WO2019011317A1 - 匀流板和工艺腔匀气装置 - Google Patents

匀流板和工艺腔匀气装置 Download PDF

Info

Publication number
WO2019011317A1
WO2019011317A1 PCT/CN2018/095579 CN2018095579W WO2019011317A1 WO 2019011317 A1 WO2019011317 A1 WO 2019011317A1 CN 2018095579 W CN2018095579 W CN 2018095579W WO 2019011317 A1 WO2019011317 A1 WO 2019011317A1
Authority
WO
WIPO (PCT)
Prior art keywords
air outlet
plate
process chamber
intake
flow
Prior art date
Application number
PCT/CN2018/095579
Other languages
English (en)
French (fr)
Inventor
袁世成
Original Assignee
君泰创新(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 君泰创新(北京)科技有限公司 filed Critical 君泰创新(北京)科技有限公司
Priority to US16/094,570 priority Critical patent/US20210189563A1/en
Priority to JP2018554538A priority patent/JP2019525447A/ja
Priority to CN201880001505.6A priority patent/CN109563622B/zh
Publication of WO2019011317A1 publication Critical patent/WO2019011317A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas

Definitions

  • the present disclosure relates to a manufacturing process technology of a thin film battery, and more particularly to a shimming plate and a process chamber homogenizing device.
  • CIGS Copper Indium Gallium Selenium
  • LPCVD Low Pressure Chemical Vapor Deposition
  • Some embodiments of the present disclosure provide a process chamber homogenizing apparatus, including:
  • the flow plate includes:
  • first guiding groove formed on the first surface, wherein the first guiding groove has at least one first inlet end and at least one first outlet end, at least one first The air inlet end is in communication with the first air source;
  • the second air guiding slot is formed on the second surface, wherein the second air guiding channel has at least one second air inlet end and at least one second air outlet end, at least one second The intake end is in communication with the second gas source; and the at least one first air outlet extending from the first surface through the second surface, the at least one first air outlet end, the at least one second air outlet end passing through the at least one first air outlet Connected
  • the isolating plate is configured to block the second guiding trough and includes at least one second air outlet, and the at least one second air outlet is in communication with the at least one first air outlet.
  • the process chamber homogenizer is an LPCVD process chamber homogenizer.
  • the flow plate further includes a first intake passage extending from a bottom surface of the first guide groove through the second surface, the second partition plate further including a first intake hole The at least one first intake end, the first intake passage and the first intake hole are in communication; the second isolation plate further includes a second intake hole, and the at least one second intake end is connected to the second intake hole .
  • the first guiding groove and the second guiding groove are both branched structures, and the at least one first inlet end is a plurality of first inlet ends, and the at least one first outlet end is a plurality of first air outlet ends, at least one second air inlet end is a plurality of second air inlet ends, at least one second air outlet end is a plurality of second air outlet ends, and at least one first air outlet hole is a plurality of air outlet holes, at least A second vent is a plurality of vents.
  • the cross-sectional area of each of the branched structures is smaller than the cross-sectional area of the branched structures of the upper one.
  • the apertures of each of the plurality of first vents are equal; the apertures of each of the plurality of second vents are equal.
  • the aperture of each of the plurality of first vents is equal to the aperture of each of the plurality of second vents.
  • the shimming plate further includes a first groove formed on the first surface and a second groove formed on the second surface, wherein the first groove and the second groove are disposed therein Sealing ring.
  • the process chamber further includes a cooling plate disposed on a surface of the second isolation plate remote from the flow plate, wherein the cooling plate includes: a second intake passage configured to be first The intake holes are in communication; and the third intake passage is configured to communicate with the second intake port.
  • the cooling plate further includes: a cooling groove, a cooling passage configured to pass through the cooling liquid, and a plurality of third air outlets, a plurality of third air outlets and a plurality of second outlets The pores are connected.
  • the cooling passage is disposed in the cooling tank, and the cooling groove is disposed on a surface of the cooling plate adjacent to the second insulation panel.
  • the cooling passages are meandering.
  • the plurality of third air outlet holes are stepped holes, and the holes of the plurality of third air outlet holes adjacent to the ends of the second isolating plate are larger than the ends of the plurality of third air outlet holes away from the end of the second isolating plate. Aperture.
  • an end of each of the plurality of third air outlets adjacent to the second partition plate communicates with a corresponding second air outlet of the plurality of second air outlet holes, and the plurality of third air outlet holes
  • the aperture of each of the adjacent ones of the second spacers is larger than the aperture of each of the plurality of second air outlets.
  • first guiding groove formed by the first surface, wherein the first guiding groove has at least one first inlet end and at least one first outlet end, at least one first inlet The air end is in communication with the first air source; the second flow path is opened in the second table, wherein the second air guiding groove has at least one second air inlet end and at least one second air outlet end, at least one second air inlet The end is in communication with the second gas source; and the at least one first air outlet extending from the first surface through the second surface, the at least one first air outlet end and the at least one second air outlet end being connected through the at least one first air outlet .
  • the flow plate further includes a first intake passage extending from a bottom surface of the first guide trough through the second surface, the at least one first intake end being in communication with the first intake passage.
  • the first guiding groove and the second guiding groove are both branched structures, and the at least one first inlet end is a plurality of first inlet ends, and the at least one first outlet end is The plurality of first air outlet ends, the at least one second air inlet end is a plurality of second air inlet ends, the at least one second air outlet end is a plurality of second air outlet ends, and the at least one first air outlet hole is a plurality of air outlet holes.
  • the shimming plate further includes a first groove formed on the first surface and a second groove formed on the second surface, wherein the first groove and the second groove are disposed therein Sealing ring.
  • FIG. 1 is a schematic diagram of application of a process chamber homogenizing device according to some embodiments of the present disclosure
  • FIG. 2 is a schematic structural view of a process chamber homogenizing device according to some embodiments of the present disclosure
  • FIG. 3 is a schematic structural view of a first isolation plate
  • Figure 4 is a schematic structural view of a flow plate
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • Figure 6 is an enlarged view of a portion C in Figure 5;
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 4.
  • Figure 8 is an enlarged view of D in Figure 7;
  • Figure 9 is an enlarged view of E in Figure 7;
  • Figure 10 is a schematic structural view of a second isolation plate
  • Figure 11 is a schematic structural view of a cooling plate
  • Figure 12 is a cross-sectional view taken along line F-F of Figure 11;
  • Figure 13 is an enlarged view of the portion H in Figure 12;
  • Figure 14 is a cross-sectional view taken along line G-G of Figure 11;
  • Figure 15 is an enlarged view of I in Figure 14;
  • Figure 16 is a cross-sectional view taken along line M-M of Figure 11;
  • Figure 17 is a cross-sectional view of the process chamber homogenizing device
  • Figure 18 is an enlarged view of a portion J in Figure 17;
  • Figure 19 is another cross-sectional view of the process chamber homogenizing device
  • Figure 20 is an enlarged view of K in Figure 19.
  • FIG. 1 is a schematic diagram of application of a process chamber homogenizing device according to some embodiments of the present disclosure
  • FIG. 2 is a schematic structural view of a process chamber homogenizing device according to some embodiments of the present disclosure.
  • some embodiments of the present disclosure provide a process chamber homogenizing apparatus including a first insulation panel 1, a flow plate 2, and a second insulation panel 3.
  • the flow plate 2 is oppositely disposed with a first surface 25 and a second surface 26.
  • the first insulation panel 1 is located on the first surface 25 of the flow plate 2 and the second insulation panel 3 is located on the second surface 26 of the flow plate 2.
  • the process chamber homogenizing device further includes a cooling plate 4 disposed on a surface of the second partitioning plate 3 away from the flow plate 2, the cooling plate being configured to keep the temperature of the surface of the homogenizer at all relative Lower range.
  • the cooling plate 4 is provided with a second intake passage 41 and a third intake passage 42.
  • the reaction gas is introduced into the process chamber and mixed in the flow plate 2, and the mixed gas is diffused to the surface of the glass substrate 5. .
  • the reactive gases include water vapor, hydrogen, borane, diethyl zinc, and the like.
  • a process chamber homogenizer is used in the production of a copper indium gallium selenide (CIGS) thin film solar cell for depositing a uniform transparent conductive film on the surface of a large size glass substrate.
  • CIGS copper indium gallium selenide
  • FIG. 3 is a schematic structural view of a first insulation panel.
  • the first insulation panel 1 is in the shape of a plate.
  • the material of the first separator 1 may be various as long as the first separator 1 does not react with the reaction gas.
  • FIG. 4 is a cross-sectional view of the cross-flow plate
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 4
  • FIG. 6 is an enlarged view of C at FIG. 5
  • FIG. 7 is a cross-sectional view taken along line BB of FIG. 4, and
  • FIG. An enlarged view of D is shown
  • Fig. 9 is an enlarged view of E at Fig. 7.
  • the shimming plate 2 includes a first guiding groove 21 opened on the first surface 25, a second guiding groove 22 opened on the second surface 26, and extending from the first surface 25 At least one first air outlet 24 of the two surfaces 26.
  • B-B is associated with the position of the first air outlet 24; and D is the area where the first air outlet 24 is located.
  • the first guide groove 21 has at least one first intake end 211 and at least one first air outlet end 212
  • the second guide groove 22 has at least one second intake end 221 and at least one second. Outlet end 222.
  • At least one first intake end 211 is in communication with the first source of air
  • at least one second intake end 221 is in communication with the second source of air.
  • the at least one first air outlet end 212, the at least one second air outlet end 222, and the at least one first air outlet end 24 are in communication.
  • the first flow guide groove 21 and the second flow guide groove 22 are the same in layout and size within the flow plate.
  • At least one first air inlet end 211 is in one-to-one correspondence with at least one second air inlet end 221, at least one first air outlet end 212, at least one second air outlet end 222, and at least one first out
  • the air holes 24 correspond one by one.
  • the first air outlet end 212 and the corresponding second air outlet end 222 are in communication through the first air outlet 24 .
  • the flow pattern of the flow plate 2 is such that the gas of the first gas source enters the flow plate 2 through the first gas inlet end 211 of the first flow channel 21 and enters the first gas outlet hole 24 through the first gas outlet end 212.
  • the gas of the second gas source enters the flow plate 2 through the second intake end 221 of the second flow guide groove 22, and enters the first air outlet hole 24 through the second air outlet end 222, and flows out with the first air outlet end 212. Gas mixing of the gas source.
  • the first guiding groove 21 and the second guiding groove 22 are both branched structures, and the at least one first intake end 211 is a plurality of first intake ends 211, at least one An air outlet end 212 is a plurality of first air outlet ends 212, at least one second air inlet end 221 is a plurality of second air inlet ends 221, and at least one second air outlet end 222 is a plurality of second air outlet ends 222, at least one An air outlet 24 is a plurality of first air outlets 24.
  • the first flow guiding groove 21 is a branched structure.
  • the first flow guiding groove 21 which is symmetric about the X and Y axes, respectively, is processed in accordance with the laws of one minute two, two four, four eighth, eight eightteen. That is, as shown in FIG. 4, the flow guiding grooves a1 and a2 are separated from the first flow guiding groove 21, that is, two flow guiding grooves are separated from one guiding groove, and the guiding groove b1 is separated from the guiding groove a1.
  • the flow guiding grooves b3 and b4 are separated from the guiding groove a2, that is, four guiding grooves are separated from the two guiding grooves, and so on.
  • the X-axis is an axis extending in the longitudinal direction of the flow plate 2 and passing through the center of the flow plate 2
  • the Y-axis extends in the width direction of the flow plate 2 and passes through the center of the flow plate 2 Axis.
  • the first guide groove 21 of the branched structure has a plurality of first intake ends 211 and a plurality of first outlet ends 212.
  • the second guiding groove 22 is a branched structure, and the branched structure of the second guiding groove and the branched structure of the first guiding groove 21 are the same in layout and size. To facilitate processing.
  • the second guide groove 22 of the branched structure has a plurality of second intake ends 221 and a plurality of second outlet ends 222.
  • the cross-sectional area of each of the stage branch structures in a plane perpendicular to the direction in which they extend is smaller than the cross-sectional area of the branch structure of the upper stage thereof.
  • the first guiding groove 21 and the second guiding groove 22 are apart from the starting position (the starting position of the first guiding groove is the first intake end that starts to intake, and the second guiding groove is The starting position is outside the second intake end where the intake is started, and is also completely symmetrical.
  • the ends of all the flow channels (the end of the first flow channel is the first gas outlet end and the end of the second flow channel is the second gas outlet end) are evenly distributed in both the horizontal and vertical directions.
  • the ends of all the flow guiding grooves are provided with a small hole, so that the first guiding groove and the second guiding groove are in communication, and the small hole is the first air outlet 24 described above.
  • the flow plate 2 further includes a first intake passage 23.
  • the first intake passage 23 extends from the bottom surface of the first guide groove 21 through the second surface 26.
  • the bottom surface of the first guide groove 21 refers to the surface near the second surface 26.
  • the A-A directions in FIGS. 4 and 5 are associated with the position of the first intake passage 23; the C in FIG. 5 is the region where the first intake passage 23 is located.
  • the plurality of first intake ends 211 are in communication with the first source of air through the first intake passage 23 and the plurality of second intake ends 221 are in communication with the second source of air.
  • FIGS. 7 and 9 is a region where the first groove 61 and the second groove 62 are located.
  • Figure 10 is a schematic view showing the structure of the second spacer.
  • the second partitioning plate 3 is provided with at least one second air outlet hole 33, and the second air outlet hole 33 communicates with a corresponding first air outlet hole 24 on the vortex plate 2.
  • the gas of the first gas source and the gas of the second gas source are mixed in the flow plate 2, and then discharged into the process chamber through the first air outlet 24 and the second air outlet hole 33, thereby achieving the effect of uniformity.
  • the first air outlet 24 and the second air outlet 33 are each plural.
  • the apertures of each of the plurality of first air outlets 24 are equal, and the apertures of each of the plurality of second air outlets 33 are equal, thereby increasing the discharge from the plurality of second air outlets 33.
  • the uniformity of the gas which in turn increases the uniformity of the film.
  • the aperture of each of the plurality of first air outlets 24 is equal to the aperture of each of the plurality of second air outlets 33, thereby avoiding the stringing of gases.
  • the second isolation plate 3 is provided with a first intake hole 31 and a second intake hole 32.
  • the first intake end 211, the first intake passage 23, the first intake aperture 31, and the first air source are in communication.
  • the second intake end 221, the second intake port 32, and the second air source are in communication.
  • the gas of the first gas source sequentially enters the flow plate 2 through the first intake hole 31 of the second partition plate 3, the first intake passage 23, and the first intake end 211 of the first guide groove 21.
  • the gas of the second gas source sequentially enters the flow plate 2 through the second intake port 32 of the second partition plate 3 and the second intake end 221 of the second guide groove 22.
  • the first insulation panel 1, the flow plate 2, and the second insulation panel 3 are fixedly connected by fasteners. 1, 4 and 10, the first partitioning plate 1, the shimming plate 2 and the second separating plate 3 are respectively provided with holes 10, 20 and 30 for accommodating the fasteners.
  • the first insulation panel 1 is configured to block the first flow guiding groove 21 and the at least one first air outlet 24 is located at one end of the first surface 25, thereby preventing reaction gas from the first flow guiding groove 21 And one end of the first air outlet 24 escapes.
  • the second insulation panel 3 is configured to block the second flow guiding groove 22 and allow the gas processed by the flow regulating plate 2 to flow out through the first air outlet hole 24.
  • the first gas source and the second gas source respectively correspond to different reaction gases.
  • the gas of the first gas source enters the first intake passage 23 through the first intake hole 31, and further enters the first guide groove 21.
  • the gas of the second gas source enters the second flow guiding groove 22 through the second intake hole 32. Since the first flow guiding groove 21 and the second flow guiding groove 22 are communicated through the first air outlet 24, the gas of the first gas source and the gas of the second gas source are adjacent to the uniform flow plate 2 of the second insulation plate 3.
  • the surface is mixed to obtain a mixed gas.
  • the mixed gas is diffused into the process chamber through the plurality of second air outlets 33.
  • the aperture sizes of the plurality of second air outlets 33 are the same, the uniformity of gas diffusion is ensured, and the film forming quality of the CIGS thin film battery is improved.
  • the interior of the process chamber is in a low vacuum, high temperature environment.
  • a high temperature object When the reaction gas enters, a high temperature object will deposit a film on its surface.
  • the film layer When the deposited film layer reaches a certain thickness, the film layer will block the air outlet hole of the process chamber homogenizing device, and the film layer deposited on the second surface of the process chamber homogenizing device will fall off onto the glass substrate, eventually affecting the glass surface.
  • the quality of the deposited film Accordingly, the process chamber homogenizing apparatus provided by some embodiments of the present disclosure further includes a cooling plate 4 .
  • FIG. 11 is a cross-sectional view of the cooling plate
  • FIG. 12 is a cross-sectional view of the FF in FIG. 11
  • FIG. 13 is a cross-sectional view of the GG in FIG. 11, and
  • Figure 16 is a cross-sectional view taken along line MM of Figure 11
  • Figure 17 is a cross-sectional view of the process chamber homogenizing device
  • Figure 18 is an enlarged view of J in Figure 17
  • Figure 19 is another cross-sectional view of the process chamber homogenizing device
  • Figure 20 is an enlarged view of K in Figure 19.
  • the cooling plate 4 is provided with a cooling groove 45, a cooling passage 43, and a plurality of third air outlet holes 44.
  • the plurality of third air outlets 44 communicate with the plurality of second air outlets 33.
  • the cooling passages 43 are disposed in the cooling grooves 45 and are supplied with a coolant.
  • the cooling plate 4 is provided with a second intake passage 41 and a third intake passage 42.
  • the second intake passages 41 are respectively connected to the first intake holes 31 and the first air source on the second partition plate 3, and the third intake passages 42 are respectively connected to the second partition plate 3.
  • the second air inlet 32 and the second air source are in communication.
  • the F-F of FIGS. 11 and 12 is associated with the position where the second intake passage 41 and the third intake passage 42 are located.
  • H in FIGS. 12 and 13 is the area where the second intake passage 41 and the third intake passage 42 are located.
  • G-G in FIGS. 11 and 14 is associated with a position where the third air outlet 44, the second intake passage 41, the third intake passage 42, and the cooling passage 43 are located.
  • I in FIG. 14 and FIG. 15 is a place including the third intake passage 42, the cooling passage 43, and the third air outlet 44.
  • the cooling passage 43 is disposed in the cooling groove 45, and the cooling groove 45 is opened on the surface of the cooling plate 4 adjacent to the second insulation plate 3 to pass the gas passing through the cooling plate 4 and the first The gas passing through the two separators 3 is simultaneously cooled.
  • the cooling passages 43 are rounded to extend the effective cooling length of the cooling passages 43 as much as possible.
  • the cooling plate By providing the cooling plate, the gas passing through the cooling plate 4 and the gas passing through the second separating plate 3 are exchanged with the coolant passing through the cooling passage 43, so that the temperature of the surface of the homogenizer is always relatively low. range. Since there is no high temperature condition required for depositing the film layer, the growth rate of the film layer on the surface of the gas homogenizer is reduced, thereby prolonging the maintenance time of the gas homogenizer, thereby improving the production efficiency.
  • the gas of the first gas source sequentially passes through the second intake passage 41, the first intake hole 31, and the first intake passage 23, and then enters the first guide groove 21.
  • the gas of the second gas source sequentially passes through the third intake passage 42 and the second intake passage 32 to enter the second guide groove 22.
  • the gas of the first gas source and the gas of the second gas source are in the second
  • the surface of the separator 3 adjacent to the flow plate 2 is mixed to obtain a mixed gas.
  • the mixed gas is diffused into the process chamber through the plurality of second air outlets 33 and the plurality of third air outlets 44.
  • the process chamber homogenizing device includes: a first isolation plate 1, a flow plate 2, and a second insulation plate 3.
  • a first intake hole 31 on the second partition plate 3 a first intake passage 23 on the flow plate 2, and a first intake end 211 of the first guide groove 21 on the flow plate 2 are connected, and The first air inlet hole 31 on the two partition plates 3 communicates with the first air source.
  • the plurality of first air outlet ends 212 of the first air guiding channel 21 and the plurality of second air outlet ends 222 of the second air guiding channel 22 pass through the plurality of first air outlets 24 and the second isolating plate 3 on the flow plate 2
  • the second air outlets 33 are in communication.
  • the gas of the first gas source sequentially passes through the first intake hole 31, the first intake passage 23, and the first guide groove 21 of the second partition plate 3.
  • the first intake end 211 enters the first flow guiding groove 21, and the gas of the first gas source is converge in the flow plate 2 through the first flow guiding groove 21.
  • the gas of the second gas source may sequentially enter the second flow guiding groove 22 through the second intake hole 32 of the second partition plate 3 and the second intake end 221 of the second flow guiding groove 22, and pass through the second guiding groove 22
  • the gas that realizes the second gas source is circulated in the flow plate 2.
  • the gas of the first gas source after the flow passes through the plurality of first gas outlet ends 212 of the first flow guiding groove 21 into the plurality of first gas outlet holes 24 of the flow plate 2 .
  • the gas of the second gas source after the flow passes through the plurality of second gas outlet ends 222 of the second flow guiding groove 22 into the plurality of first air outlet holes 24 of the flow plate 2, and with the first flow guiding groove 21
  • the gas of the first gas source flowing out of the plurality of first gas outlet ends 212 is mixed to obtain a mixed gas.
  • the mixed gas flows out through the plurality of second air outlet holes 33 of the second partitioning plate 3 to be diffused to the glass substrate, thereby ensuring the uniformity of the gas diffused onto the glass substrate and improving the film forming quality.
  • the process chamber homogenizing device includes: a first isolation plate 1, a flow plate 2, a second insulation plate 3, and a cooling plate 4. a second intake passage 41 in the cooling plate 4, a first intake hole 31 in the second partition plate 3, a first intake passage 23 in the flow plate 2, and a first guide groove in the flow plate 2
  • the first intake end 211 of 21 is in communication, and the second intake passage 41 in the cooling plate 4 is in communication with the first source.
  • the third intake passage 42 in the cooling plate 4, the second intake hole 32 in the second partition plate 3, and the second intake end 221 of the second guide groove 22 in the vortex plate 2 are connected and cooled
  • the third intake passage 42 in the plate 4 is in communication with the second source of gas.
  • the plurality of first air outlet ends 212 of the first air guiding channel 21 and the plurality of second air outlet ends 222 of the second air guiding channel 22 pass through the plurality of first air outlets 24 and the second isolating plate 3 on the flow plate 2
  • the second air outlets 33 are in communication.
  • the second air outlet 33 of the second partitioning plate 3 communicates with the third air outlet 44 of the cooling plate 4.
  • the cooling plate 4 is provided with a cooling passage 43 adjacent to the surface of the second partitioning plate 3 to simultaneously cool the gas in the cooling plate 4 and the gas in the second partitioning plate 3.
  • the gas of the first gas source sequentially passes through the second intake passage 41 in the cooling plate 4, the first intake hole 31 in the second partition plate 3, the first intake passage 23, and the first guide.
  • the first intake end 211 of the flow cell 21 enters the first flow guiding groove 21.
  • the gas of the first gas source is convected in the flow plate 2 by the first flow guiding groove 21.
  • the gas of the second gas source sequentially passes through the third intake passage 42 on the cooling plate 4, the second intake hole 32 of the second partition plate 3, and the second intake end 221 of the second guide groove 22 to enter the second The guide groove 22.
  • the gas of the second gas source is convected in the flow plate 2 by the second flow guiding groove 22.
  • the gas of the first gas source after the flow through the plurality of first gas outlet ends 212 of the first flow guiding groove 21 enters the plurality of first gas outlet holes 24 of the flow plate 2.
  • the gas of the second gas source after the flow passes through the plurality of second gas outlet ends 222 of the second flow guiding groove 22 to enter the plurality of first air outlet holes 24 of the flow plate 2, and with the first flow guiding groove 21
  • the gases of the first gas source flowing out of the plurality of first gas outlet ends 212 are mixed to obtain a mixed gas.
  • the mixed gas sequentially flows out through the plurality of second air outlets 33 of the second partitioning plate 3 and the third air outlet holes 44 of the cooling plate 4, thereby diffusing onto the glass substrate.
  • the cooling liquid in the cooling passage 43 cools the second air outlet 33 of the second partitioning plate 3 and the gas in the third air outlet 44 of the cooling plate 4 to avoid high temperature of gas flowing from the process chamber homogenizing device.
  • the film layer is prevented from affecting the uniformity of the gas flowing to the substrate in the process chamber, thereby improving the film forming quality.
  • the third air outlet 44 is a stepped aperture.
  • the aperture of the third air outlet 44 adjacent to the end of the second insulation panel 3 is larger than the aperture of the third air outlet 44 away from the end of the second insulation panel 3.
  • the third air outlet 44 is a plurality. Each of the plurality of third air outlets 44 is adjacent to the end of the second partitioning plate 3 and communicates with a corresponding one of the plurality of second air outlets 33.
  • the aperture of the third air outlet 44 adjacent the end of the second insulation panel 3 is larger than the aperture of the second air outlet 33 to ensure a smoother flow of gas. In some embodiments of the present disclosure, the apertures of the plurality of third air outlets 44 away from the ends of the second insulation panel 3 are equal and equal to the apertures of each of the plurality of second air outlet apertures 33.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开提供了一种匀流板和工艺腔匀气装置,工艺腔匀气装置包括匀流板、第一隔离板和第二隔离板;匀流板包括第一表面开设的第一导流槽,与第一表面相对的第二表面开设的第二导流槽;至少一个第一出气孔。第一导流槽的至少一个第一进气端与第一气源相连通,第二导流槽的至少一个第二进气端与第二气源相连通。第一导流槽的至少一个第一出气端、第二导流槽的至少一个第二出气端通过至少一个第一出气孔相连通;第一隔离板封堵第一导流槽以及至少一个第一出气孔位于第一表面的一端。第二隔离板封堵第二导流槽,且包括至少一个第二出气孔,至少一个第二出气孔与至少一个第一出气孔相连通。

Description

匀流板和工艺腔匀气装置
本申请要求于2017年7月14日提交中国专利局、申请号为201710576540.8、发明名称为“LPCVD工艺腔匀气装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及薄膜电池的制备工艺技术,尤其涉及一种匀流板和工艺腔匀气装置。
背景技术
目前光伏产业发展的关键是降低太阳能电池生产成本。铜铟镓硒(Copper Indium Gallium Selenium,CIGS)薄膜太阳电池具有生产成本低、污染小、不衰退、弱光性能好、光电转换率高等特点。在CIGS薄膜太阳能电池的制造过程中,应用低压力化学气相沉积法(Low Pressure Chemical Vapor Deposition,LPCVD)来制造进行薄膜制造。
发明内容
本公开一些实施例提供了一种工艺腔匀气装置,包括:
匀流板,包括:
相对设置的第一表面和第二表面;第一表面上开设的第一导流槽,其中,第一导流槽具有至少一个第一进气端和至少一个第一出气端,至少一个第一进气端与第一气源相连通;第二表面上开设的第二导流槽,其中,第二导流槽具有至少一个第二进气端和至少一个第二出气端,至少一个第二进气端与第二气源相连通;以及从第一表面延伸穿过第二表面的至少一个第一出气孔,至少一个第一出气端、至少一个第二出气端通过至少一个第一出气孔相连通;
位于匀流板的第一表面上的第一隔离板,配置为封堵第一导流槽以及至少一个第一出气孔中每个的一端;以及位于匀流板的第二表面上的第二隔离板,配置为封堵第二导流槽,且包括至少一个第二出气孔,至少一个第二出气孔与至少一个第一出气孔相连通。
在本公开一些实施例中,工艺腔匀气装置为LPCVD工艺腔匀气装置。
在本公开一些实施例中,匀流板还包括第一进气通道,第一进气通道从第一导流槽的底面延伸穿过第二表面,第二隔离板还包括第一进气孔,至少一个第一进气端、第一进气通道和第一进气孔相连通;第二隔离板还包括第二进气孔,至少一个第二进气端和第二进气孔相连通。
在本公开一些实施例中,第一导流槽和第二导流槽均为分枝状结构,且至少一个第一进气端为多个第一进气端,至少一个第一出气端为多个第一出气端,至少一个第二进气端为多个第二进气端,至少一个第二出气端为多个第二出气端,至少一个第一出气孔为多个出气孔,至少一个第二出气孔为多个出气孔。
在本公开一些实施例中,分枝状结构中,每一级分枝结构的横截面积均小于其上一级的分枝结构的横截面积。
在本公开一些实施例中,多个第一出气孔中每个的孔径相等;多个第二出气孔中每个的孔径相等。
在本公开一些实施例中,多个第一出气孔中每个的孔径与多个第二出气孔中每个的孔径相等。
在本公开一些实施例中,匀流板还包括第一表面上开设的第一凹槽和第二表面上开设的第二凹槽,其中,第一凹槽和第二凹槽内均设置有密封圈。
在本公开一些实施例中,工艺腔还包括冷却板,该冷却板设置在第二隔离板的远离匀流板的表面上,其中,冷却板包括:第二进气通道,配置为与第一进气孔相连通;和第三进气通道,配置为与第二进气孔相连通。
在本公开一些实施例中,冷却板还包括:冷却槽,冷却通道,该冷却通道内配置为通入冷却液,和多个第三出气孔,多个第三出气孔与多个第二出气孔相连通。
在本公开一些实施例中,冷却通道设置在冷却槽内,且冷却槽开设在冷却板的邻近第二隔离板的表面。
在本公开一些实施例中,冷却通道为迂回状。
在本公开一些实施例中,多个第三出气孔为阶梯孔,多个第三出气孔邻近第二隔离板的端部的孔径大于多个第三出气孔远离第二隔离板的端部的孔径。
在本公开一些实施例中,多个第三出气孔中的每个的邻近第二隔离板的端部与多个第二出气孔中相应的第二出气孔相连通,多个第三出气孔中的每个的邻近第二隔离板的端部的孔径大于所述多个第二出气孔中的每个的孔径。
本公开另一些实施列提供了一种匀流板,包括:
相对设置的第一表面和第二表面;第一表面开设的第一导流槽,其中,第一导流槽具有至少一个第一进气端和至少一个第一出气端,至少一个第一进气端与第一气源相连通;第二表开设的第二导流槽,其中,第二导流槽具有至少一个第二进气端和至少一个第二出气端,至少一个第二进气端与第二气源相连通;以及从第一表面延伸穿过第二表面的至少一个第一出气孔,至少一个第一出气端、至少一个第二出气端通过至少一个第一出气孔相连通。
在本公开一些实施例中,匀流板还包括从第一导流槽的底面延伸穿过第二表面的第一进气通道,至少一个第一进气端和第一进气通道相连通。
在本公开一些实施例中,第一导流槽和第二导流槽均为分枝状结构,且至少一个第一进气端为多个第一进气端,至少一个第一出气端为多个第一出气端,至少一个第二进气端为多个第二进气端,至少一个第二出气端为多个第二出气端,至少一个第一出气孔为多个出气孔。
在本公开一些实施例中,匀流板还包括第一表面上开设的第一凹槽和第二表面上开设的第二凹槽,其中,第一凹槽和第二凹槽内均设置有密封圈。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不 构成对本公开的不当限定。在附图中:
图1为本公开一些实施例提供的工艺腔匀气装置的应用示意图;
图2为本公开一些实施例提供的工艺腔匀气装置的结构示意图;
图3为第一隔离板的结构示意图;
图4为匀流板的结构示意图;
图5为图4中的A-A向剖视图;
图6为图5中的C处放大图;
图7为图4中的B-B向剖视图;
图8为图7中的D处放大图;
图9为图7中的E处放大图;
图10为第二隔离板的结构示意图;
图11为冷却板的结构示意图;
图12为图11中的F-F向剖视图;
图13为图12中的H处放大图;
图14为图11中的G-G向剖视图;
图15为图14中的I处放大图;
图16为图11中的M-M向剖视图;
图17为工艺腔匀气装置的一个断面图;
图18为图17中的J处放大图;
图19为工艺腔匀气装置的另一个断面图;和
图20为图19中的K处放大图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能解释为对本公开的限制。
请参照图1和图2,图1为本公开一些实施例提供的工艺腔匀气装置的应用示意图,图2为本公开一些实施例提供的工艺腔匀气装置的结构示意图。
如图1所示,本公开一些实施例提供了一种工艺腔匀气装置,该装置包括第一隔离板1、匀流板2以及第二隔离板3。匀流板2相对设置有第一表面25和第二表面26。第一隔离板1位于匀流板2的第一表面25上,第二隔离板3位于匀流板2的第二表面26上。
在本公开一些实施例中,工艺腔匀气装置还包括设置在第二隔离板3远离匀流板2的表面上的冷却板4,该冷却板配置为使匀气装置表面的温度始终处于相对较低的范围。
在本公开一些实施例中,如图2所示,冷却板4上设置有第二进气通道41和第三进气通道42。
如图1及图2所示,通过本公开提供的工艺腔匀气装置,反应气体被通入到工艺腔中,并在匀流板2中混合,混合后的气体扩散到玻璃基板5的表面。
在本公开一些实施例中,反应气体包括水蒸气、氢气、硼烷和二乙基锌等。
在本公开一些实施例中,工艺腔匀气装置在铜铟镓硒(CIGS)薄膜太阳能电池的生产中,用于在大尺寸玻璃基板的表面上沉积一层均匀的透明导电膜。
图3为第一隔离板的结构示意图。在本公开一些实施例中,如图3所示,第一隔离板1为板状。该第一隔离板1的材质可以有多种,只要第一隔离板1不与反应气体发生反应即可。
图4为匀流板的结构示意图,图5为图4中的A-A向剖视图,图6为图5中的C处放大图,图7为图4中的B-B向剖视图,图8为图7中的D处放大图;图9为图7中的E处放大图。
如图7、8所示,匀流板2包括第一表面25上开设的第一导流槽21、第二表面26上开设的第二导流槽22及从第一表面25延伸穿过第二表面26的至少一个第一出气孔24。其中,B-B向与第一出气孔24的位置相关联;D处为第一出气孔24所在的区域。
如图9所示,第一导流槽21具有至少一个第一进气端211和至少一个第一出气端212,第二导流槽22具有至少一个第二进气端221和至 少一个第二出气端222。至少一个第一进气端211与第一气源相连通,至少一个第二进气端221与第二气源相连通。至少一个第一出气端212、至少一个第二出气端222及至少一个第一出气孔24相连通。
在本公开一些实施例中,在匀流板内,第一导流槽21与第二导流槽22的布局和尺寸相同。
在本公开一些实施例中,至少一个第一进气端211与至少一个第二进气端221一一对应,至少一个第一出气端212、至少一个第二出气端222及至少一个第一出气孔24一一对应。第一出气端212和对应的第二出气端222通过第一出气孔24相连通。
匀流板2的匀流方式为:第一气源的气体通过第一导流槽21的第一进气端211进入匀流板2,并通过第一出气端212进入第一出气孔24。第二气源的气体通过第二导流槽22的第二进气端221进入匀流板2,并通过第二出气端222进入第一出气孔24,与第一出气端212流出的第一气源的气体混合。
在本公开一些实施例中,第一导流槽21和第二导流槽22均为分枝状结构,且至少一个第一进气端211为多个第一进气端211,至少一个第一出气端212为多个第一出气端212,至少一个第二进气端221为多个第二进气端221,至少一个第二出气端222为多个第二出气端222,至少一个第一出气孔24为多个第一出气孔24。
参照图4,在本公开一些实施例中,第一导流槽21为分枝状结构。例如,按照一分二、二分四、四分八、八分十六……的规律加工出分别关于X、Y轴对称的第一导流槽21。即,如图4所示,从第一导流槽21分出导流槽a1和a2,即从一个导流槽分出两个导流槽,从导流槽a1分出导流槽b1和b2、从导流槽a2分出导流槽b3和b4,即从两个导流槽分出四个导流槽,……依次类推。如图4所示,X轴为沿匀流板2的长度方向延伸且穿过匀流板2中心的轴线,Y轴为沿匀流板2的宽度方向延伸且穿过匀流板2中心的轴线。分枝状结构的第一导流槽21具有多个第一进气端211和多个第一出气端212。
在本公开一些实施例中,第二导流槽22为分枝状结构,且第二导 流槽的分枝状结构与第一导流槽21的分枝状结构在布局和尺寸上均相同,从而便于加工。分枝状结构的第二导流槽22具有多个第二进气端221和多个第二出气端222。
在本公开一些实施例中,在分枝状结构中,每一级分枝结构的沿垂直于其延伸方向的平面的横截面积均小于其上一级的分枝结构的横截面积。在一些实施例中,第一导流槽21、第二导流槽22除了起始位置(第一导流槽的起始位置为开始进气的第一进气端,第二导流槽的起始位置为开始进气的第二进气端)外,也是完全对称。所有导流槽的末端(第一导流槽的末端为第一出气端,第二导流槽的末端为第二出气端)在水平与竖直方向都是均匀分布的。所有导流槽的末端均设置有一个小孔,使得第一导流槽和第二导流槽相连通,该小孔即上述的第一出气孔24。
如图5、图6所示,在本公开一些实施例中,匀流板2还包括第一进气通道23。第一进气通道23从第一导流槽21的底面延伸穿过第二表面26。第一导流槽21的底面指的是靠近第二表面26的面。其中,图4和图5中的A-A向与第一进气通道23的位置相关联;图5中的C处为第一进气通道23所在的区域。
在本公开一些实施例中,多个第一进气端211通过第一进气通道23与第一气源相连通,多个第二进气端221与第二气源相连通。
图9为图7中的E处放大图。在本公开一些实施例中,在匀流板2包括第一表面25上开设的第一凹槽61和第二表面26上开设的第二凹槽62。第一凹槽61和第二凹槽62内分别设置有密封圈611、612,密封圈611使匀流板2与第一隔离板1密封接触,密封圈612使匀流板2与第二隔离板3密封接触。其中,图7和图9中的E处为第一凹槽61和第二凹槽62所在区域。通过设置在匀流板上的第一凹槽61和第二凹槽62,使得第一隔离板1与第二隔离板3对匀流板的封堵更为紧密,从而避免匀流板2中的气体逸出。
图10为第二隔离板的结构示意图。如图10所示,第二隔离板3上设置有至少一个第二出气孔33,第二出气孔33与匀流板2上的对应 的第一出气孔24相连通。使得第一气源的气体和第二气源的气体在匀流板2中混合,再通过第一出气孔24和第二出气孔33排出到工艺腔中,从而实现了匀气的效果。
在本公开一些实施例中,第一出气孔24和第二出气孔33均是多个。
在本公开一些实施例中,多个第一出气孔24中每个的孔径相等,多个第二出气孔33中每个的孔径相等,从而提高了从多个第二出气孔33中排出的气体的均匀性,进而提高了膜层的均匀性。
在本公开一些实施例中,多个第一出气孔24中每个的孔径与多个第二出气孔33中每个的孔径相等,从而避免了气体的串动。
在本公开一些实施例中,如图10所示,第二隔离板3上设置有第一进气孔31和第二进气孔32。
在本公开一些实施例中,第一进气端211、第一进气通道23、第一进气孔31和第一气源相连通。第二进气端221、第二进气孔32和第二气源相连通。这样,第一气源的气体依次通过第二隔离板3的第一进气孔31、第一进气通道23和第一导流槽21的第一进气端211进入匀流板2。第二气源的气体依次通过第二隔离板3的第二进气孔32和第二导流槽22的第二进气端221进入匀流板2。
在本公开一些实施例中,第一隔离板1、匀流板2和第二隔离板3之间通过紧固件固定连接。结合图1、图4及图10,第一隔离板1、匀流板2和第二隔离板3上分别设置有孔10、20及30,以容纳紧固件。
在本公开一些实施例中,第一隔离板1配置为封堵第一导流槽21以及至少一个第一出气孔24位于第一表面25的一端,从而避免反应气体从第一导流槽21和第一出气孔24的一端逸出。第二隔离板3配置为封堵第二导流槽22,并使得通过匀流板2处理的气体通过第一出气孔24流出。
在本公开一些实施例中,第一气源和第二气源分别对应不同的反应气体。第一气源的气体经过第一进气孔31进入到第一进气通道23,进而进入到第一导流槽21内。第二气源的气体经过第二进气孔32进入 到第二导流槽22内。由于第一导流槽21和第二导流槽22通过第一出气孔24相连通,因此,第一气源的气体和第二气源的气体在第二隔离板3的邻接匀流板2的表面混合,得到混合气体。混合气体经由多个第二出气孔33后扩散到工艺腔。
由于多个第二出气孔33的孔径大小均相同,从而保证了气体扩散的均匀性,提高了CIGS薄膜电池的薄膜成型质量。
在本公开一些实施例中,工艺腔内部处于低真空、高温的环境。当反应气体进入后,遇到高温物体就会在其表面沉积膜层。当沉积的膜层到一定厚度后,该膜层会堵塞工艺腔匀气装置的出气孔,且沉积在工艺腔匀气装置第二表面的膜层会脱落掉到玻璃基板上,最终影响玻璃表面沉积膜层的质量。因此,本公开一些实施例提供的工艺腔匀气装置还包括冷却板4。
图11为冷却板的结构示意图,图12为图11中的F-F向剖视图,图13为图12中的H处放大图,图14为图11中的G-G向剖视图,图15为图14中的I处放大图。图16为图11中的M-M向剖视图;图17为工艺腔匀气装置的一个断面图;图18为图17中的J处放大图;图19为工艺腔匀气装置的另一个断面图;图20为图19中的K处放大图。
在本公开一些实施例中,结合图11-16所示,冷却板4上设置有冷却槽45、冷却通道43和多个第三出气孔44。该多个第三出气孔44与多个第二出气孔33相连通。
在本公开一些实施例中,如图16所示,冷却通道43设置在冷却槽45内,且通有冷却液。
在本公开一些实施例中,如图11所示,冷却板4上设置有第二进气通道41和第三进气通道42。如图18所示,第二进气通道41分别与第二隔离板3上的第一进气孔31及第一气源相连通,且第三进气通道42分别与第二隔离板3上的第二进气孔32及第二气源相连通。
其中,图11和图12的F-F向与第二进气通道41和第三进气通道42所在的位置相关联。图12和图13中的H处为第二进气通道41和第三进气通道42所在的区域。图11和图14中的G-G向与第三出气孔44、 第二进气通道41、第三进气通道42和冷却通道43所在的位置相关联。图14和图15中的I处为包含了第三进气通道42、冷却通道43和第三出气孔44的一处。
在本公开一些实施例中,冷却通道43设置于冷却槽45内,且该冷却槽45开设在冷却板4的邻接第二隔离板3的表面上,以对冷却板4内通过的气体和第二隔离板3内通过的气体同时冷却。
在本公开一些实施例中,冷却通道43为迂回状,从而尽可能地延长冷却通道43的有效冷却长度。
通过设置冷却板,使得冷却板4内通过的气体和第二隔离板3内通过的气体与冷却通道43内通过的冷却液进行能量交换,从而使匀气装置表面的温度始终处于相对较低的范围。由于没有了沉积膜层所需的高温条件,因此,降低了膜层在匀气装置表面的生长速率,从而延长了匀气装置的维护时间,进而提高了生产效率。
如图17和图18所示,第一气源的气体依次经过第二进气通道41、第一进气孔31、第一进气通道23后进入第一导流槽21。第二气源的气体依次经过第三进气道42、第二进气通孔32后进入第二导流槽22。
如图19和图20所示,由于第一导流槽21和第二导流槽22通过第一出气孔24相连通,因此,第一气源的气体和第二气源的气体在第二隔离板3的邻近匀流板2的表面混合,以获得混合气体。该混合气体经由多个第二出气孔33和多个第三出气孔44后扩散到工艺腔。
在本公开一些实施例中,工艺腔匀气装置包括:第一隔离板1、匀流板2以及第二隔离板3。
第二隔离板3上的第一进气孔31、匀流板2上的第一进气通道23以及匀流板2上第一导流槽21的第一进气端211相连通,且第二隔离板3上的第一进气孔31与第一气源相连通。
第二隔离板3上的第二进气孔32以及匀流板2上第二导流槽22的第二进气端221相连通,且第二隔离板3上的第二进气孔32与第二气源相连通。
第一导流槽21的多个第一出气端212和第二导流槽22的多个第 二出气端222通过匀流板2上的多个第一出气孔24与第二隔离板3的第二出气孔33相连通。
这样,通过本公开实施例提供的工艺腔匀气装置,第一气源的气体依次通过第二隔离板3的第一进气孔31、第一进气通道23和第一导流槽21的第一进气端211进入第一导流槽21,通过第一导流槽21实现第一气源的气体在匀流板2中匀流。第二气源的气体可依次通过第二隔离板3的第二进气孔32和第二导流槽22的第二进气端221进入第二导流槽22,通过第二导流槽22实现第二气源的气体在匀流板2中匀流。
匀流后的第一气源的气体通过第一导流槽21的多个第一出气端212进入匀流板2的多个第一出气孔24。同时,匀流后的第二气源的气体通过第二导流槽22的多个第二出气端222进入匀流板2的多个第一出气孔24,并与第一导流槽21的多个第一出气端212流出的第一气源的气体混合得到混合后的气体。混合后的气体通过第二隔离板3的多个第二出气孔33流出,从而扩散到玻璃基板,进而保证了扩散到玻璃基板上的气体的均匀性,提高成膜质量。
在本公开一些实施例中,工艺腔匀气装置包括:第一隔离板1、匀流板2、第二隔离板3以及冷却板4。冷却板4中的第二进气通道41、第二隔离板3中的第一进气孔31、匀流板2中的第一进气通道23以及匀流板2中的第一导流槽21的第一进气端211相连通,且冷却板4中的第二进气通道41与第一气源相连通。
冷却板4中的第三进气通道42、第二隔离板3中的第二进气孔32以及匀流板2中的第二导流槽22的第二进气端221相连通,且冷却板4中的第三进气通道42与第二气源相连通。
第一导流槽21的多个第一出气端212和第二导流槽22的多个第二出气端222通过匀流板2上的多个第一出气孔24与第二隔离板3的第二出气孔33相连通。第二隔离板3的第二出气孔33与冷却板4的第三出气孔44相连通。
冷却板4邻接第二隔离板3的表面设置有冷却通道43,以对冷却板4内的气体和第二隔离板3内的气体同时冷却。
如图18所示,第一气源的气体依次通过冷却板4中的第二进气通道41、第二隔离板3中的第一进气孔31、第一进气通道23和第一导流槽21的第一进气端211进入到第一导流槽21。通过第一导流槽21实现第一气源的气体在匀流板2中匀流。第二气源的气体依次通过冷却板4上的第三进气通道42、第二隔离板3的第二进气孔32和第二导流槽22的第二进气端221进入到第二导流槽22。通过第二导流槽22实现第二气源的气体在匀流板2中匀流。
如图20所示,匀流后的第一气源的气体通过第一导流槽21的多个第一出气端212进入到匀流板2的多个第一出气孔24。同时,匀流后的第二气源的气体通过第二导流槽22的多个第二出气端222进入到匀流板2的多个第一出气孔24,并与第一导流槽21的多个第一出气端212流出的第一气源的气体混合,得到混合后的气体。混合后的气体依次通过第二隔离板3的多个第二出气孔33以及冷却板4的第三出气孔44流出,从而扩散到玻璃基板上。冷却通道43内的冷却液对第二隔离板3的第二出气孔33以及冷却板4的第三出气孔44内的气体进行冷却,以避免从工艺腔匀气装置流处的气体遇到高温物体时在工艺腔匀气装置的表面沉积膜层,从而避免膜层影响流向工艺腔内基板的气体的均匀性,进而提高了成膜质量。
在本公开一些实施例中,第三出气孔44为阶梯孔。所述第三出气孔44邻近第二隔离板3的端部的孔径大于第三出气孔44远离第二隔离板3的端部的孔径。
在本公开一些实施例中,第三出气孔44为多个。多个第三出气孔44中的每个邻近第二隔离板3的端部与多个第二出气孔33中相应的第二出气孔33相连通。
在本公开一些实施例中,第三出气孔44邻近第二隔离板3的端部的孔径大于第二出气孔33的孔径,以保证气体流动的更为流畅。在本公开一些实施例中,多个第三出气孔44远离第二隔离板3的端部的孔径相等,且与多个第二出气孔的33中每个的孔径相等。
以上依据图式所示的实施例详细说明了本公开的构造、特征及作 用效果,以上所述仅为本公开的较佳实施例,但本公开不以图面所示限定实施范围,凡是依照本公开的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本公开的保护范围内。

Claims (19)

  1. 一种工艺腔匀气装置,包括:
    匀流板,包括:
    相对的第一表面和第二表面;
    所述第一表面上开设的第一导流槽,其中,所述第一导流槽具有至少一个第一进气端和至少一个第一出气端,所述至少一个第一进气端配置为与第一气源相连通;
    所述第二表面上开设的第二导流槽,其中,所述第二导流槽具有至少一个第二进气端和至少一个第二出气端,所述至少一个第二进气端配置为与第二气源相连通;以及
    从所述第一表面延伸穿过所述第二表面的至少一个第一出气孔,所述至少一个第一出气端、所述至少一个第二出气端通过所述至少一个第一出气孔相连通;
    位于所述匀流板的第一表面上的第一隔离板,配置为封堵所述第一导流槽以及所述至少一个第一出气孔位于第一表面的一端;以及
    位于所述匀流板的第二表面上的第二隔离板,配置为封堵所述第二导流槽,且包括至少一个第二出气孔,所述至少一个第二出气孔与所述至少一个第一出气孔相连通。
  2. 根据权利要求1所述的工艺腔匀气装置,其特征在于,所述工艺腔匀气装置为LPCVD工艺腔匀气装置。
  3. 根据权利要求1或2所述的工艺腔匀气装置,其中,所述匀流板还包括第一进气通道,所述第一进气通道从所述第一导流槽的底面延伸穿过所述第二表面;
    所述第二隔离板还包括第一进气孔,所述至少一个第一进气端、所述第一进气通道和所述第一进气孔相连通;
    所述第二隔离板还包括第二进气孔,所述至少一个第二进气端和所述第二进气孔相连通。
  4. 根据权利要求2所述的工艺腔匀气装置,其中,所述第一导流槽和所述第二导流槽均为分枝状结构,且所述至少一个第一进气端为多个第 一进气端,所述至少一个第一出气端为多个第一出气端,所述至少一个第二进气端为多个第二进气端,所述至少一个第二出气端为多个第二出气端,所述至少一个第一出气孔为多个第一出气孔,所述至少一个第二出气孔为多个第二出气孔。
  5. 根据权利要求4所述的工艺腔匀气装置,其中,所述分枝状结构中,每一级分枝结构的横截面积均小于其上一级的分枝结构的横截面积。
  6. 根据权利要求4或5所述的工艺腔匀气装置,其中,所述多个第一出气孔中每个的孔径相等,且所述多个第二出气孔中每个的孔径相等。
  7. 根据权利要求4-6任一项所述的工艺腔匀气装置,其中,所述多个第一出气孔中每个的孔径与所述多个第二出气孔中每个的孔径相等。
  8. 根据权利要求3-7任一项所述的工艺腔匀气装置,其中,所述匀流板还包括所述第一表面上开设的第一凹槽和所述第二表面上开设的第二凹槽;
    其中,所述第一凹槽和所述第二凹槽内均设置有密封圈。
  9. 根据权利要求3-8任一项所述的工艺腔匀气装置,还包括冷却板,所述冷却板设置在所述第二隔离板的远离所述匀流板的表面上,其中,所述冷却板包括:
    第二进气通道,配置为与所述第一进气孔相连通;和
    第三进气通道,配置为与所述第二进气孔相连通。
  10. 根据权利要求9所述的工艺腔匀气装置,其中,所述冷却板还包括:
    冷却槽;
    冷却通道,所述冷却通道配置为通入冷却液;和
    多个第三出气孔,所述多个第三出气孔与所述多个第二出气孔相连通。
  11. 根据权利要求10所述的工艺腔匀气装置,其中,所述冷却通道设置在所述冷却槽内,且所述冷却槽开设在所述冷却板的邻近所述第二隔离板的表面上。
  12. 根据权利要求10或11所述的工艺腔匀气装置,其中,所述冷却 通道为迂回状。
  13. 根据权利要求10-12任一项所述的工艺腔匀气装置,其中,所述多个第三出气孔为阶梯孔,所述多个第三出气孔邻近所述第二隔离板的端部的孔径大于所述多个第三出气孔远离所述第二隔离板的端部的孔径。
  14. 根据权利要求10-13任一项所述的工艺腔匀气装置,其中,所述多个第三出气孔中的每个的邻近所述第二隔离板的端部与所述多个第二出气孔中相应的第二出气孔相连通,所述多个第三出气孔中的每个的邻近所述第二隔离板的端部的孔径大于所述多个第二出气孔中的每个的孔径。
  15. 根据权利要求10-14任一项所述的工艺腔匀气装置,其中,所述多个第三出气孔远离所述第二隔离板的端部的孔径相等,且与所述多个第二出气孔中每个的孔径相等。
  16. 一种匀流板,包括:
    相对的第一表面和第二表面;
    所述第一表面上开设的第一导流槽,其中,所述第一导流槽具有至少一个第一进气端和至少一个第一出气端,所述至少一个第一进气端配置为与第一气源相连通;
    所述第二表面上开设的第二导流槽,其中,所述第二导流槽具有至少一个第二进气端和至少一个第二出气端,所述至少一个第二进气端配置为与第二气源相连通;以及
    从所述第一表面延伸穿过所述第二表面的至少一个第一出气孔,所述至少一个第一出气端、所述至少一个第二出气端通过所述至少一个第一出气孔相连通。
  17. 根据权利要求16所述的匀流板,其中,所述匀流板还包括从所述第一导流槽的底面延伸穿过所述第二表面的第一进气通道,所述至少一个第一进气端和所述第一进气通道相连通。
  18. 根据权利要求16或17所述的匀流板,其中,所述第一导流槽和所述第二导流槽均为分枝状结构,且所述至少一个第一进气端为多个第一进气端,所述至少一个第一出气端为多个第一出气端,所述至少一个第二进气端为多个第二进气端,所述至少一个第二出气端为多个第二出气端, 所述至少一个第一出气孔为多个第一出气孔。
  19. 根据权利要求16-18任一项所述的匀流板,其中,所述匀流板还包括所述第一表面上开设的第一凹槽和所述第二表面上开设的第二凹槽;
    其中,所述第一凹槽和所述第二凹槽内均设置有密封圈。
PCT/CN2018/095579 2017-07-14 2018-07-13 匀流板和工艺腔匀气装置 WO2019011317A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/094,570 US20210189563A1 (en) 2017-07-14 2018-07-13 Flow homogenizing plate and gas homogenizing device for process chamber
JP2018554538A JP2019525447A (ja) 2017-07-14 2018-07-13 均等流板及びプロセスチャンバ等化装置
CN201880001505.6A CN109563622B (zh) 2017-07-14 2018-07-13 匀流板和工艺腔匀气装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710576540.8 2017-07-14
CN201710576540.8A CN107326341B (zh) 2017-07-14 2017-07-14 Lpcvd工艺腔匀气装置

Publications (1)

Publication Number Publication Date
WO2019011317A1 true WO2019011317A1 (zh) 2019-01-17

Family

ID=60226976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095579 WO2019011317A1 (zh) 2017-07-14 2018-07-13 匀流板和工艺腔匀气装置

Country Status (4)

Country Link
US (1) US20210189563A1 (zh)
JP (1) JP2019525447A (zh)
CN (2) CN107326341B (zh)
WO (1) WO2019011317A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326341B (zh) * 2017-07-14 2019-10-25 君泰创新(北京)科技有限公司 Lpcvd工艺腔匀气装置
TWI709203B (zh) * 2018-09-11 2020-11-01 大陸商北京北方華創微電子裝備有限公司 腔室冷卻裝置及半導體加工設備
CN111304630A (zh) * 2019-12-06 2020-06-19 深圳市纳设智能装备有限公司 一种预热型喷淋组件
CN113808899B (zh) * 2020-06-17 2024-07-05 江苏鲁汶仪器股份有限公司 一种应用于等离子体处理装置中的高均匀性气路系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413112A (zh) * 2007-10-16 2009-04-22 应用材料股份有限公司 多种气体直通道喷头
US20120067971A1 (en) * 2009-06-01 2012-03-22 Korea Institute of Industrial Tedhnology Showerhead for film depositing vacuum equipment
CN104278254A (zh) * 2013-07-03 2015-01-14 诺发系统公司 多充气室的双温喷头
CN104641457A (zh) * 2012-09-21 2015-05-20 应用材料公司 晶圆处理设备中的化学物质控制特征
TWI527090B (zh) * 2010-07-12 2016-03-21 愛發科股份有限公司 成膜裝置
CN106756887A (zh) * 2017-03-21 2017-05-31 北京化工大学 一种微分混合式化学气相沉积装置
CN107326341A (zh) * 2017-07-14 2017-11-07 君泰创新(北京)科技有限公司 Lpcvd工艺腔匀气装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380091B2 (ja) * 1995-06-09 2003-02-24 株式会社荏原製作所 反応ガス噴射ヘッド及び薄膜気相成長装置
US20110308458A1 (en) * 2010-06-21 2011-12-22 Semes Co., Ltd. Thin Film Deposition Apparatus
CN201778112U (zh) * 2010-07-23 2011-03-30 深圳市捷佳伟创微电子设备有限公司 一种工艺气体的输送法兰
CN102492937A (zh) * 2011-12-29 2012-06-13 中国科学院半导体研究所 用于金属化学气相沉积设备反应室的进气喷淋头
CN202881383U (zh) * 2012-09-28 2013-04-17 深圳市捷佳伟创新能源装备股份有限公司 一种用于mocvd设备反应室的均气装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413112A (zh) * 2007-10-16 2009-04-22 应用材料股份有限公司 多种气体直通道喷头
US20120067971A1 (en) * 2009-06-01 2012-03-22 Korea Institute of Industrial Tedhnology Showerhead for film depositing vacuum equipment
TWI527090B (zh) * 2010-07-12 2016-03-21 愛發科股份有限公司 成膜裝置
CN104641457A (zh) * 2012-09-21 2015-05-20 应用材料公司 晶圆处理设备中的化学物质控制特征
CN104278254A (zh) * 2013-07-03 2015-01-14 诺发系统公司 多充气室的双温喷头
CN106756887A (zh) * 2017-03-21 2017-05-31 北京化工大学 一种微分混合式化学气相沉积装置
CN107326341A (zh) * 2017-07-14 2017-11-07 君泰创新(北京)科技有限公司 Lpcvd工艺腔匀气装置

Also Published As

Publication number Publication date
CN107326341B (zh) 2019-10-25
CN109563622A (zh) 2019-04-02
JP2019525447A (ja) 2019-09-05
US20210189563A1 (en) 2021-06-24
CN107326341A (zh) 2017-11-07
CN109563622B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2019011317A1 (zh) 匀流板和工艺腔匀气装置
US11171025B2 (en) Substrate processing device
US10822695B2 (en) Thin film deposition apparatus
TW202036716A (zh) 處理腔室混合系統
US20160244876A1 (en) Gas injector and cover plate assembly for semiconductor equipment
TW201920778A (zh) 電鍍期間用於流動隔離與集中的方法及設備
US20220349056A1 (en) Mechanisms for supplying process gas into wafer process apparatus
KR20100070333A (ko) 화학 기상 증착 반응기
CN107304474B (zh) 一种反应腔室及半导体加工设备
CN112941626B (zh) 工艺腔室的进气组件、进气装置及半导体加工设备
CN115233189B (zh) 匀气装置及半导体工艺设备
US20200291522A1 (en) Lid assembly apparatus and methods for substrate processing chambers
CN116404073B (zh) 一种制备TOPCon电池中非晶硅薄膜的方法及装置
TW201625811A (zh) 反應氣體輸送裝置及化學氣相沉積或磊晶層成長反應器
CN102080218B (zh) 气体分布板及具备气体分布板的处理室
CN106011789B (zh) Mocvd系统及其反应气体输送装置
KR20130103737A (ko) 진공 공정 장비를 위한 가스 분배 장치
CN115961346A (zh) 大尺寸碳化硅外延气体供应装置及供应方法
TWI771804B (zh) 氣體分配裝置及等離子體處理裝置
KR20190119152A (ko) 유동성 cvd를 위한 확산기 설계
JP7062132B2 (ja) チャンバー冷却装置及び半導体加工設備
CN113265646A (zh) 一种用于制备大尺寸c/c复合材料的cvd沉积炉装置
CN220224435U (zh) 进气装置及半导体加工设备
CN220520621U (zh) 一种工艺特气混气装置及使用其的pecvd设备
CN220057018U (zh) 一种使用气体进行处理的设备及气体匀流结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018554538

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832207

Country of ref document: EP

Kind code of ref document: A1