
S32、当用电磁辐射照射时,若检测部的至少一部分仅发射荧光,则将密封部判断为出现氧泄露。
S42、将与用电磁辐射照射时所述检测部的仅发射荧光的至少一部分相对应的密封部的部分判断为泄露出现部分。
或者,
S1、用激励电磁辐射照射根据本公开的实施例的封装结构。
S33、在用电磁辐射照射之后,若检测部的至少一部分不发磷光,则将密封部判断为出现氧泄露。
S43、将与用电磁辐射照射之后检测部的不发磷光的至少一部分相对应的密封部的部分判断为泄露出现部分。
在本公开的一些实施例中,荧光磷光双发射材料可以包括芳香酮单体单元的共聚物。该共聚物可以包括下列的至少一种:聚氨酯类、聚丙交酯类、聚丙烯酸酯类。电磁辐射可以为紫外光。
例如,聚氨酯可以具有如下结构:
Figure PCTCN2018076800-appb-000010
例如,聚丙交酯可以具有如下结构:
Figure PCTCN2018076800-appb-000011
例如,聚丙烯酸酯可以具有如下结构:
Figure PCTCN2018076800-appb-000012
本公开的实施例所提供的检测封装结构的方法简便、适用范围广、精度高、成本低廉,并且还可以进一步增强密封效果。
上述检测封装结构方法的原理与荧光和磷光的发光特性有关系。荧光是由于电子从第一激发单重态的最低振动能级到基态而产生的。荧光的发光时间相对较短,约为10 -7~10 -9s。在激励电磁辐射停止照射之后,荧光的发光现象不存在。磷光是由于电子从第一激发三重态最低振动能级到基态而产生的。磷光的发光时间较长,约为10 -6s以上。在诸如紫外光的激励电磁辐射停止照射之后,磷光的发光现象继续存在(磷光余晖)。当存在氧气的时候,会导致磷光材料的发光猝灭,不能发射磷光。
图7为根据本公开实施例的封装结构的检测部的氧敏感材料的光谱图,其中,氧敏感材料采用了有机荧光磷光双发射材料。在图7中,Ex表示荧光磷光双发射材料的激发光谱,可以看出,激发波长在367nm(紫外光) 左右的时候,发射光强度达到了最大。因此,可以采用紫外光作为激励电磁辐射来照射封装结构。
Em-a表示在空气气氛下荧光磷光双发射材料的发射光谱。在空气气氛下,由于氧气导致了磷光猝灭,因此,荧光磷光双发射材料仅发射荧光。可以看出,445nm左右的发射光的强度最大。此时,肉眼可以观察到荧光磷光双发射材料发射蓝紫光。
Em-n表示在氮气气氛下荧光磷光双发射材料的发射光谱。由于氮气是惰性气体,不会影响氧敏感材料的发光特性,因此,在氮气气氛下获得的发光光谱和诸如显示面板的封装结构在密封完好时的发光光谱一致。在激励电磁辐射的照射下,荧光磷光双发射材料能够发射荧光磷光混合光,该混合光在470nm左右时的发射光的强度最大。因此,在氮气气氛下,使用紫外光照射时,肉眼可以观察到荧光磷光双发射材料发射蓝光。
Em-d表示在氮气气氛下荧光磷光双发射材料的磷光余晖光谱。在氮气气氛下,荧光磷光双发射材料的磷光不会发生猝灭,因此,当关闭诸如紫外光的激励电磁辐射之后,还存在磷光余晖。该磷光余晖在505nm左右时的发射光的强度最大。因此,在氮气气氛下,关闭紫外光之后,肉眼可以观察到荧光磷光双发射材料发射绿色磷光余晖。
从图7看出,若封装结构完好,则用紫外光照射封装结构时,其能够发射蓝色的荧光磷光混合光;当关闭紫外光后,可以看到绿色磷光余晖。若封装结构有破裂,由于氧气进入,会影响氧敏感材料的磷光发射,则用则用紫外光照射封装结构时,其能够发射蓝色荧光;当关闭紫外光后,封装结构不发光。从而,通过发光情况,能够判断出封装结构是否发生了氧泄露。
基于本公开的原理,本公开的实施例还提供了一种用于检测上述封装结构是否受到氧侵蚀的检测装置,包括照射源,用于向封装结构发出电磁辐射;感测器,用于检测封装结构中氧敏感材料光发射特性的变化。
在本公开的一些实施例中,照射源采用紫外光源。
在本公开的一些实施例中,感测器采用光谱仪。
通过使用上述检测装置,使用照射源发出UV光绕检测膜一周,观测检测膜发光颜色变化,就能准确判断封装效果并确定封装破坏的位置;结合光谱仪,可以实现自动化的封装结构密封检测及其封装密封破坏位置的大小。
本公开的实施例还提供了一种封装结构的制造方法,包括:提供氧敏感材料;将氧敏感材料位于第一封装层和/或第二封装层上;将第一封装层和第二封装层相对准,通过密封部在所述第一封装层和所述第二封装层之间形成密封空间。
本公开的实施例还提供了一种显示面板的制造方法,基于上述封装结构的制造方法,其包括:提供氧敏感材料;将氧敏感材料和封框胶位于基板上;将基板和盖板相对准。
在本公开的一些实施例中,氧敏感材料为高分子聚合物,提供的氧敏感材料可以为溶液或者熔融液。将氧敏感材料位于基板上可以包括在封框胶和发光器件之间的空白处均匀涂布一圈高分子聚合物液体或者熔融液,其中,高分子聚合物液体或熔融液的高度可以与封框胶的高度类似。将基板和盖板相对准可以包括在真空条件下,将基板和盖板对盒。
在本公开的一些实施例中,显示面板的制造方法还可以包括进行固化。例如,固化可以为高温固化,以使得封框胶固化,同时也使得聚物液体或熔融液固化形成一层膜层用作测试薄膜。
对于采用上述方法制造的封装结构,可以使用如上所述检测方法来检测封装效果。例如,对于显示面板的情况,可以采用紫外光检测显示面板一周,观察检测显示面板的光发射特性变化,可以判断显示面板的封装效果,在有封装破裂的情况下,还可以判断出破裂位置。
已经描述了某特定实施例,这些实施例仅通过举例的方式展现,而且不旨在限制本公开的范围。事实上,本文所描述的新颖实施例可以以各种其它形式来实施;此外,可在不脱离本公开的精神下,做出以本文所描述的实施例的形式的各种省略、替代和改变。所附权利要求以及它们的等价物旨在覆盖落在本公开范围和精神内的此类形式或者修改。

Claims (18)

  1. 一种封装结构,包括:相对设置的第一封装层和第二封装层,位于所述第一封装层和所述第二封装层之间的密封部以在所述第一封装层和所述第二封装层之间形成密封空间,其中,所述封装结构还包括:位于所述密封空间中的检测部,所述检测部包括氧敏感材料,,其中,所述氧敏感材料包括在暴露到氧之后的光发射特性发生改变的材料。
  2. 根据权利要求1所述的封装结构,其中,所述氧敏感材料包括下列的至少一种:磷光材料、荧光磷光双发射材料。
  3. 根据权利要求2所述的封装结构,其中,所述荧光磷光双发射材料包括芳香酮单体单元的共聚物。
  4. 根据权利要求3所述的封装结构,其中,所述共聚物包括下列至少一种:聚氨酯、聚丙交酯、聚丙烯酸酯。
  5. 根据权利要求4所述的封装结构,其中,所述聚氨酯具有如下结构:
    Figure PCTCN2018076800-appb-100001
    所述聚丙交酯具有如下结构:
    Figure PCTCN2018076800-appb-100002
    所述聚丙烯酸酯具有如下结构:
    Figure PCTCN2018076800-appb-100003
  6. 一种显示面板,包括根据权利要求1-5中任一项所述的封装结构,其中,所述第一封装层为所述显示面板的第一基板,所述第二封装层为所述显示面板的第二基板。
  7. 根据权利要求6所述的显示面板,其中,所述密封部为封框胶,所述检测部配置成对所述显示面板进行二次密封。
  8. 一种显示装置,包括根据权利要求6或7所述的显示面板。
  9. 一种用于检测封装结构的方法,包括:
    用激励电磁辐射照射根据权利要求1所述的封装结构;
    根据所述检测部的光发射特性来判断所述密封部是否出现氧泄露。
  10. 根据权利要求9所述的用于检测封装结构的方法,其中,所述氧 敏感材料包括磷光材料,根据所述检测部的光发射特性来判断所述密封部是否出现氧泄露包括:
    当用激励电磁辐射照射所述封装结构时或之后,响应于所述检测部的至少一部分不发磷光,判断所述密封部出现氧泄露。
  11. 根据权利要求10所述的用于检测封装结构的方法,所述方法进一步包括:
    判断与所述检测部的不发磷光的至少一部分相对应的所述密封部的部分为泄露出现部分。
  12. 根据权利要求9所述的用于检测封装结构的方法,其中,所述氧敏感材料包括荧光磷光双发射材料或者荧光磷光双发射材料与磷光材料的组合,根据所述检测部的光发射特性来判断所述密封部是否出现氧泄露包括:
    当用电磁辐射照射时,响应于所述检测部的至少一部分仅发射荧光,判断所述密封部出现氧泄露;或者,
    在用电磁辐射照射之后,响应于所述检测部的至少一部分不发磷光,判断所述密封部出现氧泄露。
  13. 根据权利要求12所述的用于检测封装结构的方法,所述方法进一步包括:
    判断与用电磁辐射照射时所述检测部的仅发射荧光的至少一部分相对应的所述密封部的部分为泄露出现部分;或者,
    判断与用电磁辐射照射之后所述检测部的不发磷光的至少一部分相对应的所述密封部的部分为泄露出现部分。
  14. 根据权利要求12或13所述的用于检测封装结构的方法,其中,所述荧光磷光双发射材料包括芳香酮单体单元的共聚物。
  15. 根据权利要求14所述的用于检测封装结构的方法,其中,所述共聚物包括下列的至少一种:聚氨酯、聚丙交酯、聚丙烯酸酯。
  16. 一种检测装置,配置为检测据权利要求1-5中任一项所述的封装结构是否受到氧侵蚀;
    所述检测装置包括照射源,配置成向所述封装结构发出电磁辐射;感测器,配置成检测封装结构中氧敏感材料光发射特性的变化。
  17. 根据权利要求16所述的检测装置,其中,所述照射源包括紫外光源。
  18. 根据权利要求16所述的检测装置,其中,所述感测器包括光谱仪。
PCT/CN2018/076800 2017-07-19 2018-02-14 封装结构、显示面板、显示装置和用于检测封装结构的方法 WO2019015322A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/305,566 US11508932B2 (en) 2017-07-19 2018-02-14 Package structure, display panel, display device, and method for detecting package structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710589756.8 2017-07-19
CN201710589756.8A CN107369701A (zh) 2017-07-19 2017-07-19 封装结构、显示面板、显示装置和用于检测封装结构的方法

Publications (1)

Publication Number Publication Date
WO2019015322A1 true WO2019015322A1 (zh) 2019-01-24

Family

ID=60306718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076800 WO2019015322A1 (zh) 2017-07-19 2018-02-14 封装结构、显示面板、显示装置和用于检测封装结构的方法

Country Status (3)

Country Link
US (1) US11508932B2 (zh)
CN (1) CN107369701A (zh)
WO (1) WO2019015322A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369701A (zh) 2017-07-19 2017-11-21 京东方科技集团股份有限公司 封装结构、显示面板、显示装置和用于检测封装结构的方法
CN108048013A (zh) 2018-01-03 2018-05-18 京东方科技集团股份有限公司 封框胶及其制备方法、显示装置
CN108878473B (zh) 2018-04-23 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法、检测方法和显示装置
CN108899310A (zh) * 2018-07-06 2018-11-27 京东方科技集团股份有限公司 一种封框胶、显示面板、显示装置及显示面板的检测方法
CN111725284B (zh) * 2020-06-29 2023-06-27 合肥维信诺科技有限公司 一种显示面板、显示终端及检测显示面板失效的方法
CN111834244B (zh) * 2020-07-24 2022-04-19 昆山国显光电有限公司 显示面板母板及制备方法
CN112002830B (zh) * 2020-09-10 2024-03-08 合肥京东方光电科技有限公司 一种显示装置和显示装置的密封检测方法
CN112599707B (zh) * 2020-12-15 2023-01-20 云谷(固安)科技有限公司 发光模组及显示装置
CN114384715B (zh) * 2021-12-29 2023-06-06 武汉天马微电子有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529820A (zh) * 2001-06-19 2004-09-15 �ʼҷ����ֵ������޹�˾ 电致发光器件的检漏方法和仪器
CN103730071A (zh) * 2013-12-30 2014-04-16 深圳市华星光电技术有限公司 Oled面板及其制作方法与封装效果的检测方法
CN103837546A (zh) * 2014-02-18 2014-06-04 珠海格力电器股份有限公司 检测零件表面裂纹的方法及其应用
CN105679961A (zh) * 2016-01-26 2016-06-15 京东方科技集团股份有限公司 一种oled封装结构、显示设备及封装方法
CN106124384A (zh) * 2016-07-29 2016-11-16 方圆环球光电技术盐城有限公司 透明膜的水汽/气体渗透率测试系统与测试方法
CN107369701A (zh) * 2017-07-19 2017-11-21 京东方科技集团股份有限公司 封装结构、显示面板、显示装置和用于检测封装结构的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175624A (zh) 2011-03-16 2011-09-07 上海大学 一种水汽透过率的测试方法
CN103217459A (zh) 2013-05-06 2013-07-24 深圳市华星光电技术有限公司 Oled面板封装效果的检测方法
US9810596B2 (en) * 2013-10-01 2017-11-07 The Boeing Company Leak detection in composite structures
CN104332562B (zh) 2014-08-20 2017-03-08 京东方科技集团股份有限公司 一种电子封装器件及其制备方法、封装效果检测方法
CN106024842B (zh) * 2016-07-26 2019-07-23 京东方科技集团股份有限公司 一种oled显示装置及其封装效果的检修方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529820A (zh) * 2001-06-19 2004-09-15 �ʼҷ����ֵ������޹�˾ 电致发光器件的检漏方法和仪器
CN103730071A (zh) * 2013-12-30 2014-04-16 深圳市华星光电技术有限公司 Oled面板及其制作方法与封装效果的检测方法
CN103837546A (zh) * 2014-02-18 2014-06-04 珠海格力电器股份有限公司 检测零件表面裂纹的方法及其应用
CN105679961A (zh) * 2016-01-26 2016-06-15 京东方科技集团股份有限公司 一种oled封装结构、显示设备及封装方法
CN106124384A (zh) * 2016-07-29 2016-11-16 方圆环球光电技术盐城有限公司 透明膜的水汽/气体渗透率测试系统与测试方法
CN107369701A (zh) * 2017-07-19 2017-11-21 京东方科技集团股份有限公司 封装结构、显示面板、显示装置和用于检测封装结构的方法

Also Published As

Publication number Publication date
US20210257584A1 (en) 2021-08-19
US11508932B2 (en) 2022-11-22
CN107369701A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2019015322A1 (zh) 封装结构、显示面板、显示装置和用于检测封装结构的方法
US10381603B2 (en) OLED display device and method for detecting and repairing packaging effects of the same
WO2016169368A1 (zh) Oled面板及其制造方法、显示装置
CN104167426B (zh) 一种有机发光二极管显示面板及其制作方法和显示装置
KR100840117B1 (ko) 발광표시장치 및 그의 제조방법
CN103325958A (zh) 有机电致发光器件封装盖板、有机电致发光器件及显示器
TWI575726B (zh) 有機發光二極體顯示器及其製造方法
US11114043B2 (en) Blue light compensation film and OLED display
US6816255B2 (en) Method and apparatus for leak-testing an electroluminescent device
CN104600204B (zh) Oled封装结构及封装方法
US11587472B2 (en) Foldable display panel
CN103392381A (zh) 有机电致发光元件的制造方法以及有机电致发光元件
US20160204375A1 (en) Flat panel display device
JP2009181954A (ja) 有機電界発光表示装置及びその製造方法
CN203300706U (zh) 有机电致发光器件封装盖板、有机电致发光器件及显示器
KR20110113089A (ko) 유기 발광 표시 장치의 리페어 방법
KR102079544B1 (ko) 면 봉지 방식의 유기발광 다이오드 표시장치
KR102052747B1 (ko) 면 봉지 방식의 유기발광 다이오드 표시장치 및 그 제조 방법
KR101643012B1 (ko) 표시장치
TWI290806B (en) Organic electro-luminescence display device and manufacturing method thereof
KR102052746B1 (ko) 면 봉지 방식의 유기발광 다이오드 표시장치
CN112002830B (zh) 一种显示装置和显示装置的密封检测方法
JP2016122513A (ja) 有機el表示パネル及び有機el表示パネルの製造方法
KR101268959B1 (ko) 평판 표시 장치의 인캡슐레이션 장치 및 인캡슐레이션 방법
KR20160113407A (ko) 유기전자소자의 보호막 결함 검사 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18835860

Country of ref document: EP

Kind code of ref document: A1