WO2019013568A1 - 용융물 처리 장치 - Google Patents

용융물 처리 장치 Download PDF

Info

Publication number
WO2019013568A1
WO2019013568A1 PCT/KR2018/007911 KR2018007911W WO2019013568A1 WO 2019013568 A1 WO2019013568 A1 WO 2019013568A1 KR 2018007911 W KR2018007911 W KR 2018007911W WO 2019013568 A1 WO2019013568 A1 WO 2019013568A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
gas injection
wall
gas
vertical members
Prior art date
Application number
PCT/KR2018/007911
Other languages
English (en)
French (fr)
Inventor
조현진
최주한
한상우
정태인
김장훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201880047054.XA priority Critical patent/CN110891710B/zh
Priority to EP18831807.5A priority patent/EP3653317B1/en
Priority to US16/630,982 priority patent/US11203059B2/en
Priority to JP2020501541A priority patent/JP6888166B2/ja
Publication of WO2019013568A1 publication Critical patent/WO2019013568A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/117Refining the metal by treating with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/08Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like for bottom pouring

Definitions

  • the present invention relates to a melt processing apparatus, and more particularly, to a melt processing apparatus capable of improving inclusion removal efficiency while stably maintaining a bath surface in a manner that generates a plurality of different currents in a plurality of sections in a rotating current region, .
  • a typical continuous casting facility includes a ladle for transporting molten steel, a tundish for temporarily storing and receiving molten steel from the ladle, and continuously supplying molten steel from the tundish to the slab A first coagulating mold, and a cooling device for secondarily cooling the cast steel continuously withdrawn from the mold and performing a series of molding operations.
  • the inclusions are separated and separated from the tundish, the slag is stabilized, and re-oxidation is prevented. Then, the molten steel forms an initial solidification layer in a cast shape in the mold, and at this time, the surface quality of the cast steel is determined.
  • the cleanliness of the molten steel with respect to the inclusions has a great influence. If the cleanliness of the molten steel with respect to the inclusions is poor, the surface quality of the cast steel is deteriorated by an abnormal flow of the molten steel in the mold due to the inclusions. In addition, the inclusions themselves cause surface defects of the cast steel.
  • the cleanliness of the molten steel for the inclusions is determined by the turn-off.
  • the inclusions in the molten steel float up on the molten steel bath surface due to the difference in specific gravity between the molten steel and the inclusions while the molten steel stays in the tundish, and the molten steel is separated from the molten steel.
  • the degree of cleanliness varies greatly. That is, as the time for which the molten steel stays in the tundish becomes longer, the inclusions in the molten steel float more easily and the cleanliness of the molten steel with respect to the inclusions is greatly improved.
  • a dam and a weir are installed in the tundish, and the flow of the molten steel is delayed by using the dam and the weir to increase the time for the molten steel to stay in the turndisse.
  • the residence time of the molten steel necessary for lifting and separating the micro-inclusions within the turn-over time is longer than the time taken for the molten steel to overflow the dam and the weir and then to exit the turn- For this reason, conventionally, it has been difficult to remove fine inclusions from the molten steel in the tundish.
  • Patent Document 1 KR10-2000-0044839 A
  • the present invention provides a melt processing apparatus capable of generating different rotation currents in a plurality of sections in a rotating current region so as to partially overlap each other.
  • a melt processing apparatus includes: a container having a melt injection portion disposed on an upper portion thereof and a hole formed in a bottom portion thereof; A gas injection unit mounted on the bottom part between the melt injection part and the hole; A chamber portion formed on an upper portion of the container to face the gas injection portion, the chamber portion having an interior opened downward; And a plurality of vertical members arranged to respectively cross a plurality of positions of the rotating current region formed between the chamber portion and the bottom portion.
  • the gas injection unit may be mounted to the bottom so as to be positioned between at least two of the vertical members.
  • the gas injection portion may be located between two adjacent vertical members.
  • Each vertical member is disposed across each of the three or more positions of the rotational current region, and the gas injection unit may be positioned to face a vertical member among three vertical members adjacent to each other.
  • the plurality of gas injection units may be spaced apart from each other, and each of the gas injection units may be spaced apart from each other with at least two of the plurality of vertical members therebetween.
  • Each vertical member is disposed across each of the three or more positions of the rotational current region, and at least one of the plurality of gas injection members may be positioned between two adjacent vertical members.
  • Each vertical member is disposed across each of the three or more positions of the rotational current region, and at least one of the plurality of gas injection units may be positioned to face one of the plurality of vertical members.
  • the plurality of vertical members may traverse a plurality of positions spaced apart from each other in the direction toward the holes in the melt injection unit in a direction crossing the direction toward the holes in the melt injection unit.
  • the plurality of vertical members may be installed at a height such that the lower end of each of the plurality of vertical members is spaced apart from the bottom and each upper end can be immersed in the melt injected into the interior of the container.
  • the chamber portion includes a plurality of wall portions spaced apart from each other with the gas injection portion interposed therebetween, and the return current region is defined by area lines extending downward from the plurality of wall portions and connected to the bottom portion, respectively .
  • the chamber portion includes: a lead member formed on an upper portion of the container to face the gas injection portion; A first wall extending downward at an end of the lead member at the melt injection portion side; And a second wall extending downward from the hole-side end of the lead member.
  • first wall is positioned between the melt injection portion and the gas injection portion and the second wall is positioned between the gas injection portion and the hole and between the first wall and the second wall, Can be located.
  • the first wall and the second wall may be extended to a height at which the lower end of each of the first wall and the second wall can be immersed in the melt injected into the interior of the container.
  • the dam member may have a height such that the lower end thereof is in contact with the bottom portion and the upper end thereof is spaced apart from the lower side of the chamber portion.
  • the efficiency can be improved. That is, the inclusion removing efficiency can be improved while the bath surface is stably maintained without increasing the gas blowing amount, and the inclusion removing efficiency can be improved while stably maintaining the bath surface even if the gas blowing amount is increased.
  • a gas injection unit is provided in a bottom portion of a vessel, a chamber portion is provided in an upper portion of the vessel so as to face the gas injection portion, and a rotational current region is provided in the vessel. It is possible to superpose the mutual currents adjacent to each other at the boundaries of the respective sections after generating the other currents. According to this, a plurality of rotating currents can be generated while maintaining the same gas blowing amount without increasing the gas blowing amount, and the inclusion removing efficiency can be improved by increasing the amount of rotation of the melt while stably maintaining the bath surface.
  • the slag mixed in the melt can be collected or floated to the rotating current overlap position through the path overlap, the slag can be stably maintained on the bath surface and the inclusion removal efficiency can be improved even when the gas blowing amount is increased.
  • FIG. 1 is a schematic view of a melt processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a melt processing apparatus according to an embodiment of the present invention.
  • FIG 3 is a schematic diagram of a chamber part according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of a melt processing apparatus according to a first modification of the present invention.
  • FIG. 5 is a schematic view of a melt processing apparatus according to a second modification of the present invention.
  • FIG. 6 is a schematic view of a melt processing apparatus according to a third modification of the present invention.
  • FIG. 7 is a schematic view of a melt processing apparatus according to a fourth modification of the present invention.
  • the present invention relates to a melt processing apparatus capable of locally generating a rotating current in a container for processing a melt, and capable of intensively generating a plurality of different rotating currents, thereby improving the removal efficiency of inclusions.
  • An embodiment will be described based on the continuous casting process of a steel mill.
  • the present invention can be applied variously to facilities and processes for processing various melts in various industries.
  • FIG. 1 is a schematic view showing a part of a melt processing apparatus according to an embodiment of the present invention cut in a width direction
  • FIG. 2 is a cross-sectional view of a melt processing apparatus according to an embodiment of the present invention
  • Fig. 3 is a schematic diagram of a chamber part according to an embodiment of the present invention.
  • the melt processing apparatus comprises a container 10 in which a melt injection section 1 is disposed and a hole 14 is formed in a bottom section 13; A chamber part 30 formed in the upper part of the vessel 10 so as to face the gas injection part 20 facing the gas injection part 20 mounted on the chamber part 13, And a plurality of vertical members (40) arranged to cross a plurality of positions of the rotating current region (50) formed between the bottom portions (13).
  • the melt M may include molten steel refined in the steelmaking facility.
  • the molten material M may be provided in a carrier container such as a ladle (not shown).
  • the transport container is transported to the upper side of the container 10 and can be located on the melt injection unit 1.
  • additives such as aluminum and silicon used for deoxidation of the melt M are mostly removed as an inclusion in response to oxygen in the melt M, but very small inclusions (micro-inclusions) Can remain in the melt (M) and be incorporated into the container (10) together with the melt (M).
  • a rotating current region is formed in the melt M by using the gas injection unit 20 and the chamber unit 30, and a plurality of vertical members 40 are used to form a plurality And the micro-inclusions can be effectively removed by using the same.
  • the melt injection part 1 may be a hollow refractory nozzle through which the melt M can pass, and may include a shroud nozzle.
  • the melt injection unit 1 is mounted on and supported by, for example, a manipulator, and can be coupled to and connected to a collector nozzle of the transportation container by the rise of a manipulator (not shown).
  • the longitudinal direction X may be a direction from the melt injection unit 1 toward the hole 14 and the width direction Y may be a direction crossing the direction from the melt injection unit 1 to the hole 14.
  • the height direction Z may be a vertical direction or a vertical direction.
  • the melt injection portion 1 may be aligned in the height direction Z at the center of the bottom portion 13 away from the bottom portion 13 of the container 10. [ The melt injection unit 1 can inject the melt M into the container 10. [ The lower portion of the melt injection portion 1 can be immersed in the melt M while the level of the melt M is increased during the injection of the melt M. [
  • the container 10 includes a bottom portion 13 extending in the longitudinal direction X and a width direction Y, a pair of widthwise side wall portions 11 protruding upward from both end portions in the width direction of the bottom portion 13, And a pair of longitudinal side wall portions 12 protruding upward from both longitudinal ends of the bottom portion 13.
  • a space of a predetermined shape opened upward in the interior of the container 10 by the bottom portion 13, the width side wall portion 11 and the longitudinal side wall portion 12 can be formed.
  • the width side wall portions 11 extend in the width direction Y and are spaced apart in the longitudinal direction X and the lengthwise side wall portions 12 extend in the longitudinal direction X and extend in the width direction Y As shown in Fig.
  • the outer surface of the vessel 10 is formed of iron and the refractory can be built up on the inner surface.
  • the vessel 10 may include, for example, a turn-off of a continuous casting facility.
  • the container 10 has a rectangular shape symmetrical to the left and right with respect to the center of the longitudinal direction X and the width direction Y and the width of the longitudinal direction X may be larger than the width of the width direction Y.
  • the container 10 is provided with a melt injection part 1 in which the melt injection part 1 is arranged such that the container 10 is arranged in the height direction Z on the center of the longitudinal direction X and the width direction Y Aligned.
  • Holes 14 may be formed at predetermined positions of the bottom portion 13 spaced from each other in the longitudinal direction X with the melt injection portion 1 interposed therebetween.
  • the holes 14 may be formed in the vicinity of both ends in the longitudinal direction of the bottom portion 13 so as to penetrate the bottom portion 13 in the height direction Z near the width side wall portion 11.
  • the holes 14 can be symmetrically symmetrical with respect to the center of the longitudinal direction X and the width direction Y.
  • a gate 80 may be mounted in the hole 14.
  • the melt processing apparatus has a symmetrical structure
  • Figs. 1 and 3 are views corresponding to the right side of the melt processing apparatus.
  • examples will be described with reference to the right side of the melt processing apparatus unless the left side and the right side of the melt processing apparatus are specifically distinguished from each other, and the technical features described herein can be similarly applied to the left side of the melt processing apparatus.
  • the gas injection portion 20 can be mounted on the bottom portion 13 between the melt injection portion 1 and the hole 14.
  • the gas injecting section 20 includes a gas injecting section main body 21 extending in the width direction Y and spaced toward the hole 14 side from the melt injection section 1 side and provided at the bottom section 13, A gas inlet 22 formed to be concave on the upper surface of the sub-body 21; a porous portion 23 mounted on the upper portion of the gas inlet 22 and having an upper surface exposed in the vessel 10; And a gas injection pipe 24 mounted through the bottom portion 13 and the gas injection unit main body 21 so as to communicate with the gas injection unit main body 21.
  • the gas injection unit main body 21 may have a rectangular block shape and may include a refractory material having a high quality.
  • the gas injection port 22 may be formed to extend in the width direction Y along the upper surface of the gas injection unit main body 21 to be concave.
  • the porous portion 23 is mounted to cover the upper portion of the gas inlet 22, and the porous portion 23 may include a porous refractory material.
  • the gas may include an inert gas, and the inert gas may include, for example, argon gas. The gas flows into the lower portion of the gas inlet 22 through the gas injection pipe 24 and can be injected into the melt M in the container 10 through the porous portion 23 in a fine bubble state.
  • a rising stream of the melt M is formed on the upper side of the gas injecting section 20 by the gas injected into the melt M by the gas injecting section 20.
  • the upward flow is diverted from the upper surface of the melt M, for example, near the bath surface, to the longitudinal flow toward the melt injection unit 1 side and the longitudinal flow toward the hole 14, And forms a downward flow toward the bottom portion 13 while contacting the wall portion 31 described later.
  • the downward flows can be collected in the direction toward the gas injection unit 20 in the vicinity of the bottom portion 13 by the venturi effect formed in the vicinity of the gas injection unit 20 and can be joined to the upward flow. Accordingly, a plurality of different rotational currents (C1, C2) can be formed between the gas injecting section 20 and the chamber section 30. [ Hereinafter, when it is not necessary to separately describe a plurality of different rotational currents (C1, C2), a plurality of different rotational currents (C1, C2) is referred to as a rotational current. On the other hand, the rotating current may be referred to as a "up-down rotating current".
  • the melt M can be rotated a plurality of times in the rotating current region 50 in the vessel 10 for a predetermined time sufficient for the micro-inclusions to float and separate by the rotating current and by the repeated rotation of the melt M
  • the micro-inclusions may float up to the bath surface and may be collected and removed in the slag S on the bath surface, or may be collected and removed in the bubbled gas.
  • the chamber part 30 is formed on the upper part of the vessel 10 so as to face the gas injection part 20 upward and downward and is opened to the lower side so as to form the rotating current area 50 between the chamber part 30 and the bottom part 13 .
  • the chamber portion 30 functions to form a rotating current region 50 in which a plurality of different rotating currents (C1, C2) are concentratedly formed in the vessel 10.
  • the chamber part 30 may include a plurality of wall parts 31 spaced apart from each other with the gas injecting part 20 therebetween, and each of the lower parts being immersed in the melt M.
  • the return current region 50 is also formed between the bottom portion 13 and the chamber portion 30 by the area lines extending downward from the plurality of wall portions 31 and connected to the bottom portion 13, 10 as a space having a predetermined shape and size.
  • the chamber part 30 is formed on the upper part of the vessel 10 so as to face the gas injection part 20 and includes a lead member 32 extending in the longitudinal direction X and the width direction Y, And a plurality of wall portions 31 extending downward at both ends in the width direction of the wall portion 31.
  • the plurality of wall portions 31 includes a first wall 31a extending downward from an end portion on the side of the melt injection portion in the width direction at both ends in the width direction of the lid member 32, 2 wall 31b.
  • the end in the width direction means an end extending in the width direction Y.
  • An end extending in the longitudinal direction X is called a longitudinal end.
  • the chamber portion 30 has a pair of flanges (not shown) projecting downward at both longitudinal ends of the lead member 32 and connecting the first wall 31a and the second wall 31b in the longitudinal direction X, Time).
  • the pair of flanges may have an upwardly concave groove at the bottom and a plurality of vertical members 40 may be disposed in the groove to prevent collision with the pair of flanges.
  • the chamber portion 30 may be installed to connect the facing surfaces of the longitudinal walls 12 of the vessel 10 or may be spaced apart from the facing surfaces of the longitudinal walls 12 of the vessel 10. [ have.
  • the lead member 32 is a plate-like member and may be formed to have a predetermined area so as to form the upper surface of the chamber part 30.
  • the lead member 32 may be installed at a height that can be spaced apart above the plurality of vertical members 40 and may be installed at a height that allows the lead member 32 to be spaced apart from the melt M in the container 10.
  • the lead member 32 may be immersed in the melt M in accordance with the level of the upper surface of the melt M.
  • a predetermined space is created which can be protected by the lid member 32, the wall portion 31 and the pair of flanges, M can be controlled to an inert atmosphere by the escaping gas. Therefore, even if the bath surface is formed in the chamber portion 30, the bath surface can be blocked from contact with the atmosphere.
  • the first wall 31a may be located between the melt injection unit 1 and the gas injection unit 20.
  • the first wall 31a extends in the width direction Y and the height direction Z and can protrude downward at the end of the lead member 32 on the melt injection portion side.
  • the end portion on the side of the melt injection portion means the end toward the melt injection portion 1.
  • the second wall 31b may be positioned between the gas injection part 20 and the hole 14.
  • the second wall 31b extends in the width direction Y and the height direction Z and can protrude downward from the hole side end portion of the lead member 32.
  • the hole side end portion refers to the end toward the hole 14.
  • the second wall 31b can be installed so as to face the dam member 60 to be described later.
  • a plurality of vertical members 40 may be positioned between the first wall 31a and the second wall 31b.
  • the first wall 31a and the second wall 31b can be extended to a height at which the lower ends of the first wall 31a and the second wall 31b are spaced apart from the bottom 13 while being immersed in the melt injected into the interior of the container 10.
  • the second wall 31b can be extended to a height at which the second wall 31b can be separated from the dam member 60.
  • the first wall 31a and the second wall 31b are formed so that the longitudinal direction flow toward the melt injection unit 1 side and the longitudinal direction flow toward the hole 14 side in the vicinity of the bath surface are respectively referred to as a downward .
  • the downward flows can be collected in the direction toward the gas injection unit 20 by the venturi effect in the vicinity of the bottom portion 13 and can be incorporated in the upward flow and a return current can be formed therebetween. That is, the wall portion 31 plays a major role in forming the rotating current.
  • the second wall 31b faces the dam member 60 and is spaced upward, and the flow rate of the return current and the flow rate of the laterally-described side-wall flow P2 can be relatively determined according to the distance between them .
  • the distance between the second wall 31b and the dam member 60 is inversely proportional to the flow rate of the rotating current. For example, as the second wall 31b is closer to the dam member 60, the flow rate of the hole-side flow P2 becomes smaller and the flow rate of the return current becomes larger. On the other hand, as the second wall 31b becomes farther from the dam member 60 The flow rate of the hole-side flow P2 is increased and the flow rate of the return current can be reduced.
  • Each flow has a relationship that the number of revolutions increases as the flow rate increases.
  • the plurality of vertical members 40 may be positioned in the rotating current region 50 surrounded by the first wall 31a and the second wall 31b and the lid member 32 and the bottom portion 13. [ At this time, the plurality of vertical members 40 are arranged at a plurality of positions in the rotational current region 50, which are spaced apart from each other in the longitudinal direction X, so as to generate different rotational currents in a plurality of regions in the rotational current region 50 May be arranged to connect between a pair of longitudinal side wall portions 12 across the width direction Y, respectively.
  • the plurality of vertical members 40 extend in the height direction Z and each has a lower end separated from the bottom portion 13 and each upper end is connected to a melt M As shown in Fig. At this time, the plurality of vertical members 40 may each be constructed of refractory material, and may include weir.
  • the plurality of vertical members 40 are arranged such that the flow P1 on the injection side of the melt M injected into the vessel 10 through the melt injection unit 1 is directed to the upper portion of the vessel 10 on the gas injection unit 20 And serves to guide the rotating current when it forms a rotating current, and to generate and maintain a rotating current by giving a venturi effect to the gas injecting unit 20.
  • the plurality of vertical members 40 form a plurality of different rotating currents in the rotating current area 50 It serves as the core of each current.
  • the number of the rotating currents in the rotating current region 50 and the rotating current state The state of the rotating current in the rotating current region 50 can be largely divided based on the number of the gas injecting portions 20 and then the number of the vertical members 40 and the position of the gas injecting portion 20 The current state in the rotating current region 50 can be more finely divided.
  • each vertical member is disposed across two positions of the rotating current region 50,
  • the portion 20 may be located between two adjacent vertical members.
  • each vertical member is disposed across three or more positions of the rotating current region 50
  • the gas injection portion 20 may be mounted to the bottom portion 13 so as to be positioned between at least two of the vertical members. At this time, the gas injection unit 20 may be positioned between two adjacent vertical members, or may be positioned to face the vertical member among three adjacent vertical members.
  • a plurality of, for example, two rotating currents can be formed by using one gas injecting section 20.
  • the structure in which a plurality of, for example, two to three sections are provided in the rotating current region 50 without increasing the gas blowing amount and different currents are generated in each section the effect of removing inclusions can be enhanced.
  • the gas injecting unit 20 is positioned between two adjacent vertical members 40, a plurality of rotating currents can be generated adjacent to each other and superimposed, thereby improving the efficiency of removing inclusions without increasing the gas blowing amount .
  • the melts M may be overlapped with each other at various positions in the rotating current region 50 in different directions so that the melts M are not intensively rotated intensively by increasing the blow- The amount of rotation of the melt M can be maximized.
  • the melt M can be rotated for a sufficient period of time before the melt M exits the rotating current region 50, so that the inclusion removing ability can be remarkably improved.
  • the gas injection unit 20 is positioned so as to face the vertical member among the three vertical members adjacent to each other, even if the gas blowing amount is doubled, the gas is branched to both sides in the middle vertical member, It is possible to allocate half of the blowing amount, thereby preventing unnecessary increase in the intensity of the rotating current, thereby suppressing or preventing the bathtub from being clogged.
  • the melt M can be rotated for a sufficient time before the melt M exits the rotating current region 50, so that the inclusion removing ability can be remarkably improved, that is, the inclusion removing efficiency can be improved have.
  • the gas injection units 20 and the number of the plurality of vertical members 40 are two, the gas injection units 20 can be spaced apart from each other with the two vertical members 40 interposed therebetween .
  • each gas injection portion 20 may be spaced apart from each other with at least two of the plurality of vertical members 40 therebetween.
  • at least one of the plurality of gas injection units 20 may be positioned between any two adjacent vertical members.
  • at least one of the plurality of gas injection units 20 may be positioned to face any one of the plurality of vertical members 40.
  • a plurality of, for example, two or more different rotating currents can be generated and superimposed using a plurality of gas injecting sections 20.
  • the slag incorporated into the melt M is collected into a region where a plurality of rotating currents overlap It is possible to stay in the current region 50 to increase the possibility of floating separation of the slag. That is, before the slag mixed in the melt M is led out to the place where the rotating current in the rotating current region 50 is overlapped before it exits the rotating current region 50, the slag can be floated with the bath surface, And the cleanliness of the molten steel can be improved.
  • the number of the gas injection units 20 is two and the number of the vertical members 40 is two and the two vertical members 40 are arranged in the longitudinal direction X with the gas injection unit 20 therebetween.
  • the present invention will be described on the basis of the case where it is spaced apart.
  • the plurality of vertical members 40 may include a first vertical member 41 and a second vertical member 42. At this time, the vertical member near the melt injection unit 1 is the first vertical member 41 and the remainder is the second vertical member 42.
  • One gas injector 20 may be positioned between the first vertical member 41 and the second vertical member 42. With this structure, the rotating current region 50 can be divided into the first current section 51 and the second current section 52.
  • the upward flow generated between the first vertical member 41 and the second vertical member 42 is divided into both sides in the longitudinal direction X on the bath surface and the upward flow generated between the first vertical member 41 and the first wall member 31a, And the downward flow generated between the second vertical member 42 and the second wall 31b is recovered between the first vertical member 41 and the second vertical member 42,
  • the rotation current C1 and the second current C2 can be generated.
  • the molten metal M flows along each rotation current and is freely incorporated into each rotation current at the boundary between the first current section 51 and the second current section 52. [ For example, even if a part of the melts M in the rotating current region 50 moves in the direction toward the hole 14 side, it is possible to rotate by the second current C2, and the residence time of the melted material M The contact time with the gas can be increased.
  • the melt processing apparatus may further include a dam member (60).
  • the dam member 60 can be formed in the width direction Y across the lower portion of the vessel 10 along the boundary of the rotating current region 50 between the gas injection portion 1 and the hole 14.
  • the dam member 60 is formed on the bottom portion 13 so as to face the second wall body 31b so that the lower end of the dam member 60 is in contact with the bottom portion and the upper end thereof is spaced apart from the lower side of the second wall body 31b, And a pair of longitudinal side wall portions 12 may be connected to each other.
  • a residual hot hole (not shown) may be provided in the lower part of the dam member 60.
  • the dam member 60 can guide the downward flow toward the bottom portion 13 along the second wall 31b of the chamber portion 30 into the main flow and the branch flow.
  • the tributary stream of the downward flow flows along the second wall body 31b toward the bottom portion 13 and then diverges toward the hole 14 side.
  • the tributary flow of the downflow flows out of the return current region 50 through the spacing space between the second wall 31b and the dam member 60 and forms a hole side flow P2 which is a flow toward the hole 14 side .
  • the main flow of the downflow flows continuously in the return current region 50 while keeping the down flow without branching toward the hole 14 side in the vicinity of the dam member 60.
  • the main flow of the downflow can be recovered in the direction toward the gas injection unit 20 by the venturi effect in the vicinity of the bottom portion 13 and can be incorporated into the upward flow,
  • the downward flow is divided into a direction from the vicinity of the bottom portion 13 toward the hole 14 and a direction toward the gas injection portion 20, . That is, the return current can be generated by using the gas injection unit 20, the chamber unit 30, and the plurality of vertical members 40 without the dam member 60. Needless to say, by using the dam member 60, a return current can be generated more smoothly.
  • the gate 80 can be mounted on the lower surface of the container 10 to allow the opening and closing of the hole 14.
  • the gate 80 may comprise a slide gate.
  • the nozzle 70 is mounted on the gate 80.
  • the nozzle 70 can communicate with the hole 14 by opening and closing the gate 80.
  • the nozzle 70 may include a submerged entry nozzle.
  • the melt M is discharged through the hole 14 and passes through the gate 80 and flows into the interior of the nozzle 70 to be removed from the nozzle 70 after the fine inclusions have been removed in the rotating current region 50 for a sufficient time, (Not shown) provided at a lower portion of the mold 70 (see FIG.
  • the mold may be a hollow block or a hollow block in the forward direction, and the interior may be vertically opened upward and downward.
  • the molten material M supplied to the mold can be firstly solidified in the shape of a slab and can be secondarily cooled through a cooling belt (not shown) provided below the mold to be continuously cast into a semi-finished product .
  • FIG. 4 is a schematic view of a melt processing apparatus according to a first modification of the present invention
  • FIG. 5 is a schematic view of a melt processing apparatus according to a second modification of the present invention
  • FIG. 7 is a schematic view of a melt processing apparatus according to a fourth modification of the present invention.
  • a plurality of vertical members 40A include a first vertical member 41A, a second vertical member 42A, and a third vertical member 43A can do.
  • the first vertical member 41A, the second vertical member 42A and the third vertical member 43A are arranged across the three positions of the rotating current region 50A,
  • the first vertical member 41A is located at a position close to the second vertical member 42A and the second vertical member 42A and the third vertical member 43A are positioned at the next position.
  • the rotating current region 50A can be divided into the first current segment 51A, the connection segment 52A, and the second current segment 53A.
  • the gas injection unit 20A may be positioned to face the second vertical member 42A, which is a vertical member among the three vertical members adjacent to each other.
  • the gas is divided into two sides in the longitudinal direction X about the second vertical member 42A so that two upward flows are generated and generated between the first vertical member 41A and the first wall 31a And the downward flow generated between the third vertical member 43A and the second wall 31b is recovered between the second vertical member 42A and the gas injection unit 20A and the first reverse current C1 is generated, And the second current C2 can be generated.
  • the molten material M flows along each rotation current and is freely incorporated into each rotation current at the lower portion of the connection section 52A. Even if a part of the melt M in the rotating current region 50A moves in the direction toward the hole 14 side it can rotate by the second current C2 and the residence time of the molten material M, It is possible to increase the contact time.
  • the second vertical member 42A branches the gas, it is possible to suppress or prevent the generation of the disturbance on the bath surface even if the gas injection amount is doubled.
  • the plurality of vertical members 40B may include a first vertical member 41B and a second vertical member 42B,
  • the first vertical member 41A can be disposed across the two positions of the rotating current region 50B and close to the melt injection unit 1.
  • the rotating current region 50B may be divided into a first current portion 51B and a second current portion 52B.
  • the gas injection unit 20B may include a first gas injection unit 21B and a second gas injection unit 22B.
  • the gas injection unit 20B may be spaced apart from each other with the first vertical member 41B and the second vertical member 42B therebetween.
  • the first gas injection unit 21B may be positioned between the first wall 31a and the first vertical member 41B and the second gas injection unit 22B may be positioned between the second vertical member 42B and the second wall 42B. And may be located between the second wall 31b.
  • the first current C3 and the second current C4 are strongly generated as the descending currents generated by the plurality of gas injecting portions 20B are connected to each other between the first vertical member 42B and the second vertical member 42B, Can be superimposed at the boundary between the first current section 51B and the second current section 53B.
  • the molten metal M flows along each rotation current and even if some of the melts M in the rotation current region 50B move in the direction toward the hole 14 side, So that the residence time of the melt M and the contact time with the gas can be increased.
  • the plurality of vertical members 40C includes a first vertical member 41C, a second vertical member 42C, a third vertical member 43C, Each of which may be disposed across three positions of the rotating current region 50C and in which the first vertical member 41C is located at a position closest to the melt injection unit 1, 2 vertical member 42C and third vertical member 43C may be positioned in order.
  • the gas injection unit 20C may include a first gas injection unit 21C and a second gas injection unit 22C.
  • the first gas injection unit 21C may be positioned between the first wall 31a and the first vertical member 41C and the second gas injection unit 22C may be positioned between the second vertical member 42C and the third vertical member 41C. And may be positioned between the vertical members 43C.
  • the turn current region 50C may be divided into a first current section 51C, a second current section 52C, and a third current section 53C.
  • the upward flow generated between the first wall 31a and the first vertical member 41C is generated between the first vertical member 41C and the second vertical member 42C by each gas injection unit 20C
  • the upper portion of the first vertical member 41C is overflowed in the direction from the melt injection portion 1 toward the hole 14 by the descending flow and is generated between the first vertical member 41C and the second vertical member 42C
  • the first current C5 is generated as a part of the falling current is recovered to the first gas injection unit 21C side.
  • the upward flow generated between the second vertical member 42C and the third vertical member 43C is divided into both sides in the longitudinal direction X on the bath surface and the first vertical member 41C and the second vertical member 42C And the descending flow generated between the third vertical member 43C and the second wall 31b are recovered between the second vertical member 42C and the third vertical member 43C,
  • the rotation current C6 and the third current C7 can be generated.
  • the plurality of vertical members 40D include a first vertical member 41D, a second vertical member 42D, a third vertical member 43D, Each of which may be disposed across three positions of the rotating current region 50D and in which the first vertical member 41D is located at a position closest to the melt injection unit 1, 2 vertical member 42D and third vertical member 43D may be positioned in order.
  • the gas injection unit 20D may include a first gas injection unit 21D and a second gas injection unit 22D.
  • the first gas injection unit 21D is positioned below the first vertical member 41D to face the first vertical member 41D and the second gas injection unit 22D is positioned below the third vertical member 43D And may be positioned between the second walls 31b.
  • the rotating current region 50D may be divided into a first current section 51D, a second current section 52D, and a third current section 53D.
  • the gas introduced from the first gas injection unit 21D is branched to both sides of the first vertical member 41C to form upward flows respectively and generated between the first wall 31a and the first vertical member 41C
  • the upward flow is generated between the first vertical member 41D and the second vertical member 42D by overflowing the upper portion of the first vertical member 41D in the direction toward the hole 14 from the melt injection unit 1
  • a first current branch C8 is formed so as to form a first current branch C8 and a part of a descending current generated between the second vertical member 42D and the third vertical member 43D by the plurality of gas injection units 20D Is collected near the bottom portion 13 toward the first gas injection portion 21D to generate the first current flow C9.
  • the second current C10 may be generated and overlapped at the boundary between the second current section 52D and the third current section 53D.
  • the melt processing apparatus When the melt processing apparatus according to the exemplary embodiment of the present invention and its modifications as described above is applied to the turn-on of the continuous casting equipment, during the continuous casting process, a plurality of locally different rotational currents And some of them can be superimposed. Therefore, the molten steel can be held for a long time while being rotated and rotated a plurality of times in the turn-dish, and the molten steel can be repeatedly brought into contact with the bubbled argon gas several times. Therefore, inclusions in the molten steel can be effectively removed. In particular, fine inclusions having a size of 30 mu m or less can be removed very effectively.
  • the gas injection unit 20 is provided at the bottom of the turn-off dish and the chamber unit 30 is provided at the top of the turntable so as to face the gas injection unit 20 up and down.
  • a plurality of vertical members 40 are installed. Thereafter, the molten steel is taken into the tundish and the argon gas is injected into the gas injecting unit 20 during the continuous casting process to generate the rotating current. At this time, it is possible to superimpose the adjacent rotating currents at the boundaries between the adjacent sections while generating a plurality of different rotating currents around the respective vertical members 40 in different sections.
  • the gas injection unit 20 may be provided so as to face one of the plurality of vertical members 40, or the gas injection unit 20 may be provided between the plurality of vertical members 40, A plurality of rotating currents can be generated while maintaining the gas blowing amount, and the inclusion removing efficiency can be improved by stably maintaining the bath surface.
  • a plurality of gas injection units 20 may be spaced apart from each other by at least two vertical members adjacent to each other among a plurality of vertical members 40, and a plurality of rotation currents may be generated by increasing the gas blowing amount At this time, since neighboring rotating currents are overlapped with each other, even if a part of the slag is mixed into the molten steel, the slag can be collected at a position where the rotating current is superimposed to float, and the slag can be stably maintained on the bath surface, have.
  • a plurality of different rotational currents are intensively formed in the vessel 10, thereby maximizing the inclusion removal efficiency.
  • the inclusion removal efficiency can be increased by increasing the blowing intensity of the gas blown into the melt M through the gas injecting section 20 simply by increasing the blowing intensity of the gas injected into the melt M through the gas injecting section 20.
  • the blowing intensity of the gas blown into the melt M can be increased simply by increasing the blowing intensity of the gas injected into the melt M through the gas injecting section 20.
  • the molten metal M is injected and produces a strong rotation current in one direction, the flow of the molten metal on the molten metal M is unstable. Therefore, there is a limit to simply increasing the blowing amount of the gas in order to increase the removal efficiency of the openings.
  • the inclusion removal efficiency can be increased without increasing the gas blow-in amount because it is a method of generating different currents in different sections and maximizing the inclusion removal efficiency by overlapping adjacent currents.
  • the increase in the gas blowing amount can be dispersed to a plurality of different rotational currents so that the increase in the intensity of each of the rotating currents can be suppressed, have.
  • the slag incorporated into the melt M is collected into a region where a plurality of rotating currents overlap It is possible to stay in the current region 50 to increase the possibility of floating separation of the slag. That is, before the slag mixed in the melt M is led out to the place where the rotating current in the rotating current region 50 is overlapped before it exits the rotating current region 50, the slag can be floated with the bath surface, And the cleanliness of the molten steel can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Silicon Compounds (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 상부에 용융물 주입부가 배치되고, 바닥부에 홀이 형성되는 용기, 용융물 주입부과 홀 사이에서 바닥부에 장착되는 기체 주입부, 기체 주입부를 마주보도록 용기의 상부에 형성되고, 내부가 하측으로 개방되는 챔버부, 챔버부와 바닥부 사이에 형성되는 회전류 영역의 복수 위치를 가로지르도록 각각 배치되는 복수개의 수직부재를 포함하는 용융물 처리 장치로서, 회전류 영역내의 복수 구간에 서로 다른 회전류를 생성하여 일부 중첩시키는 방식으로 탕면을 안정적으로 유지하면서 개재물 제거 효율을 향상시킬 수 있는 용융물 처리 장치가 제시된다.

Description

용융물 처리 장치
본 발명은 용융물 처리 장치에 관한 것으로서, 더욱 상세하게는 회전류 영역내의 복수 구간에 서로 다른 회전류를 생성하여 일부 중첩시키는 방식으로 탕면을 안정적으로 유지하면서 개재물 제거 효율을 향상시킬 수 있는 용융물 처리 장치에 관한 것이다.
통상적인 연속주조 설비는, 용강(molten steel)을 운반하는 래들(Ladle), 래들에서 용강을 공급받아 임시 저장하는 턴디시(Tundish), 턴디시로부터 지속적으로 용강을 공급받으면서 이를 주편(Slab)으로 1차 응고시키는 주형(Mold), 주형으로부터 지속적으로 인발되는 주편을 2차 냉각시키며 일련의 성형 작업을 수행하는 냉각대로 구성된다.
용강은 턴디시에서 개재물이 부상 분리되고, 슬래그가 안정화되고, 재산화가 방지된다. 이후, 용강은 주형에서 주편 형상으로 초기 응고층을 형성하는데, 이때, 주편의 표면 품질이 결정된다. 주편의 표면 품질이 결정될 때, 개재물에 대한 용강의 청정도가 큰 영향을 준다. 개재물에 대한 용강의 청정도가 좋지 않으면 개재물로 인한 주형내의 용강의 이상 흐름에 의하여 주편의 표면 품질이 저하된다. 또한, 개재물은 그 자체로도 주편의 표면 결함의 원인이 된다.
개재물에 대한 용강의 청정도는 턴디시에서 결정된다. 예컨대 턴디시에 용강이 체류하는 동안 용강과 개재물의 비중 차이에 의해 용강내의 개재물이 용강 탕면으로 부상되어 용강으로부터 분리되는데, 용강이 턴디시에 체류하면서 개재물을 부상 분리시키는 정도에 따라 개재물에 대한 용강의 청정도가 크게 달라진다. 즉, 용강이 턴디시 내부에 체류하는 시간이 길어질수록 용강 중의 개재물이 더 잘 부상 분리되고, 개재물에 대한 용강의 청정도가 크게 향상된다.
따라서, 종래에는 턴디시에 댐과 위어를 설치하고, 이를 이용하여 용강의 흐름을 지연시켜 용강이 턴디시내에서 체류하는 시간을 늘렸다. 하지만, 크기가 30㎛ 이하인 미세 개재물의 경우, 용강이 댐과 위어를 범람한 후 턴디시를 빠져나가는데 걸리는 시간보다 턴디시내에서 미세 개재물을 부상 분리시키기 위해 필요한 용강의 체류 시간이 더 길다. 이러한 이유로 종래에는 턴디시내의 용강에서 미세 개재물을 제거하기 어려웠다.
(선행기술문헌)
(특허문헌)
(특허문헌 1) KR10-2000-0044839 A
본 발명은 회전류 영역내의 복수 구간에 서로 다른 회전류를 생성하여 일부 중첩시킬 수 있는 용융물 처리 장치를 제공한다.
본 발명의 실시 형태에 따른 용융물 처리 장치는, 상부에 용융물 주입부가 배치되고, 바닥부에 홀이 형성되는 용기; 상기 용융물 주입부와 홀 사이에서 상기 바닥부에 장착되는 기체 주입부; 상기 기체 주입부를 마주보도록 상기 용기의 상부에 형성되고, 내부가 하측으로 개방되는 챔버부; 및 상기 챔버부와 바닥부 사이에 형성되는 회전류 영역의 복수 위치를 가로지르도록 각각 배치되는 복수개의 수직부재;를 포함한다.
상기 기체 주입부는 적어도 어느 두 개의 수직부재 사이에 위치하도록 상기 바닥부에 장착될 수 있다.
상기 기체 주입부는 서로 인접한 어느 두 개의 수직부재 사이에 위치할 수 있다.
각각의 수직부재는 상기 회전류 영역의 셋 이상의 위치를 각각 가로질러 배치되고, 상기 기체 주입부는 서로 인접한 어느 세 개의 수직부재 중 가운데 수직부재를 마주보도록 위치할 수 있다.
상기 기체 주입부는 복수개 구비되어 서로 이격되고, 각각의 기체 주입부는 상기 복수개의 수직부재 중 적어도 어느 두 개의 수직부재를 사이에 두고 서로 이격될 수 있다.
각각의 수직부재는 상기 회전류 영역의 셋 이상의 위치를 각각 가로질러 배치되고, 복수개의 기체 주입부 중 적어도 어느 하나는 서로 인접한 어느 두 개의 수직부재 사이에 위치할 수 있다.
각각의 수직부재는 상기 회전류 영역의 셋 이상의 위치를 각각 가로질러 배치되고, 복수개의 기체 주입부 중 적어도 어느 하나는 상기 복수개의 수직부재 중 어느 하나의 수직부재를 마주보도록 위치할 수 있다.
상기 복수개의 수직부재는 상기 용융물 주입부에서 홀을 향하는 방향으로 서로 이격된 복수 위치를 상기 용융물 주입부에서 홀을 향하는 방향에 교차하는 방향으로 각각 가로지를 수 있다.
상기 복수개의 수직부재는 각각의 하단이 상기 바닥부에서 이격되고, 각각의 상단이 상기 용기의 내부에 주입되는 용융물에 침지될 수 있는 높이로 설치될 수 있다.
상기 챔버부는 상기 기체 주입부를 사이에 두고 양측으로 각각 이격된 복수개의 벽체부를 포함하고, 상기 회전류 영역은 상기 복수개의 벽체부에서 하측으로 연장되어 상기 바닥부에 각각 연결되는 영역선들에 의하여 정의될 수 있다.
상기 챔버부는, 상기 기체 주입부를 마주보도록 상기 용기의 상부에 형성되는 리드부재; 상기 리드부재의 용융물 주입부측 단부에서 하향 연장되는 제1 벽체; 상기 리드부재의 홀측 단부에서 하향 연장되는 제2 벽체;를 포함할 수 있다.
상기 제1 벽체는 상기 용융물 주입부와 상기 기체 주입부 사이에 위치하고, 상기 제2 벽체는 상기 기체 주입부와 상기 홀 사이에 위치하며, 상기 제1 벽체와 제2 벽체 사이에 상기 복수개의 수직부재가 위치할 수 있다.
상기 제1 벽체와 제2 벽체는 각각의 하단이 상기 용기의 내부에 주입되는 용융물에 침지될 수 있는 높이로 연장될 수 있다.
상기 기체 주입부와 홀 사이에서 상기 회전류 영역의 경계를 따라 상기 용기의 하부를 가로지르도록 형성되는 댐부재;를 포함할 수 있다.
상기 댐부재는 하단이 상기 바닥부에 접촉되고, 상단이 상기 챔버부의 하측으로 이격될 수 있는 높이로 형성될 수 있다.
본 발명의 실시 형태에 따르면, 용융물을 처리하는 용기내의 회전류 영역에 서로 다른 복수의 회전류를 생성 및 중첩시킬 수 있고, 기체 취입량을 유지하거나 증대하는 경우 모두 탕면을 안정적으로 유지하며 개재물 제거 효율을 향상시킬 수 있다. 즉, 기체 취입량의 증대 없이 탕면을 안정적으로 유지하면서 개재물 제거 효율을 향상시킬 수 있고, 또한, 기체 취입량을 증대하여도 탕면을 안정적으로 유지하면서 개재물 제거 효율을 향상시킬 수 있다.
더욱 상세하게는, 기체 주입부를 용기의 바닥부에 설치하고 챔버부를 용기의 상부에 기체 주입부를 마주보도록 설치하여 용기내에 회전류 영역을 마련하고, 수직부재를 이용하여 회전류 영역내의 복수 구간별로 서로 다른 회전류를 생성한 후 각 구간의 경계에서 서로 인접하는 회전류끼리 중첩시킬 수 있다. 이에 의하면, 기체 취입량의 증대 없이 동일한 기체 취입량을 유지하면서 복수의 회전류를 생성할 수 있고, 이에, 탕면을 안정적으로 유지하면서 용융물의 회전량을 증대시켜 개재물 제거 효율을 향상시킬 수 있다.
또한, 기체 취입량을 증대하여 복수의 회전류를 생성할 수 있는데, 이때, 용융물의 탕면상에 부유하는 슬래그에 강한 전단 응력이 가해지면서 슬래그의 일부가 용융물내로 혼입되더라도, 예컨대 둘 이상의 회전류의 경로 중첩을 통하여, 용융물내에 혼입된 슬래그를 회전류 중첩 위치로 모아주거나 부상시킬 수 있으므로, 기체 취입량이 증가하더라도 탕면상에 슬래그를 안정적으로 유지시키며 개재물 제거 효율을 향상시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 용융물 처리 장치의 개략도이다.
도 2는 본 발명의 실시 예에 따른 용융물 처리 장치의 모식도이다.
도 3은 본 발명의 실시 예에 따른 챔버부의 모식도이다.
도 4는 본 발명의 제1 변형 예에 따른 용융물 처리 장치의 개략도이다.
도 5는 본 발명의 제2 변형 예에 따른 용융물 처리 장치의 개략도이다.
도 6은 본 발명의 제3 변형 예에 따른 용융물 처리 장치의 개략도이다.
도 7은 본 발명의 제4 변형 예에 따른 용융물 처리 장치의 개략도이다.
이하, 첨부된 도면을 참조하여, 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니고, 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시 예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한 요소를 지칭한다.
본 발명은 용융물을 처리하는 용기내에 국부적으로 회전류를 생성할 수 있으면서 복수개의 서로 다른 회전류를 집중적으로 생성할 수 있어 개재물의 제거 효율을 향상시킬 수 있는 용융물 처리 장치에 관한 것이다. 제철소의 연속주조 공정을 기준으로 실시 예를 설명한다. 물론, 본 발명은 여러 산업 분아에서 각종 용융물을 처리하는 설비 및 공정에도 다양하게 적용될 수 있다.
도 1은 본 발명의 실시 예에 따른 용융물 처리 장치의 중심을 폭방향으로 절단하여 일부분을 도시한 개략도이고, 도 2는 본 발명의 실시 예에 따른 용융물 처리 장치의 중심을 길이방향으로 절단하여 일부분을 도시한 모식도이다. 또한, 도 3은 본 발명의 실시 예에 따른 챔버부의 모식도이다.
도 1 내지 도 3을 참조하여, 본 발명의 실시 예에 따른 용융물 처리 장치를 상세하게 설명한다. 용융물 처리 장치는, 상부에 용융물 주입부(1)가 배치되고, 바닥부(13)에 홀(14)이 형성되는 용기(10), 용융물 주입부(1)와 홀(14) 사이에서 바닥부(13)에 장착되는 기체 주입부(20), 기체 주입부(20)를 마주보도록 용기(10)의 상부에 형성되고, 내부가 하측으로 개방되는 챔버부(30), 챔버부(30)와 바닥부(13) 사이에 형성되는 회전류 영역(50)의 복수 위치를 가로지르도록 각각 배치되는 복수개의 수직부재(40)를 포함한다.
용융물(M)은 제강 설비에서 정련이 완료된 용강을 포함할 수 있다. 물론, 용융물은 다양할 수 있다. 용용물(M)은 운반용기 예컨대 래들(미도시)에 담겨 마련될 수 있다. 운반용기는 용기(10)의 상측으로 운반되고, 용융물 주입부(1)상에 위치할 수 있다. 제강 설비에서 정련 공정을 수행할 때, 용융물(M)의 탈산 등에 사용된 알루미늄이나 실리콘 등의 첨가제는 용융물(M)내의 산소에 반응하여 대부분 개재물로 제거되지만, 매우 작은 크기의 개재물(미세 개재물)은 용융물(M) 중에 그대로 남아서 용융물(M)과 함께 용기(10)내에 혼입될 수 있다.
따라서, 본 발명의 실시 예에서는 기체 주입부(20)와 챔버부(30)를 이용하여 용융물(M)내에 회전류 영역을 형성하고, 복수개의 수직부재(40)를 이용하여 회전류 영역내에 복수의 서로 다른 회전류를 집중 생성하여 일부 중첩시키고, 이를 이용하여 미세 개재물을 효과적으로 제거할 수 있다.
용융물 주입부(1)는 용융물(M)이 통과 가능한 중공의 내화물 노즐로서, 슈라우드 노즐(shroud nozzle)을 포함할 수 있다. 용융물 주입부(1)는 예컨대 머니퓰레이터(manipulator)에 장착되어 지지되며, 머니퓰레이터(미도시)의 상승에 의해 운반용기의 콜렉터 노즐(collector nozzle)에 결합되어 연통할 수 있다.
한편, 아래에서 길이방향(X), 폭방향(Y) 및 높이방향(Z)을 사용하여 실시 예를 설명한다. 길이방향(X)은 용융물 주입부(1)에서 홀(14)을 향하는 방향이고, 폭방향(Y)은 용융물 주입부(1)에서 홀(14)을 향하는 방향에 교차하는 방향일 수 있다. 높이방향(Z)은 상하방향 또는 연직방향일 수 있다. 상술한 방향들은 실시 예의 이해를 돕기 위한 것이고, 본 발명의 제한을 위한 것이 아니다.
용융물 주입부(1)는 용기(10)의 바닥부(13)에서 이격되어 바닥부(13)의 중심에 높이방향(Z)으로 정렬될 수 있다. 용융물 주입부(1)는 용기(10)내에 용융물(M)을 주입할 수 있다. 용융물(M)을 주입하는 중에 용융물(M)의 레벨이 상승하면서 용융물 주입부(1)의 하부가 용융물(M)에 침지될 수 있다.
용기(10)는, 길이방향(X)과 폭방향(Y)으로 연장되는 바닥부(13), 바닥부(13)의 폭방향 양단부에서 상향 돌출되는 한 쌍의 폭방향 측벽부(11), 바닥부(13)의 길이방향 양단부에서 상향 돌출되는 한 쌍의 길이방향 측벽부(12)를 포함할 수 있다. 바닥부(13)와 폭방향 측벽부(11)와 길이방향 측벽부(12)에 의해 용기(10)의 내부에 상측으로 개방된 소정 형상의 공간이 형성될 수 있다.
폭방향 측벽부(11)는 폭방향(Y)으로 연장되고, 길이방향(X)으로 이격되어 대향 배치되며, 길이방향 측벽부(12)는 길이방향(X)으로 연장되고, 폭방향(Y)으로 이격되어 대향 배치될 수 있다.
용기(10)는 외부면이 철피로 형성되고, 내부면에 내화물이 구축될 수 있다. 용기(10)는 예컨대 연속주조 설비의 턴디시를 포함할 수 있다.
용기(10)는 길이방향(X)과 폭방향(Y)의 중심을 기준으로 좌우 대칭하는 장방형의 형상이며, 길이방향(X)의 너비가 폭방향(Y)의 너비보다 클 수 있다. 용기(10)는 상부에 용융물 주입부(1)가 배치되는데, 용융물 주입부(1)는 용기(10)는 길이방향(X)과 폭방향(Y)의 중심상에 높이방향(Z)으로 정렬되도록 배치된다.
용융물 주입부(1)를 사이에 두고 길이방향(X)으로 서로 이격된 바닥부(13)의 소정 위치에 각각 홀(14)이 형성될 수 있다. 홀(14)은 폭방향 측벽부(11)의 근방에서 바닥부(13)를 높이방향(Z)으로 관통하여, 바닥부(13)의 길이방향 양단부 부근에 각각 형성될 수 있다. 홀(14)은 길이방향(X)과 폭방향(Y)의 중심을 기준으로 좌우 대칭할 수 있다. 홀(14)을 통해 용기(10)내의 용융물(M)이 배출될 수 있다. 홀(14)에는 게이트(80)가 장착될 수 있다.
한편, 본 발명의 실시 예에서, 용융물 처리 장치는 좌우 대칭하는 구조이고,도 1과 도 3은 용융물 처리 장치의 우측에 해당하는 도면이다. 이하에서 용융물 처리 장치의 좌측과 우측을 특별히 구분하지 않으면 용융물 처리 장치의 우측을 기준으로 실시 예를 설명하는 것이고, 이때, 설명되는 기술적인 특징은 용융물 처리 장치의 좌측에도 동일하게 적용될 수 있다.
기체 주입부(20)는 용융물 주입부(1)과 홀(14) 사이에서 바닥부(13)에 장착될 수 있다. 기체 주입부(20)는, 폭방향(Y)으로 연장되고, 용융물 주입부(1)측에서 홀(14)측으로 이격되어 바닥부(13)에 설치되는 기체 주입부 본체(21), 기체 주입부 본체(21)의 상면에 오목하게 형성되는 기체 주입구(22), 기체 주입구(22)의 상부를 커버하여 장착되고, 상면이 용기(10)내에 노출되는 포러스부(23), 기체 주입구(22)에 연통하도록 바닥부(13)와 기체 주입부 본체(21)를 관통하여 장착되는 기체 주입관(24)을 포함할 수 있다.
기체 주입부 본체(21)는 장방형의 블록 형상일 수 있고, 치밀질의 내화물 재질을 포함할 수 있다. 기체 주입구(22)는 기체 주입부 본체(21)의 상면을 따라 폭방향(Y)으로 연장되어 오목하게 형성될 수 있다. 기체 주입구(22)의 상부를 커버하도록 포러스부(23)가 장착되며, 포러스부(23)는 다공질의 내화물 재질을 포함할 수 있다. 기체는 불활성 기체를 포함할 수 있고, 불활성 기체는 예컨대 아르곤 기체를 포함할 수 있다. 기체는 기체 주입관(24)을 통해 기체 주입구(22)의 하부로 유입되고, 포러스부(23)를 통과하여 용기(10)내의 용융물(M)중에 미세한 기포 상태로 분사될 수 있다.
기체 주입부(20)가 용융물(M)에 주입하는 기체에 의해 기체 주입부(20)의 상측으로 용융물(M)의 상승류가 형성된다. 상승류는 용융물(M)의 상부면 예컨대 탕면 부근에서 분기되어 용융물 주입부(1)측을 향하는 길이방향 흐름과 홀(14)측을 향하는 길이방향 흐름으로 각각 전환되고, 챔버부(30)의 후술하는 벽체부(31)에 접촉되면서 바닥부(13)를 향하는 하강류를 형성한다.
하강류는 기체 주입부(20) 부근에 형성된 벤츄리 효과(Venturi effect)에 의해 바닥부(13) 부근에서 기체 주입부(20)를 향하는 방향으로 각각 회수되어 상승류에 합류될 수 있다. 이에 따라, 기체 주입부(20)와 챔버부(30)의 사이에 서로 다른 복수의 회전류(C1, C2)가 형성될 수 있다. 이하, 서로 다른 복수의 회전류(C1, C2)를 특별히 구분해서 설명할 필요가 없을 때는, 서로 다른 복수의 회전류(C1, C2)를 회전류라고 통칭한다. 한편, 회전류를 '상하 회전류'라 할 수도 있다.
회전류에 의해 미세 개재물이 부상 분리되기에 충분한 소정의 시간동안 용융물(M)이 용기(10)내의 회전류 영역(50)에서 복수회차 회전할 수 있고, 용융물(M)의 반복적인 회전에 의해 미세 개재물이 탕면까지 부상하여 탕면상의 슬래그(S)에 포집되어 제거되거나, 기포 상태의 기체에 포집되어 제거될 수 있다.
챔버부(30)는 기체 주입부(20)를 상하로 마주보도록 용기(10)의 상부에 형성되고, 바닥부(13)와의 사이에 회전류 영역(50)을 형성하도록 내부가 하측으로 개방될 수 있다. 챔버부(30)는 용기(10)내에 복수의 서로 다른 회전류(C1, C2)가 집중 형성되는 회전류 영역(50)을 형성하는 역할을 한다.
이를 위하여 챔버부(30)는 기체 주입부(20)를 사이에 두고 양측으로 각각 이격되고, 각각의 하부가 용융물(M) 중에 침지되는 복수개의 벽체부(31)를 포함할 수 있다. 또한, 회전류 영역(50)은 복수개의 벽체부(31)에서 하측으로 연장되어 바닥부(13)에 각각 연결되는 영역선들에 의하여, 바닥부(13)와 챔버부(30) 사이에서 용기(10)내에 소정 형상과 크기의 공간으로 정의될 수 있다.
챔버부(30)는, 기체 주입부(20)를 마주보도록 용기(10)의 상부에 형성되고, 길이방향(X)과 폭방향(Y)으로 연장되는 리드부재(32), 리드부재(32)의 폭방향 양단부에서 각각 하향 연장되는 복수개의 벽체부(31)를 포함할 수 있다. 복수개의 벽체부(31)는 리드부재(32)의 폭방향 양단부 중 용융물 주입부측 단부에서 하향 연장되는 제1 벽체(31a), 리드부재(32)의 폭방향 양단부 중 홀측 단부에서 하향 연장되는 제2 벽체(31b)를 포함할 수 있다. 여기서, 폭방향 단부는 폭방향(Y)으로 연장된 단부를 의미한다. 길이방향(X)으로 연장된 단부는 길이방향 단부라 한다. 챔버부(30)는 리드부재(32)의 길이방향 양단부에서 하향 돌출되고, 제1 벽체(31a)와 제2 벽체(31b) 사이를 길이방향(X)으로 각각 연결하는 한 쌍의 플랜지(미도시)를 포함할 수도 있다. 한 쌍의 플랜지는 하부에 상측으로 오목한 홈이 형성될 수 있고, 홈에 복수개의 수직부재(40)가 배치되어 한 쌍의 플랜지와의 충돌이 방지될 수 있다.
챔버부(30)는 용기(10)의 길이방향 벽체(12)의 서로 마주보는 면을 연결하여 설치되거나, 용기(10)의 길이방향 벽체(12)의 서로 마주보는 면에서 이격되도록 설치될 수 있다.
리드부재(32)는 판 형상의 부재로서, 챔버부(30)의 상면을 이루도록 소정 면적으로 형성될 수 있다. 리드부재(32)는 복수개의 수직부재(40)의 상측으로 이격될 수 있는 높이에 설치되며, 이때, 용기(10)내의 용융물(M)에서 이격될 수 있는 높이로 설치될 수도 있다. 물론, 용융물(M)의 상부면 레벨에 따라서 리드부재(32)가 용융물(M)에 침지될 수도 있다. 리드부재(32)가 탕면에서 이격될 때, 소정 공간이 생기는데, 이 공간은 리드부재(32)와 벽체부(31)와 한 쌍의 플랜지에 의해 보호될 수 있고, 진공 분위기로 제어되거나 용융물(M)의 상부면을 탈출한 기체에 의하여 불활성 분위기로 제어될 수 있다. 따라서, 챔버부(30)내에 나탕면이 형성되더라도 나탕면이 대기와의 접촉으로부터 차단될 수 있다.
제1 벽체(31a)는 용융물 주입부(1)와 기체 주입부(20) 사이에 위치할 수 있다. 제1 벽체(31a)는 폭방향(Y)과 높이방향(Z)으로 연장되며, 리드부재(32)의 용융물 주입부측 단부에서 하향 돌출될 수 있다. 이때, 용융물 주입부측 단부는 용융물 주입부(1)를 향한 단부를 의미한다. 제2 벽체(31b)는 기체 주입부(20)와 홀(14) 사이에 위치할 수 있다. 제2 벽체(31b)는 폭방향(Y)과 높이방향(Z)으로 연장되며, 리드부재(32)의 홀측 단부에서 하향 돌출될 수 있다. 이때, 홀측 단부는 홀(14)을 향한 단부를 의미한다. 한편, 제2 벽체(31b)는 후술하는 댐부재(60)를 상하로 마주보도록 설치될 수 있다. 제1 벽체(31a)와 제2 벽체(31b) 사이에 복수개의 수직부재(40)가 위치할 수 있다.
제1 벽체(31a)와 제2 벽체(31b)는 각각의 하단이 용기(10)의 내부에 주입되는 용융물에 침지될 수 있으면서 바닥부(13)에서 이격되는 높이로 연장될 수 있다. 이때, 제2 벽체(31b)는 댐부재(60)에서 이격될 수 있는 높이로 연장될 수 있다.
제1 벽체(31a)와 제2 벽체(31b)는 탕면 부근에서 용융물 주입부(1)측을 향하는 길이방향 흐름과 홀(14)측을 향하는 길이방향 흐름을 각각 바닥부(13)를 향하는 하강류로 유도할 수 있다. 하강류는 바닥부(13) 부근에서 벤츄리 효과에 의해 기체 주입부(20)를 향하는 방향으로 각각 회수되어 상승류에 편입될 수 있고, 이에 회전류가 형성될 수 있다. 즉, 벽체부(31)는 회전류 형성에 주요한 역할을 한다.
한편, 제2 벽체(31b)는 댐부재(60)를 마주보며 상측으로 이격되고, 이들 간의 이격 거리에 따라서, 회전류의 유량과 후술하는 홀측 유동(P2)의 유량이 상대적으로 정해질 수 있다. 이때, 제2 벽체(31b)와 댐부재(60)의 이격 거리는 회전류의 유량에 반비례한다. 예컨대 제2 벽체(31b)가 댐부재(60)에 가까울수록 홀측 유동(P2)의 유량이 작아지며 회전류의 유량이 커지고, 반대로, 제2 벽체(31b)가 댐부재(60)에서 멀수록 홀측 유동(P2)의 유량이 커지며 회전류의 유량이 작아질 수 있다. 각 유동은 유량이 커질수록 회전수가 증가하는 관계를 가진다.
복수개의 수직부재(40)는 제1 벽체(31a)와 제2 벽체(31b)와 리드부재(32)와 바닥부(13)에 둘러싸인 회전류 영역(50)내에 위치할 수 있다. 이때, 복수개의 수직부재(40)는, 회전류 영역(50)내의 복수 구간에 서로 다른 회전류를 생성할 수 있도록, 길이방향(X)으로 서로 이격된 회전류 영역(50)내의 복수 위치를 폭방향(Y)으로 가로질러 한 쌍의 길이방향 측벽부(12) 사이를 각각 연결하도록 배치될 수 있다.
또한, 복수개의 수직부재(40)는, 높이방향(Z)으로 각각 연장되고, 각각의 하단이 바닥부(13)에서 이격되고, 각각의 상단이 용기(10)의 내부에 주입되는 용융물(M)에 침지될 수 있는 높이로 설치될 수 있다. 이때, 복수개의 수직부재(40)는 각각 내화물로 구축될 수 있으며, 위어를 포함할 수 있다.
용기(10)내에 용융물(M)이 수용되어 원하는 탕면 레벨을 형성하면, 복수개의 수직부재(40)가 용융물(M) 중에 잠긴 상태에서 용융물(M)의 유동을 제어할 수 있으며, 특히, 각 회전류의 중심으로 작용하며 회전류를 안정적으로 유지할 수 있다.
예컨대 복수개의 수직부재(40)는 용융물 주입부(1)를 통해 용기(10)내로 주입된 용융물(M)의 주입부측 유동(P1)이 기체 주입부(20)상에서 용기(10)의 상부로 유도되며 회전류를 형성할 때 이를 안내하는 역할을 하고, 기체 주입부(20)와의 사이에 벤츄리 효과를 부여하여 회전류를 생성 및 유지시키는 역할을 한다.
즉, 챔버부(30)가 기체 주입부(20)상에 회전류 영역(50)을 형성하면, 복수개의 수직부재(40)는 회전류 영역(50)내에 복수의 서로 다른 회전류를 형성하도록 각 회전류의 코어 역할을 한다. 이때, 수직부재(40)의 개수와 기체 주입부(20)의 개수와 이들의 배치 관계에 따라 회전류 영역(50)내의 회전류의 개수와 각 회전류의 회전 방향 등의 회전류 상태가 다양하게 정해지는데, 그중 기체 주입부(20)의 개수를 기준으로 회전류 영역(50)내의 회전류 상태를 크게 구분할 수 있고, 다음으로 수직부재(40)의 개수와 기체 주입부(20)의 위치를 기준으로 회전류 영역(50)내의 회전류 상태를 더 세밀히 나누어 볼 수 있다.
우선, 기체 주입부(20)의 개수가 하나이고, 복수개의 수직부재(40)의 개수가 둘이면, 각각의 수직부재는 회전류 영역(50)의 두 위치를 각각 가로질러 배치되고, 기체 주입부(20)는 서로 인접한 두 개의 수직부재 사이에 위치할 수 있다.
또한, 기체 주입부(20)의 개수가 하나이고, 복수개의 수직부재(40)의 개수가 셋 이상이면, 각각의 수직부재는 회전류 영역(50)의 셋 이상의 위치를 각각 가로질러 배치되고, 기체 주입부(20)는 적어도 어느 두 개의 수직부재 사이에 위치하도록 바닥부(13)에 장착될 수 있다. 이때, 기체 주입부(20)는 서로 인접한 두 개의 수직부재 사이에 위치하거나, 서로 인접한 어느 세 개의 수직부재 중 가운데 수직부재를 마주보도록 위치할 수 있다.
이들 경우는, 모두 하나의 기체 주입부(20)를 이용하여 복수개 예컨대 두 개의 회전류를 형성할 수 있는 구조이다. 즉, 기체 취입량의 증대 없이 회전류 영역(50)내에 복수 예컨대 두 구간 내지 세 구간을 마련하고, 각 구간에 서로 다른 회전류를 생성하는 구조이므로, 개재물 제거 효과를 높일 수 있다.
이때, 기체 주입부(20)를 서로 인접한 두 개의 수직부재(40) 사이에 위치시키면 복수의 회전류를 서로 인접하게 생성하여 중첩시킬 수 있고, 이에, 기체 취입량의 증대 없이 개재물 제거 효율을 향상시킬 수 있다.
이를테면 회전류 영역(50)내의 복수 위치에서 용융물(M)이 여러 방향으로 다르게 회전류를 형성하며 서로 중첩할 수 있으므로, 기체의 취입량을 증량하여 용융물(M)을 집중적으로 강하게 회전시키지 않아도, 용융물(M)의 회전량을 극대화할 수 있다. 이에, 용융물(M)이 회전류 영역(50)을 빠져나가기 전에 용융물(M)을 충분한 시간 동안 회전시킬 수 있어 개재물 제거능을 현저히 향상시킬 수 있다.
한편, 기체 주입부(20)를 서로 인접한 어느 세 개의 수직부재 중 가운데 수직부재를 마주보도록 위치시키면 기체 취입량을 두 배로 증가시키더라도 가운데 수직부재에서 기체가 양측으로 분기되어 각각의 회전류에는 기체 취입량의 절반이 할당될 수 있고, 따라서, 회전류의 강도가 불필요하게 증가되는 것을 막아 탕면에 나탕이 생기는 것을 억제하거나 방지할 수 있다.
이를테면 기체 취입량을 늘리더라도 각 회전류로 할달할 수 있으므로 회전류 강도가 지나치게 증가하는 것을 막아 탕면을 안정적으로 유지할 수 있다. 물론, 이 경우에도 용융물(M)이 회전류 영역(50)을 빠져나가기 전에 용융물(M)을 충분한 시간 동안 회전시킬 수 있어 개재물 제거능을 현저히 향상시킬 수 있고, 즉, 개재물 제거 효율을 향상시킬 수 있다.
한편, 기체 주입부(20)의 개수와 복수개의 수직부재(40)의 개수가 각각 둘이면, 각각의 기체 주입부(20)는 두 개의 수직부재(40)를 사이에 두고 서로 이격될 수 있다.
또한, 기체 주입부(20)가 복수개 예컨대 두 개 이상 구비되어 서로 이격되고, 복수개의 수직부재(40)가 예컨대 세 개 이상 구비되어 서로 이격되면, 각각의 수직부재는 회전류 영역(50)의 셋 이상의 위치를 각각 가로질러 배치되고, 각각의 기체 주입부(20)는 복수개의 수직부재(40) 중 적어도 어느 두 개의 수직부재를 사이에 두고 서로 이격될 수 있다. 이때, 복수개의 기체 주입부(20) 중 적어도 어느 하나는 서로 인접한 어느 두 개의 수직부재 사이에 위치할 수 있다. 또는, 복수개의 기체 주입부(20) 중 적어도 어느 하나는 복수개의 수직부재(40) 중 어느 하나의 수직부재를 마주보도록 위치할 수 있다.
이들 경우는, 복수개의 기체 주입부(20)를 이용해서 복수개 예컨대 두 개 이상의 서로 다른 회전류를 생성 및 중첩할 수 있는 구조이다. 이때, 용융물(M) 중에 주입되는 기체의 총량이 증가하지만, 기체 취입량 또는 기체 취입량의 증가분은 서로 다른 복수의 회전류에 각각 고르게 분배되기 때문에 회전류 강도의 불필요한 증가는 막아 탕면을 보다 안정적으로 유지할 수 있으면서 용융물(M)의 회전량을 크게 증가시킬 수 있다. 따라서, 용융물(M)이 회전류 영역(50)을 빠져나가기 전에 용융물(M)을 충분한 시간 동안 회전시킬 수 있어 개재물 제거능을 현저히 향상시킬 수 있다.
또한, 회전류 강도가 증가하여 슬래그에 가해지는 전단 응력이 증가됨에 따라 슬래그가 밀려 용융물(M)에 혼입되더라도, 용융물(M)에 혼입되는 슬래그를 복수의 회전류가 중첩되는 곳으로 모아주며 회전류 영역(50)내에 체류시켜 슬래그의 부상 분리의 가능성을 높일 수 있다. 즉, 용융물(M)에 혼입된 슬래그가 회전류 영역(50)을 빠져나가기 전에 회전류 영역(50)내의 회전류가 중첩되는 곳으로 유도한 후 탕면으로 부상시킬 수 있으므로 슬래그 혼입 문제를 억제 또는 방지할 수가 있고, 용강의 청정도를 향상시킬 수 있다.
실시 예에서는 기체 주입부(20)의 개수가 하나이고, 수직부재(40)의 개수가 두 개이며, 두 개의 수직부재(40)가 기체 주입부(20)를 사이에 두고 길이방향(X)으로 이격되는 경우를 기준으로 하여 본 발명을 설명한다.
도 1 내지 도 3을 참조하면, 복수개의 수직부재(40)는 제1 수직부재(41) 및 제2 수직부재(42)를 포함할 수 있다. 이때, 용융물 주입부(1)에 가까운 수직부재가 제1 수직부재(41)이고 나머지가 제2 수직부재(42)이다. 제1 수직부재(41)와 제2 수직부재(42) 사이에 하나의 기체 주입부(20)가 위치할 수 있다. 이 구조에 의해, 회전류 영역(50)은 제1 회전류 구간(51)과 제2 회전류 구간(52)으로 분할될 수 있다.
제1 수직부재(41)와 제2 수직부재(42)의 사이에 생성되는 상승류는 탕면에서 길이방향(X)의 양측으로 분할되고, 제1 수직부재(41)와 제1 벽체(31a)의 사이에 생성되는 하강류와 제2 수직부재(42)와 제2 벽체(31b) 사이에 생성되는 하강류가 제1 수직부재(41)와 제2 수직부재(42)의 사이로 회수되면서 제1 회전류(C1)와 제2 회전류(C2)가 생성될 수 있다. 용용물(M)은 각 회전류를 따라 흐르는데, 제1 회전류 구간(51)과 제2 회전류 구간(52)의 경계에서 각 회전류에 자유롭게 편입된다. 예컨대 회전류 영역(50)내의 용융물(M) 중 일부가 홀(14)측을 향하는 방향으로 이동하더라도 제2 회전류(C2)에 의해 회전할 수 있고, 이에, 용융물(M)의 체류 시간과 기체와의 접촉 시간을 증대시킬 수 있다.
용융물 처리 장치는 댐부재(60)를 더 포함할 수 있다. 댐부재(60)는 기체 주입부(1)와 홀(14) 사이에서, 회전류 영역(50)의 경계를 따라 용기(10)의 하부를 가로질러 폭방향(Y)으로 형성될 수 있다. 댐부재(60)는 제2 벽체(31b)를 마주보도록 바닥부(13)상에 설치되어 하단이 바닥부에 접촉되고, 상단이 제2 벽체(31b)의 하측으로 이격되는 높이로 형성되며, 한 쌍의 길이방향 측벽부(12) 사이를 연결하여 설치될 수 있다. 댐부재(60)의 하부에는 잔탕홀(미도시)이 구비될 수도 있다.
댐부재(60)는 챔버부(30)의 제2 벽체(31b)를 따라 바닥부(13)로 향하는 하강류를 본류와 지류로 나누어 유도할 수 있다. 우선, 하강류의 지류는 제2 벽체(31b)를 따라 바닥부(13)로 향하다가 홀(14)측을 향하도록 분기되는 흐름이다. 하강류의 지류는 제2 벽체(31b)와 댐부재(60) 사이의 이격 공간을 통하여 회전류 영역(50)을 빠져나간 후, 홀(14)측을 향하는 유동인 홀측 유동(P2)을 형성할 수 있다. 하강류의 본류는 댐부재(60) 부근에서 홀(14)측을 향하여 분기되지 않고 하강류를 유지하면서 회전류 영역(50)내에서 계속 하강하는 흐름이다. 하강류의 본류는 바닥부(13) 부근에서 벤츄리 효과에 의해 기체 주입부(20)를 향하는 방향으로 회수되어 상승류에 편입될 수 있고, 이에 회전류가 형성될 수 있다.
한편, 댐부재(60)가 없더라도 하강류가 바닥부(13) 부근에서 홀(14)을 향하는 방향과 기체 주입부(20)를 향하는 방향으로 나눠진 후, 홀측 유동(P2)과 회전류를 각각 형성할 수 있다. 즉, 댐부재(60) 없이 기체 주입부(20)와 챔버부(30)와 복수개의 수직부재(40)를 이용하여 회전류를 생성할 수 있다. 물론, 댐부재(60)를 이용하면 회전류를 더욱 원활하게 생성할 수가 있다.
게이트(80)는 홀(14)을 개폐 가능하도록 용기(10)의 하면에 장착될 수 있다. 게이트(80)는 슬라이드 게이트를 포함할 수 있다. 게이트(80)에 노즐(70)이 장착된다. 노즐(70)은 게이트(80)의 개폐에 의하여 홀(14)에 연통할 수 있다. 노즐(70)은 침지 노즐(Submerged Entry Nozzle)을 포함할 수 있다.
용융물(M)은 회전류 영역(50)에서 충분한 시간 동안 회전하면서 미세 개재물을 제거한 후, 홀(14)을 통하여 토출되어 게이트(80)를 통과하고, 노즐(70)의 내부로 유입되어 노즐(70)의 하부에 마련된 주형(미도시)에 공급될 수 있다.
주형(Mold)은 장방형 또는 정방향의 중공형 블록일 수 있고, 내부가 상측 및 하측으로 수직하게 개방될 수 있다. 주형에 공급된 용융물(M)은 주편(Slab)의 형상으로 1차 응고될 수 있고, 주형의 하측에 마련된 냉각대(미도시)를 통과하며 2차 냉각되어 반제품인 주편으로 연속 주조될 수 있다.
이하, 회전류 영역(50)내에 다양한 회전류 상태를 부여하는 기체 주입부(20)의 개수 및 위치와 수직부재(40)의 개수를 본 발명의 실시 예에 따른 다양한 변형 예들을 통하여 설명한다.
도 4는 본 발명의 제1 변형 예에 따른 용융물 처리 장치의 개략도이고, 도 5는 본 발명의 제2 변형 예에 따른 용융물 처리 장치의 개략도이고, 도 6은 본 발명의 제3 변형 예에 따른 용융물 처리 장치의 개략도이며, 도 7은 본 발명의 제4 변형 예에 따른 용융물 처리 장치의 개략도이다.
도 3 내지 도 4를 참조하면, 본 발명의 제1 변형 예에서는 복수개의 수직부재(40A)가 제1 수직부재(41A), 제2 수직부재(42A), 제3 수직부재(43A)를 포함할 수 있다. 이때, 제1 수직부재(41A), 제2 수직부재(42A) 및 제3 수직부재(43A)는 회전류 영역(50A)의 세 위치를 각각 가로질러 배치되며, 용융물 주입부(1)에 가장 가까운 위치에 제1 수직부재(41A)가 위치하고, 그 다음 위치에 제2 수직부재(42A)와 제3 수직부재(43A)가 순서대로 위치할 수 있다. 이 구조에서 회전류 영역(50A)은 제1 회전류 구간(51A)과 연결 구간(52A)과 제2 회전류 구간(53A)으로 분할될 수 있다.
기체 주입부(20A)는 서로 인접한 세 개의 수직부재 중 가운데 수직부재인 제2 수직부재(42A)를 마주보도록 위치할 수 있다. 기체는 제2 수직부재(42A)를 중심으로 하여 길이방향(X)의 양측으로 분할되어 두 개의 상승류가 각각 생성되며, 제1 수직부재(41A)와 제1 벽체(31a)의 사이에 생성되는 하강류와 제3 수직부재(43A)와 제2 벽체(31b) 사이에 생성되는 하강류가 제2 수직부재(42A)와 기체 주입부(20A)의 사이로 회수되면서 제1 회전류(C1)와 제2 회전류(C2)가 생성될 수 있다.
용용물(M)은 각 회전류를 따라 흐르며, 연결 구간(52A)의 하부에서 각 회전류에 자유롭게 편입된다. 회전류 영역(50A)내의 용융물(M)의 일부가 홀(14)측을 향하는 방향으로 이동하여도 제2 회전류(C2)에 의해 회전할 수 있고, 용융물(M)의 체류 시간과 기체와의 접촉 시간을 증대시킬 수 있다.
또한, 제2 수직부재(42A)가 기체를 분기시키기 때문에 기체 주입량을 두배로 증대하여도 탕면에 나탕이 생기는 것을 억제 또는 방지할 수 있다.
도 3 및 도 5를 참조하면, 본 발명의 제2 변형 예에 따르면, 복수개의 수직부재(40B)는 제1 수직부재(41B)와 제2 수직부재(42B)를 포함할 수 있고, 각각은 회전류 영역(50B)의 두 위치를 가로질러 배치될 수 있고, 용융물 주입부(1)에 가깝도록 제1 수직부재(41A)가 위치할 수 있다. 여기서, 회전류 영역(50B)은 제1 회전류 구간(51B)과 제2 회전류 구간(52B)으로 분할될 수 있다.
기체 주입부(20B)는 제1 기체 주입부(21B)와 제2 기체 주입부(22B)를 포함할 수 있다. 기체 주입부(20B)는 제1 수직부재(41B)와 제2 수직부재(42B)를 사이에 두고 서로 이격될 수 있다. 이때, 제1 기체 주입부(21B)는 제1 벽체(31a)와 제1 수직부재(41B)의 사이에 위치할 수 있고, 제2 기체 주입부(22B)는 제2 수직부재(42B)와 제2 벽체(31b)의 사이에 위치할 수 있다.
제1 벽체(31a)와 제1 수직부재(41B)의 사이에 생성되는 상승류, 제2 수직부재(42B)와 제2 벽체(31b) 사이에 생성되는 상승류, 및 제1 수직부재(41B)와 제2 수직부재(42B) 사이에서 복수개의 기체 주입부(20B)에 의해 생성되는 하강류가 서로 연계됨에 따라, 제1 회전류(C3)와 제2 회전류(C4)가 강하게 생성되면서 제1 회전류 구간(51B)과 제2 회전류 구간(53B)의 경계에서 중첩될 수 있다.
용용물(M)은 각 회전류를 따라 흐르며, 회전류 영역(50B)내의 용융물(M) 중 일부가 홀(14)측을 향하는 방향으로 이동하여도 제2 회전류(C4)에 의해 회전할 수 있고, 이에, 용융물(M)의 체류 시간과 기체와의 접촉 시간을 증대시킬 수 있다.
또한, 탕면의 슬래그가 용유물(M)에 혼입되더라도, 그 위치가 제1 수직부재(41B)와 제2 수직부재(42B) 사이로 한정되므로 홀(14)측을 향하는 방향으로 유동되는 것이 방지되고, 회전류 영역(50B)내에서 체류하면서 부상 분리될 수가 있다.
도 3 및 도 6을 참조하면, 본 발명의 제3 변형 예에 따르면, 복수개의 수직부재(40C)는 제1 수직부재(41C), 제2 수직부재(42C), 제3 수직부재(43C)를 포함할 수 있고, 각각은 회전류 영역(50C)의 세 위치를 가로질러 배치될 수 있고, 용융물 주입부(1)에 가장 가까운 위치에 제1 수직부재(41C)가 위치하고, 다음 위치에 제2 수직부재(42C)와 제3 수직부재(43C)가 순서대로 위치할 수 있다.
기체 주입부(20C)는 제1 기체 주입부(21C) 및 제2 기체 주입부(22C)를 포함할 수 있다. 제1 기체 주입부(21C)는 제1 벽체(31a)와 제1 수직부재(41C)의 사이에 위치할 수 있고, 제2 기체 주입부(22C)는 제2 수직부재(42C)와 제3 수직부재(43C)의 사이에 위치할 수 있다. 회전류 영역(50C)은 제1 회전류 구간(51C), 제2 회전류 구간(52C), 및 제3 회전류 구간(53C)으로 분할될 수 있다.
제1 벽체(31a)와 제1 수직부재(41C)의 사이에 생성되는 상승류는 각 기체 주입부(20C)에 의하여 제1 수직부재(41C)와 제2 수직부재(42C) 사이에 생성되는 하강류에 의하여 용융물 주입부(1)에서 홀(14)을 향하는 방향으로 제1 수직부재(41C)의 상부를 범람하고, 제1 수직부재(41C)와 제2 수직부재(42C) 사이에 생성되는 하강류의 일부가 제1 기체 주입부(21C)측으로 회수됨에 따라 제1 회전류(C5)가 생성된다.
제2 수직부재(42C)와 제3 수직부재(43C)의 사이에 생성되는 상승류는 탕면에서 길이방향(X)의 양측으로 분할되고, 제1 수직부재(41C)와 제2 수직부재(42C) 사이에 생성되는 하강류와 제3 수직부재(43C)와 제2 벽체(31b) 사이에 생성되는 하강류가 제2 수직부재(42C)와 제3 수직부재(43C)의 사이로 회수되면서 제2 회전류(C6)와 제3 회전류(C7)가 생성될 수 있다.
이렇게 용융물 주입부(1)에서 홀(14)을 향하는 방향으로, 순차적으로 생성되며 그 순서대로 번갈아 회전방향이 달라지는 서로 다른 세 개의 회전류를 생성하여 세 회전류를 모두 각 구간의 경계에서 중첩시킬 수 있다. 즉, 기체 주입의 위치를 하나 더 늘리는 것으로 세 개의 회전류를 생성할 수 있으므로, 회전류 형성을 극대화할 수 있다. 따라서, 회전류 영역(50C)내의 용융물(M) 중 일부가 홀(14)측을 향하는 방향으로 이동하더라도 제2 회전류(C6)와 제3 회전류(C7)에 의해 회전할 수 있고, 이에, 용융물(M)의 체류 시간과 기체와의 접촉 시간을 증대시킬 수 있다.
도 3 및 도 7을 참조하면, 본 발명의 제4 변형 예에 따르면, 복수개의 수직부재(40D)는 제1 수직부재(41D), 제2 수직부재(42D), 제3 수직부재(43D)를 포함할 수 있고, 각각은 회전류 영역(50D)의 세 위치를 가로질러 배치될 수 있고, 용융물 주입부(1)에 가장 가까운 위치에 제1 수직부재(41D)가 위치하고, 다음 위치에 제2 수직부재(42D)와 제3 수직부재(43D)가 순서대로 위치할 수 있다.
기체 주입부(20D)는 제1 기체 주입부(21D) 및 제2 기체 주입부(22D)를 포함할 수 있다. 이때, 제1 기체 주입부(21D)는 제1 수직부재(41D)를 마주보도록 제1 수직부재(41D)의 하측에 위치하고, 제2 기체 주입부(22D)는 제3 수직부재(43D)와 제2 벽체(31b) 사이에 위치할 수 있다. 회전류 영역(50D)은 제1 회전류 구간(51D), 제2 회전류 구간(52D), 제3 회전류 구간(53D)으로 분할될 수 있다.
제1 기체 주입부(21D)에서 취입되는 기체는 제1 수직부재(41C)의 양측으로 분기되어 각각 상승류를 형성하고, 그중 제1 벽체(31a)와 제1 수직부재(41C) 사이에 생성되는 상승류는 용융물 주입부(1)에서 홀(14)을 향하는 방향으로 제1 수직부재(41D)의 상부를 범람하여 제1 수직부재(41D)와 제2 수직부재(42D) 사이에 생성되는 상승류에 편입되어 제1회전류 지류(C8)을 형성하고, 복수개의 기체 주입부(20D)에 의해 제2 수직부재(42D)와 제3 수직부재(43D)의 사이에 생성되는 하강류 일부가 바닥부(13) 부근에서 제1 기체 주입부(21D)쪽으로 회수되어 제1 회전류 본류(C9)를 생성한다.
제1 벽체(31a)와 제3 수직부재(43D)의 사이에 생성되는 상승류와 제2 수직부재(42D)와 제3 수직부재(43D) 사이에서 복수개의 기체 주입부(20D)에 의해 생성되는 하강류가 서로 연계되어 제2 회전류(C10)가 생성되고, 제2 회전류 구간(52D)과 제3 회전류 구간(53D)의 경계에서 중첩될 수 있다.
이렇게 서로 다른 세 개의 회전류를 생성하여 세 회전류를 각 구간의 경계에서 서로 다른 방식으로 중첩시킬 수 있다. 즉, 기체 주입의 위치를 하나 더 늘리는 것으로 세 개의 회전류를 생성할 수 있으므로, 회전류 형성을 극대화할 수 있다. 따라서, 회전류 영역(50D)내의 용융물(M) 중 일부가 홀(14)측을 향하는 방향으로 이동하더라도 제1 회전류 본류(C8)와 제2 회전류(C10)에 의해 회전할 수 있고, 이에, 용융물(M)의 체류 시간과 기체와의 접촉 시간을 증대시킬 수 있다
상기와 같이 형성되는 본 발명의 실시 예 및 그 변형 예들에 따른 용융물 처리 장치가 연속주조 설비의 턴디시에 적용되면, 연속주조 공정을 수행하는 중에 턴디시의 내부에 국부적으로 서로 다른 복수의 회전류를 집중 생성하여 그중 일부를 중첩시킬 수 있다. 따라서, 용강을 턴디시내에서 복수 회 반복하여 회전시키면서 장시간 체류시킬 수 있고, 용강을 기포 상태의 아르곤 기체에 수차례 반복 접촉시킬 수 있다. 이에, 용강내의 개재물을 효과적으로 제거할 수 있는데, 특히, 30㎛ 이하의 크기를 가지는 미세 개재물을 매우 효과적으로 제거할 수 있다.
이때, 기체 주입량의 증대 없이 턴디시내에 서로 다른 복수의 회전류를 생성하여 탕면상의 슬래그를 안정적으로 유지할 수 있고, 기체 주입량을 증대하여 턴디시내에 복수의 회전류를 생성하더라도, 회전류의 중첩을 이용하여 용강내로 혼입되는 슬래그를 회전류가 중첩되는 위치로 모아주거나 부상시켜 탕면상의 슬래그를 안정적으로 유지할 수 있다.
즉, 턴디시 바닥부에 기체 주입부(20)를 설치하고 기체 주입부(20)를 상하로 마주보도록 턴디시 상부에 챔버부(30)를 설치하여 회전류 영역을 마련하고, 회전류 영역내에 복수개의 수직부재(40)를 설치한다. 이후, 턴디시에 용강을 수강하여 연속주조 공정을 수행하는 중에 기체 주입부(20)로 아르곤 기체를 주입하여 회전류를 생성할 수 있다. 이때, 서로 다른 구간에서 각각의 수직부재(40)를 중심으로 하는 서로 다른 복수의 회전류를 생성하면서, 서로 인접한 구간들 사이의 경계에서 서로 인접한 회전류끼리 중첩시킬 수 있다.
이때, 복수개의 수직부재(40) 중 어느 하나를 마주보도록 기체 주입부(20)를 설치하거나 복수개의 수직부재(40) 사이에 기체 주입부(20)를 설치하여, 기체 취입량의 증대 없이 동일한 기체 취입량을 유지하며 복수의 회전류를 생성할 수 있고, 이에, 탕면을 안정적으로 유지하며 개재물 제거 효율을 향상시킬 수 있다.
또한, 복수개의 수직부재(40) 중 적어도 서로 인접한 어느 두 개의 수직부재를 사이에 두고 복수개의 기체 주입부(20)를 이격 설치하고, 기체 취입량을 증대하여 복수의 회전류를 생성할 수 있는데, 이때, 서로 이웃하는 회전류끼리 중첩되므로, 슬래그 일부가 용강내에 혼입되더라도 이를 회전류가 중첩되는 위치로 모아주어 부상시킬 수 있고, 탕면상에 슬래그를 안정적으로 유지시키며 개재물 제거 효율을 향상시킬 수 있다.
이처럼 본 발명의 실시 형태에 따르면, 용기(10)내에 서로 다른 복수의 회전류를 집중적으로 형성하여 개재물 제거 효율을 극대화할 수 있다.
예컨대 기체 주입부(20)를 통하여 용융물(M)에 취입되는 기체의 취입량을 단순히 늘리는 방식으로 회전류 강도를 증가시켜 개재물 제거 효율을 높일 수는 있으나, 이 방식에서는 기체가 한 지점에 집중적으로 취입되며 한 방향으로 강한 회전류를 생성하기 때문에, 탕면 유동이 불안정하여 슬래그가 용융물(M) 중에 혼입되는 등의 문제를 야기할 수 있다. 따라서, 개제물 제거 효율을 높이기 위해 단순히 기체의 취입량을 늘리는 것에는 한계가 있다.
반면, 본 발명의 실시 예에서는 복수의 구간내에 서로 다른 회전류 각각 생성하고 인접하는 회전류끼리 중첩시켜 개재물 제거 효율을 극대화하는 방식이므로, 기체 취입량을 늘리지 않고 개재물 제거 효과를 높일 수 있다.
또한, 본 발명의 실시 예에서는 기체 취입량을 늘리더라도 기체 취입량의 증가분을 서로 다른 복수의 회전류로 분산하여 회전류 각각의 강도가 증가하는 것을 억제할 수 있어, 탕면을 보다 안정적으로 유지할 수 있다.
또한, 회전류 강도가 증가하여 슬래그에 가해지는 전단 응력이 증가됨에 따라 슬래그가 밀려 용융물(M)에 혼입되더라도, 용융물(M)에 혼입되는 슬래그를 복수의 회전류가 중첩되는 곳으로 모아주며 회전류 영역(50)내에 체류시켜 슬래그의 부상 분리의 가능성을 높일 수 있다. 즉, 용융물(M)에 혼입된 슬래그가 회전류 영역(50)을 빠져나가기 전에 회전류 영역(50)내의 회전류가 중첩되는 곳으로 유도한 후 탕면으로 부상시킬 수 있으므로 슬래그 혼입 문제를 억제 또는 방지할 수가 있고, 용강의 청정도를 향상시킬 수 있다.
본 발명의 상기 실시 예는 본 발명의 설명을 위한 것이고, 본 발명의 제한을 위한 것이 아니다. 본 발명의 상기 실시 예에 개시된 구성과 방식은 서로 결합하거나 교차하여 다양한 형태로 변형될 것이고, 이 같은 변형 예들도 본 발명의 범주로 볼 수 있음을 주지해야 한다. 즉, 본 발명은 청구범위 및 이와 균등한 기술적 사상의 범위 내에서 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 해당하는 기술 분야에서의 업자는 본 발명의 기술적 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.

Claims (15)

  1. 상부에 용융물 주입부가 배치되고, 바닥부에 홀이 형성되는 용기;
    상기 용융물 주입부와 홀 사이에서 상기 바닥부에 장착되는 기체 주입부;
    상기 기체 주입부를 마주보도록 상기 용기의 상부에 형성되고, 내부가 하측으로 개방되는 챔버부; 및
    상기 챔버부와 바닥부 사이에 형성되는 회전류 영역의 복수 위치를 가로지르도록 각각 배치되는 복수개의 수직부재;를 포함하는 용융물 처리 장치.
  2. 청구항 1에 있어서,
    상기 기체 주입부는 적어도 어느 두 개의 수직부재 사이에 위치하도록 상기 바닥부에 장착되는 용융물 처리 장치.
  3. 청구항 2에 있어서,
    상기 기체 주입부는 서로 인접한 어느 두 개의 수직부재 사이에 위치하는 용융물 처리 장치.
  4. 청구항 2에 있어서,
    각각의 수직부재는 상기 회전류 영역의 셋 이상의 위치를 각각 가로질러 배치되고,
    상기 기체 주입부는 서로 인접한 어느 세 개의 수직부재 중 가운데 수직부재를 마주보도록 위치하는 용융물 처리 장치.
  5. 청구항 1에 있어서,
    상기 기체 주입부는 복수개 구비되어 서로 이격되고,
    각각의 기체 주입부는 상기 복수개의 수직부재 중 적어도 어느 두 개의 수직부재를 사이에 두고 서로 이격되는 용융물 처리 장치.
  6. 청구항 5에 있어서,
    각각의 수직부재는 상기 회전류 영역의 셋 이상의 위치를 각각 가로질러 배치되고,
    복수개의 기체 주입부 중 적어도 어느 하나는 서로 인접한 어느 두 개의 수직부재 사이에 위치하는 용융물 처리 장치.
  7. 청구항 5에 있어서,
    각각의 수직부재는 상기 회전류 영역의 셋 이상의 위치를 각각 가로질러 배치되고,
    복수개의 기체 주입부 중 적어도 어느 하나는 상기 복수개의 수직부재 중 어느 하나의 수직부재를 마주보도록 위치하는 용융물 처리 장치.
  8. 청구항 1에 있어서,
    상기 복수개의 수직부재는 상기 용융물 주입부에서 홀을 향하는 방향으로 서로 이격된 복수 위치를 상기 용융물 주입부에서 홀을 향하는 방향에 교차하는 방향으로 각각 가로지르는 용융물 처리 장치.
  9. 청구항 1에 있어서,
    상기 복수개의 수직부재는 각각의 하단이 상기 바닥부에서 이격되고, 각각의 상단이 상기 용기의 내부에 주입되는 용융물에 침지될 수 있는 높이로 설치되는 용융물 처리 장치.
  10. 청구항 1에 있어서,
    상기 챔버부는 상기 기체 주입부를 사이에 두고 양측으로 각각 이격된 복수개의 벽체부를 포함하고,
    상기 회전류 영역은 상기 복수개의 벽체부에서 하측으로 연장되어 상기 바닥부에 각각 연결되는 영역선들에 의하여 정의되는 용융물 처리 장치.
  11. 청구항 1에 있어서,
    상기 챔버부는,
    상기 기체 주입부를 마주보도록 상기 용기의 상부에 형성되는 리드부재;
    상기 리드부재의 용융물 주입부측 단부에서 하향 연장되는 제1 벽체;
    상기 리드부재의 홀측 단부에서 하향 연장되는 제2 벽체;를 포함하는 용융물 처리 장치.
  12. 청구항 11에 있어서,
    상기 제1 벽체는 상기 용융물 주입부와 상기 기체 주입부 사이에 위치하고, 상기 제2 벽체는 상기 기체 주입부와 상기 홀 사이에 위치하며, 상기 제1 벽체와 제2 벽체 사이에 상기 복수개의 수직부재가 위치하는 용융물 처리 장치.
  13. 청구항 11에 있어서,
    상기 제1 벽체와 제2 벽체는 각각의 하단이 상기 용기의 내부에 주입되는 용융물에 침지될 수 있는 높이로 연장되는 용융물 처리 장치.
  14. 청구항 1에 있어서,
    상기 기체 주입부와 홀 사이에서 상기 회전류 영역의 경계를 따라 상기 용기의 하부를 가로지르도록 형성되는 댐부재;를 포함하는 용융물 처리 장치.
  15. 청구항 14에 있어서,
    상기 댐부재는 하단이 상기 바닥부에 접촉되고, 상단이 상기 챔버부의 하측으로 이격될 수 있는 높이로 형성되는 용융물 처리 장치.
PCT/KR2018/007911 2017-07-14 2018-07-12 용융물 처리 장치 WO2019013568A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880047054.XA CN110891710B (zh) 2017-07-14 2018-07-12 熔融材料处理装置
EP18831807.5A EP3653317B1 (en) 2017-07-14 2018-07-12 Molten material treatment apparatus
US16/630,982 US11203059B2 (en) 2017-07-14 2018-07-12 Molten material treatment apparatus
JP2020501541A JP6888166B2 (ja) 2017-07-14 2018-07-12 溶融物の処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0089782 2017-07-14
KR1020170089782A KR101949698B1 (ko) 2017-07-14 2017-07-14 용융물 처리 장치

Publications (1)

Publication Number Publication Date
WO2019013568A1 true WO2019013568A1 (ko) 2019-01-17

Family

ID=65001415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007911 WO2019013568A1 (ko) 2017-07-14 2018-07-12 용융물 처리 장치

Country Status (6)

Country Link
US (1) US11203059B2 (ko)
EP (1) EP3653317B1 (ko)
JP (1) JP6888166B2 (ko)
KR (1) KR101949698B1 (ko)
CN (1) CN110891710B (ko)
WO (1) WO2019013568A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138052A (ja) * 1989-10-23 1991-06-12 Nkk Corp 加熱装置付きのタンディッシュ
KR970003006Y1 (ko) * 1994-04-22 1997-04-09 포항종합제철 주식회사 턴디쉬내 강중 개재물 제거용 가스취입장치
JP2002346704A (ja) * 2001-05-28 2002-12-04 Sumitomo Metal Ind Ltd 連続鋳造用タンディッシュおよびそれを用いる酸化物等の除去方法
JP2006035272A (ja) * 2004-07-27 2006-02-09 Jfe Steel Kk 連続鋳造用タンディッシュにおける介在物除去方法および連続鋳造用タンディッシュ
JP2010089152A (ja) * 2008-10-10 2010-04-22 Nippon Steel Corp 連続鋳造用タンディッシュ
KR20180072459A (ko) * 2016-12-21 2018-06-29 주식회사 포스코 고청정 용강의 제조 방법

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868456A (ja) * 1981-10-21 1983-04-23 Nippon Kokan Kk <Nkk> 清浄鋼の製造方法
JPS59107755A (ja) 1982-12-14 1984-06-22 Nippon Steel Corp タンデイツシユ内溶鋼の加熱方法
JPS61111749A (ja) * 1984-11-05 1986-05-29 Nippon Steel Corp 介在物の浮上促進法
JPS61152369U (ko) * 1985-02-22 1986-09-20
CA1267766A (en) * 1985-12-13 1990-04-17 John R. Knoepke Preventing undissolved alloying ingredient from entering continuous casting mold
JPS62224464A (ja) * 1986-03-25 1987-10-02 Sumitomo Metal Ind Ltd 溶鋼の介在物除去装置
JPH0550193A (ja) * 1991-08-21 1993-03-02 Nippon Steel Corp タンデイツシユ内における溶融金属の清浄化方法
AU7234994A (en) * 1993-08-28 1995-03-22 Foseco International Limited Purifying molten metal
JPH07268437A (ja) 1994-03-31 1995-10-17 Kawasaki Steel Corp セラミックフィルタ板による溶融金属中の非金属介在物除去方法および装置
KR950029710A (ko) 1994-04-21 1995-11-24 배순훈 냉장고용 응축기 구조
US5551672A (en) * 1995-01-13 1996-09-03 Bethlehem Steel Corporation Apparatus for controlling molten metal flow in a tundish to enhance inclusion float out from a molten metal bath
JPH08215805A (ja) 1995-02-16 1996-08-27 Nippon Steel Corp 清浄鋼の製造方法
KR0146598B1 (ko) 1995-06-28 1998-10-15 배순훈 브이씨알의 카세트오삽입 방지장치
JPH09122848A (ja) * 1995-11-01 1997-05-13 Nkk Corp タンディッシュ内溶鋼の清浄化方法
KR20000044839A (ko) 1998-12-30 2000-07-15 이구택 턴디쉬의 용강중에 포함된 개재물 제거방법
DE19922829A1 (de) * 1999-05-19 2000-11-23 Sms Demag Ag Vorrichtung zur Reinigung von Stahlschmelzen
JP2002011555A (ja) * 2000-06-30 2002-01-15 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法
JP3654181B2 (ja) 2000-12-20 2005-06-02 住友金属工業株式会社 溶融金属の精錬方法
JP4669299B2 (ja) 2005-02-14 2011-04-13 株式会社神戸製鋼所 溶鋼中介在物の除去方法
DE102008015323A1 (de) * 2008-03-20 2009-10-01 Raadts, Monika Verteilervorrichtung für Strangguss
KR101018148B1 (ko) 2008-06-04 2011-02-28 주식회사 포스코 용강 유동 유도형 턴디쉬 및 이를 이용한 연속주조방법
CN102728827B (zh) * 2012-07-23 2014-11-05 武汉钢铁(集团)公司 提高钢液洁净度的连铸中间包
KR20140129895A (ko) 2013-04-30 2014-11-07 현대제철 주식회사 연속주조용 턴디쉬
KR101496016B1 (ko) * 2013-07-22 2015-02-25 주식회사 포스코 턴디쉬
CN103990786B (zh) * 2014-05-16 2016-05-25 莱芜钢铁集团有限公司 一种用于去除双流板坯连铸机中间包内钢液夹杂物的装置及方法
KR101834216B1 (ko) 2016-06-08 2018-03-05 주식회사 포스코 용융물 처리장치 및 용융물 처리방법
CN106513608B (zh) * 2016-12-12 2018-11-06 山东钢铁股份有限公司 一种用于板坯连铸中间包条形透气砖加罩吹氩精炼装置及氩气控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138052A (ja) * 1989-10-23 1991-06-12 Nkk Corp 加熱装置付きのタンディッシュ
KR970003006Y1 (ko) * 1994-04-22 1997-04-09 포항종합제철 주식회사 턴디쉬내 강중 개재물 제거용 가스취입장치
JP2002346704A (ja) * 2001-05-28 2002-12-04 Sumitomo Metal Ind Ltd 連続鋳造用タンディッシュおよびそれを用いる酸化物等の除去方法
JP2006035272A (ja) * 2004-07-27 2006-02-09 Jfe Steel Kk 連続鋳造用タンディッシュにおける介在物除去方法および連続鋳造用タンディッシュ
JP2010089152A (ja) * 2008-10-10 2010-04-22 Nippon Steel Corp 連続鋳造用タンディッシュ
KR20180072459A (ko) * 2016-12-21 2018-06-29 주식회사 포스코 고청정 용강의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653317A4 *

Also Published As

Publication number Publication date
JP6888166B2 (ja) 2021-06-16
CN110891710A (zh) 2020-03-17
EP3653317B1 (en) 2022-09-07
EP3653317A4 (en) 2020-07-01
KR20190007992A (ko) 2019-01-23
US20200222974A1 (en) 2020-07-16
CN110891710B (zh) 2022-01-18
US11203059B2 (en) 2021-12-21
EP3653317A1 (en) 2020-05-20
JP2020527106A (ja) 2020-09-03
KR101949698B1 (ko) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2017213311A1 (ko) 용융물 처리장치 및 용융물 처리방법
WO2019013568A1 (ko) 용융물 처리 장치
US3908735A (en) Method and device for the continuous casting of killed steel with artificial wildness
KR101914084B1 (ko) 용융물 처리장치
WO2021132821A1 (ko) 주조 설비 및 주조 방법
JPH04186095A (ja) 冶金炉の底抜き装置
WO2018088753A1 (ko) 주조설비 및 이를 이용한 주조방법
WO2019124858A1 (ko) 유동 제어장치 및 유동 제어방법
WO2019031661A1 (ko) 주조 설비 및 주조 방법
WO2018008814A1 (ko) 주조용 치구 및 이를 이용한 주조방법
WO2018080110A1 (ko) 주조용 구조물 및 이를 이용한 주조방법
WO2019117553A1 (ko) 용융물 처리 장치
WO2019225963A1 (ko) 탕도
WO2019164069A1 (ko) 연속주조용 콜렉터노즐
JPH06114510A (ja) 非金属介在物の混入を抑制した連続注湯方法及び装置
WO2021251555A1 (ko) 용융물의 스플리팅을 통한 주조 시스템
WO2013168983A1 (ko) 청정강 제조 장치 및 이를 이용한 정련 방법
WO2019054577A1 (ko) 진공 탈가스 설비 및 정련 방법
KR930000335B1 (ko) 고온의 용광로에서 유출하는 용선속(溶銑中)에 함유되어 있는 불순물을 제거하기 위한 장치
WO2021112267A1 (ko) 용융물 교반 장치 및 방법
JP2018161663A (ja) スライディングノズル、下部プレート、下部ノズル及び溶鋼の給湯方法
RU2250153C1 (ru) Способ литья металла в вакууме и устройство для его осуществления
WO2020096391A1 (ko) 압하 장치
WO2020067714A1 (ko) 주조 모사 장치 및 주조 모사 방법
WO2019103494A1 (ko) 몰드플럭스, 강재, 및 강재 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018831807

Country of ref document: EP

Effective date: 20200214