WO2019011056A1 - 一种高密封度的气相腐蚀腔体 - Google Patents

一种高密封度的气相腐蚀腔体 Download PDF

Info

Publication number
WO2019011056A1
WO2019011056A1 PCT/CN2018/087657 CN2018087657W WO2019011056A1 WO 2019011056 A1 WO2019011056 A1 WO 2019011056A1 CN 2018087657 W CN2018087657 W CN 2018087657W WO 2019011056 A1 WO2019011056 A1 WO 2019011056A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
cavity
phase etching
etching chamber
gas phase
Prior art date
Application number
PCT/CN2018/087657
Other languages
English (en)
French (fr)
Inventor
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Priority to JP2019571415A priority Critical patent/JP6900134B2/ja
Publication of WO2019011056A1 publication Critical patent/WO2019011056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present invention relates to the field of semiconductor manufacturing equipment, and more particularly to a gas phase etching chamber having a high degree of sealing.
  • Fluorinated hydrogen phase corrosion is not only used in device fabrication of MEMS, but also as a surface pretreatment chamber integrated in Vapor Phase Decomposition (VPD).
  • VPD Vapor Phase Decomposition
  • the following chemical reaction occurs on the fluorinated hydrogen phase corrosion chamber, so that the natural oxide layer on the surface of the bulk silicon is decomposed and consumed by vapor phase etching, leaving a hydrophobic silicon-hydrogen bond (Si-H)
  • Si-H silicon-hydrogen bond
  • the gas phase hydrogen fluoride machine can be divided into: 1. An anhydrous hydrogen fluoride source machine, using an HF gas with a purity of 99.99% or more; 2. An aqueous vapor phase hydrogen fluoride machine (HF-H 2) O system). Because of the cost of use, the mainstream VPD machine is configured with an aqueous HF source system compared to expensive anhydrous HF gas (5N or more purity). Unless high-end applications (such as millions of micromirror arrays) must use a waterless HF machine, usually, based on the cost of use, a machine based on an aqueous HF source is used when process requirements are not too high. This is especially true in the VPD market.
  • VHF chamber fluorinated hydrogen phase etching chamber
  • the general nitrogen purge will open its flowmeter (MFC) to the maximum and increase the number of purges.
  • the fluorine concentration in the chamber is monitored by the special gas concentration sensor placed beside the cavity, weighted by time.
  • the Time Weighted Average (TWA) standard sets the detection lower limit of the sensor to not more than 3 ppm.
  • the special gas concentration sensor fails without regular maintenance, the HF outflow will not be detected. Therefore, the use of sacrificial process time, such as reducing the maximum nitrogen flow rate and reducing the amount of pumping, is generally used to prevent the pressure in the chamber from drastically changing, which inevitably leads to a decrease in productivity. Compared with metal materials, the toughness and mechanical strength of plastics are somewhat inferior. Therefore, it is necessary to strictly consider the pressure difference between the inside and outside of the plastic chamber during inflation and pumping so that it does not easily exceed the range of the material cavity.
  • the VHF cavity of the VPD system is a bowl-shaped "lid” directly attached to the plane around the cavity, even if there is a seal between the two to enhance the sealing, because the thickness of the seal is negligible and
  • the portion in contact with the bottom of the diameter of the "lid” is very thin, so in Non-Patent Document 1, such contact is called a two-dimensional contact of a line surface.
  • the distance of the planar contact is at least 942 mm ( ⁇ * 300 mm).
  • Patent Document 1 The seal design in Patent Document 1 is also similarly such that a seal seal is added between the moving members, and even if the chamber and the horizontally movable "door" have a small contact area, they are not large in themselves, so in Patent Document 1
  • the contact is called "face two-dimensional contact.”
  • the advantage of this design compared with the design of Non-Patent Document 1 is that the length of the sealing ring becomes smaller, so the risk of leakage of the cavity is also reduced, but to a large extent depends on the perfection of the sealing ring and the upper and lower, left and right cylinders. Cooperate. For example, if the upper and lower cylinders are not in place, it has no sealing. If the sealing ring is aging or the door is deformed, the problem of gas leakage will also occur.
  • Non-Patent Document 1 Spectrochimica Acta Part B, 56, 2261 (2001), S. Pahlke et al.
  • Patent Document 1 JP4903764B214
  • the present invention provides a gas phase etching chamber having a high degree of sealing, comprising: an upper chamber, a lower chamber, and a lifting control device, wherein the lifting control device is coupled to the upper chamber to control the Up and down movement of the upper cavity, the lower cavity is fixed, and the lower cavity is provided with an air inlet, an air outlet and a heating plate, wherein a space is provided between the upper cavity and the lower cavity
  • the first sealing mechanism is provided with a second sealing mechanism between the heating plate and the lower cavity, and a third sealing mechanism is provided at the air outlet.
  • the upper cavity has a circular cap shape, and a circumference of the upper cavity is formed to be perpendicular to a plane in which the cavity is located.
  • a lower cover flange a lower surface of the periphery of the upper cavity than the upper cover flange is processed to form a smooth first sealing surface
  • the lower cavity is a circular dish shape
  • the upper surface of the periphery of the lower cavity is formed into a smooth second sealing surface, and a sealing groove is formed on the first sealing surface or the second sealing surface, and an inner wall of the periphery of the lower cavity It is machined to form a smooth third sealing surface, the outer wall of the flange of the upper cavity being machined to form a smooth fourth sealing surface.
  • the first sealing surface, the second sealing surface, the third sealing surface, the fourth sealing surface, and the first sealing surface are disposed in the first A first seal within the seal groove constitutes the first seal mechanism.
  • the first sealing member is a corrosion resistant sealing ring.
  • the second sealing mechanism is provided with a second sealing member and a third sealing member
  • the third sealing member is provided with a fourth sealing member.
  • the second seal, the third seal, and the third seal are corrosion resistant seals.
  • the upper cavity and the lower cavity are made of perfluoroalkoxy resin (PFA), polytetrafluoroethylene (PTFE), and ethylene.
  • PFA perfluoroalkoxy resin
  • PTFE polytetrafluoroethylene
  • ethylene ethylene
  • fluoroethylene (ETFE) polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVVC polyvinyl chloride
  • PP polypropylene
  • PEEK polyetheretherketone
  • the gas phase source to be introduced is hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen bromide (HBr), hydrogen iodide (HI), and difluorination.
  • HF hydrogen fluoride
  • HCl hydrogen chloride
  • HBr hydrogen bromide
  • HI hydrogen iodide
  • difluorination One or a combination of ⁇ (XeF 2 ).
  • the elevation control device includes a driving device and a displacement sensor.
  • the driving device is a cylinder or an electric cylinder
  • the displacement sensor is an optical sensor or a capacitive proximity sensor
  • the gas outlet of the lower chamber is connected to the exhaust gas adjusting device via the third sealing mechanism.
  • Figure 1 is a perspective view of the high-sealing gas phase etching chamber of the present invention in a closed state
  • Figure 2 is a perspective view of the high-seal gas phase etching chamber of the present invention in an open state
  • Figure 3 is a cross-sectional view showing the high-sealed vapor phase etching chamber of the present invention in a closed state
  • Figure 4 is a cross-sectional view showing the first sealing mechanism to the third sealing mechanism in a state in which the high-sealed vapor phase etching chamber of the present invention is closed;
  • Figure 5A is an enlarged cross-sectional view showing the first sealing mechanism of the high-sealed vapor phase etching chamber of the present invention
  • Figure 5B is an enlarged cross-sectional view showing the second sealing mechanism of the high-sealed vapor phase etching chamber of the present invention
  • Figure 5C is an enlarged cross-sectional view of the third sealing mechanism of the high degree of sealing vapor phase etching chamber of the present invention.
  • FIG. 1 is a perspective view showing a high-sealed vapor phase etching chamber of the present invention in a closed state
  • Fig. 2 is a perspective view showing a high sealing degree vapor phase etching chamber of the present invention in an open state
  • Fig. 3 is a high sealing degree of the present invention.
  • FIG. 4 is a cross-sectional view showing the first to third sealing mechanisms in the closed state of the gas-phase etching chamber of the present invention.
  • the high-sealed vapor phase etching chamber of the present invention comprises: an upper chamber 1, a lower chamber 2, and a lifting control device 3, and the lifting control device 3 is connected to the upper chamber 1.
  • the up and down movement of the upper chamber 1 is controlled.
  • the lower chamber 2 is fixed, and the lower chamber 2 is provided with an air inlet 4, an air outlet 5 and a heating plate 6, and a first sealing mechanism 7 is disposed between the upper chamber 1 and the lower chamber 2, on the heating plate 6
  • a second sealing mechanism 8 is provided between the lower chamber 2 and a third sealing mechanism 9 is provided at the air outlet 5.
  • the upper cavity 1 has a circular crown shape, and a peripheral groove of the upper cavity 1 is formed with a cavity.
  • the upper cover flange 10, in which the plane is perpendicular to the body, is formed into a smooth first sealing surface 11 at a lower surface of the upper portion of the upper cavity 1 than the upper cover flange 10.
  • the lower chamber 2 has a circular dish shape, and the upper surface of the peripheral edge of the lower chamber 2 is processed to form a smooth second sealing surface 12.
  • An annular first seal groove 13 is formed in the second sealing surface 12. It is of course also possible to form an annular first sealing groove on the first sealing surface 11.
  • the inner wall of the periphery of the lower chamber 2 is machined to form a smooth third sealing surface 14, and the outer wall of the flange of the upper chamber is machined to form a smooth fourth sealing surface 15.
  • the first sealing surface 11, the second sealing surface 12, the third sealing surface 14, the fourth sealing surface 15, and the first sealing member 16 disposed in the first sealing groove 13 constitute the first sealing mechanism 7.
  • the first sealing member 16 is a corrosion-resistant sealing ring (for example, a corrosion-resistant sealing ring made of fluororubber).
  • the material of the upper chamber 1 and the lower chamber 2 is preferably a perfluoroalkoxy resin (PFA), a polytetrafluoroethylene (PTFE), or an ethylene tetrafluoroethylene (ETFE).
  • PFA perfluoroalkoxy resin
  • PTFE polytetrafluoroethylene
  • ETFE ethylene tetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVVC polyvinyl chloride
  • PP polypropylene
  • PEEK polyetheretherketone
  • the material of the upper chamber 1 and the lower chamber 2 is polyvinylidene fluoride PVDF.
  • the third chamber 1 and the lower chamber 2 are closed, and the third The sealing surface 14 and the fourth sealing surface 15 are in close contact without a gap. That is, in a state where the upper cavity 1 and the lower cavity 2 are closed, the cooperation between the third sealing face 14 and the fourth sealing face 15 is an interference fit.
  • a downward force can be applied to the upper cavity 1 by the lifting control device 3, and then combined with the deformation of the upper cavity 1 and the lower cavity 2, the two are assembled together, so that the entire cavity is closed. status.
  • a cavity bottom through hole 25 is formed in the bottom of the dish-shaped lower chamber 2.
  • the heating plate 6 is fixed to the inner side of the bottom of the lower cavity 2, and is mechanically and electrically connected to the outside of the cavity through the cavity bottom through hole 25 of the lower cavity 2.
  • a heating plate protective case 17 is mounted on the heating plate 6, and the heating plate 16 is separated from the cavity of the vapor phase etching chamber by the heating plate protective case 17.
  • the lower chamber 2 and the heating plate 6 and between the heating plate protective case 17 and the heating plate 6 are connected by a countersunk screw.
  • a second sealing groove 18 and a second sealing member 19 are disposed between the lower cavity 2 and the heating plate 6, and a third sealing groove 20 and a third sealing member 21 are disposed between the heating plate protective case 17 and the heating plate 6.
  • the second sealing mechanism 8 of the highly sealed vapor phase etching chamber of the present invention is constructed.
  • the second sealing member 19 and the third sealing member 21 in the second sealing mechanism 8 are corrosion-resistant sealing rings (for example, fluororubber-resistant corrosion-resistant sealing rings).
  • an exhaust gas adjusting device 22 is fixedly connected to the air outlet 5 of the lower chamber 2.
  • a fourth sealing groove 23 and a fourth sealing member 24 are disposed between the air outlet 5 of the lower chamber 2 and the exhaust gas regulating device 22, thereby constituting the third sealing mechanism 9 of the high-sealing gas phase etching chamber of the present invention.
  • the fourth sealing member 24 is a corrosion-resistant sealing ring (for example, a fluororubber material corrosion-resistant sealing ring).
  • the elevation control device 4 includes a driving device and a displacement sensor.
  • the driving device may be a cylinder or an electric cylinder
  • the displacement sensor may be an optical displacement sensor or a capacitive displacement sensor.
  • the elevation control device 4 is preferably a combination of an electric cylinder and an optical radiation sensor.
  • the gas phase source is hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen bromide (HBr), hydrogen iodide (HI), and xenon difluoride (XeF). 2 ) A combination of one or several.
  • the corrosive gas may be in contact with corrosive gas and the corrosive gas is corroded to the cavity component mainly in three aspects: firstly, the upper cavity, because it is a moving component, the sealing requirement is The highest seal between the upper and lower chambers is the key to the entire chamber seal, directly affecting whether toxic corrosive gases can leak into the surrounding environment and affect the health of the operator.
  • the heating element because the heating part is a heat generating part, the chemical reaction is faster, and it is more likely to react with the corrosive gas to be corroded, so if corrosive gas contacts the heating part, serious corrosive damage will occur. Reduce device life.
  • the third is the sealing of the exhaust passage portion, that is, the connection between the air outlet and the exhaust adjusting device. If the sealing is not tight, it is also possible to cause some corrosive toxic gas to leak into the environment.
  • the present invention ensures that the corrosive toxic gas does not leak into the environment and the inside of the device to the greatest extent by providing the first sealing mechanism 7, the second sealing mechanism 8, and the third sealing mechanism 9.
  • the first sealing mechanism formed between the upper cavity and the lower cavity includes a first sealing surface 11, a second sealing surface 12, and a third The sealing surface 14 and the fourth sealing surface 15 and the first sealing member 16 disposed in the first sealing groove 13 .
  • the fit between the third sealing surface 14 and the fourth sealing surface 15 is an interference fit.
  • the third sealing surface 14 and the fourth sealing surface 15 do not have any gaps, and corrosive toxic gas cannot be leaked therefrom, thereby preventing corrosive gas from corroding the first sealing member 16, and avoiding the first sealing member 16 Corrosion aging.
  • the high sealing degree gas phase etching cavity of the invention greatly improves the gas tightness, reduces the risk of corrosive toxic gas leakage and endangers the health of the operator, and also Increased equipment life.
  • a second sealing groove 18 and a second sealing member 19 are provided between the lower chamber 2 and the heating plate 6, and the heating plate protective case 17 and the heating plate 6 are provided.
  • a third sealing groove 20 and a third sealing member 21 are provided therebetween, thereby constituting the second sealing mechanism 8 of the highly sealed vapor phase etching chamber of the present invention.
  • the exhaust gas adjusting device 22 is fixedly connected to the air outlet 5 of the lower chamber 2.
  • a fourth sealing groove 23 and a fourth sealing member 24 are disposed between the air outlet 5 of the lower chamber 2 and the exhaust gas regulating device 22, thereby constituting the third sealing mechanism 9 of the high-sealing gas phase etching chamber of the present invention.
  • the air outlet 5 of the lower chamber 2 is provided with an exhaust gas adjusting device 22, and is disposed between the air outlet 5 and the exhaust gas adjusting device 22
  • a fourth sealing mechanism 9 is formed by the four sealing grooves 23 and the fourth sealing member 24.
  • the presence of the exhaust gas regulating device 22 enables the corrosive gas in the chamber to be more sufficiently discharged, and the flow rate and velocity of the exhaust gas of the exhaust device can be adjusted according to actual process conditions.
  • the third sealing mechanism 9 provided between the air outlet 5 and the exhaust gas adjusting device 22 can further prevent the corrosive toxic gas from leaking into the atmosphere during the exhaust phase, further improving the airtightness of the vapor phase etching chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Gasket Seals (AREA)

Abstract

提供一种高密封度的气相腐蚀腔体,包括:上部腔体(1)、下部腔体(2)和升降控制装置(3),升降控制装置与上部腔体相连接,控制上部腔体的上下移动,下部腔体固定,在下部腔体设置有进气口(4)、出气口(5)和加热板(6),其中,在上部腔体与下部腔体之间设置有第一密封机构(7),在加热板与下部腔体之间设置有第二密封机构(8),在出气口设置有第三密封机构(9)。通过设置第一密封机构、第二密封机构、和第三密封机构,能够确保腐蚀性、有毒气体不会泄漏到环境和腔体其他非耐腐蚀区域,既保证了操作人员的人身安全,又延长了含气相腐蚀腔体的设备的使用寿命。

Description

一种高密封度的气相腐蚀腔体 技术领域
本发明涉及半导体制造设备领域,尤其涉及一种高密封度的气相腐蚀腔体。
背景技术
近年来,人们常以气相腐蚀的方式(利用气相的氟化氢)腐蚀氧化硅。相比于液相方式的腐蚀,气相腐蚀有很多优点:1、无粘连释放微机电系统的器件;2、因为不受表面张力的影响,反应物的扩散能力比液相时高4个数量级,所以化学反应更容易进行;3、对各种材料的兼容性,如铝、氧化铝、光刻胶等;4、因为通常是在真空下使用,所以可以作为一个表面预清洗模块集成在模块化组合设备上,如物理气相沉积机台等。氟化氢气相腐蚀不仅在微机电系统的器件制备上使用,也作为表面预处理腔集成在气相分解金属沾污收集系统(Vapor Phase Decomposition:VPD)。在气相分解金属沾污收集系统中,氟化氢气相腐蚀腔体上发生如下化学反应,使体硅表面的自然氧化层以气相腐蚀的方式分解消耗,留下由疏水的硅氢键(Si-H)所形成的表面,以便用特制的液体扫描液把沾污收集。
4HF(气)+SiO 2(固)→SiF 4(气)↑+2H 2O
根据氟化氢(HF)源是否含水,气相氟化氢机台可分为:1、无水氟化氢源机台,用的是纯度为99.99%以上的HF气体;2、含水气相氟化氢机台(HF-H 2O系统)。因为考虑到使用成本,相比于昂贵的无水HF气体(5N或以上纯度),主流的VPD机台配置的是含水HF源系统。除非是高端应用(如几百万组微镜阵列)必须采用无水HF机台,通常,考虑到使用成本,在工艺要求不太高时都采用基于含水HF源的机台。尤其是在VPD市场更是如此。这里我们只考虑含水HF源的机台和它的氟化氢气相腐蚀腔体(以下简称VHF腔体)。因为含水HF源所形成的气相氟化氢是有腐蚀性的,所以它所接触的 管路、接口及腔体必须是防腐的。通常考虑到加工难度及后期维护成本,VHF腔体及管路的材质都采用与之兼容的塑料。
因为HF的腐蚀性、剧毒性,所以每次在用HF气体腐蚀硅片的工艺完成后开腔前,需要反复吹扫腔体内的尾气,如HF、SiF 4等含氟剧毒气体。通常的做法是往腔体内通入高流量的氮气(10~100SLM),然后用排风或者真空泵等形式从腔体抽出,这种氮气吹扫过程需要重复几次从而保证腔体内无含氟尾气残留。HF和水可以形成二元共沸物,所以通常的平和吹扫很难从腔体里完全清出HF气体残留,尤其是湿润的腔体中。出于安全考虑,一般氮气吹扫会把其流量计(MFC)开到最大,并增加吹扫次数,而且腔体开腔时氟浓度由设置在腔体旁边的特气浓度传感器监控,依据时间加权平均值(Time weighted average:TWA)标准将该传感器的检测下限设定为不超过3ppm。当所通入的高流量氮气(≥50SLM)与抽气系统不匹配,或腔体内的压力传感器老化、或者反馈信号慢时,腔体内压力迅速增加到一定正压。如果腔体的密封因器件老化而有缺陷,则所含的HF气体的尾气就会从腔体漏出到环境。假如特气浓度传感器没有定期维护而失效,则HF的流出也不会被检测到。所以,一般采用牺牲工艺时间如降低最大通入氮气流量、降低抽气量等手段来防止腔体内压力剧变,这势必导致产能的降低。相比于金属材质,塑料的韧性和机械强度差一些,所以充气、抽气时需要严格考虑塑料腔体内外压差使它不易超过该材质腔体所承受的范围之外。
非专利文献1中,VPD系统的VHF腔体是碗状的“盖子”直接扣在腔体周围平面,即便是两者之间有密封圈增强密封性,因为密封圈的厚度可以忽略不计而且与“盖子”的直径底部相接触的部分很细,所以在非专利文献1中,这样的接触称作线面二维接触。考虑到需要处理各种大小的晶圆,如4英寸、6英寸、8英寸和12英寸等,所以平面接触的距离至少为942mm(π*300mm)。因为塑料材质相比金属保型性差,又有近一米多的接触距离,快速吹扫极有可能增加密封圈老化、变形而引起底部漏气的风险,这种设计并不是最安全的。另外,由于该机台没有带风机过滤单元(Fan-Filter Unit,简称FFU)而直接裸露在环境中,因此对人体的危害性是致命的。
专利文献1中的密封设计也是类似的移动部件之间添加密封圈密封的,即便是腔室和可水平移动的“门”接触面积很小,但是它们本身不大,所以在专利文献1中这样的接触称作“面面二维接触”。这种设计相比与非专利文献1的设计的优势在于密封圈的长度变小,所以腔体漏气风险也随之减少,但在较大程度上依赖于密封圈和上下、左右气缸的完美配合。比如说,如果上下气缸没有到位,它就没有密封性可言,如果说密封圈老化或者门有所变形,则同样会出现气体泄露的问题。
非专利文献1 Spectrochimica Acta Part B,56,2261(2001),S.Pahlke et al.
专利文献1 JP4903764B214
发明内容
为了解决上述问题,本发明提供一种高密封度的气相腐蚀腔体,包括:上部腔体、下部腔体和升降控制装置,所述升降控制装置与所述上部腔体相连接,控制所述上部腔体的上下移动,所述下部腔体固定,在所述下部腔体设置有进气口、出气口和加热板,其中,在所述上部腔体与所述下部腔体之间设置有第一密封机构,在所述加热板与所述下部腔体之间设置有第二密封机构,在所述出气口设置有第三密封机构。
本发明的高密封度的气相腐蚀腔体中,优选为,所述上部腔体为圆形的盖状,在所述上部腔体的周缘,整圈形成有与与腔体所在的平面相垂直的上盖凸缘,所述上部腔体的周缘的比所述上盖凸缘更靠外侧的下表面被加工形成为光滑的第一密封面,所述下部腔体为圆形的皿状,所述下部腔体的周缘的上表面被加工形成为光滑的第二密封面,在所述第一密封面或所述第二密封面上形成有密封槽,所述下部腔体的周缘的内壁被加工形成为光滑的第三密封面,所述上部腔体的所述凸缘的所述外壁被加工形成为光滑的第四密封面。
本发明的高密封度的气相腐蚀腔体中,优选为,所述第一密封面、所述第二密封面、所述第三密封面、所述第四密封面以及配置于所述第一密封槽内的第一密封件构成所述第一密封机构。
本发明的高密封度的气相腐蚀腔体中,优选为,所述第一密封元件为耐腐密封圈。
本发明的高密封度的气相腐蚀腔体中,优选为,所述第二密封机构中设置有第二密封件和第三密封件,所述第三密封机构中设置有第四密封件,所述第二密封件、所述第三密封件、和所述第三密封件是耐腐密封圈。
本发明的高密封度的气相腐蚀腔体中,优选为,所述上部腔体与所述下部腔体的材质为全氟烷氧基树脂(PFA)、聚四氟乙烯(PTFE)、乙烯四氟乙烯(ETFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙稀(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚醚醚酮(PEEK)的一种或多种的组合。
本发明的高密封度的气相腐蚀腔体中,优选为,所通入的气相源为氟化氢(HF)、氯化氢(HCl)、溴化氢(HBr)、碘化氢(HI)、二氟化氙(XeF 2)的一种或者几种的组合。
本发明的高密封度的气相腐蚀腔体中,优选为,升降控制装置包括驱动装置和位移传感器。
本发明的高密封度的气相腐蚀腔体中,优选为,所述驱动装置是气缸或电缸,所述位移传感器是光学传感器或电容式接近传感器。
本发明的高密封度的气相腐蚀腔体中,优选为,在所述下部腔体的所述出气口通过所述第三密封机构连接有排气调节装置。
附图说明
图1是本发明的高密封度的气相腐蚀腔体闭合状态下的立体图;
图2是本发明的高密封度的气相腐蚀腔体开放状态下的立体图;
图3是本发明的高密封度的气相腐蚀腔体闭合状态下的剖面图;
图4是示出了本发明的高密封度的气相腐蚀腔体闭合状态下的第一密封 机构~第三密封机构的剖面图;
图5A是本发明的高密封度的气相腐蚀腔体的第一密封机构的剖面放大图;
图5B是本发明的高密封度的气相腐蚀腔体的第二密封机构的剖面放大图;
图5C是本发明的高密封度的气相腐蚀腔体的第三密封机构的剖面放大图。
附图标记:
1~上部腔体;2~下部腔体;3~升降控制装置;4~进气口;5~出气口;6~加热板;7~第一密封机构;8~第二密封机构;9~第三密封机构;10~上盖凸缘;11~第一密封面;12~第二密封面;13~第一密封槽;14~第三密封面;15~第四密封面;16~第一密封件;17~加热板保护壳;25~腔体底部通孔;18~第二密封槽;19~第二密封件;20~第三密封槽;21~第三密封件;22~排气调节装置;23~第四密封槽;24~第四密封件。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本实用新型的描述中,需要说明的是,术语“上”、“下”、“水平”、“垂直”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术 语在本实用新型中的具体含义。
图1是本发明的高密封度的气相腐蚀腔体闭合状态下的立体图,图2是本发明的高密封度的气相腐蚀腔体开放状态下的立体图,图3是本发明的高密封度的气相腐蚀腔体闭合状态下的剖面图,图4是示出了本发明的高密封度的气相腐蚀腔体闭合状态下的第一密封机构~第三密封机构的剖面图。如图1~图4所示,本发明的高密封度的气相腐蚀腔体,包括:上部腔体1、下部腔体2和升降控制装置3,升降控制装置3与上部腔体1相连接,控制上部腔体1的上下移动。下部腔体2固定,在下部腔体2设置有进气口4、出气口5和加热板6,在上部腔体1与下部腔体2之间设置有第一密封机构7,在加热板6与下部腔体2之间设置有第二密封机构8,在出气口5设置有第三密封机构9。
如图3、图4、和图5A所示,本发明的高密封度的气相腐蚀腔体中,上部腔体1为圆形的冠状,在上部腔体1的周缘,整圈形成有与腔体所在的平面相垂直的上盖凸缘10,在上部腔体1的周缘部位比上盖凸缘10更靠外侧的下表面被加工形成为光滑的第一密封面11。下部腔体2为圆形的皿状,下部腔体2的周缘的上表面被加工形成为光滑的第二密封面12。在第二密封面12上形成有环形的第一密封槽13。当然也可以在第一密封面11上形成环形的第一密封槽。下部腔体2的周缘的内壁被加工形成为光滑的第三密封面14,上部腔体的凸缘的外壁被加工形成为光滑的第四密封面15。
如图5A所示,第一密封面11、第二密封面12、第三密封面14、第四密封面15以及配置于第一密封槽13内的第一密封件16构成第一密封机构7。优选为,第一密封件16为耐腐密封圈(例如,氟橡胶材质的耐腐密封圈)。
本发明的高密封度的气相腐蚀腔体中,上部腔体1与下部腔体2的材质优选为全氟烷氧基树脂(PFA)、聚四氟乙烯(PTFE)、乙烯四氟乙烯(ETFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙稀(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚醚醚酮(PEEK)的一种或多种的组合。更优选为,上部腔体1 与下部腔体2的材质为聚偏氟乙稀PVDF。
本发明的高密封度的气相腐蚀腔体中,为了使第一密封件16尽可能免收腐蚀性气体的腐蚀,设计为,在上部腔体1和下部腔体2闭合的状态下,第三密封面14和第四密封面15不存在间隙而紧密接触。也就是说,在上部腔体1和下部腔体2闭合的状态下,第三密封面14和第四密封面15之间的配合是过盈配合。腔体闭合过程中,可以通过升降控制装置3对上部腔体1施加向下的力,再结合上部腔体1和下部腔体2的变形,将二者装配在一起,使得整个腔体处于闭合状态。也可以借助于加热板6或其他另外附加的靠近下部腔体周缘部位的专用加热器件在腔体闭合前对下部腔体2预先进行加热,使得下部腔体2的周缘膨胀,由此便于上部腔体1与下部腔体2的顺利而平滑地闭合。待上部腔体1和下部腔体2完全闭合后,停止加热使得下部腔体2的周缘收缩,由此使得设计为过盈配合的上部腔体1和下部腔体2在闭合后第三密封面14和第四密封面15处于气密状态,从而使得第一密封件16尽可能免收腐蚀性气体的腐蚀。同样,在打开腔体闭合前,对下部腔体2预先进行加热使得下部腔体2的周缘膨胀,由此使得上部腔体1与下部腔体2顺利而平滑地分离,从而将腔体打开。
如图4、图5B所示,本发明的高密封度的气相腐蚀腔体中,在皿状的下部腔体2的底部开设有腔体底部通孔25。加热板6固定在下部腔体2的底部内侧,并通过下部腔体2的腔体底部通孔25与腔体外部实现机械连接和电连接。在加热板6上安装有加热板保护壳17,利用加热板保护壳17将加热板16与气相腐蚀腔的腔体隔离。下部腔体2与加热板6之间以及加热板保护壳17与加热板6之间通过沉头螺钉连接。在下部腔体2与加热板6之间设有第二密封槽18和第二密封件19,在加热板保护壳17与加热板6之间设用第三密封槽20和第三密封件21,由此构成本发明的高密封度的气相腐蚀腔体的第二密封机构8。优选为,第二密封机构8中的第二密封件19和第三密封件21是耐腐密封圈(例如,氟橡胶材质的耐腐密封圈)。
本发明的高密封度的气相腐蚀腔体中,如图4、图5C所示,在下部腔体 2的出气口5固定连接有排气调节装置22。下部腔体2的出气口5与排气调节装置22之间设有第四密封槽23和第四密封件24,由此构成本发明的高密封度的气相腐蚀腔体的第三密封机构9。优选为,第四密封件24为耐腐密封圈(例如,氟橡胶材质耐腐密封圈)。
本发明的高密封度的气相腐蚀腔体中,升降控制装置4包括驱动装置和位移传感器。驱动装置可以是气缸或电缸,位移传感器可以是光学式位移传感器或电容式位移传感器。本发明中,升降控制装置4优选采用电缸和光学对射传感器组合。
本发明的高密封度的气相腐蚀腔体中,所通入的气相源为氟化氢(HF)、氯化氢(HCl)、溴化氢(HBr)、碘化氢(HI)、二氟化氙(XeF 2)的一种或者几种的组合。
现有技术的气相腐蚀腔体中,可能与腐蚀性气体接触并且受到腐蚀性气体对腔体部件的腐蚀主要体现在三个方面:首先是上部腔体,因为是运动部件,所以其密封要求是最高的,上部腔体与下部腔体之间的密封是整个腔体密封的关键,直接影响到有毒的腐蚀性气体是否会泄漏到周围环境从而影响操作人员的健康。其次是加热部件,因为加热部件是发热部分,所以化学反应更快,更容易与腐蚀性气体反应而被腐蚀,所以假如有腐蚀性气体接触到加热部件,则将会产生严重的腐蚀性损害,缩短器件寿命。第三是尾气通道部分的密封,即出气口与排气调节装置的连接,该部分如果密封不严密,则也有可能使部分腐蚀性有毒气体泄漏到环境中。
本发明通过设置第一密封机构7、第二密封机构8和第三密封机构9,最大程度上保证了腐蚀性有毒气体不会泄漏到环境和器件内部。
首先,本发明的高密封度的气相腐蚀腔体在闭合的状态下,上部腔体与下部腔体之间的形成的第一密封机构包括第一密封面11、第二密封面12、第三密封面14、第四密封面15以及配置于第一密封槽13内的第一密封件16。 其中,第三密封面14和第四密封面15之间的配合是过盈配合。此时,第三密封面14和第四密封面15不存在任何空隙,腐蚀性有毒气体不可能从此泄漏,从而防止腐蚀性气体对第一密封件16的腐蚀,避免了第一密封件16的腐蚀老化。另外,即便是由于第三密封面14或第四密封面15的变形而使得二者之间存在微小间隙,使得腐蚀性气体通过该微小间隙泄漏,但是由于第一密封槽13内的第一密封件16的存在,会进一步阻止气体泄漏到外部环境而影响操作者的健康。如此的双重密封设计,从最大程度上防止了腐蚀性有毒气体的泄漏。相对于现有技术的气相腐蚀腔体设备,本发明的高密封度的气相腐蚀腔体极大地提高了气体的密闭性,降低了腐蚀性有毒气体泄漏而导致危害操作人员健康的风险,同时也提高了设备的寿命。
其次,本发明的高密封度的气相腐蚀腔体中,在下部腔体2与加热板6之间设有第二密封槽18和第二密封件19,在加热板保护壳17与加热板6之间设有第三密封槽20和第三密封件21,由此构成本发明的高密封度的气相腐蚀腔体的第二密封机构8。如此对发热器件的从上下两个位置进行密封,防止了加热板在高温下受到腐蚀性气体的腐蚀而加速损坏,极大地提高了设备的使用寿命。
另外,本发明的高密封度的气相腐蚀腔体中,在下部腔体2的出气口5固定连接有排气调节装置22。下部腔体2的出气口5与排气调节装置22之间设有第四密封槽23和第四密封件24,由此构成本发明的高密封度的气相腐蚀腔体的第三密封机构9。也就是说,本发明的高密封度的气相腐蚀腔体中,下部腔体2的出气口5设置有排气调节装置22,并在出气口5与排气调节装置22之间设置有由第四密封槽23和第四密封件24构成的第三密封机构9。排气调节装置22的存在使得腔内的腐蚀性气体能够更加充分地被排出,并且能够根据实际工艺情况,调整排气装置抽吸气体的流量和速度。出气口5与排气调节装置22之间设置的第三密封机构9能够进一步防止腐蚀性有毒气体在排气阶段泄漏到大气中,进一步提高了气相腐蚀腔体的气密性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种高密封度的气相腐蚀腔体,包括:上部腔体、下部腔体和升降控制装置,所述升降控制装置与所述上部腔体相连接,控制所述上部腔体的上下移动,所述下部腔体固定,在所述下部腔体设置有进气口、出气口和加热板,其特征在于,
    在所述上部腔体与所述下部腔体之间设置有第一密封机构,在所述加热板与所述下部腔体之间设置有第二密封机构,在所述出气口设置有第三密封机构。
  2. 根据权利要求1所述的高密封度的气相腐蚀腔体,其特征在于,
    所述上部腔体为圆形的盖状,在所述上部腔体的周缘,整圈形成有与腔体所在的平面相垂直的上盖凸缘,所述上部腔体比所述上盖凸缘更靠外侧的下表面被加工形成为光滑的第一密封面,
    所述下部腔体为圆形的皿状,所述下部腔体的周缘的上表面被加工形成为光滑的第二密封面,在所述第一密封面或所述第二密封面中形成有密封槽,
    所述下部腔体的周缘的内壁被加工形成为光滑的第三密封面,所述上部腔体的所述凸缘的所述外壁被加工形成为光滑的第四密封面。
  3. 根据权利要求1所述的高密封度的气相腐蚀腔体,其特征在于,
    所述第一密封面、所述第二密封面、所述第三密封面、所述第四密封面以及配置于所述第一密封槽内的第一密封件构成所述第一密封机构。
  4. 根据权利要求3所述的高密封度的气相腐蚀腔体,其特征在于,
    所述第一密封元件为耐腐密封圈。
  5. 根据权利要求3所述的高密封度的气相腐蚀腔体,其特征在于,
    所述第二密封机构中设置有第二密封件和第三密封件,所述第三密封机构中设置有第四密封件,所述第二密封件、所述第三密封件、和所述第四密封件是耐腐密封圈。
  6. 根据权利要求1所述的高密封度的气相腐蚀腔体,其特征在于,
    所述上部腔体与所述下部腔体的材质为全氟烷氧基树脂(PFA)、聚四氟乙烯(PTFE)、乙烯四氟乙烯(ETFE)、聚三氟氯乙烯(PCTFE)、聚偏氟乙稀(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚醚醚酮(PEEK)的一种或多种的组合。
  7. 根据权利要求1所述的高密封度的气相腐蚀腔体,其特征在于,
    所通入的气相源为氟化氢(HF)、氯化氢(HCl)、溴化氢(HBr)、碘化氢(HI)、二氟化氙(XeF 2)的一种或者几种的组合。
  8. 根据权利要求1所述的高密封度的气相腐蚀腔体,其特征在于,所述所述升降控制装置包括驱动装置和位移传感器。
  9. 根据权利要求8所述的高密封度的气相腐蚀腔体,其特征在于,
    所述驱动装置是气缸或电缸,所述位移传感器是光学传感器或电容传感器。
  10. 根据权利要求1所述的高密封度的气相腐蚀腔体,其特征在于,
    在所述下部腔体的所述出气口通过所述第三密封机构连接有排气调节装置。
PCT/CN2018/087657 2017-07-12 2018-05-21 一种高密封度的气相腐蚀腔体 WO2019011056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571415A JP6900134B2 (ja) 2017-07-12 2018-05-21 高気密気相腐食キャビティ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710564802.9 2017-07-12
CN201710564802.9A CN107393848B (zh) 2017-07-12 2017-07-12 一种高密封度的气相腐蚀腔体

Publications (1)

Publication Number Publication Date
WO2019011056A1 true WO2019011056A1 (zh) 2019-01-17

Family

ID=60339371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087657 WO2019011056A1 (zh) 2017-07-12 2018-05-21 一种高密封度的气相腐蚀腔体

Country Status (3)

Country Link
JP (1) JP6900134B2 (zh)
CN (1) CN107393848B (zh)
WO (1) WO2019011056A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115535485A (zh) * 2022-09-24 2022-12-30 临沂市春明化工有限公司 用于化工品的防泄漏存贮装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393848B (zh) * 2017-07-12 2019-12-10 江苏鲁汶仪器有限公司 一种高密封度的气相腐蚀腔体
JP7066263B2 (ja) * 2018-01-23 2022-05-13 株式会社ディスコ 加工方法、エッチング装置、及びレーザ加工装置
CN111336792B (zh) * 2018-12-19 2022-03-11 江苏鲁汶仪器有限公司 一种干燥微水珠的腔体
CN117367924A (zh) * 2022-06-29 2024-01-09 江苏鲁汶仪器股份有限公司 金属沾污收集系统和金属沾污收集方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137520A (zh) * 2011-11-30 2013-06-05 昆山中辰矽晶有限公司 半导体晶片气蚀装置
CN104103561A (zh) * 2014-07-24 2014-10-15 河北神通光电科技有限公司 用于气态氟化氢刻蚀二氧化硅的刻蚀腔体及其刻蚀系统
CN105304443A (zh) * 2014-05-30 2016-02-03 盛美半导体设备(上海)有限公司 干法刻蚀装置
CN107393848A (zh) * 2017-07-12 2017-11-24 江苏鲁汶仪器有限公司 一种高密封度的气相腐蚀腔体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103685B2 (ja) * 1989-05-06 1994-12-14 大日本スクリーン製造株式会社 基板の洗浄処理方法および装置
JPH09115889A (ja) * 1995-10-17 1997-05-02 Nippon Asm Kk 半導体エッチング装置及びその方法
JP3526284B2 (ja) * 2001-07-13 2004-05-10 エム・エフエスアイ株式会社 基板表面の処理方法
JP5865095B2 (ja) * 2012-01-30 2016-02-17 住友精密工業株式会社 エッチング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137520A (zh) * 2011-11-30 2013-06-05 昆山中辰矽晶有限公司 半导体晶片气蚀装置
CN105304443A (zh) * 2014-05-30 2016-02-03 盛美半导体设备(上海)有限公司 干法刻蚀装置
CN104103561A (zh) * 2014-07-24 2014-10-15 河北神通光电科技有限公司 用于气态氟化氢刻蚀二氧化硅的刻蚀腔体及其刻蚀系统
CN107393848A (zh) * 2017-07-12 2017-11-24 江苏鲁汶仪器有限公司 一种高密封度的气相腐蚀腔体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115535485A (zh) * 2022-09-24 2022-12-30 临沂市春明化工有限公司 用于化工品的防泄漏存贮装置
CN115535485B (zh) * 2022-09-24 2023-04-25 临沂市春明化工有限公司 用于化工品的防泄漏存贮装置

Also Published As

Publication number Publication date
JP2020524913A (ja) 2020-08-20
CN107393848B (zh) 2019-12-10
JP6900134B2 (ja) 2021-07-07
CN107393848A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2019011056A1 (zh) 一种高密封度的气相腐蚀腔体
US8608856B2 (en) Sealing part and substrate processing apparatus
KR100936554B1 (ko) 반도체 처리 장치 및 방법
KR100793553B1 (ko) 밀봉 부품 및 기판 처리 장치
US20150364348A1 (en) Gas phase etching apparatus
EP1463093B1 (en) Thermal treatment system for semiconductors
CN113053785A (zh) 半导体加工设备
KR100983785B1 (ko) 반도체 제조용 챔버
US10879090B2 (en) High temperature process chamber lid
JP2010016086A (ja) 基板処理装置
KR20160035983A (ko) 기판 처리 장치 및 기판 적재 유닛의 제조 방법
KR101615140B1 (ko) 오염원 차단가이드를 구비하는 기판처리장치
CN107610998B (zh) 一种能够调节内外压差的气相腐蚀腔体及利用其进行气相腐蚀的方法
KR100669856B1 (ko) 배관 연결 부재 및 이를 포함하는 반도체 기판 가공 장치
JP4617701B2 (ja) Oリング取り外し用窪み構造を有する容器部材
KR100915156B1 (ko) 평판표시소자 제조장치
JP2002286574A (ja) 圧力センサ
JP7194805B2 (ja) ガス供給部、基板処理装置および半導体装置の製造方法
JP4193527B2 (ja) 半導体熱処理装置
JP5495502B2 (ja) 減圧熱処理装置
JP2009242891A (ja) 真空装置、そのリーク判定方法およびコンピュータ読み取り可能な記憶媒体
KR20220141159A (ko) 막형 안전밸브 및 이것이 장착된 챔버
KR20060107597A (ko) 반도체 설비의 진공 누설 방지용 오링
KR20060057955A (ko) 반도체소자 제조용 증착설비
JP2005286259A (ja) シール部材、cvd装置および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831111

Country of ref document: EP

Kind code of ref document: A1