WO2019008774A1 - 吸音材、車両用部品及び自動車 - Google Patents

吸音材、車両用部品及び自動車 Download PDF

Info

Publication number
WO2019008774A1
WO2019008774A1 PCT/JP2017/025055 JP2017025055W WO2019008774A1 WO 2019008774 A1 WO2019008774 A1 WO 2019008774A1 JP 2017025055 W JP2017025055 W JP 2017025055W WO 2019008774 A1 WO2019008774 A1 WO 2019008774A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing material
sound absorbing
introduction passage
resin
sound
Prior art date
Application number
PCT/JP2017/025055
Other languages
English (en)
French (fr)
Inventor
秀樹 古澤
洋之 坂口
智裕 西川
野村 敏弘
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2017/025055 priority Critical patent/WO2019008774A1/ja
Priority to JP2019528331A priority patent/JP6916878B2/ja
Publication of WO2019008774A1 publication Critical patent/WO2019008774A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the present invention relates to a sound absorbing material, a component for a vehicle, and an automobile.
  • a vehicle such as a car is a machine that has a power source such as an engine and can be moved by human operation, and generates various vibrations and noises.
  • the sounds transmitted to the inside of the vehicle include not only the sounds emitted by the power source but also the sounds generated outside the vehicle such as road noise, tire pattern noise and wind noise generated when the vehicle travels. . If these sounds are transmitted to the inside of the vehicle, they cause discomfort to people, so sound insulation and sound absorption materials are used in the engine, engine room, interior, body, exhaust pipe, etc. Measures have been taken.
  • the noise generated from the road surface during traveling such as tire pattern noise (in a frequency range of 500 to 3000 Hz and simply referred to as pattern noise) is less likely to be reflected and diffused around the lower part of the vehicle body, and the degree of sound intruding into the vehicle Is estimated to be high. Similar problems can occur with electric vehicles.
  • noise that was conventionally diffused outside the vehicle is transmitted to a person riding the vehicle.
  • these noises are likely to intrude from the bottom of the rear portion of the vehicle and the lower portion of the luggage room (under floor space) where the accommodation space is disposed. Since these noises include noise in the frequency range of 500 to 2000 Hz that people feel uncomfortable, it is required to take measures.
  • Patent Document 1 discloses a flexible porous foam molded by foam molding, an introduction passage opened on one surface, and a hollow portion formed at the back of the introduction passage and having a cross-sectional area larger than that of the introduction passage.
  • a sound absorbing material is disclosed which has a large number of resonance chambers.
  • Patent Document 2 discloses a sound / sound insulation structure including a resin molding having a plurality of independent blind cavities having openings on the front or back and a sound absorbing material, and having a specific 100 Hz to 10 kHz resonance sound absorption peak frequency. It is done.
  • FIG. 20 (a) is a perspective view schematically showing a general Helmholtz resonance mechanism
  • FIG. 20 (b) is a cross-sectional view taken along line AA of FIG. 20 (a).
  • the Helmholtz resonance mechanism is a resonance It shows schematically how to do it.
  • a general Helmholtz resonance mechanism 500 includes a cylindrical introduction passage 510 and a hollow portion 520.
  • the introduction passage 510 is cylindrical and has a diameter d 510 , a length L 510 and a cross-sectional area S 510 .
  • the hollow portion 520 also has a volume V 520 .
  • air A 510 is present in the introduction passage 510
  • air A 520 is present in the hollow portion 520.
  • the air A 520 in the hollow portion 520 can not exit to the outside from the other inlet passage 510. Further, as shown in FIG. 20 (b), when the air A 510 of the introduction passage 510 is about to enter the hollow portion 520, the air A 520 in the hollow portion 520 is an elastic body, the air A 510 of the introduction passage 510 Try to push out the That is, the air A 520 in the hollow portion 520 will serve as a spring.
  • the sound reaching the introduction passage 510 will be resonated and canceled.
  • This is considered to be the principle by which the sound is absorbed by the Helmholtz resonance mechanism.
  • the Helmholtz resonance mechanism is designed such that the resonance frequency becomes a desired frequency based on the above equation (3), the actual sound absorption frequency of the sound absorbing material may deviate from the calculated resonance frequency. . Therefore, there is a problem that the noise in the frequency range of 500 to 2000 Hz, which people feel uncomfortable, can not be sufficiently absorbed.
  • the present invention is an invention made to solve the above-mentioned problems, and it is an object of the present invention to provide a sound absorbing material capable of coping with noise in a frequency range of 500 to 2000 Hz which a person feels unpleasant. .
  • the present inventors have found that the cause of the deviation between the resonant frequency of the calculated Helmholtz resonance mechanism and the sound absorption frequency of the actual Helmholtz resonance mechanism is attributed to the surface roughness of the introduction path, and completed the present invention. .
  • the sound absorbing material of the present invention is a sound absorbing material having a non-penetrating hole
  • the non-penetrating hole of the sound absorbing material is a hollow portion connected to the outside through the introduction passage opened on the surface and the introduction passage.
  • the equivalent circular diameter of the introduction passage is d
  • the length is L
  • the opening area is S
  • the surface roughness is Ra
  • the volume of the hollow portion is V
  • the circle equivalent diameter d is 1 to 30 mm
  • the length L is 1 to 20 mm
  • 500 Hz ⁇ f ⁇ 2000 Hz holds for f (Hz) obtained by the following equation (1) I assume.
  • the sound velocity c is 34000 cm / sec, and when Ra is more than 0 ⁇ m and 0.1 ⁇ m or less, ⁇ is 1.10, and Ra is more than 0.1 ⁇ m and 2.0 ⁇ m or less Is 1.15, and when Ra exceeds 2.0 ⁇ m, ⁇ is 1.18.
  • the surface roughness of the introduction passage is a factor affecting the movement of air present in the introduction passage. Therefore, due to the difference in surface roughness, it is necessary to make corrections to the calculation formula for obtaining the resonance frequency.
  • the sound absorbing material of the present invention is designed on the basis of the above-described corrected equation. Therefore, in the sound absorbing material of the present invention, by designing the sound absorbing material so that the value of f (Hz) calculated by the equation (1) is 500 Hz to 2000 Hz, the actual sound absorbing frequency is between 500 Hz and 2000 Hz. It can be adjusted and can reliably absorb noise in the frequency band of 500 Hz to 2000 Hz which is unpleasant for humans.
  • the equivalent circle diameter is the diameter when the cross-sectional area of the introduction passage when the introduction passage is cut in the direction perpendicular to the length direction is replaced by a true circle of the same area. If the introduction passage is a true circle, the diameter may be taken as the equivalent circle diameter.
  • the introduction passage has a cylindrical shape. It is advantageous that the introduction passage has a cylindrical shape because the sound absorption characteristics do not have anisotropy.
  • the sound absorbing material of the present invention preferably comprises a resin and / or a fibrous material.
  • the resin is preferably an elastomer such as a foamed resin or rubber. If the sound absorbing material is made of resin, weight reduction can be easily achieved, which is particularly desirable as a component for a vehicle. In addition, when the resin is a foamed resin, the weight thereof can be made lighter, which can contribute to the improvement of the fuel efficiency when it is used as a component for a vehicle.
  • a composite material of resin and fiber may be used. As a method of complexing, resin and fiber may be mixed, or resin and fiber may be combined in block form.
  • the parts for vehicles of the present invention are characterized by including the sound absorbing material of the present invention. Since the sound absorbing material of the present invention is excellent in soundproofing performance, it is excellent as a vehicle part. As parts for vehicles provided with the sound absorbing material of the present invention, a raising material, a partition member, a luggage box, etc. are mentioned.
  • An automobile of the present invention is characterized in that the introduction passage of the sound absorbing material of the present invention is disposed in the direction of the road surface.
  • FIG. 1 is a cross-sectional view schematically showing an example of the sound absorbing material of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of the sound absorbing material of the present invention.
  • Fig.3 (a) is explanatory drawing which shows typically an example of the site
  • FIG.3 (b) is partial expansion of the area
  • FIG. Fig.4 (a) is a perspective view which shows typically an example of the metal mold
  • FIG.4 (b) is a BB sectional drawing of FIG. 4 (a) It is.
  • FIG. 5 is explanatory drawing which shows typically an example of the process of producing foamed resin in the manufacturing method of the sound absorbing material of this invention.
  • FIGS. 6 (a) to 6 (c) are explanatory views schematically showing an example of the process of extracting the protrusion from the foamed resin in the method of manufacturing the sound absorbing material of the present invention.
  • FIG. 7 is an explanatory view schematically showing a method of measuring the sound absorption coefficient of the reverberation chamber with respect to the sound absorbing material.
  • FIG. 8 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 1-1.
  • FIG. 9 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 1-2.
  • FIG. 10 is a graph of frequency-sound absorption coefficient of the sound absorbing material according to Example 1-3.
  • FIG. 11 is a graph of frequency vs. sound absorption coefficient of the sound absorbing material according to Example 1-4.
  • FIG. 12 is a graph of frequency vs. sound absorption coefficient of the sound absorbing material according to Example 1-5.
  • FIG. 13 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 1-6.
  • FIG. 14 is a graph of frequency vs. sound absorption coefficient of the sound absorbing material according to Example 1-7.
  • FIG. 15 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Comparative Example 1.
  • FIG. 16 is a graph of frequency vs.
  • FIG. 17 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Comparative Example 3.
  • FIG. 18 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 2-1.
  • FIG. 19 is a graph of frequency versus sound absorption coefficient of a sound absorbing material according to Example 3-1.
  • FIG. 20 (a) is a perspective view schematically showing a general Helmholtz resonance mechanism
  • FIG. 20 (b) is a cross-sectional view taken along line AA of FIG. 20 (a).
  • the Helmholtz resonance mechanism is a resonance It shows schematically how to do it.
  • the sound absorbing material of the present invention is a sound absorbing material having a non-penetrating hole, and the non-penetrating hole of the sound absorbing material comprises an introduction passage opened on the surface and a hollow portion connected to the outside through the introduction passage.
  • the circle has the Helmholtz resonance structure, the circle equivalent diameter of the introduction passage is d, the length is L, the opening area is S, the surface roughness is Ra, and the volume of the hollow portion is V, the circle The equivalent diameter d is 1 to 30 mm, the length L is 1 to 20 mm, and 500 Hz ⁇ f ⁇ 2000 Hz holds for f (Hz) obtained by the following equation (1) .
  • the sound velocity c is 34000 cm / sec, and when Ra is more than 0 ⁇ m and 0.1 ⁇ m or less, ⁇ is 1.10, and Ra is more than 0.1 ⁇ m and 2.0 ⁇ m or less Is 1.15, and when Ra exceeds 2.0 ⁇ m, ⁇ is 1.18.
  • the reason why noise with a frequency of 500 Hz to 2000 Hz which a person feels unpleasant can be easily absorbed is estimated as follows.
  • the surface roughness of the introduction passage is a factor affecting the movement of air present in the introduction passage. Therefore, due to the difference in surface roughness, it is considered that it is necessary to make corrections to the calculation formula for obtaining the resonance frequency.
  • the sound absorbing material of the present invention is designed on the basis of the above-described corrected equation.
  • f (Hz) calculated by the equation (1)
  • the actual sound absorbing frequency there is little deviation between f (Hz) calculated by the equation (1) and the actual sound absorbing frequency. Therefore, by setting the value of f (Hz) to 500 to 2000 Hz, which is a frequency band to be absorbed, noise in the band can be reliably absorbed.
  • the equivalent circle diameter d is preferably 1 to 30 mm, and more preferably 3 to 25 mm. Further, although the desirable size of the opening area S can be calculated from the length of the equivalent circle diameter d, specifically, it is preferably 0.8 to 706.8 mm 2 , and 7.1 to 490.9 mm. It is more desirable to be 2 .
  • the length L is preferably 1 to 20 mm, and more preferably 3 to 15 mm.
  • the surface roughness Ra is preferably more than 0 and 15 ⁇ m or less, and more preferably 0.01 to 10 ⁇ m.
  • the surface roughness Ra of the introduction passage refers to the arithmetic average roughness defined by JIS B 0601 (2001), and means a value measured by the following method. First, 10%, 30%, 50%, 70%, and 90% portions are taken as surface roughness measurement reference points in the direction from the hollow portion side end of the introduction passage to the opposite end portion. Next, the surface roughness Ra in a square area centering on each surface roughness measurement reference point is measured using a laser type surface roughness measuring device (model name: manufactured by Keyence Corporation product name: VX-9700). . The measurement is performed as follows.
  • a measurement piece cut in the direction perpendicular to the cross section of the introduction passage is prepared.
  • fix it to the measuring device make it 50 times the magnification of the microscope of the laser type surface roughness measuring device, focus on the measurement reference point, 400 nm wavelength
  • make measurements with a laser at this time, the surface roughness curve of the surface is measured and drawn at intervals of 10 ⁇ m in a square area with a height of 100 ⁇ m and a width of 100 ⁇ m with the measurement reference point as the center (therefore, 10 surface roughness curves are drawn)
  • the Ra is calculated from each surface roughness curve, and the average of these ten Ra values is taken as the surface roughness Ra of the measurement reference point.
  • the same measurement is performed at each measurement reference point, and the average value of the measurement values of five measurement reference points is taken as the surface roughness Ra of the introduction passage.
  • the volume V of the hollow portion is preferably 24 to 329,860 mm 3 , and more preferably 257 to 246,766 mm 3 .
  • the volume of the introduction passage is represented by an opening area S ⁇ length L.
  • the volume of the hollow portion is sufficiently large compared to the volume of the introduction passage.
  • the introduction passage is desirably cylindrical, and when the introduction passage is cylindrical, it is desirable that the cross-sectional shape in the direction perpendicular to the longitudinal direction be a perfect circle. It is advantageous that the introduction passage has a cylindrical shape because the sound absorption characteristics do not have anisotropy.
  • the shape of the hollow portion is not particularly limited, and may be a spherical hollow shape or a columnar hollow shape. Among these, a columnar hollow shape is desirable, and a cylindrical hollow shape is more desirable.
  • the hollow portion has a cylindrical hollow shape, its height is preferably 1 to 20 mm, and more preferably 3 to 15 mm.
  • the thickness of the sound absorbing material is preferably 10 to 120 mm. More preferably, the thickness of the sound absorbing material is 20 to 100 mm.
  • the thickness of the sound absorbing material is less than 10 mm, it becomes difficult to form a non-through hole in which the Helmholtz resonance structure functions.
  • the thickness of the sound absorbing material exceeds 120 mm, the sound absorbing material becomes too large, and it becomes difficult to arrange in the desired space.
  • the sound absorbing material of the present invention preferably comprises a resin and / or a fibrous material.
  • the resin is preferably an elastomer such as a foamed resin or rubber. If the sound absorbing material is made of resin, weight reduction can be easily achieved, which is particularly desirable as a component for a vehicle. In addition, when the resin is a foamed resin, the weight thereof can be made lighter, which can contribute to the improvement of the fuel efficiency when it is used as a component for a vehicle.
  • a composite material of resin and fiber may be used. As a method of complexing, resin and fiber may be mixed, or resin and fiber may be combined in block form.
  • the resin be any of a foamed resin composed of expandable resin particles (beads), a foamed resin having cells, a fiber, a thermoplastic resin, and a thermosetting resin.
  • the material preferably has a density mm of 0.01 to 1 g / cm 3 , and more preferably 0.02 to 0.1 g / cm 3 .
  • the density of the resin indicates the density of the foamed resin that has been foam-molded. If the density of the resin is within the above range, it is easy to obtain the strength necessary for the sound absorbing material. On the other hand, when the density of the resin is less than 0.01 g / cm 3 , mechanical strength sufficient as a sound absorbing material may not be obtained.
  • the resin is more preferably a foamed resin comprising expandable resin particles (beads).
  • the resin is a foamed resin composed of expandable resin particles (beads)
  • the weight of the sound absorbing material can be reduced while maintaining the strength, which can contribute to the improvement of fuel efficiency when used for parts for vehicles.
  • the foamed resin is obtained by foaming and molding expandable resin particles.
  • the expandable resin particles (beads) used in the sound absorbing material of the present invention are particles containing a foaming agent inside the resin particles, and known materials can be suitably used.
  • the resin component constituting the expandable resin particles include olefin resins such as polyethylene and polypropylene, and styrene resins such as polystyrene.
  • a styrene resin a copolymer obtained by copolymerizing a styrene homopolymer, styrene, and a monomer (or its derivative) copolymerizable with styrene is mentioned.
  • the styrene copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • the blowing agent include hydrocarbons such as propane, butane and pentane.
  • Flame retardants include hydrated metal flame retardants such as aluminum hydroxide and magnesium hydroxide, phosphoric acid flame retardants such as red phosphorus and ammonium phosphate, tetrabromobisphenol A (TABB), brominated polystyrene, chlorinated paraffin And halogen-based flame retardants, ammonium carbonate, nitrogen-based flame retardants such as melamine cyanurate, and the like.
  • phosphoric acid flame retardants such as red phosphorus and ammonium phosphate, tetrabromobisphenol A (TABB), brominated polystyrene, chlorinated paraffin And halogen-based flame retardants, ammonium carbonate, nitrogen-based flame retardants such as melamine cyanurate, and the like.
  • TABB tetrabromobisphenol A
  • brominated polystyrene chlorinated paraffin And halogen-based flame retardants
  • ammonium carbonate such as melamine cyanurate
  • antioxidant examples include alkylphenols, alkylene bisphenols, alkylphenol thioethers, ⁇ , ⁇ -thiopropionic acid esters, organic phosphites and phenol-nickel complexes.
  • light fastness stabilizer examples include benzotriazole-based UV absorbers and hindered amine-based stabilizers.
  • antistatic agent examples include low molecular weight antistatic agents such as fatty acid ester compounds, aliphatic ethanolamine compounds and aliphatic ethanolamide compounds, and high molecular weight antistatic agents.
  • a coloring agent a dye, a pigment, etc. are mentioned.
  • the average particle diameter of the expandable resin particles used in the sound absorbing material of the present invention is preferably 300 ⁇ m to 2400 ⁇ m, and more preferably 800 ⁇ m to 2000 ⁇ m.
  • the expansion ratio of the expandable resin particles is desirably 10 to 60 times. By setting the expansion ratio to 10 to 60 times, the density of the resin can be easily adjusted to the range of 0.02 to 0.1 g / cm 3 . On the other hand, if the expansion ratio is less than 10 times, the sound absorbing material may be too hard or too heavy. When the expansion ratio exceeds 60 times, the strength may be insufficient as a sound absorbing material.
  • Polyurethane or the like can be used as the foamed resin having air bubbles used in the sound absorbing material of the present invention.
  • a foaming agent and the like By mixing polyurethane as a main ingredient, a foaming agent and the like, and foaming and forming the mixture, a foamed resin having cells can be obtained, whereby a sound absorbing material can be manufactured.
  • the resin used in the sound absorbing material of the present invention may be a thermoplastic resin or a thermosetting resin.
  • a thermoplastic resin used in the sound absorbing material of the present invention polypropylene resin, polyethylene resin, polyester resin, polystyrene resin and the like can be used.
  • a thermoplastic resin can be molded as a resin pellet, the resin pellet can be heated, and a sound absorbing material can be manufactured by molding such as injection molding and extrusion molding.
  • a thermosetting resin used in the sound absorbing material of the present invention melamine resin, urea resin, polyurethane, polyurea, polyamide, polyacrylamide and the like can be used.
  • a sound absorbing material can be manufactured by preheating the thermosetting resin, placing it in a mold, pressurizing it, raising the temperature of the mold and curing it.
  • the fiber used in the sound absorbing material of the present invention is preferably an organic fiber or an inorganic fiber, and as the organic fiber, polyester, polyamide, acetate or the like can be used.
  • the inorganic fibers alumina, silica and mullite fibers are desirable. It is desirable to bond the fibers together with the binder into a felt.
  • parts other than resin-made may be materials, such as an inorganic material and a metal material, other than resin-made parts of the sound-absorbing material of this invention.
  • the arrangement pattern of non-through holes opened on the surface may be a tetragonal arrangement in which non-through holes are disposed at the corners of the squares in a plane in which squares are continuously arranged vertically and horizontally. It may be a staggered arrangement in which non-through holes are arranged at the apexes of triangles in planes arranged continuously in the vertical and horizontal directions. Among these, a staggered arrangement is desirable.
  • the arrangement pattern of the non-through holes is a staggered arrangement, the adjacent non-through holes are likely to be equally spaced, so that the sound absorbing effect is improved.
  • FIG. 1 is a cross-sectional view schematically showing an example of the sound absorbing material of the present invention.
  • the sound absorbing material 100 is a sound absorbing material having a non-through hole 101.
  • the non-through hole 101 of the sound absorbing material 100 has a Helmholtz resonance structure including an introduction passage 110 opened to the surface and a hollow portion 120 connected to the outside through the introduction passage 110.
  • the introduction passage 110 is cylindrical with a diameter d 110 and a length L 110 .
  • the area of the opening of the introduction passage 110 is S 110
  • the surface roughness of the introduction passage 110 is Ra 110 .
  • the hollow portion 120 is a cylindrical hollow shape having a volume V 120.
  • the diameter d 110 is 1 to 30 mm, and the length L 110 is 1 to 15 mm. And, it is characterized in that 500 ⁇ f ⁇ 2000 holds for f (Hz) obtained by the following equation (1 ′).
  • the sound velocity c is 34000 cm / sec, and when Ra 110 is more than 0 ⁇ m and 0.1 ⁇ m or less, ⁇ is 1.10, and Ra 110 is more than 0.1 ⁇ m, 2 .Alpha. Is 1.15 in the case of 0 .mu.m or less, and .alpha. Is 1.18 in the case of Ra 110 exceeding 2.0 .mu.m)
  • the surface condition of the wall surface of the introduction passage is not flat but has unevenness.
  • the unevenness also differs depending on the material, the molding process, and the like. Therefore, the length of the introduction passage is not the same as the length of the cross section of the introduction passage. Therefore, the resonant frequency calculated by the said Formula (3) and the sound absorption frequency of an actual sound-absorbing material might shift
  • n (n is a natural number of 2 or more) introduction passages of the same shape may be formed in one hollow portion.
  • the air in each introduction passage is simultaneously pushed toward the hollow portion. Since the air in the hollow portion is elastic, it tries to push the air in the introduction passage out.
  • the force to push out the air in the introduction passage depends on the volume of air in the hollow portion, but in this case, a Helmholtz resonance mechanism having a hollow portion having a volume of V / n in one introduction passage is used. It can be considered that there are n.
  • the force to push air out of one introduction passage can be approximately calculated based on the volume of air in the hollow portion divided by the number of introduction passages. That is, f can be calculated by calculating V as a value obtained by dividing the volume V of the entire hollow portion by n in the above equation (1).
  • FIG. 2 is a cross-sectional view schematically showing an example of the sound absorbing material of the present invention.
  • the sound absorbing material 200 is a sound absorbing material having a non-through hole 201.
  • the non-through hole 201 of the sound absorbing material 200 has a Helmholtz resonance structure composed of n (n is a natural number of 2 or more) introduction passage 210 opened on the surface and a hollow portion 220 connected to the outside through the introduction passage 210. doing.
  • the introduction passage 210 is in a cylindrical shape having a diameter d 210 and a length L 210 .
  • the area of the opening of the introduction passage 210 is S 210
  • the surface roughness of the introduction passage 210 is Ra 210 .
  • the volume of the entire hollow portion 220 is indicated by reference numeral V 220 .
  • the diameter d 210 is 1 to 30 mm, and the length L 210 is 1 to 15 mm.
  • the sound absorbing material 200 has n Helmholtz resonance structures whose hollow portion volume is V 220 / n. Therefore, f can be calculated by calculating V as V 220 / n in the above equation (1).
  • FIG. 3A is explanatory drawing which shows typically an example of the site
  • FIG.3 (b) is partial expansion of the area
  • FIG. 3A the automobile 1 includes a luggage room 3 behind the rear seat 2. At the lower part of the luggage room 3, a plate-like floor member 4 is laid, and under the floor member 4, an underfloor space 5 is present. Under the underfloor space 5, the sound absorbing material 100 is disposed in the vehicle such that the open surface of the non-through hole 101 faces the road surface.
  • the sound absorbing material 100 of the present invention is designed so that f (Hz) becomes 500 ⁇ f ⁇ 2000 in consideration of the surface roughness of the introduction passage 110. Therefore, noise in the frequency region of 500 to 2000 Hz which a person feels uncomfortable is prevented from intruding into the vehicle cabin, and the feeling of discomfort for the person in the vehicle cabin is reduced.
  • the sound absorbing material of the present invention can be manufactured by forming a non-through hole having a Helmholtz resonance structure in a resin layer.
  • the method to form a non-through hole in the resin layer of the sound absorbing material of the present invention is not particularly limited, for example, the through hole may be manually formed on the resin layer using a tool such as a cutter.
  • a method of disposing projections in a shape to be an introduction passage and a hollow portion in a mold, molding a resin layer in the mold, and removing the projections An example of such a method is described below.
  • a foamed resin is produced by a method in which expandable resin particles are filled in a mold in which a plurality of projections protruding inside are placed and heat expansion is performed.
  • non-through holes can be formed in the foamed resin by extracting the projections from the foamed resin.
  • the foamed resin is produced by the bead method in which the foamed resin particles are filled in a mold and foamed by a method such as steam heating.
  • the mold since a plurality of projections projecting inward are disposed, the portions of the projections are not filled with the foamed resin particles. Therefore, the non-through holes corresponding to the shape of the protrusions can be formed in the foamed resin by extracting the protrusions from the foamed resin.
  • the material of the said protrusion is not specifically limited, It is desirable that at least one part is comprised with the resin elastic body.
  • the projections are deformed when the projections are extracted from the foamed resin, and the extraction becomes easy.
  • the projection is substantially mushroom-shaped, which includes a shaft portion and an umbrella portion, and the shaft portion is fixed to the mold.
  • the protrusion has a substantially mushroom shape including a shaft portion and an umbrella portion and the shaft portion is fixed to the mold, an introduction passage is formed in the foamed resin corresponding to the shape of the shaft portion, and the shape of the umbrella portion is formed.
  • a hollow part will be formed.
  • the shaft portion is made of metal
  • the umbrella portion is made of the resin elastic body.
  • the shaft of the projection is made of metal
  • the mechanical strength is high, so breakage of the projection is unlikely to occur by repeated use, and the life of the projection can be kept long, and a highly durable mold can be obtained.
  • the umbrella portion of the projection is made of a resin elastic body, only the umbrella portion can be deformed, so that the projection can be easily extracted from the foamed resin.
  • the heat-resistant temperature of the resin elastic body is desirably higher than the temperature of the heat-foaming of the foamable resin particles. If the heat resistance temperature of the resin elastic body is higher than the temperature of heating and foaming of the foamable resin particles in the bead method, the shape of the projections is less likely to be deformed by the heat when foaming the foamable resin particles, and the durability against repeated use Is obtained. Since the heating temperature of the expandable resin particles in the bead method is 80 to 150 ° C., the heat resistant temperature of the resin elastic body is desirably higher than the above temperature, specifically 100 to 180 ° C. is preferable. It is more desirable that the temperature is 155 to 180 ° C.
  • the A hardness of the resin elastic body is preferably 50 ° or less.
  • the shape of the non-through hole can be sufficiently maintained at the time of molding of the foamed resin by heating and foaming, and when the protrusion is extracted from the foamed resin after molding, the protrusion is It deforms and becomes easy to extract.
  • the A hardness means a hardness using a type A durometer measured in accordance with JIS K 6253-3 (2012).
  • the resin elastic body is preferably a silicone resin or a silicone gel.
  • the resin elastic body is a silicone resin or a silicone gel
  • the heat resistance temperature of the resin elastic body is high, so the shape of the projections is not easily deformed at the time of heat foaming, and has high durability in repeated use.
  • the projections are extracted from the foamed resin, the projections are easily deformed, and the extraction of the projections from the foamed resin is facilitated.
  • the protrusion (the umbrella portion) that forms the hollow portion is deformed and can pass through the introduction passage, so the resin is formed
  • the projections can be removed from the foam without damaging the Helmholtz resonance structure.
  • FIG.4 (a) is a perspective view which shows typically an example of the metal mold
  • FIG.4 (b) is a BB sectional drawing of FIG. 4 (a) It is.
  • a mold 50 as shown in FIG. 4 (a) is prepared.
  • the mold 50 has a plurality of projections 60 in its interior.
  • the projection 60 is substantially mushroom-shaped, which includes a shaft 61 and an umbrella 62, and the shaft 61 is fixed to the mold 50.
  • FIG. 5 is explanatory drawing which shows typically an example of the process of producing foamed resin in the manufacturing method of the sound absorbing material of this invention.
  • the foamed resin 102 is produced by a bead method in which expandable resin particles are filled in a mold 50 and heat-foamed.
  • FIGS. 6 (a) to 6 (c) are explanatory views schematically showing an example of the process of extracting the protrusion from the foamed resin in the method of manufacturing the sound absorbing material of the present invention.
  • a projection 60 consisting of the shaft 61 and the umbrella 62 is embedded, and the umbrella 62 is made of a resin elastic body.
  • the umbrella portion 62 is deformed.
  • the umbrella portion 62 is made of a resin elastic body and is easily deformed, and the foamed resin 102 is not deformed.
  • the projections 60 can be removed from the foamed resin 102 by passing while the umbrella portion 62 is deformed.
  • the shape of the umbrella portion 62 returns to its original shape, and the space in which the projection 60 is buried becomes the non-through hole 101.
  • the shape of the introduction passage 110 opened on the surface corresponds to the shape of the shaft 61
  • the shape of the hollow portion 120 connected to the outside through the introduction passage 110 corresponds to the shape of the umbrella 62 Do.
  • a sound absorbing material can be manufactured through such a process.
  • the surface roughness Ra of the introduction passage can be adjusted by adjusting the processing conditions of the introduction passage, for example, the hardness of the protrusions 60. Moreover, it can also adjust by roughening processes, such as grinding
  • Example 1-1 (Production of projection unit) An aluminum substrate was prepared in which 10 holes (diameter 3 mm, depth 5 mm) were drilled so that the distance between the side faces of the hollow portions adjacent to the surface of the 10 mm thick aluminum plate was a 10 mm staggered arrangement. Subsequently, an acrylic mold was prepared for producing a projection to be attached to the aluminum substrate.
  • the acrylic mold is divisible into two (one is male and the other is female), a cylinder with a diameter of 3 mm and a length of 15 mm as the shaft inside, and a diameter of 10 mm as the umbrella,
  • the shape of a cylinder with a length of 10 mm has a substantially mushroom-shaped cavity connected with the central axes of the cylinders aligned.
  • each divided mold was cut.
  • Recesses (hollows) corresponding to shapes obtained by dividing the substantially mushroom shape into two along the length direction are formed on the surfaces of the male mold and the female mold, respectively.
  • a curing agent Shin-Etsu Chemical Co., Ltd., CAT-RM
  • a main agent of silicone resin Shin-Etsu Chemical Co., Ltd., KE-17
  • vacuum defoaming After foaming time: 20 minutes), it poured into the cavity of female die and female die, the female die and female die were put together, fixed with a rubber band, and cured at 70 ° C. for 20 minutes.
  • a cylinder with a diameter of 10 mm and a length of 10 mm and a cylinder with a diameter of 3 mm and a length of 15 mm align the central axes of each cylinder
  • a substantially mushroom-shaped molded article connected was obtained.
  • the A hardness of the resin elastic body constituting the molded body was 50 °.
  • a projection unit having 10 projections fixed on the aluminum substrate was prepared by inserting the end of the molded body having a diameter of 3 mm into the hole of the aluminum substrate to a depth of 5 mm.
  • the projection was composed of a cylindrical shaft having a diameter of 3 mm and a length of 10 mm, and a cylindrical umbrella having a diameter of 10 mm and a length of 10 mm.
  • the protrusion unit is attached to the die holder to prepare a mold, and the primary foam particles (made of polypropylene, average particle diameter 3.5 mm, foaming agent: carbon dioxide) prefoamed are filled in the mold and foamed by heating steam. It was molded (143 ° C., 10 seconds), removed from the mold, and dried at 80 ° C. for 12 hours to produce a plate-like porous foamed resin. At this time, the expansion ratio of the foamed resin was 30 times.
  • the inner diameter d of the introduction passage was 3 mm
  • the length L was 10 mm
  • the opening area S was 7.1 mm 2
  • the surface roughness Ra was 1.02 ⁇ m.
  • the volume V of the hollow portion was 785 mm 3 .
  • the surface roughness shall be measured at five reference points of 10%, 30%, 50%, 70% and 90% in the length direction of the introduction channel, and the laser type surface roughness measuring device (model name) : Measured using Keyence Corporation product name: VX-9700). Before measurement, prepare a measurement piece cut at the cross section of the introduction passage.
  • the surface of the introduction path of the measurement piece is set to the top, and set, and the magnification of the microscope of the laser type surface roughness measuring apparatus is 50 times, the measurement reference point is focused, and measurement is performed by laser.
  • the surface roughness Ra is measured in a square area at a height of 100 ⁇ m and a width of 100 ⁇ m centering on the measurement reference point, and as a result, the Ra of 10% position: 1.10 ⁇ m, 30% position Ra : Ra of 0.97 ⁇ m, 50% position: 1.08 ⁇ m, Ra of 70% position: 1.00 ⁇ m, Ra of 90% position: 1.07 ⁇ m, and the average value of these 5 points is calculated
  • the surface roughness Ra was 1.02 ⁇ m.
  • Example 1-2 to 1-7, Example 2-1, Example 3-1, and Comparative Examples 1 to 3 Example 1-2 to Example in the same manner as Example 1-1 except that a mold was used such that the inner diameter of the hollow portion and the surface roughness Ra of the introduction passage had the values shown in Tables 1 and 2. Sound absorbing materials according to 1-7, Example 2-1, Example 3-1, and Comparative Examples 1 to 3 were obtained.
  • FIG. 7 is an explanatory view schematically showing a method of measuring the sound absorption coefficient of the reverberation chamber with respect to the sound absorbing material.
  • the sound absorbing material 300 according to each example and each comparative example is placed on the floor surface 81 of the reverberation chamber 80 with the opening of the introduction passage as the upper surface, In the reverberation chamber 80, the noise signal generator 82 radiates electrical noise through the speaker 83.
  • the sound emission is then stopped, the sound is measured by the microphone 84 and the attenuation process is analyzed by the signal analyzer 85.
  • the reverberation time which is the time for the sound to attenuate 60 dB from the analyzed attenuation curve before the test body is placed, T1 [sec. After the test body is placed on the floor surface, a reverberation time, which is a time when the sound attenuates by 60 dB from the measured attenuation curve, is T2 [sec. Ask for The measurement is performed at 300-5000 Hz.
  • the maximum value of the peak of the region where the sound absorption coefficient is large was taken as the sound absorption frequency.
  • FIG. 8 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 1-1.
  • FIG. 9 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 1-2.
  • FIG. 10 is a graph of frequency-sound absorption coefficient of the sound absorbing material according to Example 1-3.
  • FIG. 11 is a graph of frequency vs. sound absorption coefficient of the sound absorbing material according to Example 1-4.
  • FIG. 12 is a graph of frequency vs. sound absorption coefficient of the sound absorbing material according to Example 1-5.
  • FIG. 8 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 1-1.
  • FIG. 9 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 1-2.
  • FIG. 10 is a graph of frequency-sound absorption coefficient of the sound absorbing material according to Example 1-3.
  • FIG. 11 is a graph
  • FIG. 13 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 1-6.
  • FIG. 14 is a graph of frequency vs. sound absorption coefficient of the sound absorbing material according to Example 1-7.
  • FIG. 15 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Comparative Example 1.
  • FIG. 16 is a graph of frequency vs. sound absorption coefficient of the sound absorbing material according to Comparative Example 2.
  • FIG. 17 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Comparative Example 3.
  • FIG. 18 is a graph of frequency versus sound absorption coefficient of the sound absorbing material according to Example 2-1.
  • FIG. 19 is a graph of frequency versus sound absorption coefficient of a sound absorbing material according to Example 3-1.
  • the sound absorbing material of each embodiment has a sound absorbing frequency in the range of 500 to 2000 Hz. Therefore, it is possible to absorb noise in the 500-2000 Hz range, which is a frequency range in which people feel uncomfortable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

本発明は、非貫通孔を有する吸音材であって、上記吸音材の上記非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、上記導入通路の円相当径をd、長さをL、開口面積をS、表面粗さをRaとし、上記中空部の体積をVとした場合に、上記円相当径dが、1~30mmであり、上記長さLが、1~20mmであり、以下の式(1)により求められたf(Hz)について500Hz≦f≦2000Hzが成り立つことを特徴とする吸音材。 (式(1)中、音速cは34000cm/secであり、Raが0μmを超え、0.1μm以下の場合にはαは1.10であり、Raが0.1μmを超え、2.0μm以下の場合にはαは1.15であり、Raが2.0μmを超える場合にはαは1.18である。)

Description

吸音材、車両用部品及び自動車
本発明は、吸音材、車両用部品及び自動車に関する。
自動車等の車両は、エンジンなどの動力源を有し、人の操作によって移動できる機械であり、様々な振動や騒音を発生させる。車両内に伝達される音としては、動力源が発する音だけではなく、車両が走行する際に発生するロードノイズ、タイヤパターンノイズ、風切音等の、車両の外で発生する音も含まれる。これらの音が車両内に伝達されてしまうと、人に対して不快感を与えてしまうため、エンジン、エンジンルーム内、内装、ボディ、排気管周辺等において、遮音材・吸音材を用いて防音対策が行われている。
また、自動車の技術改良に伴い、自動車に対する新たな防音対策の必要が生じている。例えば、自動車の燃費向上の方策の一つとして、自動車の重心及び最低地上高を下げることが検討されている。自動車の重心を下げることで車両の安定感及び操作性が向上し、最低地上高を下げることで空気抵抗を低減することができる。しかしながら、自動車の最低地上高が低くなることで、走行時に車両と路面との間を流れる空気の粘性が高まる。そうすると、タイヤパターンノイズ(500~3000Hzの周波数領域であり、単にパターンノイズともいう)等の走行時に路面から発生する騒音が車体下の周囲に反射・拡散しにくく、車両内に侵入する音の度合いが高くなると推定される。同様の問題は電気自動車でも起こりうる。
従って、自動車の燃費向上のために自動車の重心及び最低地上高を下げた場合、従来は自動車外に拡散していた騒音が、自動車に乗車している人に伝達されてしまうことが想定される。特に、車両後部、かつ、収容スペースが配置されているラゲッジルーム下部(床下空間)の底部からこれらの騒音が侵入しやすいと考えられる。これらの騒音には人が不快に感じる500~2000Hzの周波数領域の騒音も含まれるため、その対策が求められている。
特許文献1には、発泡成形により成形された柔軟な多孔質発泡体に、一方の面に開口する導入通路と、該導入通路の奥に形成され該導入通路よりも大きな断面積を持つ中空部とからなる多数の共鳴室を有する吸音材が開示されている。
特許文献2には、表面又は裏面に開口部を有する複数個の独立した盲空洞を有する樹脂成形体と吸音材を備え、特定の100Hz~10kHz共鳴吸音ピーク周波数を有する吸・遮音構造体が開示されている。
特開平08-260589号公報 特開2001-249666号公報
ここで、特許文献1に記載された吸音材や特許文献2に記載された樹脂成形体には、ヘルムホルツ共鳴構造と呼ばれる孔が形成されている。
ここで、ヘルムホルツ共鳴構造について説明する。
図20(a)は、一般的なヘルムホルツ共鳴機構を模式的に示す斜視図であり、図20(b)は、図20(a)のA-A線断面図であり、ヘルムホルツ共鳴機構が共鳴する様子を模式的に示している。
図20(a)に示すように、一般的なヘルムホルツ共鳴機構500は、円柱状の導入通路510と、中空部520とからなる。
導入通路510は、円柱状であり、径d510、長さL510及び断面積S510を有する。また、中空部520は、体積V520を有する。
また、導入通路510には、空気A510が存在しており、中空部520には、空気A520が存在している。
ここで、一般的なヘルムホルツ共鳴機構500の導入通路510に音が到達した場合について説明する。
まず、中空部520内の空気A520は導入通路510以外から外部に出ることができない。また、図20(b)に示すように、導入通路510の空気A510が中空部520に入ろうとすると、中空部520内の空気A520は弾性体であるので、導入通路510の空気A510を外に押し出そうとする。すなわち、中空部520内の空気A520は、バネとして機能することになる。
ここで、導入通路510に音が到達し、導入通路510の空気A510が中空部520に入ろうとした場合、導入通路510の空気A510を剛体と考えると、導入通路510の空気A510の動きは、単振動の動きとして表すことができ、その際の周波数fは、以下の式(2)により、近似的に計算することができる。
Figure JPOXMLDOC01-appb-M000002
(式(2)中、cは音速である。)
また、この周波数(すなわち、共鳴周波数)において、導入通路510に到達した音は、共鳴し打ち消されることになる。
これが、ヘルムホルツ共鳴機構により音が吸収される原理とされている。
なお、実際には、導入通路510の空気A510は剛体では無く、また、周囲の空気も導入通路510の空気A510に影響を与えることになる。
そのため、上記式(2)は、以下の式(3)のように補正されて、共鳴周波数が計算されることになる。
Figure JPOXMLDOC01-appb-M000003
(式(3)中、cは音速である。)
しかし、上記式(3)に基づき、共鳴周波数が、所望の周波数になるようにヘルムホルツ共鳴機構を設計したとしても、実際の吸音材の吸音周波数が、計算上の共鳴周波数とずれる場合があった。
そのため、人が不快に感じる500~2000Hzの周波数領域の騒音を充分に吸収することができないという問題があった。
本発明は、上記問題点を解決するためになされた発明であり、本発明は、人が不快に感じる500~2000Hzの周波数領域の騒音に対する対策が可能な吸音材を提供することを目的とする。
本発明者らは、計算上のヘルムホルツ共鳴機構の共鳴周波数と、実際のヘルムホルツ共鳴機構の吸音周波数とがずれる原因が、導入通路の表面粗さに起因することを見出し、本発明を完成させた。
すなわち、本発明の吸音材は、非貫通孔を有する吸音材であって、上記吸音材の上記非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、上記導入通路の円相当径をd、長さをL、開口面積をS、表面粗さをRaとし、上記中空部の体積をVとした場合に、上記円相当径dが、1~30mmであり、上記長さLが、1~20mmであり、以下の式(1)により求められたf(Hz)について500Hz≦f≦2000Hzが成り立つことを特徴とする。
Figure JPOXMLDOC01-appb-M000004
(式(1)中、音速cは34000cm/secであり、Raが0μmを超え、0.1μm以下の場合にはαは1.10であり、Raが0.1μmを超え、2.0μm以下の場合にはαは1.15であり、Raが2.0μmを超える場合にはαは1.18である。)
ヘルムホルツ共鳴構造を有する吸音材において、導入通路の表面粗さは、導入通路に存在する空気の移動に影響を与える因子となる。
そのため、表面粗さの違いにより、共鳴周波数を求める計算式に補正を行う必要がある。
本発明の吸音材は、このような補正を行った計算式に基づき設計されている。
そのため、本発明の吸音材では、式(1)により計算されるf(Hz)の値を500Hz~2000Hzとなるように吸音材を設計することで、実際の吸音周波数を500Hz~2000Hzの間に調整することができ、人にとって不快な500Hzから2000Hzの周波数帯域の騒音を確実に吸収することができる。
なお、円相当径とは、導入通路を長さ方向に対して垂直な方向に切断した際の導入通路の断面積を、同面積の真円に置き換えた場合の直径である。導入通路が真円の場合にはその直径をそのまま円相当径とすればよい。
なお、式(1)中のcは音速であり、本発明においては、音速c=34000cm/secを式(1)中の定数として用いることとする。
本発明の吸音材では、上記導入通路は円柱状であることが望ましい。
導入通路が円柱状であると、吸音特性に異方性がないため有利である。
本発明の吸音材は、樹脂及び/又は繊維質材料からなることが望ましい。上記樹脂は、発泡樹脂、ゴムなどのエラストマーであることが望ましい。
吸音材が樹脂製であると、軽量化が図りやすいため車両用部品として特に望ましい。
また、樹脂が発泡樹脂であると、その重量をより軽くすることができ、車両用部品とした場合に燃費の向上に寄与することができる。
本発明においては、樹脂及び繊維の複合材であってもよい。複合化の方法としては、樹脂と繊維を混合してもよく、樹脂と繊維をブロック状に組み合わせてもよい。
本発明の車両用部品は、本発明の吸音材を備えることを特徴とする。
本発明の吸音材は防音性能に優れるため、車両用部品として優れる。
本発明の吸音材を備える車両用部品としては、嵩上げ材、仕切り部材、ラゲッジボックス等が挙げられる。
本発明の自動車は、本発明の吸音材の導入通路を路面方向に向けて配置してなることを特徴とする。
このような向きに本発明の吸音材を配置することで、路面から伝わるタイヤパターンノイズの騒音を吸収することができ、騒音が車内に伝わることを防止することができる。
図1は、本発明の吸音材の一例を模式的に示す断面図である。 図2は、本発明の吸音材の一例を模式的に示す断面図である。 図3(a)は、本発明の吸音材が配置される部位の一例を模式的に示す説明図であり、図3(b)は、図3(a)における破線部で示す領域の部分拡大図である。 図4(a)は、本発明の吸音材の製造方法において用いる金型の一例を模式的に示す斜視図であり、図4(b)は、図4(a)のB-B線断面図である。 図5は、本発明の吸音材の製造方法において、発泡樹脂を作製する工程の一例を模式的に示す説明図である。 図6(a)~図6(c)は、本発明の吸音材の製造方法において、発泡樹脂から突起を抜き取る工程の一例を模式的に示す説明図である。 図7は、吸音材に対する残響室吸音率の測定方法を模式的に示す説明図である。 図8は、実施例1-1に係る吸音材の周波数‐吸音率のグラフである。 図9は、実施例1-2に係る吸音材の周波数‐吸音率のグラフである。 図10は、実施例1-3に係る吸音材の周波数‐吸音率のグラフである。 図11は、実施例1-4に係る吸音材の周波数‐吸音率のグラフである。 図12は、実施例1-5に係る吸音材の周波数‐吸音率のグラフである。 図13は、実施例1-6に係る吸音材の周波数‐吸音率のグラフである。 図14は、実施例1-7に係る吸音材の周波数‐吸音率のグラフである。 図15は、比較例1に係る吸音材の周波数‐吸音率のグラフである。 図16は、比較例2に係る吸音材の周波数‐吸音率のグラフである。 図17は、比較例3に係る吸音材の周波数‐吸音率のグラフである。 図18は、実施例2-1に係る吸音材の周波数‐吸音率のグラフである。 図19は、実施例3-1に係る吸音材の周波数‐吸音率のグラフである。 図20(a)は、一般的なヘルムホルツ共鳴機構を模式的に示す斜視図であり、図20(b)は、図20(a)のA-A線断面図であり、ヘルムホルツ共鳴機構が共鳴する様子を模式的に示している。
(発明の詳細な説明)
以下、本発明について具体的に説明する。本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
本発明の吸音材は、非貫通孔を有する吸音材であって、上記吸音材の上記非貫通孔は、表面に開口する導入通路と上記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、上記導入通路の円相当径をd、長さをL、開口面積をS、表面粗さをRaとし、上記中空部の体積をVとした場合に、上記円相当径dが、1~30mmであり、上記長さLが、1~20mmであり、以下の式(1)により求められたf(Hz)について500Hz≦f≦2000Hzが成り立つことを特徴とする。
Figure JPOXMLDOC01-appb-M000005
(式(1)中、音速cは34000cm/secであり、Raが0μmを超え、0.1μm以下の場合にはαは1.10であり、Raが0.1μmを超え、2.0μm以下の場合にはαは1.15であり、Raが2.0μmを超える場合にはαは1.18である。)
本発明において、式(1)のf(Hz)が500Hz~2000Hzを満たすことにより、人が不快に感じる周波数500Hz~2000Hzの騒音を吸音しやすくなる理由は、次のように推定される。
ヘルムホルツ共鳴構造を有する吸音材において、導入通路の表面粗さは、導入通路に存在する空気の移動に影響を与える因子となる。
そのため、表面粗さの違いにより、共鳴周波数を求める計算式に補正を行う必要があると考えられる。
本発明の吸音材は、このような補正を行った計算式に基づき設計されている。
そのため、本発明の吸音材では、式(1)により計算されるf(Hz)と、実際の吸音周波数との間にずれが少ない。従って、f(Hz)の値を吸収したい周波数帯域である500~2000Hzに設定することで、当該帯域の騒音を確実に吸収することができる。
本発明の吸音材において、円相当径dは、1~30mmであることが望ましく、3~25mmであることがより望ましい。
また、開口面積Sの望ましい大きさは、上記円相当径dの長さから算出できるが、具体的には、0.8~706.8mmであることが望ましく、7.1~490.9mmであることがより望ましい。
本発明の吸音材において、長さLは、1~20mmであることが望ましく、3~15mmであることがより望ましい。
本発明の吸音材において、表面粗さRaは、0を超え15μm以下であることが望ましく、0.01~10μmであることがより望ましい。
本発明において、導入通路の表面粗さRaとは、JIS B 0601(2001)によって定義される算術平均粗さをいい、以下の方法により測定される値のことを意味する。
まず、導入通路の中空部側の端部から反対の端部の方向に、10%、30%、50%、70%、90%の部分を表面粗さ測定基準点とする。
次に、各表面粗さ測定基準点を中心として正方形の領域での表面粗さRaを、レーザー式表面粗さ測定装置(機種名:キーエンス社製 製品名:VX-9700)を用いて測定する。測定は次のように行う。最初に導入通路の断面に対して垂直方向に切断した測定片を用意する。次に測定片の導入通路の表面を上面にして、測定装置に固定し、レーザー式表面粗さ測定装置の顕微鏡の倍率50倍にして、測定基準点に対して、ピントを合わせて、波長400nmのレーザーによる測定を行う。このとき、測定基準点を中心として、縦:100μm 横:100μmでの正方形の領域で表面の面粗さ曲線を間隔10μmで計測、描画し(従って、10個の面粗さ曲線が描かれる)、各面粗さ曲線からRaを演算、これら10個のRaの値の平均を測定基準点の面粗さRaとする。同様の計測を各測定基準点で行い、5つの測定基準点の測定値の平均値を導入通路の表面粗さRaとする。
本発明の吸音材において、中空部の体積Vは、24~329,860mmであることが望ましく、257~246,766mmであることがより望ましい。
本発明の吸音材において、導入通路の体積は、開口面積S×長さLで示される。
理論上、ヘルムホルツ共鳴構造において、共鳴周波数を求める式が成り立つ場合は、導入通路の体積に比べ、中空部の体積が充分に大きい場合である。
本発明の吸音材では、導入通路は、円柱状であることが望ましく、導入通路が円柱状である場合その長さ方向に垂直な方向の断面形状が真円であることが望ましい。
導入通路が円柱状であると、吸音特性に異方性がないため有利である。
本発明の吸音材では、中空部の形状は、特に限定されず、球状の中空形状であってもよく、柱状の中空形状であってもよい。これらの中では、柱状の中空形状であることが望ましく、円柱状の中空形状であることがより望ましい。
中空部が円柱状の中空形状である場合、その高さは、1~20mmであることが望ましく、3~15mmであることがさらに望ましい。
本発明の吸音材において、吸音材の厚さは、10~120mmであることが望ましい。吸音材の厚さは、20~100mmであることがさらに望ましい。
吸音材の厚さが、10mm未満である場合、ヘルムホルツ共鳴構造が機能する非貫通孔を形成しにくくなる。
吸音材の厚さが、120mmを超える場合、吸音材が大きくなりすぎ、所望のスペースに配置しにくくなる。
本発明の吸音材は、樹脂及び/又は繊維質材料からなることが望ましい。上記樹脂は、発泡樹脂、ゴムなどのエラストマーであることが望ましい。
吸音材が樹脂製であると、軽量化が図りやすいため車両用部品として特に望ましい。
また、樹脂が発泡樹脂であると、その重量をより軽くすることができ、車両用部品とした場合に燃費の向上に寄与することができる。
本発明においては、樹脂及び繊維の複合材であってもよい。複合化の方法としては、樹脂と繊維を混合してもよく、樹脂と繊維をブロック状に組み合わせてもよい。
樹脂としては、発泡性樹脂粒子(ビーズ)からなる発泡樹脂、気泡を有する発泡樹脂、繊維、熱可塑性樹脂、熱硬化性樹脂のいずれかであることが望ましい。
上記樹脂の密度ρmが0.01~1g/cmである材料であることが好ましく、さらに、密度ρmが0.02~0.1g/cmであることがさらに好ましい。なお、上記樹脂が発泡樹脂である場合、樹脂の密度は、発泡成形された発泡樹脂の密度を指す。
樹脂の密度が上記範囲内であると、吸音材として必要な強度を得やすい。
一方、樹脂の密度が0.01g/cm未満であると、吸音材として充分な機械的強度を得られないことがある。また樹脂の密度が1g/cmを超える場合には、吸音材の重量が増加してしまい、車両の軽量化の妨げとなる。
また、樹脂は、発泡性樹脂粒子(ビーズ)からなる発泡樹脂がより望ましい。樹脂が発泡性樹脂粒子(ビーズ)からなる発泡樹脂であると、強度を維持したまま吸音材の重量を軽くすることができ、車両用部品に使用した場合に燃費の向上に寄与することができる。
なお、発泡樹脂は、発泡性樹脂粒子を発泡・成形して得られる。
本発明の吸音材で使用される発泡性樹脂粒子(ビーズ)は、樹脂粒子の内部に発泡剤を含有する粒子であり、公知のものを好適に使用することができる。
発泡性樹脂粒子を構成する樹脂成分としては、例えば、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリスチレン等のスチレン系樹脂が挙げられる。
スチレン系樹脂としては、スチレン単重合体、スチレン及びスチレンと共重合可能な単量体(又はその誘導体)を共重合して得られる共重合体が挙げられる。スチレン共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれであってもよい。
発泡剤としては、例えば、プロパン、ブタン、ペンタン等の炭化水素類等が挙げられる。
本発明の吸音材で使用される発泡性樹脂粒子には、必要に応じて、難燃剤、難燃助剤、加工助剤、充填剤、抗酸化剤、耐光性安定剤、帯電防止剤及び着色剤等の公知の添加剤を添加してもよい。添加剤の使用の一例としては、着色剤に黒系のものを用いれば、汚れが目立たなくなる。
難燃剤としては、水酸化アルミニウム、水酸化マグネシウム等の水和金属系難燃剤、赤リン、リン酸アンモニウム等のリン酸系難燃剤、テトラブロモビスフェノールA(TABB)、臭素化ポリスチレン、塩素化パラフィン等のハロゲン系難燃剤、炭酸アンモニウム、メラミンシアヌレート等の窒素系難燃剤等が挙げられる。
難燃助剤としては、三酸化アンチモン、五酸化アンチモン等が挙げられる。
加工助剤としては、ステアリン酸塩、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物、エポキシ化合物等が挙げられる。
充填剤としては、シリカ、タルク、ケイ酸カルシウム等が挙げられる。
抗酸化剤としては、アルキルフェノール、アルキレンビスフェノール、アルキルフェノールチオエーテル、β,β-チオプロピオン酸エステル、有機亜リン酸エステル及びフェノール・ニッケル複合体等が挙げられる。
耐光性安定剤としては、ベンゾトリアゾール系の紫外線吸収剤及びヒンダードアミン系の安定剤等が挙げられる。
帯電防止剤としては、脂肪酸エステル化合物、脂肪族エタノールアミン化合物及び脂肪族エタノールアミド化合物等の低分子型帯電防止剤並びに高分子型帯電防止剤等が挙げられる。
着色剤としては、染料及び顔料等が挙げられる。
本発明の吸音材において使用される発泡性樹脂粒子の平均粒径は、300μm~2400μmであることが望ましく、800μm~2000μmであることがより望ましい。
発泡性樹脂粒子の発泡倍率は、10~60倍であることが望ましい。
発泡倍率を10~60倍の範囲にすることにより、樹脂の密度を0.02~0.1g/cmの範囲に調整しやすくなる。
一方、発泡倍率が10倍未満の場合、吸音材が硬くなりすぎたり、重くなりすぎる場合がある。また発泡倍率が60倍を超える場合、吸音材として強度が不足することがある。
本発明の吸音材において使用される気泡を有する発泡樹脂は、ポリウレタン等を用いることができる。主剤となるポリウレタン、発泡剤等を混合し、発泡、成形させることで、気泡を有する発泡樹脂を得ることができ、それにより吸音材を製作することができる。
本発明の吸音材において使用される樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。
本発明の吸音材において使用される熱可塑性樹脂としては、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエステル樹脂、ポリスチレン樹脂などを用いることができる。熱可塑性樹脂を樹脂ペレットとして成形し、樹脂ペレットを加熱させ、射出成形、押出成形等の成形加工による吸音材製作をすることができる。
本発明の吸音材において使用される熱硬化性樹脂としては、メラミン樹脂、尿素樹脂、ポリウレタン、ポリウレア、ポリアミド及びポリアクリルアミドなどを用いることができる。熱硬化性樹脂を予熱し、金型に入れ、加圧し、金型温度を上げて、硬化させることで吸音材を製作することができる。
本発明の吸音材において使用される繊維は、有機繊維、無機繊維であることが望ましく、有機繊維としてはポリエステル、ポリアミド、アセテート等を使用できる。無機繊維としては、アルミナ、シリカ、ムライトファイバーが望ましい。繊維をバインダで相互に接着してフェルト状にすることが望ましい。
また、本発明の吸音材の非貫通孔部分以外の部分は、樹脂製の他に、無機材、金属材等の材料であってもよい。
本発明の吸音材において表面に開口する非貫通孔の配列パターンは、正方形を縦横に連続して配置した平面において正方形の頂点に非貫通孔を配置する正方配列であってもよく、正三角形を縦横に連続して配置した平面において三角形の頂点に非貫通孔を配置する千鳥配列であってもよい。
これらの中では、千鳥配列であることが望ましい。非貫通孔の配列パターンが千鳥配列であると、隣接する非貫通孔が全て等間隔となりやすいため、吸音効果が向上する。
このような本発明の吸音材の一例について以下に図面を用いて説明する。
図1は、本発明の吸音材の一例を模式的に示す断面図である。
図1に示すように、吸音材100は、非貫通孔101を有する吸音材である。
吸音材100の非貫通孔101は、表面に開口する導入通路110と導入通路110を介して外部と接続される中空部120からなるヘルムホルツ共鳴構造を有している。
吸音材100において、導入通路110は、直径d110、長さL110を有する円柱状である。
また、導入通路110の開口の面積は、S110であり、導入通路110の表面粗さは、Ra110である。
吸音材100において、中空部120は、体積V120を有する円柱状の中空形状である。
吸音材100では、直径d110が、1~30mmであり、長さL110が1~15mmである。
そして、以下の式(1´)により求められたf(Hz)について500≦f≦2000が成り立つことを特徴とする。
Figure JPOXMLDOC01-appb-M000006
(式(1´)中、音速cは34000cm/secであり、Ra110が0μmを超え、0.1μm以下の場合にはαは1.10であり、Ra110が0.1μmを超え、2.0μm以下の場合にはαは1.15であり、Ra110が2.0μmを超える場合にはαは1.18である。)
導入通路の壁面の表面状態は、平坦ではなく、凹凸を有している。この凹凸は、材料、成形加工等によっても異なっている。そのため、導入通路の長さは、導入通路の断面での長さと同一とならない。そのため、上記式(3)で計算される共鳴周波数と、実際の吸音材の吸音周波数がずれることがあった。そのため、導入通路の表面粗さによる補正係数αで補正して、式(1)とすることにより、計算上の共鳴周波数と実際の吸音材の吸音周波数のずれを解消することができると推定される。
ところで、本発明の吸音材では、1つの中空部に同じ形状のn個(nは2以上の自然数)の導入通路が形成されていてもよい。
この場合、吸音材の各導入通路に音が到達すると、各導入通路内の空気は同時に中空部の方へ押されることになる。中空部内の空気は弾性体なので、導入通路内の空気を外に押し出そうとする。
導入通路内の空気を外に押し出そうとする力は、中空部内の空気の体積に依存するが、この場合、1つの導入通路にV/nの体積を有する中空部があるヘルムホルツ共鳴機構がn個あると考えることができる。
すなわち、1つの導入通路に対する空気を外に押し出そうとする力は、中空部内の空気の体積を導入通路の数で割った値を基準に、近似的に計算することができる。
つまり、上記式(1)において、Vを、中空部全体の体積Vをnで割った値として計算することにより、fを算出することができる。
このような本発明の吸音材の一例について以下に図面を用いて説明する。
図2は、本発明の吸音材の一例を模式的に示す断面図である。
図2に示すように、吸音材200は、非貫通孔201を有する吸音材である。
吸音材200の非貫通孔201は、表面に開口するn個(nは2以上の自然数)の導入通路210と導入通路210を介して外部と接続される中空部220からなるヘルムホルツ共鳴構造を有している。
吸音材200において、導入通路210は、直径d210、長さL210を有する円柱状である。
また、導入通路210の開口の面積は、S210であり、導入通路210の表面粗さは、Ra210である。
図2において、中空部220全体の体積は符号V220で示される。
吸音材200では、直径d210が、1~30mmであり、長さL210が1~15mmである。
図2に示すように、吸音材200には、中空部の体積がV220/nのヘルムホルツ共鳴構造が、n個あると考えることができる。
従って、上記式(1)において、VをV220/nとして算出することにより、fを算出することができる。
本発明の吸音材を車両用部品として用いた例、及び、本発明の吸音材を配置してなる自動車の例について、図3(a)及び図3(b)を用いて説明する。
図3(a)は、本発明の吸音材が配置される部位の一例を模式的に示す説明図であり、図3(b)は、図3(a)における破線部で示す領域の部分拡大図である。
図3(a)に示すように、自動車1は、後部座席2の後方にラゲッジルーム3を備える。ラゲッジルーム3の下部には、板状のフロア部材4が敷設されており、フロア部材4の下には床下空間5が存在する。
床下空間5の下に、非貫通孔101の開口した面が路面方向に向くように吸音材100が自動車内に配置される。
本発明の吸音材100は、導入通路110の表面粗さを考慮してf(Hz)が、500≦f≦2000となるように設計されている。
そのため、人が不快に感じる500~2000Hzの周波数領域の騒音が車室内に侵入することが防止され、車室内にいる人が不快と感じることが低減される。
続いて、本発明の吸音材を製造する方法について説明する。
本発明の吸音材は、樹脂層にヘルムホルツ共鳴構造を有する非貫通孔を形成することにより製造することができる。
本発明の吸音材の樹脂層に非貫通孔を形成する方法は、特に限定されないが、例えば、樹脂層にカッター等の工具を用いて手作業で貫通孔を形成してもよい。
また、工業的に大量生産する場合には、導入通路及び中空部となる形状の突起を金型内に配置し、金型内で樹脂層を成形した後、突起を抜き取る方法等が挙げられる。このような方法の一例について以下に説明する。
本発明の吸音材の製造方法では、まず、内部に突出する複数の突起を配置してなる金型内に発泡性樹脂粒子を充填して加熱発泡させるビーズ法により発泡樹脂を作製する。
次に、発泡樹脂から突起を抜き取ることによって発泡樹脂に非貫通孔を形成することができる。
上記方法では、発泡樹脂粒子を金型に充填して水蒸気加熱等の方法により発泡させるビーズ法により発泡樹脂を作製する。
金型内には、内部に突出する複数の突起が配置されているので、該突起の部分には発泡樹脂粒子が充填されない。そのため、発泡樹脂から該突起を抜き取ることで、該突起の形状に対応した非貫通孔を、発泡樹脂に形成することができる。
上記突起の材料は特に限定されないが、少なくとも一部が樹脂弾性体で構成されていることが望ましい。
突起の少なくとも一部が樹脂弾性体で構成されていると、発泡樹脂から突起を抜き取る際に突起が変形し、抜き取りが容易となる。
また、上記突起は、軸部と傘部からなる略キノコ形状であり、上記軸部が上記金型に固定されてなることが望ましい。
突起が軸部と傘部からなる略キノコ形状であり、軸部が金型に固定されていると、発泡樹脂には、軸部の形状に対応し導入通路が形成され、傘部の形状に対応し中空部が形成されることになる。
上記突起において、上記軸部は金属で構成され、上記傘部は上記樹脂弾性体で構成されていることが望ましい。
突起の軸部が金属で構成されていると、機械的強度が高いため、繰り返しの使用により突起の破損が起こりにくく、突起の寿命を長く保つことができ、耐久性の高い金型が得られる。
さらに、突起の傘部が樹脂弾性体で構成されていると、傘部のみを変形させられるため、発泡樹脂から突起を容易に抜き取ることができる。
上記突起において、上記樹脂弾性体の耐熱温度は、上記発泡性樹脂粒子の加熱発泡の温度よりも高いことが望ましい。
ビーズ法における発泡性樹脂粒子の加熱発泡の温度よりも樹脂弾性体の耐熱温度が高いと、発泡性樹脂粒子を発泡させる際の熱で突起の形状が変形しにくくなり、繰り返しの使用に対する耐久性が得られる。
ビーズ法における発泡性樹脂粒子の加熱温度は、80~150℃であるため、樹脂弾性体の耐熱温度は上記温度よりも高くすることが望ましく、具体的には100~180℃であることが望ましく、155~180℃であることがより望ましい。
上記突起において、上記樹脂弾性体のA硬度は50°以下であることが望ましい。
樹脂弾性体のA硬度が50°以下であると、加熱発泡による発泡樹脂の成形時には非貫通孔の形状を充分に保持することができ、成形後に発泡樹脂から突起を抜き取る際には、突起が変形して抜き取りやすくなる。
なお、A硬度とは、JIS K 6253-3(2012)に準拠して測定されるタイプAデュロメータを用いた硬度を意味する。
上記突起において、上記樹脂弾性体は、シリコーン樹脂又はシリコーンゲルであることが望ましい。
樹脂弾性体がシリコーン樹脂又はシリコーンゲルであると、樹脂弾性体の耐熱温度が高いので、加熱発泡時に突起の形状が変形しにくく、繰り返しの使用において高い耐久性を有する。さらに、発泡樹脂から突起を抜き取る際に変形させやすく、発泡樹脂からの突起の抜き取りが容易となる。さらに、ヘルムホルツ共鳴構造を形成するような形状の突起を用いた場合であっても、中空部を形成する突起(傘部)が変形して導入通路を通過できるようになるため、発泡樹脂に形成されたヘルムホルツ共鳴構造を破損させることなく突起を発泡樹脂から抜き取ることができる。
このような吸音材の製造方法の一例について図面を用いて説明する。
図4(a)は、本発明の吸音材の製造方法において用いる金型の一例を模式的に示す斜視図であり、図4(b)は、図4(a)のB-B線断面図である。
吸音材の製造方法では、まず、図4(a)に示すような金型50を準備する。
金型50は、その内部に複数の突起60を有している。図4(b)に示すように、突起60は、軸部61と傘部62からなる略キノコ形状であり、軸部61が金型50に固定されている。
図5は、本発明の吸音材の製造方法において、発泡樹脂を作製する工程の一例を模式的に示す説明図である。
次に、図5に示すように、金型50内に発泡性樹脂粒子を充填して加熱発泡させるビーズ法により発泡樹脂102を作製する。
図6(a)~図6(c)は、本発明の吸音材の製造方法において、発泡樹脂から突起を抜き取る工程の一例を模式的に示す説明図である。
図6(a)に示すように、発泡成形後の発泡樹脂102には、軸部61と傘部62からなる突起60が埋没しており、傘部62は樹脂弾性体で構成されている。
突起60を発泡樹脂102から抜き取ろうとすると、図6(b)に示すように、傘部62が変形する。傘部62は樹脂弾性体で構成されていて変形しやすく、発泡樹脂102は変形しないためである。傘部62が変形しながら通過することにより、突起60を発泡樹脂102から抜き取ることができる。
突起60を発泡樹脂102から抜き取ると、図6(c)に示すように、傘部62の形状は元に戻り、突起60が埋没していた空間が非貫通孔101となる。非貫通孔101のうち、表面に開口する導入通路110の形状は軸部61の形状に対応し、導入通路110を介して外部と接続される中空部120の形状は傘部62の形状に対応する。
このような工程を経て吸音材を製造することができる。
なお、本発明の吸音材において、導入通路の表面粗さRaは、導入通路の加工条件、例えば、突起60の硬度を調整することで表面粗さRaを調整できる。また、研磨処理、サンドブラスト等の粗面化処理により調整することもできる。
(実施例)
以下に、本発明をより具体的に説明する具体例を示すが、本発明はこれらの実施例に限定されるものではない。
(実施例1-1)
(突起ユニットの作製)
厚さ10mmのアルミ板の表面に隣り合う中空部の側面間距離を10mmの千鳥配列となるように10個の穴(直径3mm、深さ5mm)をドリルで開けたアルミ基板を準備した。
続いて、アルミ基板に取り付ける突起を作製するためのアクリル製の型を準備した。
アクリル製の型は2つに分割可能(一方を雄型、他方を雌型とする)であり、内部に軸部となる直径3mm、長さ15mmの円柱、及び、傘部となる直径10mm、長さ10mmの円柱の形状が各円柱の中心軸を揃えて連結された略キノコ形状の空洞を有している。該形状の空洞を得るため、分割した各型の表面を切削加工した。雄型及び雌型の表面には、それぞれ、上記略キノコ形状を長さ方向に沿って2分割した形状に対応した凹み(空洞)が形成されている。
シリコーン樹脂の主剤[信越化学工業(株)製、KE-17]100部に対して硬化剤[信越化学工業(株)製、CAT-RM]を0.5部混合し、真空脱泡(脱泡時間:20分)を行った後、雌型及び雌型の空洞内に流し込み、雌型及び雌型を合わせて輪ゴムで固定し、70℃で20分硬化させた。硬化後、雌型及び雌型を分離して硬化物を取り出し、バリを除去することにより、直径10mm、長さ10mmの円柱と直径3mm、長さ15mmの円柱が各円柱の中心軸を揃えて連結された略キノコ形状の成形体を得た。成形体を構成する樹脂弾性体のA硬度は50°であった。
続いて、成形体の直径3mmの端部を深さ5mmまで、アルミ基板の穴に差し込むことにより、アルミ基板上に10個の突起が固定された突起ユニットを準備した。該突起は、直径3mm、長さ10mmの円柱状の軸部と、直径10mm、長さ10mmの円柱状の傘部から構成されていた。
(発泡樹脂の発泡)
突起ユニットをダイホルダに取り付けて金型を準備し、予備発泡させた一次発泡粒子(ポリプロピレン製、平均粒子径3.5mm、発泡剤:二酸化炭素)を金型内に充填するとともに、加熱蒸気で発泡成形(143℃、10秒)し、金型から取り外した後、80℃で12時間乾燥させることにより板状の有孔発泡樹脂を作製した。このとき、発泡樹脂の発泡倍率は30倍であった。
(突起ユニットの分離)
発泡成形後に、発泡樹脂と突起ユニットとを一体化した状態で取り出し、発泡樹脂と突起ユニットを分離した。
これにより、導入通路及び中空部からなる非貫通孔が形成された吸音材を作製した。
実施例1-1に係る吸音材では、導入通路の内径dが3mm、長さLが10mm、開口面積Sが7.1mm、表面粗さRaが1.02μmであった。
また、中空部の体積Vは785mmであった。
なお、表面粗さは、導入通路の長さ方向に対して、10%、30%、50%、70%、90%の5つを測定基準点とし、レーザー式表面粗さ測定装置(機種名:キーエンス社製 製品名:VX-9700)を用いて測定した。測定する前に、導入通路の断面でカットした測定片を用意する。測定片の導入通路の表面を上面にして、セットをし、レーザー式表面粗さ測定装置の顕微鏡の倍率50倍にして、測定基準点に対して、ピントを合わせて、レーザーによる測定を行う。このとき、測定基準点を中心として、縦:100μm 横:100μmでの正方形の領域で表面粗さRaを測定し、その結果、10%の位置のRa:1.10μm、30%の位置のRa:0.97μm、50%の位置のRa:1.08μm、70%の位置のRa:1.00μm、90%の位置のRa:1.07μmであり、これら5点の平均値を計算して、表面粗さRaが1.02μmとした。
(実施例1-2~実施例1-7、実施例2-1、実施例3-1及び比較例1~比較例3)
中空部の内径及び導入通路の表面粗さRaが表1及び表2に示す値になるような金型を用いた以外は、実施例1-1と同様にして実施例1-2~実施例1-7、実施例2-1、実施例3-1及び比較例1~比較例3に係る吸音材を得た。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(吸音周波数測定実験)
実施例1-1~実施例1-7、実施例2-1、実施例3-1及び比較例1~比較例3の吸音材について、周波数を変化させながら吸音率を測定することにより、吸音周波数を実測した。
吸音率の測定は、残響室法吸音率試験により行った。測定はJIS A 1409-:1998「残響室吸音率の測定方法」に準じて行った。
図7は、吸音材に対する残響室吸音率の測定方法を模式的に示す説明図である。
図7に示すように、吸音率を測定する際には、各実施例及び各比較例に係る吸音材300を導入通路の開口を上面にして、残響室80の床面81に載置し、残響室80内でノイズ信号発生器82からスピーカー83を通じ電気的なノイズを放射させる。次に音の放射を止め、音をマイクロホン84で測定し、減衰過程を信号分析器85で分析する。試験体が設置される前の状態で、分析された減衰曲線から音が60dB減衰する時間である残響時間、T1〔sec.〕、試験体が床面に設置された後の状態で、測定された減衰曲線から音が60dB減衰する時間である残響時間、T2〔sec.〕を求める。測定は300-5000Hzで行う。
(残響室法吸音率の算出)
分析により求められた残響時間と試験体表面積Sより、以下の式(4)により残響室法吸音率αsを算出する。
Figure JPOXMLDOC01-appb-M000009
(式(4)中、V:室容積〔m〕、c:34000cm/sec(音速))
得られた吸音率チャートにおける、吸音率が大きくなる領域のピークの極大値を吸音周波数とした。
上記吸音波長測定実験の結果を図8~図19並びに表1及び表2に示す。
図8は、実施例1-1に係る吸音材の周波数‐吸音率のグラフである。
図9は、実施例1-2に係る吸音材の周波数‐吸音率のグラフである。
図10は、実施例1-3に係る吸音材の周波数‐吸音率のグラフである。
図11は、実施例1-4に係る吸音材の周波数‐吸音率のグラフである。
図12は、実施例1-5に係る吸音材の周波数‐吸音率のグラフである。
図13は、実施例1-6に係る吸音材の周波数‐吸音率のグラフである。
図14は、実施例1-7に係る吸音材の周波数‐吸音率のグラフである。
図15は、比較例1に係る吸音材の周波数‐吸音率のグラフである。
図16は、比較例2に係る吸音材の周波数‐吸音率のグラフである。
図17は、比較例3に係る吸音材の周波数‐吸音率のグラフである。
図18は、実施例2-1に係る吸音材の周波数‐吸音率のグラフである。
図19は、実施例3-1に係る吸音材の周波数‐吸音率のグラフである。
各実施例の吸音材は、吸音周波数が500~2000Hzの範囲に入っている。従って、人が不快に感じる周波数領域である500~2000Hzの領域の騒音を吸収することができる。
1 自動車
2 後部座席
3 ラゲッジルーム
4 フロア部材
5 床下空間
50 金型
60 突起
61 軸部
62 傘部
80 残響室
81 床面
82 ノイズ信号発生器
83 スピーカー
84 マイクロホン
85 信号分析器
100、200、300 吸音材
101、201 非貫通孔
102 発泡樹脂
110、210、510 導入通路
120、220、520 中空部
500 ヘルムホルツ共鳴機構

Claims (6)

  1. 非貫通孔を有する吸音材であって、
    前記吸音材の前記非貫通孔は、表面に開口する導入通路と前記導入通路を介して外部と接続される中空部からなるヘルムホルツ共鳴構造を有しており、
    前記導入通路の円相当径をd、長さをL、開口面積をS、表面粗さをRaとし、
    前記中空部の体積をVとした場合に、
    前記円相当径dが、1~30mmであり、
    前記長さLが、1~20mmであり、
    以下の式(1)により求められたf(Hz)について500(Hz)≦f≦2000(Hz)が成り立つことを特徴とする吸音材。
    Figure JPOXMLDOC01-appb-M000001
    (式(1)中、音速cは34000cm/secであり、Raが0μmを超え、0.1μm以下の場合にはαは1.10であり、Raが0.1μmを超え、2.0μm以下の場合にはαは1.15であり、Raが2.0μmを超える場合にはαは1.18である。)
  2. 前記導入通路は円柱状である請求項1に記載の吸音材。
  3. 前記吸音材が樹脂及び/又は繊維質材料からなる請求項1又は2に記載の吸音材。
  4. 前記樹脂は、発泡樹脂である請求項3に記載の吸音材。
  5. 請求項1~4のいずれか1項に記載の吸音材を備えることを特徴とする車両用部品。
  6. 請求項1~4のいずれか1項に記載の吸音材の導入通路を路面方向に向けて配置してなることを特徴とする自動車。
PCT/JP2017/025055 2017-07-07 2017-07-07 吸音材、車両用部品及び自動車 WO2019008774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/025055 WO2019008774A1 (ja) 2017-07-07 2017-07-07 吸音材、車両用部品及び自動車
JP2019528331A JP6916878B2 (ja) 2017-07-07 2017-07-07 吸音材、車両用部品及び自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025055 WO2019008774A1 (ja) 2017-07-07 2017-07-07 吸音材、車両用部品及び自動車

Publications (1)

Publication Number Publication Date
WO2019008774A1 true WO2019008774A1 (ja) 2019-01-10

Family

ID=64950759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025055 WO2019008774A1 (ja) 2017-07-07 2017-07-07 吸音材、車両用部品及び自動車

Country Status (2)

Country Link
JP (1) JP6916878B2 (ja)
WO (1) WO2019008774A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724095C1 (ru) * 2019-07-15 2020-06-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Составная звукопоглощающая панель
CN113362796A (zh) * 2021-05-10 2021-09-07 西安交通大学 一种双向粗糙内插管式亥姆霍兹共振吸声结构
RU2756657C1 (ru) * 2021-04-06 2021-10-04 Акционерное общество «АВТОВАЗ» Экран энергетического отсека
US20220290585A1 (en) * 2021-03-12 2022-09-15 Toyota Jidosha Kabushiki Kaisha Crank sprocket and mounting structure therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047560A (ja) * 2005-08-11 2007-02-22 Nec Viewtechnology Ltd 電子機器の消音装置、該消音装置を備えた投写型表示装置、および電子機器の複合騒音を抑制する消音方法
JP2015151105A (ja) * 2014-02-19 2015-08-24 河西工業株式会社 車体パネル構造体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047560A (ja) * 2005-08-11 2007-02-22 Nec Viewtechnology Ltd 電子機器の消音装置、該消音装置を備えた投写型表示装置、および電子機器の複合騒音を抑制する消音方法
JP2015151105A (ja) * 2014-02-19 2015-08-24 河西工業株式会社 車体パネル構造体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724095C1 (ru) * 2019-07-15 2020-06-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Составная звукопоглощающая панель
US20220290585A1 (en) * 2021-03-12 2022-09-15 Toyota Jidosha Kabushiki Kaisha Crank sprocket and mounting structure therefor
RU2756657C1 (ru) * 2021-04-06 2021-10-04 Акционерное общество «АВТОВАЗ» Экран энергетического отсека
CN113362796A (zh) * 2021-05-10 2021-09-07 西安交通大学 一种双向粗糙内插管式亥姆霍兹共振吸声结构
CN113362796B (zh) * 2021-05-10 2024-05-24 西安交通大学 一种双向粗糙内插管式亥姆霍兹共振吸声结构

Also Published As

Publication number Publication date
JP6916878B2 (ja) 2021-08-11
JPWO2019008774A1 (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
US11505137B2 (en) Sound absorption member, vehicle component, and automobile
JP6916878B2 (ja) 吸音材、車両用部品及び自動車
EP3500427B1 (en) Sound-absorbing panels comprising a core consisting of connected cells, wherein some of the cell walls have openings
US9637068B2 (en) Component for a motor vehicle and associated motor vehicle
US20190023197A1 (en) Sound proofing part for an automotive vehicle and related manufacturing process
US20230077204A1 (en) Metamaterial sound insulation device
WO2016004522A1 (en) A light-weight air duct for ventilation, air conditioning and heating for use in a vehicle and a method of manufacturing same
JP2020007975A (ja) コンプレッサー用防音材
JP2019152837A (ja) 吸音材及び車両用部品
JP6916879B2 (ja) 防音構造体、車両用部品及び自動車
WO2005084978A1 (ja) 自動車用サンバイザおよび路上走行自動車の吸音構造
WO2019021478A1 (ja) 防音構造体、車両用部品及び自動車
WO2019026294A1 (ja) 吸音部材、車両用部品及び自動車
WO2019021477A1 (ja) 吸音部材、車両用部品及び自動車
Jonza et al. Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels
JP4079851B2 (ja) 防音材
JP2006160177A (ja) 路上走行自動車の吸音構造
WO2019021480A1 (ja) 吸音部材、車両用部品、自動車及び吸音部材の製造方法
JP2018158556A (ja) 有孔発泡樹脂の製造方法
JP7328353B2 (ja) 多層吸音材
JP2018158691A (ja) 車両用吸音材、車両用部品、自動車及び自動車用仕切り部材
JP2020008684A (ja) 防音構造体
WO2024202296A1 (ja) 吸音構造体、タイヤ、及び吸音構造体の製造方法
KR20240075172A (ko) 자동차용 대시 인너 인슐레이션
JP2006088737A (ja) 衝撃吸収構造体および衝撃吸収構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916935

Country of ref document: EP

Kind code of ref document: A1