WO2019012856A1 - サイジング剤付与炭素繊維束の製造方法 - Google Patents

サイジング剤付与炭素繊維束の製造方法 Download PDF

Info

Publication number
WO2019012856A1
WO2019012856A1 PCT/JP2018/021342 JP2018021342W WO2019012856A1 WO 2019012856 A1 WO2019012856 A1 WO 2019012856A1 JP 2018021342 W JP2018021342 W JP 2018021342W WO 2019012856 A1 WO2019012856 A1 WO 2019012856A1
Authority
WO
WIPO (PCT)
Prior art keywords
sizing agent
carbon fiber
fiber bundle
guide roller
agent liquid
Prior art date
Application number
PCT/JP2018/021342
Other languages
English (en)
French (fr)
Inventor
金山啓司
伊藤隆弘
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to MX2019014095A priority Critical patent/MX2019014095A/es
Priority to CN201880038040.1A priority patent/CN110709553A/zh
Priority to US16/615,268 priority patent/US20200123688A1/en
Priority to EP18832001.4A priority patent/EP3653772A4/en
Priority to JP2018529181A priority patent/JP6455637B1/ja
Priority to KR1020197036535A priority patent/KR102076465B1/ko
Priority to RU2020102001A priority patent/RU2020102001A/ru
Publication of WO2019012856A1 publication Critical patent/WO2019012856A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/04Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of yarns, threads or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G29/00Arrangements for lubricating fibres, e.g. in gill boxes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/02Rollers
    • D06B23/023Guiding rollers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/02Rollers
    • D06B23/026Rollers characterised by particular surface features
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/02Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fibres, slivers or rovings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/30Means for cleaning apparatus or machines, or parts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch

Definitions

  • the present invention relates to a method for producing a sizing agent-added carbon fiber bundle to which a sizing agent is applied.
  • Carbon fiber bundles are widely used in aerospace and space applications, sports leisure applications, general industrial applications such as automobiles and windmills, etc. because they have excellent mechanical properties, in particular, high specific strength and high specific modulus. In recent years, customers who use carbon fiber bundles are strongly in demand for higher quality and cost reduction.
  • the carbon fiber bundle generally has a low elongation and a brittle property, and is prone to fluff due to contact with a roller, abrasion with a yarn path guide, and the like in the subsequent processing steps, sometimes causing yarn breakage. Therefore, by providing various sizing agents to the carbon fiber bundle, the handling property is improved, and the convergence and abrasion resistance of the carbon fiber bundle are improved, and the fluff generation of the carbon fiber bundle is suppressed. It is common to maintain quality.
  • a sizing agent application method to a carbon fiber bundle there are various methods such as a spray injection method, a dropping method, and a kiss roller method.
  • the dip system in which the carbon fiber bundle is immersed in a sizing agent liquid tank is preferable from the efficiency that can be simultaneously and easily imparted to the multifilament yarn.
  • the carbon fiber bundle is increased in filament formation or the production speed is increased for cost reduction, the amount of sizing agent liquid adhering to the carbon fiber bundle and carried out of the sizing agent liquid tank increases, and The amount of sizing agent liquid adhering to the guide roller leading to the subsequent drying step of the sizing agent application step also increases.
  • the sizing agent liquid is dried to generate a resin reservoir and the viscosity is increased.
  • fluff is generated, and sometimes the carbon fiber bundle is wound around the guide roller, resulting in a problem that the process passability is lowered.
  • a film of a sizing agent solution is likely to be generated between adjacent yarns.
  • adhesion spots of the sizing agent solution are generated.
  • the surface tension of the sizing agent solution causes adjacent carbon fiber bundles to stick to each other, which tends to cause a problem of separation failure.
  • Patent Documents 1 and 2 after the carbon fiber bundle exits the liquid surface of the sizing agent liquid tank, a yarn of carbon fiber bundle is ejected by injecting pressurized gas toward the carbon fiber bundle. A method is disclosed for removing a liquid film consisting of a sizing agent generated in the meantime.
  • Patent Document 3 a carbon fiber bundle is held by at least a pair of nip rolls to remove an excess sizing agent liquid impregnated in the carbon fiber bundle, and a sizing agent liquid is applied to the surface of the nip roll to obtain a sizing agent liquid.
  • Methods are disclosed to prevent the drying of
  • Patent Document 4 after a sizing process is performed on a carbon fiber bundle in an untwisted state, a wiping process can be performed using a wiping cloth as a method for producing a carbon fiber bundle having excellent spreadability, in which drying processing is performed using a hot roll.
  • JP, 2013-23785 A Japanese Patent Laid-Open No. 7-145549 JP 2011-256486 A Unexamined-Japanese-Patent No. 1-292038
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and in a method for producing a carbon fiber bundle to which a sizing agent solution is applied, carbon fibers by drying of a sizing agent solution by a guide roller and resin reservoir It is an object of the present invention to provide a method for producing a carbon fiber bundle provided with a sizing agent, which can solve the problem of bundle winding and fuzzing.
  • the present invention has the following configuration. That is, After the sizing agent application step of immersing a plurality of carbon fiber bundles running in parallel in the sizing agent liquid tank, the carbon fiber bundle is subjected to a drying step to obtain a sizing agent applied carbon fiber bundle through a drying step. Sizing agent-imparted carbon fiber bundle in which the guide roller surface adhesion degree in the first guide roller after immersion in the sizing agent liquid tank and the carbon fiber bundle comes out of the liquid surface of the sizing agent liquid tank is 0.2 N / cm 2 or less Manufacturing method.
  • the present invention in the method for producing a sizing agent-added carbon fiber bundle to which a sizing agent solution has been applied, high-quality carbon fiber bundles with few fluffs can be prevented by preventing drying and resin accumulation of the sizing agent solution at a guide roller. You can get Moreover, winding of the carbon fiber bundle to a guide roller can also be suppressed, and it is excellent also in process passability.
  • the method for producing a sizing agent-imparted carbon fiber bundle according to the present invention comprises a sizing agent application step of immersing a plurality of carbon fiber bundles running in parallel in a sizing agent liquid tank and a drying step provided after that, the sizing agent
  • the carbon fiber bundle is immersed in the sizing agent liquid tank, and the guide roller surface of the first guide roller after the carbon fiber bundle comes out of the liquid surface of the sizing agent liquid tank.
  • the adhesion degree is 0.2 N / cm 2 or less.
  • the carbon fiber bundle used in the present invention may be obtained from any raw material such as pitch type, rayon type and polyacrylonitrile type, but from the viewpoint of quality and productivity, polyacrylonitrile type carbon fiber bundle is preferable. preferable.
  • the form of the carbon fiber bundle used for this invention For example, the bundle of the carbon fiber whose single yarn diameter is 3 micrometers-10 micrometers can be used.
  • the number of single yarns of carbon fibers constituting the carbon fiber bundle is not particularly limited, and can be, for example, 1000 to 100,000.
  • the effect of the present invention is likely to be effective in the case of a carbon fiber bundle having a relatively large number of single yarns and carrying a large amount of sizing agent liquid from the sizing agent liquid tank.
  • the polyacrylonitrile-based carbon fiber bundle preferably used in the present invention can be obtained by flameproofing, pre-carbonization or carbonization of the polyacrylonitrile-based precursor fiber bundle by a known method, and is not particularly limited. Absent.
  • the flameproofing can be carried out at 200 to 300 ° C. in an oxidizing atmosphere. Air is preferable as an oxidizing gas in the oxidization from the economical point of view. Subsequently, it can be precarbonized in a precarbonizing furnace at a maximum temperature of 300 to 1000 ° C. in an inert atmosphere.
  • carbon fiber bundles can be obtained by carbonizing the pre-carbonized fiber bundles at a maximum temperature of 1200 to 2000.degree.
  • the carbon fiber bundle may be further graphitized at a temperature of 2000 to 3000 ° C., if necessary.
  • precarbonization, carbonization and graphitization are performed in an inert atmosphere, examples of the inert gas used include nitrogen, argon and xenon, and nitrogen is preferably used from the economical viewpoint.
  • electrolytic oxidation treatment in an electrolytic solution or oxidation in the gas phase or liquid phase is performed in order to easily improve the affinity and adhesion between the carbon fiber bundle and the matrix resin. It is preferable to surface-treat a carbon fiber bundle, such as treatment.
  • the electrolytic solution either an acidic aqueous solution or an alkaline aqueous solution can be used, but as the acidic aqueous solution, sulfuric acid or nitric acid exhibiting strong acidity is preferable, and as the alkaline aqueous solution, ammonium carbonate, ammonium hydrogencarbonate, ammonium bicarbonate etc.
  • An aqueous solution of inorganic alkali is preferably used.
  • a sizing agent solution used in the present invention a solution obtained by dispersing or dissolving a sizing agent in water or an organic solvent such as acetone can be used, but from the viewpoint of uniform application to carbon fiber bundles and safety, It is preferable that it is an aqueous dispersion or an aqueous solution in which the sizing agent is dispersed or dissolved in water.
  • the said sizing agent can be used according to the matrix resin used by high-order processing from what is well-known in the field
  • the sizing agent can include the main agent and various additives described later, and can be made of, for example, the main agent and an emulsifier.
  • the present invention is directed to a sizing agent liquid which is easily dried on a guide roller to generate a resin reservoir and form a sticky deposit. It is effective.
  • the main component of the sizing agent is epoxy resin, epoxy-modified polyurethane resin, polyester resin, phenol resin, polyamide resin, polyurethane resin, polycarbonate resin, polyetherimide resin, polyamide An imide resin, a polyimide resin, a bismaleimide resin, a urethane modified epoxy resin, a polyvinyl alcohol resin, a polyvinyl pyrrolidone resin, a polyether sulfone resin, etc., or two or more of these may be used in combination.
  • the main component of sizing is polycarbonate, polypropylene, polyethylene, polystyrene, polyethylene, polyethylene terephthalate, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyethylene imine, polyacrylamide, polyphenylene ether, Polyacetal, polybutylene terephthalate, polyphenylene sulfide, polyetheretherketone, elastomeric cellulose compound, acrylic resin, polyurethane resin, polyamide resin, fluorocarbon resin, ABS resin and liquid crystal polymer, sodium hydroxide of styrene-maleic anhydride copolymer (partial )) Those containing at least one or more components selected from the group of neutralized products may be used.
  • surfactants may be added to form emulsions.
  • the type of surfactant is not particularly limited, but it is preferable to use a nonionic surfactant.
  • nonionic surfactants polyoxyethylene alkyl ether, single linear polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene sterol ether, polyoxyethylene sterol ether, Polyoxyethylene lanolin derivatives, ethylene oxide derivatives of alkylphenol formalin condensates, ether type such as polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene glycerin fatty acid ester, polyoxyethylene castor oil and hydrogenated castor oil, polyoxyethylene sorbitan Ether ester type such as fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyethylene glycol fatty acid ester Ether, ester such as polyglycerol fatty acid ester and
  • the concentration is adjusted so that water is present as a continuous phase, but the tank concentration of the sizing agent solution is adjusted so that the amount of adhesion to the carbon fiber bundle is a desired amount. Is generally diluted to about 0.1 to 10% by mass and impregnated into a carbon fiber bundle.
  • the sizing solution may be diluted at one time depending on the composition concentration of the main component other than water. And may be diluted in multiple times.
  • the sizing agent liquid may contain various additives such as a surfactant, a leveling agent, and an emulsifier, in addition to the above-mentioned main component.
  • the sizing agent liquid carried out from the sizing agent liquid tank by the carbon fiber bundle is transferred to the guide roller and retained. It is caused by doing.
  • the resin of the sizing solution is dried by the guide roller and a resin reservoir is generated, the traveling carbon fiber bundle comes into contact with the resin reservoir on the guide roller, and the degree of adhesion when the carbon fiber bundle is separated from the resin reservoir becomes large, and fluff and winding occur.
  • the adhesion degree of the guide roller on the first guide roller after the carbon fiber bundle leaves the liquid surface of the sizing agent solution tank is 0.2 N / cm 2 or less, preferably 0.
  • the degree of surface adhesion of the guide roller is greater than 0.2 N / cm 2 , fluff may be generated from the carbon fiber bundle, sometimes causing a winding problem.
  • Guide roller surface tackiness is 0.20 N / cm 2 or less, more preferably kept below 0.10 N / cm 2.
  • the present invention prevents the drying of the sizing agent liquid at the guide roller and the accumulation of resin, thereby providing high quality with few fluffs.
  • the purpose is to obtain a carbon fiber bundle, and the carbon fiber bundle needs to be provided with a sizing agent.
  • the sizing agent liquid is dried to a certain extent on the guide roller to form a resin reservoir, tackiness occurs. Therefore, it is preferable that the surface adhesion degree in a guide roller does not become substantially zero, and the minimum of guide roller surface adhesion degree is 0.01 N / cm ⁇ 2 >.
  • guide roller surface adhesion degree is calculated by the following equation.
  • Guide roller surface adhesion (N / cm 2 ) moving force of carbon fiber bundle / guide roller surface contact area of carbon fiber bundle.
  • a method of calculating the moving force of the carbon fiber bundle will be described with reference to FIG.
  • the carbon fiber bundle 1 dried completely before applying the sizing agent is dropped from the uppermost point of the guide roller 3 to contact angle Set at 180 °.
  • a ring is formed at one end of the carbon fiber bundle 1 set in the circumferential direction of the guide roller 3, a hook is attached to the tip of the load measuring instrument 7, and the hook is hooked on the ring of carbon fiber bundle.
  • a load measuring device is not particularly limited, a push-pull gauge capable of measuring an instantaneous maximum load is preferable.
  • the carbon fiber bundle is slowly pulled by a load measuring device, and the maximum force immediately before the carbon fiber bundle 1 moves on the surface of the guide roller 3 is defined as the carbon fiber moving force (unit: Newton).
  • long-term stable production refers to industrially stable long-term (24 hours or more) continuous production without fuzz or winding.
  • the stop of the carbon fiber bundle manufacturing equipment is the time when the manufacturing equipment of the process including the guide roller from the sizing agent liquid tank of the carbon fiber bundle is stopped.
  • the guide roller can be fixed for the first time by stopping the carbon fiber bundle manufacturing equipment, and the moving force of the carbon fiber bundle can be measured.
  • the moving force of the carbon fiber bundle can be adjusted by adjusting the degree of dryness of the sizing agent solution adhering to the surface of the guide roller or changing the material of the guide roller.
  • the surface contact area of the carbon fiber bundle with the guide roller surface is the circumferential length and the carbon fiber bundle along the circumferential direction of the surface of the guide roller from the point where the carbon fiber bundle starts contacting on the guide roller to the point of leaving the guide roller. It is calculated by the product of the yarn width of The surface contact area can be changed by changing the contact circumferential length of the carbon fiber on the guide roller or the number of filaments of the carbon fiber bundle.
  • FIG. 1 is a schematic configuration view showing an example of a sizing application process in the present invention.
  • the carbon fiber bundle 1 is immersed in the sizing agent liquid tank 4 by passing through the immersion roller 2, and it comes out of the liquid surface by the guide roller 3 and is dried in the next step of the sizing application step.
  • the sizing agent liquid adheres to the guide roller 3 by passing the carbon fiber bundle 1 to which the sizing agent liquid is applied. Therefore, in order to prevent the sizing agent liquid adhering to the guide roller 3 from sticking, the guide roller 3 is brought into contact with at least one contact member 5 selected from elastic materials such as cloth, resin and rubber. By wiping off the sizing agent liquid attached to the guide roller by the contact member 5, the degree of adhesion of the guide roller surface can be adjusted to 0.2 N / cm 2 or less.
  • the method for bringing the contact body into contact with the guide roller is not particularly limited, and for example, a method for uniformly pressing the contact body against the guide roller may be mentioned.
  • a sizing agent liquid attached to the guide roller such as cloth, flannel, elastic material such as resin or rubber, metal, etc. can be removed, and the guide roller surface adhesiveness is 0.2 N / cm 2 or less. It will not matter if you can. In particular, it is most suitable for the effect of sizing solution removal because of the static electricity generation, durability and water absorbency, plain weave cotton cloth with hair and foot, cotton foot and hair cloth with flannel, etc. It is.
  • the pressing pressure of the contact body is not particularly limited as long as the sizing agent liquid attached to the guide roller can be removed, and the installation state of the contact body may be either fixed or rotating. However, if the pressing pressure is weak, the removal of the signing solution is insufficient and the effect is weak. However, if the pressing pressure is too high, the guide roller does not rotate and many fluffs of the carbon fiber bundle run by rubbing It is generated and wound around the guide roller, and the process passability is reduced. From this, it is preferable that the cloth-like contact body can be wound around a guide roller and can be rotated. Furthermore, although the position at which the contact body is pressed is not particularly limited, pressing the surface against which the traveling carbon fiber bundle is not in contact prevents fuzz or breakage due to contact between the traveling member and the traveling carbon fiber bundle. Preferred in terms of
  • the guide roller be shaped as sharp as a scraper to the extent that the guide roller is not scratched.
  • the scraper is used, the sizing agent liquid transferred onto the surface of the guide roller as the guide roller rotates is blocked by the sharp tip of the scraper in contact with the guide roller.
  • the sharp tip of the scraper be placed in line contact parallel to the axial direction of the guide roller.
  • a hard scraper blade made of metal or plastic is preferable, and according to this, it is possible to uniformly form a sticky deposit such as a solid deposit or a resin reservoir generated on the guide roller when the sizing agent liquid is dried. It can be removed.
  • a guide means such as a guide rail for the scraper blade is provided in a direction parallel to the axis of the guide roller, and the scraper is installed in the axial direction of the guide roller. You may By so doing, solid deposits and sticky deposits on the guide roller can be efficiently removed.
  • FIG. 2 is a schematic configuration view showing another example of the sizing application process in the present invention.
  • the carbon fiber bundle 1 is immersed in the sizing agent liquid tank 4 by passing through the immersion roller 2, and it comes out of the liquid surface by the guide roller 3 and is dried in the next step of the sizing application step.
  • the sizing agent liquid adheres to the guide roller 3 by passing the carbon fiber bundle 1 to which the sizing agent liquid is applied. Therefore, in order to prevent the sticking of the sizing agent adhering to the guide roller 3, the sizing agent liquid is applied to the guide roller 3 separately from the sizing agent liquid from the sizing agent liquid tank 4 using the sizing agent liquid spraying means 6 or the like. .
  • the method for applying the sizing agent liquid is not particularly limited to the sizing agent liquid spraying means 6, for example, a method for dropping or jetting the sizing agent liquid over the entire surface of the guide roller, a method for immersing the guide roller in the sizing agent liquid, etc. .
  • the sizing agent liquid may be applied to such an extent that the guide roller is not dried, and the adhesion degree of the guide roller surface may be 0.2 N / cm 2 or less. There is no particular limitation as long as resin accumulation does not occur due to retention and drying.
  • the sizing agent liquid spraying means 6 is provided on the upper part of the guide roller 3, and the sizing agent liquid is sprayed from the sizing agent liquid spraying means 6 to dry the sizing agent liquid in the guide roller 3. It can be suppressed sufficiently.
  • the upper limit of the sizing spray amount sprayed from the sizing agent spray means 6 is not particularly limited as long as the guide roller 3 is wet, but a preferable range is 50 to 130 mg / cm 2 / hr, and a more preferable range is It is 80 to 100 mg / cm 2 / hr.
  • the sizing agent solution may evaporate on the guide roller 3 to form a resin reservoir, which may cause fuzzing or winding.
  • the spray amount exceeds 130 mg / cm 2 / hr, the sizing amount is excessively used, which is disadvantageous in cost.
  • the drying of the sizing agent liquid in the guide roller 3 is sufficiently suppressed by immersing the guide roller 3 in the sizing agent liquid tank 8 different from the sizing agent liquid tank used in the sizing application step. it can.
  • the sizing agent liquid separately applied to the guide roller as in the embodiment shown in FIG. 2 and FIG. 3 is not particularly limited, it is preferable that the composition and amount of the sizing agent applied to the obtained carbon fiber bundle do not change Preferably, the same one as the sizing agent liquid in which the carbon fiber bundle is immersed is good.
  • the combination of the method of bringing the contact body into contact with the guide roller and the method of applying the sizing agent liquid separately from the sizing agent liquid tank 4 makes the effect more effective.
  • the sizing agent can be reliably obtained from the method of only pressing the contact body.
  • the excess sizing agent solution can be removed while preventing the solution from sticking, and the degree of surface adhesion of the guide roller can be adjusted within a predetermined range.
  • the carbon fiber bundle 1 is immersed in the sizing agent liquid tank 4 by passing through the immersion roller 2, and it comes out of the liquid surface by the guide roller 3 and is guided to the drying step of the next step of the sizing application step.
  • a water-repellent guide roller as the guide roller 3 so as not to cause the guide roller 3 to generate a resin reservoir due to the sizing agent liquid.
  • resin made from fluorine and stainless steel (SUS) are mentioned.
  • stainless steel As types of stainless steel, SUS304, SUS304L, SUS316, SUS316L and the like can be mentioned.
  • the position from the liquid surface to the guide roller to be first contacted and the position from the guide roller to the drying step thus, a sizing agent liquid film is likely to be formed between adjacent yarns.
  • the sizing agent liquid film is an excess sizing agent liquid carried out by the carbon fiber bundle immersed in the sizing agent liquid tank, or the sizing agent liquid applied to the guide roller separately from the sizing agent liquid of the sizing agent liquid tank as described above.
  • the method for removing the sizing agent liquid film is not particularly limited, but may be injection of pressurized gas, application of vibration, application of ultrasonic waves, physical contact by installing a guide, and the like. Among them, the non-contact method is preferable because the generation of fluff of the carbon fiber bundle can be easily prevented, and the injection of the pressurized gas is more preferable from the viewpoint of reducing the equipment cost.
  • the tension of the carbon fiber bundle in the sizing agent application step is preferably set to 3.5 to 8.5 cN / tex.
  • the tension is 3.5 cN / tex or more, it is possible to prevent the decrease in the convergence of the carbon fiber bundle.
  • the tension of the carbon fiber bundle in the sizing agent application step is preferably 3.5 to 8.5 cN / tex, more preferably 4.0 to 8.0 cN / tex, and still more preferably It is 4.5 to 7.5 cN / tex.
  • the tension of the carbon fiber bundle in the sizing agent application process may be controlled solely in the sizing agent application process or may be controlled by the same mechanism as the tension in the drying process.
  • the control method of tension is not particularly limited, a method by adjusting the ratio of the driving speed before and after the sizing agent applying step may be mentioned.
  • the process tension can be grasped by measuring the traveling yarn immediately before applying the sizing agent liquid using a tensiometer or the like, and can be adjusted by the roller rotation torque etc. before and after applying the sizing agent liquid.
  • the carbon fiber bundle is applied with the sizing agent liquid in the sizing agent applying step, then dried at about 200 to 300 ° C. in the drying step, and wound around a paper tube.
  • the drying method can be used alone or in combination of a contact dryer such as a drum type or a non-contact type hot air dryer, and is not particularly limited.
  • the moving force of the carbon fiber bundle was measured as follows 5 minutes after stopping the carbon fiber bundle production facility during long-term stable production. That is, as shown in FIG. 5, after fixing the guide roller 3 made of stainless steel to which the sizing agent liquid is attached so as not to rotate, the completely dried carbon fiber bundle 1 just before applying the sizing agent liquid It hung from the top point of 3 and was applied with a contact angle of 180 °. Thereafter, a ring was formed at one end of the carbon fiber bundle 1.
  • a digital push pull gauge RX series, product number RX-10) manufactured by Aiko Engineering Co., Ltd. was used.
  • the guide roller surface contact area of the carbon fiber bundle was calculated by the product of the guide roller circumferential length in contact with the carbon fiber bundle and the yarn width of the carbon fiber bundle.
  • Example 1 A sizing agent was applied to a plurality of carbon fiber bundles that run in parallel in the configuration shown in FIG. 1, and a sizing agent applied carbon fiber bundle was obtained through a drying process.
  • a sizing agent having a concentration of 3% by mass and a carbon fiber bundle of 3000 filaments having a polyacrylonitrile-based fiber as a precursor fiber bundle and a bisphenol A epoxy resin as an aromatic epoxy compound as a main component It was made to immerse in the sizing agent liquid tank filled with the liquid, and it continued to use for a drying process, and the sizing agent added carbon fiber bundle was obtained. After the carbon fiber bundle comes out of the liquid surface of the sizing agent, a guide roller made of stainless steel (SUS) is used as the guide roller 3 which contacts first, and the lower end of the guide roller 3 I pressed cotton cloth with a foot.
  • SUS stainless steel
  • the surface tackiness of the guide roller 3 was 0.05 N / cm 2 , and the end face fuzz grade was very good. The results are shown in Table 1.
  • Example 2 A sizing agent-added carbon fiber bundle was obtained in the same manner as in Example 1 except that a plastic scraper was used instead of the cotton flannel cloth having hair and feet as the contact body 5.
  • the surface tackiness of the guide roller 3 was 0.07 N / cm 2 and the end face fuzz grade was very good. The results are shown in Table 1.
  • Example 3 A sizing agent added carbon fiber bundle was obtained in the same manner as in Example 1 except that the sizing agent applying step was changed to the step shown in FIG. That is, all were the same as Example 1 except that the sizing agent liquid was jetted from the upper portion of the guide roller 3 which contacts first after the carbon fiber bundle comes out of the sizing agent liquid surface and the contacting body is removed.
  • the injection amount of the sizing agent solution at this time was set to 100 mg / cm 2 / hr.
  • the surface tackiness of the guide roller 3 was 0.04 N / cm 2 , and the end face fuzz grade was very good. The results are shown in Table 1.
  • Example 4 A carbon fiber bundle was obtained in the same manner as in Example 3 except that the injection amount of the sizing agent solution was changed to 80 mg / cm 2 / hr. The surface tackiness of the guide roller 3 was 0.13 N / cm 2 and the end face fuzz grade was good. The results are shown in Table 1.
  • Example 5 A sizing agent applied carbon fiber bundle was obtained in the same manner as in Example 1 except that the sizing agent applying process was changed to the process shown in FIG. That is, except that the guide roller 3 which was first in contact with the carbon fiber bundle after coming out of the sizing agent liquid surface in Example 1 was immersed in another independent sizing agent liquid tank 8 and the contact body was removed. All were the same as in Example 1. The surface tackiness of the guide roller 3 was 0.08 N / cm 2 , and the end face fuzz grade was good. The results are shown in Table 1.
  • Example 6 A sizing agent added carbon fiber bundle was obtained in the same manner as in Example 1 except that the sizing agent applying step was changed to the step shown in FIG. That is, the same procedure as in Example 1 was repeated except that the sizing agent solution was sprayed onto the carbon fiber bundle delivered from the guide roller 3 at a spraying amount of 80 mg / cm 2 / hr.
  • the surface tackiness of the guide roller 3 was 0.02 N / cm 2 , and the end face fuzz grade was very good. The results are shown in Table 1.
  • Example 7 A sizing agent added carbon fiber bundle was obtained in the same manner as in Example 1 except that the sizing agent solution tank having a concentration of 2% by mass containing polyurethane as a main component was filled in the sizing agent solution tank.
  • the surface tackiness of the guide roller 3 was 0.06 N / cm 2 and the end face fuzz grade was very good. The results are shown in Table 1.
  • Comparative Example 1 A sizing agent added carbon fiber bundle was obtained in the same manner as in Example 1 except that the sizing agent applying step was changed to the step shown in FIG. That is, the procedure was the same as in Example 1 except that the cotton flannel cloth as the contact body was not pressed. As a result, the sizing agent is dried on the guide roller and resin accumulation occurs, and the surface tackiness of the guide roller 3 is increased to 0.25 N / cm 2 , the traveling carbon fiber bundle is fluffed, and the end face fluff quality Was significantly worse. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

並走する複数の炭素繊維束(1)をサイジング剤液槽(4)に浸漬させるサイジング剤付与工程の後、乾燥工程を経てサイジング剤付与炭素繊維束を 得るサイジング剤付与炭素繊維束の製造方法において、ガイドローラー(3)へのサイジング剤液固着による巻きつきの問題を解決するため、炭素繊維束(1)をサイジング剤液槽(4)に浸漬させ、炭素繊維束(1)がサイジング剤液槽(4)の液面を出た後の最初のガイドローラー(3)におけるガイドローラー表面粘着度を0.2N/cm2以下とする。

Description

サイジング剤付与炭素繊維束の製造方法
 本発明は、サイジング剤が付与されたサイジング剤付与炭素繊維束の製造方法に関する。
 炭素繊維束は、優れた機械的特性、特に比強度、比弾性率が高いという特徴を有するため、航空・宇宙用途、スポーツレジャー用途、自動車や風車など一般産業用途などに広く利用されている。近年、炭素繊維束を用いる顧客から、高品質化やコストダウンに関する要望が強くなっている。
 炭素繊維束は一般的に伸度が低く脆い性質があり、高次加工工程においてローラーとの接触や糸道ガイドとの擦過などによって毛羽が生じ易く、時には糸切れを生じる。そのため、炭素繊維束には各種のサイジング剤を付与することで、ハンドリング性を良くするとともに、炭素繊維束の収束性や耐擦過性を向上させたり、炭素繊維束の毛羽発生を抑制させたりして、品位を維持することが一般的である。
 炭素繊維束へのサイジング剤付与方法としては、スプレー噴射方式、滴下方式、キスローラー方式など各種ある。多糸条に同時にかつ容易に付与できる効率性からは、炭素繊維束をサイジング剤液槽に浸漬させるディップ方式が好ましい。しかしながら、コストダウンのために炭素繊維束の多糸条化または生産速度の高速化を図った場合、炭素繊維束に付着してサイジング剤液槽から持ち出されるサイジング剤液の量が増え、また、サイジング剤付与工程の次の乾燥工程に導くガイドローラーに付着するサイジング剤液の量も増える。そして、該ガイドローラー表面では、サイジング剤液が乾燥して樹脂溜まりが発生し粘度が上昇してしまう。炭素繊維束が樹脂溜まりと接触すると、毛羽が発生し、時には炭素繊維束がガイドローラーに巻きついて、工程通過性が低下する問題がある。また、多糸条化のため隣接する炭素繊維束の間隔を狭くした際には、隣接糸条間にサイジング剤液による膜が発生しやすい。そして、この液膜がそのまま乾燥することでサイジング剤液の付着斑が発生する。また、サイジング剤液の表面張力によって隣接走行する炭素繊維束同士がくっつき、分繊不良が発生するという問題も生じやすい。
 改善技術として、特許文献1、2には、炭素繊維束がサイジング剤液槽の液面を出た後に、該炭素繊維束に向かって加圧気体を噴射することにより、炭素繊維束の糸条間に発生したサイジング剤からなる液膜を除去する方法が開示されている。
 特許文献3には、炭素繊維束を少なくとも一対のニップロールで挟持して炭素繊維束に含浸された余剰のサイジング剤液を除去するとともに、サイジング剤液をニップロール表面に付与することで、サイジング剤液の乾燥を防止する方法が開示されている。また、特許文献4には、無撚状態の炭素繊維束にサイジング処理を施した後、ホットロールにて乾燥処理する、開繊性に優れた炭素繊維束の製造方法において、拭き取り布をホットロールに押し当てて余剰のサイジング剤液をホットロールから除去する方法が開示されている。
特開2013-23785号公報 特開平7-145549号公報 特開2011-256486号公報 特開平1-292038号公報
 しかし、特許文献1、2の方法では、炭素繊維束糸条間の液膜は除去できても、炭素繊維束には依然サイジング剤液が付着しており、ガイドローラー表面にサイジング剤液が転写して樹脂溜まりが発生する問題があった。また、特許文献3の方法では、脆い炭素繊維束をニップロールで挟持するため、毛羽立ちが発生して、工程通過性が低下する問題があった。特許文献4の方法では、ホットロール上に付着した余分なサイジング剤液を拭き取り布で除去するため、ホットロールそのものでのサイジング剤液の乾燥による樹脂溜まりは抑制されるが、ホットロール前の、サイジング剤付与工程後の最初のガイドローラー上でサイジング剤液が乾燥しやすく、該サイジング剤液の乾燥時に生じる樹脂溜まりに炭素繊維束の単糸が取られて、毛羽立ちや巻きつきが発生する問題があった。
 本発明の目的は、上記従来技術の問題点を解決しようとするものであり、サイジング剤液を付与した炭素繊維束の製造方法において、ガイドローラーでのサイジング剤液の乾燥・樹脂溜まりによる炭素繊維束の巻きつきや毛羽立ちの問題を解決できる、サイジング剤を付与した炭素繊維束の製造方法を提供することにある。
 上記目的を達成するため、本発明は次の構成を有する。すなわち、
並走する複数の炭素繊維束をサイジング剤液槽に浸漬させるサイジング剤付与工程の後、乾燥工程を経てサイジング剤付与炭素繊維束を得るサイジング剤付与炭素繊維束の製造方法において、炭素繊維束をサイジング剤液槽に浸漬させ、炭素繊維束がサイジング剤液槽の液面を出た後の最初のガイドローラーにおけるガイドローラー表面粘着度を0.2N/cm以下とするサイジング剤付与炭素繊維束の製造方法である。
 本発明によれば、サイジング剤液を付与したサイジング剤付与炭素繊維束の製造方法において、ガイドローラーでのサイジング剤液の乾燥・樹脂溜まりを予防することで、毛羽の少ない高品位な炭素繊維束を得ることができる。また、ガイドローラーへの炭素繊維束の巻きつきを抑制することもでき、工程通過性にも優れる。
本発明におけるサイジング付与工程の一例を示す概略構成図である。 本発明におけるサイジング付与工程の別の一例を示す概略構成図である。 本発明におけるサイジング付与工程の別の一例を示す概略構成図である。 本発明におけるサイジング付与工程の別の一例を示す概略構成図である。 炭素繊維束の動き出す力の算出方法を示す図である。 従来のサイジング付与工程の一例を示す概略構成図である。
 本発明にかかるサイジング剤付与炭素繊維束の製造方法は、並走する複数の炭素繊維束をサイジング剤液槽に浸漬させるサイジング剤付与工程と、その後に設けられた乾燥工程とを経て、サイジング剤付与炭素繊維束を得るものであるが、この際、炭素繊維束をサイジング剤液槽に浸漬させ、炭素繊維束がサイジング剤液槽の液面を出た後の最初のガイドローラーにおけるガイドローラー表面粘着度を0.2N/cm以下とする。
 以下、本発明のサイジング剤付与炭素繊維束を製造する方法について詳しく説明する。
 本発明に使用する炭素繊維束は、ピッチ系、レーヨン系およびポリアクリロニトリル系等のいずれの原料から得られたものであってもよいが、品質および生産性の観点からポリアクリロニトリル系炭素繊維束が好ましい。また、本発明に使用する炭素繊維束の形態についても特に限定はなく、例えば、単糸直径が3μm以上10μm以下の炭素繊維の束を用いることができる。また、炭素繊維束を構成する炭素繊維の単糸本数についても特に限定はなく、例えば、1000~100000本とすることができる。ただし、サイジング剤液をサイジング剤液槽から多く持ち出す、単糸本数が比較的多い3000本以上の炭素繊維束の場合に本発明の効果が奏功しやすい。
 本発明において好ましく用いられるポリアクリロニトリル系炭素繊維束は、公知の方法で、ポリアクリロニトリル系前駆体繊維束を耐炎化、予備炭素化、炭素化することにより得ることができ、特に限定されるものではない。耐炎化は、酸化性雰囲気中で200~300℃で行うことができる。耐炎化での酸化性気体としては、経済的な観点から空気が好ましい。続いて、不活性雰囲気中で最高温度300~1000℃の予備炭素化炉中で予備炭素化することができる。さらに、予備炭素化された繊維束を最高温度1200~2000℃で炭素化することにより、炭素繊維束が得られる。該炭素繊維束は、必要に応じて、2000~3000℃の温度でさらに黒鉛化してもよい。予備炭素化、炭素化および黒鉛化は不活性雰囲気中で行われるが、用いられる不活性ガスとしては、例えば、窒素、アルゴンおよびキセノンがあり、経済的な観点からは窒素が好ましく用いられる。
 また、炭素繊維強化複合材料とする際には、炭素繊維束とマトリックス樹脂との親和性や接着性を容易に向上させるため、電解液中での電解酸化処理や気相又は液相での酸化処理など、炭素繊維束に表面処理を施すことが好ましい。電解液としては、酸性水溶液またはアルカリ性水溶液のいずれもが使用可能であるが、酸性水溶液としては強酸性を示す硫酸または硝酸が好ましく、またアルカリ性水溶液としては炭酸アンモニウム、炭酸水素アンモニウムや重炭酸アンモニウム等の無機アルカリの水溶液が好ましく用いられる。
 本発明に使用するサイジング剤液としては、サイジング剤を水、又はアセトン等の有機溶剤に分散又は溶解させたものを用いることができるが、炭素繊維束への均一付与および安全性の観点から、サイジング剤を水に分散又は溶解させた水分散液又は水溶液であることが好ましい。なお、前記サイジング剤は、炭素繊維の分野で公知なものから、高次加工で用いるマトリックス樹脂に応じて使用することができる。サイジング剤は、後述する主剤および各種添加剤を含むことができ、例えば、主剤および乳化剤からなることができる。このサイジング剤液を含浸せしめた炭素繊維束を乾燥させることにより、炭素繊維束の表面にサイジング剤が付着したサイジング剤付与炭素繊維束を得ることができる。
 本発明に使用するサイジング剤の種類として特に限定されるものではないが、ガイドローラー上で乾燥して樹脂溜まりを発生させて粘着性付着物を形成しやすいサイジング剤液に対して、本発明は効果的である。サイジング剤の成分に熱硬化性樹脂を含む場合、サイジング剤の主成分としては、エポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネイト樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ウレタン変性エポキシ樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルサルフォン樹脂など、あるいはこれらを二種以上組合せて用いてもよい。また、サイジング剤の成分に熱可塑性樹脂を含む場合、サイジングの主成分としては、ポリカーボネイト、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリルアミド、ポリフェニレンエーテル、ポリアセタール、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、エラストマーセルロース化合物、アクリル樹脂、ポリウレタン樹脂、ポリアミド樹脂、フッ素樹脂、ABS樹脂及び液晶ポリマー、スチレン-無水マレイン酸共重合体の水酸化ナトリウム(部分)中和物の群から選ばれた少なくとも単一又は複数の成分を含んだものを用いてもよい。
 また、これら有機化合物は水に不溶であることが多いため、界面活性剤を添加してエマルジョンとしても良い。界面活性剤の種類は特に限定されないが、ノニオン系の界面活性剤を使用することが好ましい。ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、単一直鎖ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体、アルキルフェノールホルマリン縮合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンアルキルエーテルなどのエーテル型、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンヒマシ油及び硬化ヒマシ油、ポリオキシエチレンソルビダン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステルなどのエーテルエステル型、ポリエチレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステルなどのエステル型が挙げられ、それらの中から1種類から数種類が組み合わせて使用される。
 サイジング剤液の希釈においては、経済的で安全な水を用いて希釈することが好ましい。サイジング剤液を水分散液とする場合、水が連続相として存在する濃度範囲となるように調整するが、炭素繊維束への付着量が所望の量となるように、サイジング剤液の槽濃度を0.1~10質量%程度に希釈して、炭素繊維束に含浸せしめる方法が一般的である。サイジング剤液を所望の槽濃度に調整するためにサイジング剤液に水を加えて希釈する際には、サイジング剤液の水以外の主成分などの組成濃度によって、1度で希釈してもよいし、複数回に分けて希釈してもよい。なお、サイジング剤液には、前記主成分の他に、界面活性剤、平滑剤、乳化剤等の各種添加剤を含んでもよい。
 炭素繊維束の走行方向においてサイジング剤付与工程通過後のガイドローラーにおけるサイジング剤液の樹脂溜まりは、炭素繊維束によってサイジング剤液槽から持ち出されたサイジング剤液がガイドローラーに転写・滞留し、乾燥することで生じる。ガイドローラーでサイジング剤液の樹脂が乾燥して樹脂溜まりが発生すると、走行する炭素繊維束がガイドローラー上の樹脂溜まりに接触することになり、炭素繊維束が該樹脂溜まりから離れるときの粘着度が大きくなり、毛羽や巻きつきなどが発生する。本発明の炭素繊維束の製造方法では、炭素繊維束がサイジング剤液槽の液面を出た後の最初のガイドローラーにおけるガイドローラー表面粘着度を0.2N/cm以下、好ましくは0.1N/cm以下とすることにより、当該ガイドローラーにおけるサイジング剤液の乾燥を防ぎ、サイジング剤の樹脂溜まりを防止できる。ガイドローラー表面粘着度が0.2N/cmより大きい場合、炭素繊維束から毛羽が発生し、時には巻きつきの問題が発生する。ガイドローラー表面粘着度は0.20N/cm以下、さらには0.10N/cm以下に保つことが好ましい。なお、ガイドローラー表面粘着度が低いほど炭素繊維束の品位は良好となるのであるが、本発明はガイドローラーでのサイジング剤液の乾燥・樹脂溜まりを予防することで、毛羽の少ない高品位な炭素繊維束を得ることを目的としており、また、炭素繊維束にはサイジング剤を付与する必要がある。そして、サイジング剤液が少なからずガイドローラー上で乾燥・樹脂溜まりを形成するために粘着性が発生する。そのため、ガイドローラーにおける表面粘着度は実質ゼロにはならず、ガイドローラー表面粘着度の下限は、0.01N/cmであることが好ましい。
 ここで、ガイドローラー表面粘着度は、下式で算出される。
ガイドローラー表面粘着度(N/cm)=炭素繊維束の動き出す力/炭素繊維束のガイドローラー表面接触面積。
 炭素繊維束の動き出す力の算出方法について、図5を用いて説明する。なお、炭素繊維の動き出す力は、長期安定生産時の炭素繊維束の製造設備を停止してから10分以内に以下のように測定することで、製造中の値であるとみなす。
 まず、サイジング剤液が付着しているガイドローラー3を回転しないように固定した後、サイジング剤を付与する直前の絶乾した炭素繊維束1を、ガイドローラー3の最上部地点から垂らして接触角が180°の状態で仕掛ける。次に、ガイドローラー3の円周方向に仕掛けた炭素繊維束1の一端に輪を作り、荷重測定器7の先端部にフックを取り付けて、炭素繊維束の輪にフックを引っかける。荷重測定器は特に限定しないが、瞬間最大荷重を測定できるプッシュプルゲージが好ましい。ゆっくりと荷重測定器で炭素繊維束を引っ張り、ガイドローラー3の表面上を炭素繊維束1が動き出す直前の最大の力を炭素繊維の動き出す力(単位はニュートン)とする。
 なお、長期安定生産時とは、毛羽立ちや巻き付きなどなく工業的に安定して長時間(24時間以上)連続生産している時のことである。また、炭素繊維束の製造設備の停止とは、炭素繊維束のサイジング剤液槽からガイドローラーを含む工程の製造設備を停止する時点である。炭素繊維束の製造設備を停止することで初めてガイドローラーを固定して、炭素繊維束の動き出す力を測定できる。
 炭素繊維束の動き出す力は、ガイドローラー表面に付着しているサイジング剤液の乾燥度合いを調整することやガイドローラーの材質を変更することで調整可能である。
 また、炭素繊維束のガイドローラー表面接触面積は、炭素繊維束がガイドローラー上に接触開始した地点からガイドローラーから離れる地点までのガイドローラー表面の円周方向に沿った円周長さと炭素繊維束の糸幅の積で算出される。炭素繊維のガイドローラー上の接触円周長さや炭素繊維束のフィラメント数などの変更で表面接触面積を変更することができる。
 次に図を用いて本発明を更に詳しく説明する。
 図1は、本発明におけるサイジング付与工程の一例を示す概略構成図である。図1に示す態様では、炭素繊維束1が浸漬用ローラー2を通過することによりサイジング剤液槽4に浸漬され、ガイドローラー3により液面から出てサイジング付与工程の次の工程の乾燥工程に導かれる。このような態様においては、サイジング剤液が付与された炭素繊維束1が通過することによって、サイジング剤液がガイドローラー3に付着する。そこで、ガイドローラー3に付着したサイジング剤液の固着を防ぐために、ガイドローラー3に布、樹脂やゴム等の弾力素材から選ばれる少なくとも1つの接触体5を接触させる。接触体5により、ガイドローラーに付着したサイジング剤液を拭きとることで、ガイドローラー表面粘着度を調整し、0.2N/cm以下とすることができる。
 ここで、ガイドローラーに接触体を接触させる方法は特に限定されず、例えばガイドローラーに接触体を均一に押し当てる方法などが挙げられる。押し当てる接触体としては、布、ネル、樹脂やゴム等の弾力素材、金属など、ガイドローラーに付着したサイジング剤液を除去でき、ガイドローラー表面粘着度を0.2N/cm以下とすることができれば差し支えない。特に静電気の発生しにくさや丈夫さ、吸水性から、キャラコに代表される毛足のある平織りの綿布や、フランネルといった毛足のある綿ネルや毛織物が、サイジング剤液除去の効果の面で最適である。
 また、接触体の押し当て圧としては、ガイドローラーに付着したサイジング剤液を除去できれば特に限定されず、接触体の設置状態は固定または回転のいずれでも構わない。ただし、押し当て圧が弱いとサインジング剤液の除去が不十分となり効果が弱くなる一方で、押し当て圧が高すぎるとガイドローラーが回転せず、擦過により走行する炭素繊維束の毛羽が多数発生してガイドローラーに巻き付いて、工程通過性が低下する。このことから、布状の接触体はガイドローラーに巻いて回転できる方が好ましい。さらに、接触体を押し当てる位置は特に限定されないが、走行する炭素繊維束が接触していない面に押し当てるのが、接触体と走行する炭素繊維束の接触による毛羽・糸切れ発生を防止する面で好ましい。
 さらに、弾力素材や金属を押し当てる場合は、ガイドローラーに傷が付かない程度にスクレーパーのように鋭利な形状とするのがサイジング剤液除去効率の点から好ましい。スクレーパーを使用する際は、ガイドローラーが回転する時にガイドローラーの表面上に転写したサイジング剤液が、ガイドローラーに接触しているスクレーパーの鋭利な先端部分でせき止められるようにする。また、ガイドローラー表面全体に対して効率よくスクレーパーでサイジング剤液をせき止めるには、スクレーパーの鋭利な先端部分がガイドローラーの軸方向と平行に線接触するように設置することが好ましい。スクレーパーの鋭利な部分としては、金属やプラスチックからなる硬質スクレーパー刃が好ましく、これによれば、サイジング剤液乾燥時にガイドローラー上で発生する固形付着物や樹脂溜まりといった粘着性付着物を、均一に除去することができる。また、スクレーパーでガイドローラー全幅方向にわたってサイジング剤液を除去するために、ガイドローラーの軸と平行な方向にスクレーパー刃用の案内レールなどの案内手段を設けて、スクレーパーをガイドローラーの軸方向に設置してもよい。こうすることで、ガイドローラー上の固形付着物や粘着性付着物を効率的に除去できる。
 図2は、本発明におけるサイジング付与工程の別の一例を示す概略構成図である。図2に示す態様では、炭素繊維束1が浸漬用ローラー2を通過することによりサイジング剤液槽4に浸漬され、ガイドローラー3により液面から出てサイジング付与工程の次の工程の乾燥工程に導かれる。この態様においても、サイジング剤液が付与された炭素繊維束1が通過することによって、ガイドローラー3にサイジング剤液が付着する。そこで、ガイドローラー3に付着したサイジング剤の固着を防ぐため、サイジング剤液噴霧手段6などを用いて、サイジング剤液槽4からのサイジング剤液とは別にサイジング剤液をガイドローラー3に付与する。サイジング剤液を付与する方法は特にサイジング剤液噴霧手段6に限定されず、例えばガイドローラー表面全体にサイジング剤液を滴下または噴射する方法、ガイドローラーをサイジング剤液に浸漬させる方法などが挙げられる。このような態様においては、ガイドローラーが乾燥しない程度にサイジング剤液を付与し、ガイドローラー表面粘着度を0.2N/cm以下とすることができれば差し支えなく、サイジング剤液がガイドローラー表面で滞留・乾燥して樹脂溜まりが発生することがなければ特に制限はない。
 例えば、図2に示すように、ガイドローラー3上部にサイジング剤液噴霧手段6を設け、かかるサイジング剤液噴霧手段6からサイジング剤液を噴霧することで、ガイドローラー3におけるサイジング剤液の乾燥を十分に抑制できる。サイジング剤液噴霧手段6から噴霧されるサイジング噴霧量は、ガイドローラー3が濡れていればよいので上限は特に定められないが、好ましい範囲としては50~130mg/cm/hr、より好ましい範囲は80~100mg/cm/hrである。噴霧量が50mg/cm/hr未満の場合、ガイドローラー3上でサイジング剤液が蒸発して、樹脂溜まりが生じて毛羽立ちや巻き付きが発生する場合がある。噴霧量が130mg/cm/hrを超える場合、サイジング量を過剰に使用することになるのでコスト面で不利である。
 また、図3に示すように、ガイドローラー3をサイジング付与工程で用いるサイジング剤液槽とは別のサイジング剤液槽8に浸漬させることでも、ガイドローラー3におけるサイジング剤液の乾燥を十分に抑制できる。
 図2や図3に示す態様のようにガイドローラーに別途付与するサイジング剤液は、特に限定されないが、得られる炭素繊維束に付与されるサイジング剤の組成および量が変化しないことが好ましく、より好ましくは炭素繊維束を浸漬させるサイジング剤液と同一のものが良い。
 なお、ガイドローラーに接触体を接触させる方法とサイジング剤液槽4とは別にサイジング剤液を付与する方法とを組み合わせることで、よりその効果が奏功する。例えば、図4に示すように、ガイドローラー3にサイジング剤液噴霧手段6からサイジング剤液を噴霧した後、接触体を押し当てることで、接触体を押し当てることのみの方法より確実にサイジング剤液の固着を防ぎつつ余剰なサイジング剤液を除去し、ガイドローラー表面粘着度を所定の範囲に調整することができる。
 さらに本発明においては、炭素繊維束1が浸漬用ローラー2を通過することによりサイジング剤液槽4に浸漬され、ガイドローラー3により液面から出てサイジング付与工程の次の工程の乾燥工程に導かれるに際し、ガイドローラー3にサイジング剤液による樹脂溜まりを発生させないように、ガイドローラー3として撥水性を有するガイドローラーを用いることが好ましい。撥水性を有するガイドローラーの具体例としては、フッ素製樹脂やステンレス鋼(SUS)が挙げられる。特に、サイジング剤液を付与した炭素繊維束がガイドローラー上を走行することで、ガイドローラー表面は常に濡れた状態となるので、錆びが発生しにくいステンレス鋼(SUS)がより好ましい。ステンレス鋼の種類については、SUS304、SUS304L、SUS316、SUS316L等が挙げられる。
 また、本発明の製造方法においては、炭素繊維束をサイジング剤液に浸漬させた後、液面を出てから最初に接触するガイドローラーまでの位置とガイドローラーから乾燥工程に入るまでの位置とで、隣接糸条間にサイジング剤液膜が形成されやすい。サイジング剤液膜は、サイジング剤液槽に浸漬した炭素繊維束が持ち出す余剰なサイジング剤液、または、上述したようなサイジング剤液槽のサイジング剤液とは別にガイドローラーに付与されるサイジング剤液により形成され得る。隣接糸条間にサイジング剤液膜が形成されると、サイジング剤液膜の表面張力により隣接糸条同士が接触して毛羽が発生し、または、得られる炭素繊維束のサイジング剤付着斑や乾燥斑、色調斑が増大する。そこで、それぞれの位置でサイジング剤液膜を除去することが好ましい。サイジング剤液膜を除去する方法としては、特に限定されないが、加圧気体の噴射、振動の付与、超音波の付与、ガイドを設置することによる物理的な接触などが挙げられる。中でも、炭素繊維束の毛羽の発生を容易に防止できることから非接触での方法が好ましく、さらには、設備コストを低く抑える観点から加圧気体の噴射がより好ましい。
 本発明の製造方法においては、サイジング剤付与工程での炭素繊維束の張力を3.5~8.5cN/texに設定するのが好ましい。張力が3.5cN/tex以上の場合、炭素繊維束の収束性の低下を防ぐことができる。一方、8.5cN/tex以下の場合、張力付与による毛羽、糸切れの発生を容易に防ぐことができる。以上の観点からサイジング剤付与工程での炭素繊維束の張力は、3.5~8.5cN/texとすることが好ましく、より好ましくは4.0~8.0cN/texであり、さらに好ましくは4.5~7.5cN/texである。また、サイジング剤付与工程での炭素繊維束の張力は、サイジング剤付与工程のみで単独に制御しても良く、あるいは、乾燥工程での張力と同一の機構により制御しても良い。張力の制御方法は、特に限定されないが、サイジング剤付与工程の前後の駆動速度の比率を調整することによる方法などが挙げられる。工程張力はサイジング剤液を付与する直前の走行糸を張力計等を用いて測定することにより把握でき、サイジング剤液を付与する前後のローラー回転トルク等によって調整することができる。
 炭素繊維束はサイジング剤付与工程でサイジング剤液を付与された後、乾燥工程で約200~300℃で乾燥され、紙管に巻き取られる。乾燥方法は、ドラム型等の接触式乾燥機や非接触式熱風乾燥機を単独または組み合わせて使用することができ、特に限定されるものではない。
 本発明を実施例及び比較例により更に具体的に説明する。また、実施例及び比較例における各評価項目は以下の評価方法により実施した。
 [ガイドローラー表面粘着度]
 ガイドローラー表面粘着度は、下式で算出した。
ローラー表面粘着度(N/cm)=炭素繊維束の動き出す力/炭素繊維束のガイドローラー表面接触面積。
 炭素繊維束の動き出す力は、長期安定生産時の炭素繊維束の製造設備を停止してから5分後に、以下のようにして測定した。すなわち、図5に示すようにサイジング剤液が付着しているステンレス鋼からなるガイドローラー3を回転しないように固定した後、サイジング剤液を付与する直前の絶乾した炭素繊維束1をガイドローラー3の最上部地点から垂らして接触角180°の状態で掛けた。その後で、炭素繊維束1の一端に輪を作成した。荷重測定器7はアイコーエンジニアリング(株)製デジタルプッシュプルゲージ(RXシリーズ、品番RX-10)を使用した。デジタルプッシュプルゲージの先端部にゲージアタッチメント(品番011B)であるフックを取り付けて、炭素繊維束1の輪にフックを引っかけた状態で、ガイドローラー3の円周方向に炭素繊維束1をゆっくりと引っ張った。ガイドローラー3の表面を炭素繊維束1が動き出す直前の最大力、すなわち炭素繊維束の動き出す力をプッシュプルゲージを用いて計測した。
 また、炭素繊維束のガイドローラー表面接触面積は、炭素繊維束が接触しているガイドローラー円周長さと炭素繊維束の糸幅の積で算出した。
 [品位]
 サイジング剤付与炭素繊維束の品位として、パッケージ後の炭素繊維束のボビンの端面毛羽を観察し、以下の基準で判定した。
◎=毛羽が5本/100mm未満
○=毛羽が5本/100mm以上10本/100mm未満
×=毛羽が10本/100mm以上。
 [実施例1]
 図1に示す構成で並走する複数の炭素繊維束にサイジング剤を付与し、乾燥工程を経てサイジング剤付与炭素繊維束を得た。
 具体的には、ポリアクリロニトリル系繊維を前駆体繊維束としたフィラメント数3000本の炭素繊維束を、芳香族系エポキシ化合物であるビスフェノールA型エポキシ樹脂を主成分とする濃度3質量%のサイジング剤液で満たしたサイジング剤液槽に浸漬させ、続けて乾燥工程に供し、サイジング剤付与炭素繊維束を得た。炭素繊維束がサイジング剤の液面から出た後、最初に接触するガイドローラー3としては、ステンレス鋼(SUS)からなるガイドローラーを用い、そのガイドローラー3の最下部に、接触体5として毛足のある綿ネル布を押し当てた。
 ガイドローラー3の表面粘着度は0.05N/cmで、端面毛羽品位は極めて良好であった。結果を表1に示す。
 [実施例2]
 接触体5として毛足のある綿ネル布のかわりに、プラスチックからなるスクレーパーを用いたこと以外は、全て実施例1と同様にしてサイジング剤付与炭素繊維束を得た。ガイドローラー3の表面粘着度は0.07N/cmで、端面毛羽品位は極めて良好であった。結果を表1に示す。
 [実施例3]
 サイジング剤付与工程を図2に示す工程とした以外は全て実施例1と同様にしてサイジング剤付与炭素繊維束を得た。すなわち、炭素繊維束がサイジング剤液面から出た後最初に接触するガイドローラー3の上部からサイジング剤液を噴射させるとともに、接触体を除いたこと以外は、全て実施例1と同様にした。このときのサイジング剤液の噴射量は100mg/cm/hrに設定した。ガイドローラー3の表面粘着度は0.04N/cmで、端面毛羽品位は極めて良好であった。結果を表1に示す。
 [実施例4]
 サイジング剤液の噴射量を80mg/cm/hrに変更した以外は全て実施例3と同様にして炭素繊維束を得た。ガイドローラー3の表面粘着度は0.13N/cmで、端面毛羽品位は良好であった。結果を表1に示す。
 [実施例5]
 サイジング剤付与工程を図3に示す工程とした以外は全て実施例1と同様にしてサイジング剤付与炭素繊維束を得た。すなわち、実施例1において炭素繊維束がサイジング剤液面から出た後最初に接触していたガイドローラー3を、独立した別のサイジング剤液槽8に浸漬させ、接触体を除いたこと以外は全て実施例1と同様にした。ガイドローラー3の表面粘着度は0.08N/cmで、端面毛羽品位は良好であった。結果を表1に示す。
 [実施例6]
 サイジング剤付与工程を図4に示す工程とした以外は全て実施例1と同様にしてサイジング剤付与炭素繊維束を得た。すなわち、ガイドローラー3から送り出される炭素繊維束に、噴射量80mg/cm/hrにてサイジング剤液を噴射させること以外は実施例1と同様にした。ガイドローラー3の表面粘着度は0.02N/cmで、端面毛羽品位は極めて良好であった。結果を表1に示す。
 [実施例7]
 サイジング剤液槽に、ポリウレタンを主成分とする濃度2質量%のサイジング剤液を満たしたこと以外は、全て実施例1と同様にしてサイジング剤付与炭素繊維束を得た。ガイドローラー3の表面粘着度は0.06N/cmで、端面毛羽品位は極めて良好であった。結果を表1に示す。
 [比較例1]
 サイジング剤付与工程を図6に示す工程とした以外は実施例1と同様にしてサイジング剤付与炭素繊維束を得た。すなわち、接触体である綿ネル布を押し当てないこと以外は実施例1と同様にした。その結果、ガイドローラー上でサイジング剤が乾燥して樹脂溜まりが発生して、ガイドローラー3の表面粘着度は0.25N/cmまで増加して、走行する炭素繊維束が毛羽立ち、端面毛羽品位は著しく悪化した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
1:炭素繊維束
2:浸漬用ローラー
3:ガイドローラー
4:サイジング剤液槽
5:接触体
6:サイジング剤液噴霧手段
7:荷重測定器
8:サイジング剤液槽4とは別のサイジング剤液槽

Claims (3)

  1.  並走する複数の炭素繊維束をサイジング剤液槽に浸漬させるサイジング剤付与工程の後、乾燥工程を経てサイジング剤付与炭素繊維束を得るサイジング剤付与炭素繊維束の製造方法において、炭素繊維束をサイジング剤液槽に浸漬させ、炭素繊維束がサイジング剤液槽の液面を出た後の最初のガイドローラーにおけるガイドローラー表面粘着度を0.2N/cm以下とするサイジング剤付与炭素繊維束の製造方法。
  2.  ガイドローラーに接触体を接触させることによりガイドローラー表面粘着度を0.2N/cm以下とする、請求項1記載のサイジング剤付与炭素繊維束の製造方法。
  3.  サイジング剤付与工程の後、さらにサイジング剤液を付与することによりガイドローラー表面粘着度を0.2N/cm以下とする、請求項1記載のサイジング剤付与炭素繊維束の製造方法。
PCT/JP2018/021342 2017-07-10 2018-06-04 サイジング剤付与炭素繊維束の製造方法 WO2019012856A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2019014095A MX2019014095A (es) 2017-07-10 2018-06-04 Metodo para producir haces de fibras de carbono con agente de encolado aplicado.
CN201880038040.1A CN110709553A (zh) 2017-07-10 2018-06-04 赋予有上浆剂的碳纤维束的制造方法
US16/615,268 US20200123688A1 (en) 2017-07-10 2018-06-04 Method of producing sizing agent-applied carbon fiber bundles
EP18832001.4A EP3653772A4 (en) 2017-07-10 2018-06-04 METHOD FOR THE PRODUCTION OF CARBON FIBER BUNDLES WITH APPLIED SIZING AGENT
JP2018529181A JP6455637B1 (ja) 2017-07-10 2018-06-04 サイジング剤付与炭素繊維束の製造方法
KR1020197036535A KR102076465B1 (ko) 2017-07-10 2018-06-04 사이징제 부여 탄소섬유 다발의 제조 방법
RU2020102001A RU2020102001A (ru) 2017-07-10 2018-06-04 Способ получения пучков углеродного волокна с нанесенным проклеивающим средством

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017134358 2017-07-10
JP2017-134358 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019012856A1 true WO2019012856A1 (ja) 2019-01-17

Family

ID=65001310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021342 WO2019012856A1 (ja) 2017-07-10 2018-06-04 サイジング剤付与炭素繊維束の製造方法

Country Status (9)

Country Link
US (1) US20200123688A1 (ja)
EP (1) EP3653772A4 (ja)
JP (1) JP6455637B1 (ja)
KR (1) KR102076465B1 (ja)
CN (1) CN110709553A (ja)
MX (1) MX2019014095A (ja)
RU (1) RU2020102001A (ja)
TW (1) TW201908565A (ja)
WO (1) WO2019012856A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235248A (zh) * 2021-06-02 2021-08-10 绥化达昌亚麻纺织有限公司 一种纱线生产设备及其生产工艺
JP2022186651A (ja) * 2021-06-03 2022-12-15 臺灣塑膠工業股▲ふん▼有限公司 サイジング剤組成物、炭素繊維材料及び複合材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100006710A1 (it) * 2021-03-19 2022-09-19 Ab Tech Lab S R L Metodo per la stabilizzazione delle fibre di carbonio
TWI767811B (zh) * 2021-07-30 2022-06-11 臺灣塑膠工業股份有限公司 碳纖維束的處理方法
CN114892393B (zh) * 2022-06-29 2023-01-20 北京化工大学 一种基于MXene相改性碳纤维装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292038A (ja) 1988-05-19 1989-11-24 Toray Ind Inc 開繊性の優れた無撚炭素繊維束、その製造法および製造装置
JPH07145549A (ja) 1993-11-17 1995-06-06 Toray Ind Inc 炭素繊維のサイジング付与方法
JP2011256486A (ja) 2010-06-09 2011-12-22 Mitsubishi Rayon Co Ltd 炭素繊維束の製造方法
JP2013023785A (ja) 2011-07-21 2013-02-04 Mitsubishi Rayon Co Ltd サイジング剤液含浸炭素繊維束の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634398Y2 (ja) * 1990-02-10 1994-09-07 鐘紡株式会社 布帛の処理装置
JP3517189B2 (ja) * 2000-08-18 2004-04-05 津田駒工業株式会社 経糸糊付機
JP2002309475A (ja) * 2001-04-12 2002-10-23 Toray Ind Inc 炭素繊維の移送方法
JP2002339222A (ja) * 2001-05-10 2002-11-27 Toho Tenax Co Ltd 炭素繊維ストランドのサイジング剤付与方法及びその装置
JP2003293260A (ja) * 2002-04-02 2003-10-15 Mitsubishi Rayon Co Ltd 薬液含浸炭素繊維糸条の搾液方法
FR2864796B1 (fr) * 2004-01-07 2006-02-10 Saint Gobain Dispositif de nettoyage de rouleaux
CN201978862U (zh) * 2011-03-02 2011-09-21 骏马化纤股份有限公司 一种帘布浸胶过程中的清洁装置
CN103334246B (zh) * 2013-06-28 2015-06-24 中简科技发展有限公司 聚丙烯腈碳纤维上浆、干燥和定型装置
CN104358050A (zh) * 2014-11-06 2015-02-18 江苏航科复合材料科技有限公司 一种碳纤维上浆方法
JP6500502B2 (ja) * 2015-03-03 2019-04-17 三菱ケミカル株式会社 炭素繊維の製造方法
CN205024441U (zh) * 2015-09-14 2016-02-10 陕西天策新材料科技有限公司 一种具有槽辊清理功能的碳纤维上浆装置
CN105525466B (zh) * 2016-03-14 2017-08-22 竺铝涛 试验用碳纤维上浆装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292038A (ja) 1988-05-19 1989-11-24 Toray Ind Inc 開繊性の優れた無撚炭素繊維束、その製造法および製造装置
JPH07145549A (ja) 1993-11-17 1995-06-06 Toray Ind Inc 炭素繊維のサイジング付与方法
JP2011256486A (ja) 2010-06-09 2011-12-22 Mitsubishi Rayon Co Ltd 炭素繊維束の製造方法
JP2013023785A (ja) 2011-07-21 2013-02-04 Mitsubishi Rayon Co Ltd サイジング剤液含浸炭素繊維束の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653772A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235248A (zh) * 2021-06-02 2021-08-10 绥化达昌亚麻纺织有限公司 一种纱线生产设备及其生产工艺
CN113235248B (zh) * 2021-06-02 2023-02-24 绥化达昌亚麻纺织有限公司 一种纱线生产设备及其生产工艺
JP2022186651A (ja) * 2021-06-03 2022-12-15 臺灣塑膠工業股▲ふん▼有限公司 サイジング剤組成物、炭素繊維材料及び複合材料
JP7402273B2 (ja) 2021-06-03 2023-12-20 臺灣塑膠工業股▲ふん▼有限公司 サイジング剤組成物、炭素繊維材料及び複合材料

Also Published As

Publication number Publication date
TW201908565A (zh) 2019-03-01
RU2020102001A (ru) 2021-08-10
JP6455637B1 (ja) 2019-01-23
MX2019014095A (es) 2020-02-07
EP3653772A4 (en) 2020-07-22
JPWO2019012856A1 (ja) 2019-07-11
EP3653772A1 (en) 2020-05-20
KR102076465B1 (ko) 2020-02-11
KR20190141015A (ko) 2019-12-20
CN110709553A (zh) 2020-01-17
US20200123688A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP6455637B1 (ja) サイジング剤付与炭素繊維束の製造方法
JP5772012B2 (ja) フィラメントワインディング成形用炭素繊維およびその製造方法
JP5161604B2 (ja) 炭素繊維の製造方法
JP5286227B2 (ja) 強化用繊維束の接続方法、長繊維強化熱可塑性樹脂ペレットの製造方法及び巻回体
JP7001998B2 (ja) 部分分繊繊維束の製造方法と部分分繊繊維束、および部分分繊繊維束を用いた繊維強化樹脂成形材料とその製造方法
JP4778168B2 (ja) 炭素繊維トウの洗浄装置
JP5870526B2 (ja) サイジング剤液含浸炭素繊維束の製造方法
JP2014189935A (ja) 炭素繊維糸条の処理方法
JP5741815B2 (ja) 炭素繊維前駆体アクリル繊維束および炭素繊維束
JP2011256486A (ja) 炭素繊維束の製造方法
EP4026942A1 (en) Carbon fiber production method and carbon fiber produced using same
JP2008240203A (ja) スチーム延伸装置および炭素繊維用前駆体糸条の製造方法
JPH0529688B2 (ja)
JP2002339222A (ja) 炭素繊維ストランドのサイジング剤付与方法及びその装置
JP2004162055A (ja) プリプレグの製造方法および製造装置
JP2009001917A (ja) リオトロピック液晶ポリマーマルチフィラメントの製造方法
JPH07145549A (ja) 炭素繊維のサイジング付与方法
JP2007154371A (ja) 酸化繊維及び炭素繊維の製造方法
JP2020158595A (ja) 熱可塑性マトリクス樹脂融着炭素繊維テープの製造方法、複合材料の製造方法
EP3699333B1 (en) Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
JP7408406B2 (ja) 耐炎化繊維束の製造方法及び炭素繊維束の製造方法並びに接続装置
JP2002115145A (ja) 補強繊維織物の製造方法
JP2002309475A (ja) 炭素繊維の移送方法
JP2016176164A (ja) 炭素繊維束およびその製造方法
JPS6233861A (ja) 炭素繊維にサイジング剤を付与する方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529181

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197036535

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018832001

Country of ref document: EP

Effective date: 20200210