WO2019008647A1 - 運転支援車両の目標車速生成方法及び目標車速生成装置 - Google Patents

運転支援車両の目標車速生成方法及び目標車速生成装置 Download PDF

Info

Publication number
WO2019008647A1
WO2019008647A1 PCT/JP2017/024399 JP2017024399W WO2019008647A1 WO 2019008647 A1 WO2019008647 A1 WO 2019008647A1 JP 2017024399 W JP2017024399 W JP 2017024399W WO 2019008647 A1 WO2019008647 A1 WO 2019008647A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
speed command
vehicle
target
command value
Prior art date
Application number
PCT/JP2017/024399
Other languages
English (en)
French (fr)
Inventor
明之 後藤
孝志 福重
田家 智
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112020000080-9A priority Critical patent/BR112020000080B1/pt
Priority to CA3068898A priority patent/CA3068898A1/en
Priority to RU2020104284A priority patent/RU2723010C1/ru
Priority to US16/616,998 priority patent/US11052925B2/en
Priority to MX2019015633A priority patent/MX2019015633A/es
Priority to EP17917209.3A priority patent/EP3650258B1/en
Priority to KR1020207001450A priority patent/KR20200010577A/ko
Priority to JP2019528214A priority patent/JP6680403B2/ja
Priority to CN201780092107.5A priority patent/CN110770064B/zh
Priority to PCT/JP2017/024399 priority patent/WO2019008647A1/ja
Publication of WO2019008647A1 publication Critical patent/WO2019008647A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • B60W30/146Speed limiting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Definitions

  • the present disclosure relates to a target vehicle speed generation method and a target vehicle speed generation device for a driving assistance vehicle that generates a target vehicle speed based on a plurality of vehicle speed command values.
  • a driving assistance control apparatus for a vehicle which calculates a speed which is a braking distance within a forward recognizable distance as a limited vehicle speed and limits and sets a target vehicle speed so as to be at least a limited vehicle speed (for example, patent document 1).
  • the target vehicle speed is set by selecting the lower one of the target vehicle speed based on the vehicle speed limit and the inter-vehicle distance set by the driver. For this reason, even if it is known that the vehicle decelerates earlier, if the vehicle speed on the acceleration side is set as the target vehicle speed from the current vehicle speed, unnecessary acceleration occurs, and jerks (acceleration Change) is a problem.
  • the present disclosure has been made in view of the above problems, and aims to reduce jerk when transitioning from acceleration to deceleration, in addition to suppressing unnecessary acceleration when traveling with driving assistance.
  • the present disclosure is a method of generating a target vehicle speed of a driving support vehicle that generates a target vehicle speed when the vehicle travels / stops based on a plurality of vehicle speed command values. For each vehicle speed command value of the plurality of vehicle speed command values, a pre-read vehicle speed command value after a predetermined time has elapsed from the current time is calculated. The minimum value is selected as the target vehicle speed among the plurality of pre-read vehicle speed command values calculated.
  • FIG. 1 is an entire system diagram showing an automatic driving control system to which a target vehicle speed generation method and a target vehicle speed generation device according to a first embodiment are applied. It is a block diagram which shows the 1st vehicle speed command generation part (ACC) of the target vehicle speed production
  • FIG. 1 is an entire system diagram showing an automatic driving control system to which a target vehicle speed generation method and a target vehicle speed generation device according to a first embodiment are applied. It is a block diagram which shows the 1st vehicle speed command generation part (ACC) of the target vehicle speed production
  • FIG. 7 is a block diagram showing a target vehicle speed generation method and a third vehicle speed command generation unit (limit vehicle speed) of the target vehicle speed generation device according to the first embodiment. It is a block diagram which shows the target vehicle speed production
  • FIG. 2 is a block diagram showing a detailed configuration of a target vehicle speed generation method and a prefetch vehicle speed command calculation unit of a target vehicle speed generation device according to the first embodiment.
  • 5 is a flowchart showing a flow of target vehicle speed generation processing executed by the automatic driving control unit of the first embodiment.
  • the distance from the vehicle to the stopped vehicle and the target vehicle speed in the decelerating stop scene stopping at the position immediately before the stopped vehicle from traveling at a lower vehicle speed than the limited vehicle speed when the stopped vehicle exists ahead It is a target vehicle speed characteristic view showing relation characteristics. It is a time chart which shows the characteristic of the target vehicle speed in the decelerating turning scene where the preceding vehicle is accelerating in the first embodiment but there is a corner to be decelerated first.
  • the target vehicle speed generation method and the target vehicle speed generation apparatus according to the first embodiment are applied to an automatically driven vehicle (an example of a driving support vehicle) whose steering / driving / braking is automatically controlled by the selection of the automatic driving mode.
  • an automatically driven vehicle an example of a driving support vehicle
  • the configuration of the first embodiment will be described by being divided into “overall system configuration”, “detailed configuration of vehicle speed command generation unit”, and “detailed configuration of pre-read vehicle speed command calculation unit”.
  • FIG. 1 is an overall system diagram showing an automatic driving control system to which a target vehicle speed generation method and a target vehicle speed generation device according to a first embodiment are applied. Hereinafter, the entire system configuration will be described based on FIG.
  • the automatic driving control system includes a sensor 1, an automatic driving control unit 2, and an actuator 3.
  • the automatic driving control unit 2 is a computer that includes an arithmetic processing unit such as a CPU and executes arithmetic processing.
  • the sensor 1 has a front recognition camera 11, a rider / radar 12 (LIDAR ⁇ RADAR), a wheel speed sensor 13, a yaw rate sensor 14, a map 15, and a GPS 16.
  • the front recognition camera 11 is, for example, an on-vehicle imaging device including an imaging device such as a CCD, and may be an infrared camera or a stereo camera.
  • the front recognition camera 11 is installed at a predetermined position of the vehicle and captures an object around the vehicle.
  • the surroundings of the host vehicle include not only the front of the host vehicle but also the rear, the left side, and the right side.
  • the objects include two-dimensional signs such as stop lines marked on the road surface.
  • Objects include three-dimensional objects.
  • Objects include stationary objects such as labels.
  • the objects include moving objects such as pedestrians and leading vehicles.
  • Objects include road structures such as guardrails, medians, curbs and the like.
  • the rider / radar 12 is a distance measuring sensor, and may use a method known at the time of application, such as a laser radar, a millimeter wave radar, an ultrasonic radar, a laser range finder, and the like.
  • the lidar / radar 12 has an object detection device, and in the object detection device, the presence / absence of the object, the position of the object, the distance to the object based on the output signal from the lidar / radar 12 and the received signal.
  • the rider is a distance measuring sensor that emits light
  • the radar is a distance measuring sensor that emits radio waves.
  • the wheel speed sensor 13 is provided on each of the four wheels and detects the wheel speed of each wheel. Then, the wheel speed average value of the left and right driven wheels is used as the vehicle speed detection value at the present time.
  • the yaw rate sensor 14 is an attitude sensor that detects a yaw rate of the vehicle (rotational angular velocity about a vertical axis passing through the center of gravity of the vehicle).
  • a yaw rate of the vehicle rotational angular velocity about a vertical axis passing through the center of gravity of the vehicle.
  • the gyro sensor which can detect the pitch angle of a vehicle, a yaw angle, and a roll angle is included.
  • the map 15 is a so-called electronic map, and is information in which latitude and longitude are associated with map information.
  • the map 15 has road information associated with each point, and the road information is defined by nodes and links connecting the nodes.
  • the road information includes information specifying the road by the position / area of the road, the road type for each road, the road width for each road, and the shape information of the road.
  • the road information associates and stores information on the position of the intersection, the approach direction of the intersection, the type of the intersection, and other intersections for each identification information of each road link.
  • the road information includes road type, road width, road shape, whether to go straight, whether to proceed ahead, whether to overtake (possibility of entering an adjacent lane), speed limit, etc. for each identification information of each road link. Corresponds and stores information on roads in
  • the GPS 16 (abbreviation of "Global Positioning System”) detects the traveling position (latitude / longitude) of the own vehicle while traveling.
  • the automatic driving control unit 2 includes a vehicle speed command generation unit 21, a look-ahead vehicle speed command calculation unit 22, a minimum vehicle speed command arbitration unit 23, a vehicle speed servo control unit 24, a travel locus calculation unit 25 of the vehicle, and a steering angle servo. And a control unit 26.
  • the vehicle speed command generation unit 21 generates a first vehicle speed command generation unit (ACC) 211, a second vehicle speed command generation unit (stop line) 212, a third vehicle speed command generation unit (limit vehicle speed) 213, and a fourth vehicle speed command generation. Section (corner deceleration) 214. Then, each of the plurality of vehicle speed command generation units 211, 212, 213, and 214 generates a vehicle speed command value and a target acceleration.
  • ACC vehicle speed command generation unit
  • stop line stop line
  • limit vehicle speed limit vehicle speed
  • Section (corner deceleration) 214 each of the plurality of vehicle speed command generation units 211, 212, 213, and 214 generates a vehicle speed command value and a target acceleration.
  • the look ahead vehicle speed command calculation unit 22 includes a first look ahead vehicle speed command calculation unit (ACC) 221, a second look ahead vehicle speed command calculation unit (stop line) 222, a third look ahead vehicle speed command calculation unit (limit speed) 223, and And 4 pre-read vehicle speed command calculation unit (corner deceleration) 224. Then, with respect to each of the vehicle speed command values generated by the plurality of vehicle speed command generation units 211, 212, 213, and 214, a pre-read vehicle speed command value after a predetermined time has elapsed from the current time is calculated.
  • the minimum vehicle speed command mediation unit 23 selects the minimum value as the target vehicle speed among the plurality of prefetch vehicle speed command values calculated by the prefetch vehicle speed command calculation units 221, 222, 223, and 224. In addition to selecting the target vehicle speed having the minimum value, the minimum vehicle speed command mediation unit 23 simultaneously selects the acceleration / deceleration limitation amount according to the type of the selected target vehicle speed.
  • the vehicle speed servo control unit 24 receives the target vehicle speed from the minimum vehicle speed command mediation unit 23 and the current vehicle speed, calculates the control command value by the vehicle speed servo control, and sends the calculation result to the drive control actuator 31 or the braking control actuator 32. Output.
  • a calculation method of the control command value by the vehicle speed servo control for example, F / F control according to the value and change rate of the target vehicle speed, and F / B control according to the difference between the target vehicle speed and the current vehicle speed Perform F / F + F / B control. At this time, the deviation from the target value due to the road gradient or the like is also considered.
  • the traveling locus calculation unit 25 of the own vehicle calculates the traveling locus of the own vehicle on the road on which the own vehicle is scheduled to travel.
  • the traveling locus calculation unit 211a of the own vehicle included in the first vehicle speed command generation unit (ACC) 211 is used.
  • the steering angle servo control unit 26 receives the traveling locus information of the own vehicle from the traveling locus calculation unit 25 of the own vehicle, and determines, for example, a target yaw rate so that the own vehicle follows the traveling locus. Then, the steering angle control value is calculated so that the actual yaw rate matches the target yaw rate, and the calculation result is output to the steering angle control actuator 33.
  • the actuator 3 has a drive control actuator 31, a braking control actuator 32, and a steering angle control actuator 33.
  • the drive control actuator 31 is an engine drive actuator in the case of an engine car, an engine drive actuator and a motor drive actuator in the case of a hybrid car, and a motor drive actuator in the case of an electric car.
  • the brake control actuator 32 is an electric brake booster, a hydraulic booster, or the like.
  • the steering angle control actuator 33 is a steering angle control motor provided in the steering system.
  • the first vehicle speed command generation unit (ACC) 211 includes a travel locus calculation unit 211 a of the host vehicle, an inter-vehicle distance / relative vehicle speed acquisition unit 211 b, and a vehicle speed command calculation unit 211 c.
  • the travel locus calculation unit 211a of the own vehicle uses the own vehicle trajectory prediction sensor as the yaw rate sensor 14 and the wheel speed sensor 13, and calculates the travel trajectory of the own vehicle.
  • the inter-vehicle distance / relative vehicle speed acquisition unit 211b sets the preceding vehicle detection sensor as the front recognition camera 11 and / or the rider / radar 12, and acquires an inter-vehicle distance / relative vehicle speed to the preceding vehicle.
  • the vehicle speed command calculation unit 211c calculates a vehicle speed command value (ACC) and a target acceleration necessary for the host vehicle to follow the preceding vehicle according to the acquired inter-vehicle distance / relative vehicle speed and the current vehicle speed information.
  • the vehicle speed command calculation unit 211c creates a vehicle speed profile of a target vehicle speed by constant speed or acceleration / deceleration according to the presence or absence of a preceding vehicle. Then, a vehicle speed command value (target vehicle speed) is determined according to the separated position from the current position in the created vehicle speed profile. At this time, the acceleration or deceleration necessary to set the target vehicle speed at the predetermined separated position from the current vehicle speed is set as the target acceleration.
  • ACC abbreviation of" Adaptive Cruise Control
  • ACC controls the inter-vehicle distance to maintain the inter-vehicle distance according to the vehicle speed with the vehicle speed set by the driver as the upper limit when detecting a preceding vehicle.
  • the vehicle travels at a constant speed set by the driver.
  • the own vehicle also stops following the preceding vehicle.
  • the second vehicle speed command generation unit (stop line) 212 includes a stop line relative distance acquisition unit 212 a and a vehicle speed command calculation unit 212 b.
  • the stop line relative distance acquisition unit 212a obtains (GPS 16 + map 15) and / or the forward recognition camera 11 to acquire the distance between the vehicle and the stop line.
  • the vehicle speed command calculation unit 212b calculates a vehicle speed command value (stop line) and a target acceleration necessary for decelerating and stopping the acquired stop line relative distance.
  • the vehicle speed command calculation unit 212b represents a change in the target vehicle speed when decelerating at a constant deceleration ⁇ based on the deceleration start vehicle speed vo and the distance dtrgt to the vehicle and the stop line.
  • a vehicle speed command value target vehicle speed
  • a constant deceleration ⁇ is set as the target acceleration.
  • the third vehicle speed command generation unit (speed limit) 213 includes a speed limit acquisition unit 213a and a vehicle speed command calculation unit 213b.
  • the speed limit acquisition unit 213a sets the speed limit acquisition sensor as (GPS 16 + map 15) and / or the forward recognition camera 11, and acquires speed limit information of the road.
  • the vehicle speed command calculation unit 213b calculates a vehicle speed command value (limited vehicle speed) and a target acceleration required to follow the acquired limited vehicle speed.
  • the vehicle speed command calculation unit 213b creates a vehicle speed profile of a target vehicle speed that makes the vehicle speed of the host vehicle equal to or less than the limited vehicle speed according to the acquired limited vehicle speed. Then, a vehicle speed command value (target vehicle speed) is determined according to the separated position from the current position in the created vehicle speed profile. At this time, the deceleration necessary for obtaining the target vehicle speed at the predetermined separated position from the current vehicle speed is set as the target acceleration.
  • the fourth vehicle speed command generation unit (corner deceleration) 214 has a road curvature information acquisition unit 214a and a vehicle speed command calculation unit 214b, as shown in FIG.
  • the road curvature information acquisition unit 214a sets the curvature acquisition sensor as (GPS 16 + map 15) and / or the forward recognition camera 11, and acquires the curvature of the travel route.
  • the vehicle speed command calculation unit 214b calculates a vehicle speed command value (corner deceleration) not exceeding the limit lateral acceleration set in advance according to the acquired road curvature information and a target acceleration.
  • a vehicle speed profile of a target vehicle speed leaving a corner is created in accordance with the acquired curvature of the travel route. Then, a vehicle speed command value (target vehicle speed) is determined according to the separated position from the current position in the created vehicle speed profile. At this time, the deceleration necessary for obtaining the target vehicle speed at the predetermined separated position from the current vehicle speed is set as the target acceleration.
  • ACC first look-ahead vehicle speed command calculation unit
  • stop line second look-ahead vehicle speed command calculation unit
  • limit speed third look-ahead vehicle speed command calculation unit
  • fourth look-ahead vehicle speed command calculation unit corner deceleration
  • Each of the units 224 has a basic configuration shown in FIG.
  • each of the previously read vehicle speed command calculation units 221 includes a previously read vehicle speed command calculation unit 22a, a necessary acceleration calculation unit 22b, a vehicle speed command calculation unit 22c, and a vehicle speed limiter unit 22d. And acceleration suppression unit 22e.
  • the pre-read vehicle speed command calculation unit 22a inputs the current vehicle speed command value ("old vehicle speed command” in Fig. 7) from the vehicle speed command generation unit 211 (212, 213, 214), the target acceleration, and the pre-reading time. Then, based on the current vehicle speed command value and the target acceleration, a prefetch vehicle speed command value after the prefetch time has elapsed is calculated. That is, in the vehicle speed profiles generated by the vehicle speed command generation units 211, 212, 213, and 214, the vehicle speed command value (target vehicle speed) after a predetermined prefetch time has elapsed from the current time is calculated as the prefetch vehicle speed command value.
  • the setting of the “pre-reading time” is set by a variable time (for example, about 2 sec to 5 sec) in accordance with the following conditions (a) to (d).
  • a) When changing according to the target acceleration / deceleration behavior, if you want slow control, set a longer time than if you want quick control.
  • the vehicle speed command value is the vehicle speed command value for the limited vehicle speed (third prefetch vehicle speed command calculation unit 223), the prefetch time is set longer than the other vehicle speed command values.
  • the prefetch time is set shorter than other vehicle speed command values.
  • the necessary acceleration calculation unit 22 b inputs the previously read vehicle speed command value from the previously read vehicle speed command calculation unit 22 a and the previous vehicle speed command value. Then, the acceleration required from the previous vehicle speed command value to the current prefetch vehicle speed command value is calculated.
  • the vehicle speed command calculation unit 22c inputs the required acceleration calculated by the required acceleration calculation unit 22b and the calculation cycle (sample time). Then, the vehicle speed command value at the present time is calculated from the required acceleration, the calculation cycle and the previous vehicle speed command value.
  • the vehicle speed limiter unit 22d receives the vehicle speed command value at the current time calculated by the vehicle speed command calculation unit 22c and the current vehicle speed. Then, when the vehicle speed command value at the current time exceeds the vehicle speed range that can be taken by the target vehicle speed determined based on the current vehicle speed, the vehicle speed command value at the current time is limited by the vehicle speed range that can be taken by the target vehicle speed.
  • a vehicle speed region that the target vehicle speed can take means a target vehicle speed region where a change in vehicle speed from the current vehicle speed is allowed.
  • a vehicle speed range from the current vehicle speed to the upper limit vehicle speed obtained by adding the allowable vehicle speed deviation range on the acceleration side from the lower limit vehicle speed obtained by subtracting the allowable vehicle speed deviation range on the deceleration side from the current vehicle speed.
  • the acceleration suppression preventing unit 22e receives the old vehicle speed command from the vehicle speed command generation unit 211 (212, 213, 214), the upper limit acceleration, the necessary acceleration from the necessary acceleration calculation unit 22b, and the new vehicle speed command from the vehicle speed limiter unit 22d. And enter. Then, when the required acceleration exceeds the upper limit acceleration set in advance, the old vehicle speed command (previous vehicle speed command value) is selected without selecting a new vehicle speed command (currently pre-read vehicle speed command value).
  • the vehicle speed command value selected by the acceleration suppression preventing unit 22e is set as the final vehicle speed command value (target vehicle speed) to be output to the minimum vehicle speed command value mediation unit 23.
  • target vehicle speed generation operation in comparative example “target vehicle speed generation processing operation”, “target vehicle speed generation operation in a deceleration stop scene with a stop line”, “deceleration stop scene with a stop vehicle”
  • target vehicle speed generation operation of “the target vehicle speed generation operation in the decelerating turning scene” will be separately described.
  • FIG. 9 shows the characteristics of the target vehicle speed (minimum value) in the traveling scene in which the preceding vehicle has disappeared immediately after the deceleration to the speed limit is started due to the occurrence of fog in the comparative example.
  • the target vehicle speed generation operation of the comparative example will be described based on FIG.
  • the comparative example includes, as a vehicle speed command generation unit, a vehicle speed command generation unit (ACC) and a vehicle speed command generation unit (limit vehicle speed), and the smallest of the vehicle speed command values generated by the two vehicle speed command generation units Let the value be the target vehicle speed.
  • a vehicle speed command generation unit ACC
  • a vehicle speed command generation unit limit vehicle speed
  • the driver set vehicle speed is subtracted in addition to the vehicle speed command value characteristic.
  • the target vehicle speed characteristic up to time t1 corresponds to the preceding vehicle following target vehicle speed especially. Become. Then, at time t1, the target vehicle speed characteristic rises rapidly from the host vehicle speed when the preceding vehicle disappears to the driver set vehicle speed. And the target vehicle speed characteristic from time t1 to time t2 becomes a fixed vehicle speed by the driver set vehicle speed characteristic, and becomes from the time t2 along the speed limit characteristic.
  • the target vehicle speed characteristic is set from the own vehicle speed when the preceding vehicle disappears at time t1.
  • the sudden increase to the vehicle speed causes unnecessary acceleration.
  • the actual vehicle speed of the vehicle changes from acceleration to deceleration immediately after time t2 because there is a response delay with respect to the target vehicle speed.
  • FIG. 8 shows a flow of target vehicle speed generation processing executed by the automatic driving control unit 2 of the first embodiment. Hereinafter, each step of FIG. 8 will be described.
  • step S1 when generation of the target vehicle speed is started, target vehicle speed and acceleration information is acquired, and the process proceeds to step S2.
  • acquisition of target vehicle speed / acceleration information means that the vehicle speed command calculation unit 221 to 224 obtains the vehicle speed command value (target vehicle speed) and target acceleration generated by each of the vehicle speed command generation units 211 to 214. Say what to do.
  • step S2 following the acquisition of the target vehicle speed and acceleration information in step S1, the pre-reading time is set, and the process proceeds to step S3.
  • “setting the pre-reading time” means setting the pre-reading time as the variable time according to the conditions (a) to (d) in the pre-reading vehicle speed command calculation unit 22a as described above.
  • step S3 following the setting of the pre-reading time in step S2, a target vehicle speed after the pre-reading time is calculated, and the process proceeds to step S4.
  • “calculation of the target vehicle speed after the pre-reading time” refers to the pre-reading vehicle speed command value (the target vehicle speed) after the pre-reading time has elapsed in the pre-reading vehicle speed command calculation unit 22a based on the current vehicle speed command value and the target acceleration. To calculate.
  • step S4 following calculation of the target vehicle speed after the pre-reading time in step S3, an acceleration for reaching the target vehicle speed ahead of the pre-reading time is calculated, and the process proceeds to step S5.
  • “calculation of acceleration for reaching the target vehicle speed ahead of the pre-reading time” refers to the current vehicle speed command value (for pre-reading time ahead) from the previous vehicle speed command value (previous target vehicle speed) in the required acceleration calculation unit 22b. To calculate the acceleration necessary to reach the target vehicle speed).
  • step S5 following calculation of the acceleration for reaching the target vehicle speed ahead of the pre-reading time in step S4, a calculation cycle is acquired, and the process proceeds to step S5.
  • acquisition of calculation cycle means that the vehicle speed command calculation unit 22c acquires a calculation cycle (sample time).
  • step S6 following the acquisition of the calculation cycle in step S5, the target vehicle speed at the current time is calculated, and the process proceeds to step S7.
  • “calculation of the target vehicle speed at the current time” means that the vehicle speed command calculation unit 22c calculates the vehicle speed command value (target vehicle speed) at the current time from the required acceleration, the calculation cycle (sample time) and the previous vehicle speed command value. Say what to do.
  • step S7 following calculation of the target vehicle speed at the current time in step S6, the target vehicle speed is selected (minimum value) by mediation with another vehicle speed command value, and the process proceeds to the end of generation of the target vehicle speed.
  • selection of target vehicle speed by mediation with another vehicle speed command value refers to a plurality of prefetch vehicle speed commands calculated by the prefetch vehicle speed command calculation units 221, 222, 223, and 224 in the minimum vehicle speed command arbitration unit 23. Among the values, it refers to selecting the minimum value as the target vehicle speed.
  • step S1 when generation of the target vehicle speed is started, the process proceeds from step S1 ⁇ step S2 ⁇ step S3 ⁇ step S4 ⁇ step S5 ⁇ step S6 ⁇ step S7, and generation of the target vehicle speed is ended. That is, for the vehicle speed command values generated by the plurality of vehicle speed command generation units 211 to 214, the prefetch vehicle speed command calculation unit 22 calculates the prefetch vehicle speed command values after a predetermined time has elapsed from the current time. . Then, in the minimum vehicle speed command mediation unit 23, the minimum value is selected as the target vehicle speed among the plurality of prefetch vehicle speed command values calculated by the prefetch vehicle speed command calculation units 221 to 224.
  • the target vehicle speed by the stop line is selected, the distance to the stop line is longer than the distance reached by the vehicle due to the pre-reading time, and the vehicle speed after the pre-reading time is higher than the current vehicle speed. Vehicle acceleration will be acceptable. Therefore, it is possible to prevent the traffic flow from being disturbed by performing the select low of the pre-read vehicle speed command value instead of the technique of simply prohibiting the acceleration.
  • FIG. 10 shows the characteristics of the target vehicle speed (minimum value of the vehicle speed for pre-reading) in the decelerating stop scene in which the preceding vehicle has disappeared after the deceleration is started toward the previous stop line in the first embodiment.
  • target vehicle speed generation operation in the deceleration and stop scene where there is a stop line will be described.
  • the vehicle speed command value generated by the first vehicle speed command generation unit (ACC) 211 is the driver set vehicle speed until time t1 when no preceding vehicle exists, and it is preceding from time t1 when time the preceding vehicle exists to time t2 It is a vehicle speed command value by inter-vehicle control following a car. At time t2, the vehicle speed command value characteristic is rapidly raised to return to the driver set vehicle speed.
  • the vehicle speed command value generated by the second vehicle speed command generation unit (stop line) 212 is a high vehicle speed command value until time t0, and decreases with a constant deceleration from time t0 to time t6, and from time t6 It becomes the vehicle speed command value characteristic along the stop line characteristic of the deceleration which stops smoothly until time t7.
  • the vehicle speed command value generated by the third vehicle speed command generation unit (speed limit vehicle) 213 has a vehicle speed command value characteristic that is drawn at a constant speed limit regardless of the time.
  • the target vehicle speed characteristic thin solid line characteristic
  • the target vehicle speed from time t1 to time t2 The characteristics are in line with the preceding vehicle tracking target vehicle speed characteristics. Then, at time t2, the target vehicle speed characteristic rises rapidly from the host vehicle speed when the preceding vehicle disappears to the speed limit. And the target vehicle speed characteristic from time t2 to time t3 becomes a fixed vehicle speed by the limited vehicle speed characteristic, and becomes from the time t3 along the stop line characteristic.
  • the minimum value among the prefetched vehicle speed command values for which the prefetch time (time t2 to time t4 in FIG. 10) has passed Select and draw the target vehicle speed characteristics (thick dotted line characteristics).
  • the target vehicle speed is determined based on the minimum value of the pre-read vehicle speed command value at the time t4, which is substantially the same as the actual vehicle speed of the vehicle at the time t2.
  • the target vehicle speed is determined based on the minimum value of the pre-read vehicle speed command value in the pre-reading time for each sample time ⁇ t. Therefore, the characteristic obtained by connecting the target vehicle speed determined for each sample time ⁇ t is It becomes a characteristic which decelerates smoothly from time t2 to time t5. Then, from the time t5, it becomes along the stop line characteristic.
  • the target vehicle speed characteristic (thick dotted line characteristic) in the first embodiment is a target in the comparative example. It becomes the characteristic which pushed down the vehicle speed characteristic (thick solid line characteristic) to the deceleration side. For this reason, when it is known that the vehicle is decelerated first, the generation of the target vehicle speed based on the pre-read vehicle speed command value suppresses the occurrence of unnecessary acceleration as in the comparative example. Furthermore, since the target vehicle speed characteristic of the first embodiment smoothly decelerates from time t2 to time t5, jerk when switching from acceleration to deceleration is almost eliminated or jerk is reduced.
  • the suppression function of the vehicle behavior required in the case of a driving assistance vehicle such as an autonomous driving vehicle is exhibited, and the driver and the passenger do not feel discomfort.
  • the minimum value of the plurality of pre-read vehicle speed command values as the target vehicle speed, it becomes a vehicle speed plan in which the traveling safety is secured among the plurality of pre-read vehicle speed command values.
  • the same target vehicle speed generation as when starting the deceleration toward the previous stop line Show the action.
  • FIG. 11 shows the distance from the vehicle to the stopped vehicle in a decelerating stopped scene stopping at a position immediately before the stopped vehicle from traveling at a lower vehicle speed than the limited vehicle speed when there is a stopped vehicle ahead in Example 1. And the relationship characteristic of the target vehicle speed.
  • the target vehicle speed generation operation in the decelerating and stopping scene where there is a stopping vehicle will be described.
  • the rear wheel position of the own vehicle when recognizing the stopping vehicle is xo
  • the rear wheel position of the own vehicle when decelerating and stopping is x1
  • dmin be the distance.
  • the vehicle speed of the host vehicle is the vehicle speed vo at position xo It needs to be zero (stopped).
  • the vehicle speed command value generated by the first vehicle speed command generation unit (ACC) 211 is that the own vehicle traveling at a lower vehicle speed than the limited vehicle speed recognizes the stopped vehicle as the leading vehicle at the position xo. Increase immediately by inter-vehicle control to follow the preceding vehicle. After the position xo, the vehicle speed command value characteristic gradually decelerates toward the position x1 by the inter-vehicle control.
  • the vehicle speed command value generated by the second vehicle speed command generation unit (stop line) 212 has a vehicle speed command value characteristic that is drawn at a constant stop line vehicle speed regardless of time because there is no recognition of the stop line.
  • the vehicle speed command value generated by the third vehicle speed command generation unit (speed limit vehicle) 213 has a vehicle speed command value characteristic that is drawn at a constant speed limit ( ⁇ stop line vehicle speed) regardless of time.
  • the target vehicle speed characteristic thin solid line characteristic
  • the preceding vehicle tracking target vehicle speed characteristic at position xo Along the road from the vehicle speed to the speed limit.
  • the target vehicle speed characteristic from the position xo to the position xo1 becomes a constant vehicle speed due to the limited vehicle speed characteristic, and becomes from the position xo1 along the preceding vehicle following target vehicle speed characteristic.
  • target vehicle speed characteristics are selected by selecting the minimum value among the previously read vehicle speed command values for which the read ahead time has elapsed for each of the vehicle speed command values generated by the three vehicle speed command generation units 211, 212 and 213. Draw).
  • the target vehicle speed is determined on the basis of the minimum value of the pre-read vehicle speed command value at the pre-read time for each sample time ⁇ t. Therefore, the characteristic obtained by connecting the target vehicle speed determined for each sample time ⁇ t is a smooth characteristic in which transition from gentle acceleration to gentle deceleration is made from the position xo to the position xo2. Then, from the position xo2, it follows the preceding vehicle tracking target vehicle speed characteristic which is the deceleration characteristic.
  • the target vehicle speed characteristic (thick dotted line characteristic) in the first embodiment is the target in the comparative example as is clear from the comparison of the target vehicle speed characteristic (thick solid line characteristic, thick dotted line characteristic) surrounded by arrow C in FIG. It becomes the characteristic which pushed down the vehicle speed characteristic (thick solid line characteristic) to the deceleration side. For this reason, when it is known that the vehicle is decelerated first, the generation of the target vehicle speed based on the pre-read vehicle speed command value suppresses the occurrence of unnecessary acceleration as in the comparative example.
  • the target vehicle speed characteristic of the first embodiment is a smooth characteristic in which the transition from gentle acceleration to gentle deceleration from position xo to position xo 2 is made, so jerk at the transition from acceleration to deceleration is reduced small. .
  • FIG. 12 shows the characteristics of the target vehicle speed in the deceleration turning scene in which the preceding vehicle is accelerating but there is a corner to be decelerated in the first embodiment.
  • the target vehicle speed generation operation in the decelerating turning scene will be described based on FIG.
  • the vehicle speed command value generated by the first vehicle speed command generation unit (ACC) 211 gradually increases the vehicle speed by inter-vehicle control that follows the preceding vehicle before time t0 It becomes the vehicle speed command value characteristic by the preceding vehicle following target vehicle speed characteristic.
  • the vehicle speed command value generated by the fourth vehicle speed command generation unit (corner deceleration) 214 is a high vehicle speed command value until time t0 when traveling straight ahead. Then, the vehicle speed gradually decreases due to deceleration from time t0 to time t4, and the vehicle speed command value characteristic follows the corner target vehicle speed characteristic in which the vehicle speed increases due to acceleration from time t4 to time t6 .
  • the target vehicle speed characteristic thin solid line characteristic
  • the target vehicle speed characteristic up to time t2 It follows the following target vehicle speed characteristic.
  • the target vehicle speed characteristic from time t2 to time t5 is in line with the corner target vehicle speed characteristic. Then, from the time t5, it is in line with the preceding vehicle tracking target vehicle speed characteristic again.
  • the minimum value is selected from the prefetched vehicle speed command values for which the prefetch time (time t1 to time t3 in FIG. 12) has passed.
  • Target vehicle speed characteristics (thick dotted line characteristics).
  • the target vehicle speed is determined based on the minimum value of the pre-read vehicle speed command value, which is substantially the same as the actual vehicle speed of the vehicle at time t0. Then, after time t0, the target vehicle speed is determined based on the minimum value of the pre-read vehicle speed command value in the pre-reading time for each sample time ⁇ t.
  • the characteristic obtained by connecting the target vehicle speed determined for each sample time ⁇ t is After gradually accelerating from t0 to time t3, the characteristics are gradually decelerated. And from time t3 to time t5, it becomes along the corner target vehicle speed characteristic, and from time t5, it becomes along the preceding vehicle tracking target vehicle speed characteristic.
  • the target vehicle speed characteristic (thick dotted line characteristic) in the first embodiment is a target in the comparative example. It becomes the characteristic which pushed down the vehicle speed characteristic (thick solid line characteristic) to the deceleration side. For this reason, when it is known that the vehicle is decelerated first, the generation of the target vehicle speed based on the pre-read vehicle speed command value suppresses the occurrence of unnecessary acceleration as in the comparative example. Furthermore, since the target vehicle speed characteristic of the first embodiment gradually accelerates from time t0 to time t3 and then decelerates gradually, jerk when switching from acceleration to deceleration is reduced.
  • the present invention is also applicable to the case where there is a tight corner to be decelerated ahead.
  • a target vehicle speed generation method for a driving support vehicle that generates a target vehicle speed when the vehicle travels / stops based on a plurality of vehicle speed command values. For each vehicle speed command value of the plurality of vehicle speed command values, a previously read vehicle speed command value after a predetermined time has elapsed from the current time is calculated (prefetch vehicle speed command calculation unit 22). The minimum value is selected as the target vehicle speed among the plurality of pre-read vehicle speed command values calculated (minimum vehicle speed command mediation unit 23: FIG. 1).
  • a target vehicle speed generation method for an autonomous driving vehicle which reduces jerk when transitioning from acceleration to deceleration. be able to. That is, control can be performed in anticipation of the future value of the target vehicle speed, and unnecessary acceleration can be suppressed. It is possible to reduce jerk when switching from acceleration to deceleration. Further, by taking the minimum value, it is possible to make a vehicle speed plan on the safe side among a plurality of vehicle speed command values.
  • pre-read vehicle speed command calculation unit 22 When calculating the pre-read vehicle speed command value (pre-read vehicle speed command calculation unit 22), calculate the pre-read vehicle speed command value after the pre-read time has elapsed based on the current vehicle speed command value, target acceleration and pre-read time ( Pre-reading vehicle speed command calculation unit 22a).
  • the necessary acceleration necessary for the current vehicle speed command value to the current vehicle speed command value from the previous vehicle speed command value is calculated (necessary acceleration calculation unit 22b).
  • the previously read vehicle speed command value at the present time is calculated from the required acceleration, the calculation cycle and the previous vehicle speed command value (vehicle speed command calculation unit 22c: FIG. 7). Therefore, in addition to the effect of (1), it is possible to calculate the pre-read vehicle speed command value in real time. Then, since the pre-read vehicle speed command value is calculated for each calculation cycle (sample time), it can be applied even when the future target vehicle speed is not known.
  • pre-read vehicle speed command calculation unit 22a When calculating the pre-read vehicle speed command value (pre-read vehicle speed command calculation unit 22a), if the pre-read vehicle speed command value is the vehicle speed command value for the limited vehicle speed, set the pre-read time longer than other vehicle speed command values ( Figure 7). For this reason, in addition to the effect of (2) or (3), the vehicle speed of the host vehicle can smoothly follow the speed limit.
  • pre-reading vehicle speed command calculation unit 22a When calculating the pre-reading vehicle speed command value (pre-reading vehicle speed command calculation unit 22a), when changing the pre-reading time according to the target acceleration / deceleration behavior, if you want to control quickly, you need shorter time than you want to control slowly Set ( Figure 7). For this reason, in addition to the effects of (2) to (4), when it is desired to control swiftly, the acceleration / deceleration behavior can be made more agile, and the time from acceleration to decel can do.
  • pre-read vehicle speed command calculation unit 22 When calculating the pre-read vehicle speed command value (pre-read vehicle speed command calculation unit 22), if the required acceleration exceeds the preset upper limit acceleration, the previous read vehicle speed command value is not selected.
  • the pre-read vehicle speed command value is selected (acceleration suppression unit 22c: FIG. 7). For this reason, in addition to the effects (2) to (6), it is possible to prevent the acceleration from being suppressed in a scene that is originally intended to be accelerated.
  • pre-read vehicle speed command calculation unit 22 When calculating the pre-read vehicle speed command value (pre-read vehicle speed command calculation unit 22), when the pre-read vehicle speed command value at the current time exceeds the vehicle speed area that the target vehicle speed can take, the pre-read vehicle speed command value at the current time The vehicle speed is limited according to the possible vehicle speed range (vehicle speed limiter unit 22d: FIG. 7). Therefore, in addition to the effects of (2) to (7), it is possible to prevent the target vehicle speed from being negative and to be decelerated more than necessary.
  • Target vehicle speed generation of a driving support vehicle equipped with a controller (automatic driving control unit 2) having a plurality of vehicle speed command generation units 21 and generating a target vehicle speed when the vehicle travels / stops
  • the controller includes the pre-read vehicle speed command calculating unit 22 and the minimum vehicle speed command mediation unit 23.
  • the prefetch vehicle speed command calculation unit 22 calculates a prefetch vehicle speed command value after a predetermined time has elapsed from the current time.
  • the minimum vehicle speed command mediation unit 23 selects the minimum value as the target vehicle speed among the plurality of prefetch vehicle speed command values calculated by the prefetch vehicle speed command calculation unit (FIG. 1). For this reason, when traveling by driving assistance (automatic driving), in addition to being able to suppress unnecessary acceleration, a target vehicle speed generation device for an autonomous driving vehicle is provided that reduces jerk when transitioning from acceleration to deceleration. be able to.
  • the target vehicle speed generation device of the driving assistance vehicle of the present disclosure has been described based on the first embodiment.
  • the specific configuration is not limited to the first embodiment, and changes and additions in design are permitted without departing from the scope of the invention according to each claim in the claims.
  • the vehicle speed command generation unit and the look-ahead vehicle speed command calculation unit may be an example provided with at least two or more types of vehicle speed command generation units and a look-ahead vehicle speed command calculation unit, and two types, three types, five types or more
  • An example including a vehicle speed command generation unit and a prefetch vehicle speed command calculation unit is also included.
  • Example 1 the example which applied the target vehicle speed production
  • the target vehicle speed generation method and the target vehicle speed generation device according to the present disclosure use the target vehicle speed as in a driving support vehicle that performs driving assistance of the driver by displaying the target vehicle speed or a driving support vehicle equipped with only ACC.
  • the present invention can be applied to any vehicle that provides driving assistance to the driver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

運転支援により走行する際、不要な加速を抑制するのに加え、加速から減速に遷移するときのジャークを低減すること。 複数の車速指令生成部(21)を有し、車両が走行/停止するときの目標車速を生成する自動運転コントロールユニット(2)(コントローラ)を搭載した運転支援車両(自動運転車両)の目標車速生成装置であって、自動運転コントロールユニット(2)は、先読み車速指令算出部(22)と、最小車速指令調停部(23)と、を備える。先読み車速指令算出部(22)は、複数の車速指令生成部(21)により生成された各々の車速指令値に対して、現時刻から所定時間を経過した後の先読み車速指令値を算出する。最小車速指令調停部(23)は、先読み車速指令算出部(22)によって算出された複数の先読み車速指令値のうち、最小値を目標車速として選択する。

Description

運転支援車両の目標車速生成方法及び目標車速生成装置
 本開示は、複数の車速指令値に基づいて目標車速を生成する運転支援車両の目標車速生成方法及び目標車速生成装置に関する。
 従来、前方認識可能距離以内の制動距離となる速度を制限車速として算出し、少なくとも制限車速以下となるように目標車速を制限設定する車両の運転支援制御装置が知られている(例えば、特許文献1参照)。
特開2016-141387号公報
 しかしながら、従来装置にあっては、制限車速とドライバの設定した車間距離に基づいた目標車速のうち低い方を選択して目標車速を設定している。このため、先で減速することがわかっていても、目標車速として、現時点の車速より加速側車速が設定されてしまうと、不要な加速が生じるし、加速から減速に遷移するときにジャーク(加速度の変化)が大きくなる、という問題がある。
 本開示は、上記問題に着目してなされたもので、運転支援により走行する際、不要な加速を抑制するのに加え、加速から減速に遷移するときのジャークを低減することを目的とする。
 上記目的を達成するため、本開示は、複数の車速指令値に基づいて車両が走行/停止するときの目標車速を生成する運転支援車両の目標車速生成方法である。
複数の車速指令値の各々の車速指令値に対して、現時刻から所定時間を経過した後の先読み車速指令値を算出する。
算出された複数の先読み車速指令値のうち、最小値を目標車速として選択する。
 上記のように、将来値(先読み車速指令値)を見越し、複数の将来値からの最小値選択により目標車速を生成することで、運転支援により走行する際、不要な加速を抑制することができるのに加え、加速から減速に遷移するときのジャークを低減することができる。
実施例1の目標車速生成方法及び目標車速生成装置が適用された自動運転制御システムを示す全体システム図である。 実施例1の目標車速生成方法及び目標車速生成装置の第1車速指令生成部(ACC)を示すブロック図である。 実施例1の目標車速生成方法及び目標車速生成装置の第2車速指令生成部(停止線)を示すブロック図である。 第2車速指令生成部(停止線)にて生成される車速プロファイルの一例を示す車速プロファイル特性図である。 実施例1の目標車速生成方法及び目標車速生成装置の第3車速指令生成部(制限車速)を示すブロック図である。 実施例1の目標車速生成方法及び目標車速生成装置の第4車速指令生成部(コーナー減速)を示すブロック図である。 実施例1の目標車速生成方法及び目標車速生成装置の先読み車速指令算出部の詳細構成を示すブロック図である。 実施例1の自動運転コントロールユニットにて実行される目標車速生成処理の流れを示すフローチャートである。 比較例において霧の発生により制限速度まで減速を開始した直後に先行車が消失した走行シーンでの目標車速(最小値)の特性を示すタイムチャートである。 実施例1において先の停止線に向かって減速を開始した後に先行車が消失した減速停車シーンでの目標車速(先読み車速の最小値)の特性を示すタイムチャートである。 実施例1において前方に停車車両が存在しているときに制限車速よりも低い車速での走行から停車車両の直前位置で停車する減速停車シーンでの自車から停車車両までの距離と目標車速の関係特性を示す目標車速特性図である。 実施例1において先行車は加速しているが先に減速すべきコーナーがある減速旋回シーンでの目標車速の特性を示すタイムチャートである。
 以下、本開示による運転支援車両の目標車速生成方法及び目標車速生成装置を実現する最良の実施形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
実施例1における目標車速生成方法及び目標車速生成装置は、自動運転モードの選択により操舵/駆動/制動が自動制御される自動運転車両(運転支援車両の一例)に適用したものである。以下、実施例1の構成を、「全体システム構成」、「車速指令生成部の詳細構成」、「先読み車速指令算出部の詳細構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の目標車速生成方法及び目標車速生成装置が適用された自動運転制御システムを示す全体システム図である。以下、図1に基づいて全体システム構成を説明する。
 自動運転制御システムは、図1に示すように、センサ1と、自動運転コントロールユニット2と、アクチュエータ3と、を備えている。なお、自動運転コントロールユニット2は、CPUなどの演算処理装置を備え、演算処理を実行するコンピュータである。
 センサ1は、前方認識カメラ11と、ライダー/レーダー12(LIDAR・RADAR)と、車輪速センサ13と、ヨーレートセンサ14と、地図15と、GPS16と、を有する。
 前方認識カメラ11は、例えば、CCD等の撮像素子を備える車載の撮像装置であり、赤外線カメラ、ステレオカメラでもよい。前方認識カメラ11は、自車の所定の位置に設置され、自車の周囲の対象物を撮像する。自車の周囲は、自車の前方に限らず、後方、左側方、右側方を含む。対象物は、路面に表記された停止線などの二次元の標識を含む。対象物は三次元の物体を含む。対象物は、標識などの静止物を含む。対象物は、歩行者、先行車などの移動物体を含む。対象物は、ガードレール、中央分離帯、縁石などの道路構造物を含む。
 ライダー/レーダー12は、測距センサであり、レーザーレーダー、ミリ波レーダー、超音波レーダー、レーザーレンジファインダーなどの出願時に知られた方式のものを用いることができる。ライダー/レーダー12は、対象物検出装置を有し、対象物検出装置では、ライダー/レーダー12からの出力信号と受信信号に基づいて、対象物の存否、対象物の位置、対象物までの距離を検出する。なお、ライダーは光を発光する測距センサであり、レーダーは、電波を放射する測距センサである。
 車輪速センサ13は、4輪の各輪に設けられ、各輪の車輪速を検出する。そして、左右従動輪の車輪速平均値を、現時点での車速検出値として用いる。
 ヨーレートセンサ14は、車両のヨーレート(車両の重心点を通る鉛直軸まわりの回転角速度)を検出する姿勢センサである。なお、姿勢センサとしては、車両のピッチ角、ヨー角、ロール角を検出できるジャイロセンサを含む。
 地図15は、いわゆる電子地図であり、緯度経度と地図情報が対応づけられた情報である。地図15には、各地点に対応づけられた道路情報を有し、道路情報は、ノードと、ノード間を接続するリンクにより定義される。道路情報は、道路の位置/領域により道路を特定する情報と、道路ごとの道路種別、道路ごとの道路幅、道路の形状情報とを含む。道路情報は、各道路リンクの識別情報ごとに、交差点の位置、交差点の進入方向、交差点の種別その他の交差点に関する情報を対応づけて記憶する。また、道路情報は、各道路リンクの識別情報ごとに、道路種別、道路幅、道路形状、直進の可否、進行の優先関係、追い越しの可否(隣接レーンへの進入の可否)、制限車速、その他の道路に関する情報を対応づけて記憶する。
 GPS16(「Global Positioning System」の略称)は、走行中の自車の走行位置(緯度・経度)を検出する。
 自動運転コントロールユニット2は、車速指令生成部21と、先読み車速指令算出部22と、最小車速指令調停部23と、車速サーボ制御部24と、自車の走行軌跡計算部25と、舵角サーボ制御部26と、を備える。
 車速指令生成部21は、第1車速指令生成部(ACC)211と、第2車速指令生成部(停止線)212と、第3車速指令生成部(制限車速)213と、第4車速指令生成部(コーナー減速)214と、を備える。そして、複数の車速指令生成部211,212,213,214の各々において車速指令値と目標加速度を生成する。
 先読み車速指令算出部22は、第1先読み車速指令算出部(ACC)221と、第2先読み車速指令算出部(停止線)222と、第3先読み車速指令算出部(制限車速)223と、第4先読み車速指令算出部(コーナー減速)224と、を備える。そして、複数の車速指令生成部211,212,213,214により生成された各々の車速指令値に対して、現時刻から所定時間を経過した後の先読み車速指令値を算出する。
 最小車速指令調停部23は、先読み車速指令算出部221,222,223,224によって算出された複数の先読み車速指令値のうち、最小値を目標車速として選択する。この最小車速指令調停部23では、最小値となる目標車速を選択することに加えて、選択された目標車速の種類に応じた加減速度制限量を同時に選択する。
 車速サーボ制御部24は、最小車速指令調停部23からの目標車速と、現在車速とを入力し、車速サーボ制御により制御指令値を演算し、演算結果を駆動制御アクチュエータ31や制動制御アクチュエータ32へ出力する。
ここで、車速サーボ制御により制御指令値の演算手法としては、例えば、目標車速の値や変化率に応じたF/F制御と、目標車速と現在車速の差に応じたF/B制御と、を併せたF/F+F/B制御を行う。このとき、道路勾配等による目標値との乖離も考慮する。
 自車の走行軌跡計算部25は、自車が走行を予定している道路における自車の走行軌跡を計算する。なお、実施例1では、第1車速指令生成部(ACC)211に有する自車の走行軌跡計算部211aを用いている。
 舵角サーボ制御部26は、自車の走行軌跡計算部25からの自車の走行軌跡情報を入力し、例えば、走行軌跡に自車が追従するように目標ヨーレートを決める。そして、目標ヨーレートに実ヨーレートが一致するように舵角制御値を演算し、演算結果を舵角制御アクチュエータ33へ出力する。
 アクチュエータ3は、駆動制御アクチュエータ31と、制動制御アクチュエータ32と、舵角制御アクチュエータ33と、を有する。
 駆動制御アクチュエータ31は、エンジン車の場合、エンジン駆動アクチュエータであり、ハイブリッド車の場合、エンジン駆動アクチュエータとモータ駆動アクチュエータであり、電気自動車の場合、モータ駆動アクチュエータである。制動制御アクチュエータ32は、電動ブレーキブースターや油圧ブースター等である。舵角制御アクチュエータ33は、ステアリング系に設けられた舵角制御モータである。
 [車速指令生成部の詳細構成]
 以下、図2~図6に基づいて車速指令生成部21の詳細構成について説明する。
 第1車速指令生成部(ACC)211は、図2に示すように、自車の走行軌跡計算部211aと、車間距離・相対車速取得部211bと、車速指令算出部211cと、を有する。自車の走行軌跡計算部211aは、自車軌道予測センサを、ヨーレートセンサ14及び車輪速センサ13とし、自車の走行軌跡を計算する。車間距離・相対車速取得部211bは、先行車検出センサを、前方認識カメラ11及び/又はライダー/レーダー12とし、先行車との車間距離・相対車速を取得する。車速指令算出部211cは、取得した車間距離・相対車速と現在の車速情報に応じて自車が先行車に追従するために必要な車速指令値(ACC)及び目標加速度を算出する。
 車速指令算出部211cでは、先行車の有無などに応じて定速や加減速による目標車速の車速プロファイルが作成される。そして、作成された車速プロファイルでの現在位置からの離間位置に応じて車速指令値(目標車速)が求まる。このとき、現在車速から所定の離間位置での目標車速にするのに必要な加速度又は減速度が目標加速度とされる。
 ここで、「ACC(「Adaptive Cruise Control」の略称)」とは、先行車を検出しているとき、ドライバがセットした車速を上限とし、車速に応じた車間距離を保つように車間制御を行う。先行車を検出していないとき、ドライバがセットした車速で定速走行する。なお、先行車が停止したときは、先行車に続いて自車も停止する。
 第2車速指令生成部(停止線)212は、図3に示すように、停止線相対距離取得部212aと、車速指令算出部212bと、を有する。
停止線相対距離取得部212aは、(GPS16+地図15)及び/又は前方認識カメラ11とし、自車と停止線までの距離を取得する。車速指令算出部212bは、取得された停止線相対距離に対して減速・停止するために必要な車速指令値(停止線)及び目標加速度を算出する。
 車速指令算出部212bでは、図4に示すように、減速開始車速voと、自車と停止線までの距離dtrgtとに基づいて、一定の減速度αで減速したときの目標車速の変化をあらわす車速プロファイル(=目標車速プロファイル)を作成する。
車速プロファイルvtrgt(x)は、
vtrgt(x)=vo-√2αx
の式によりあらわされる。そして、作成された車速プロファイルvtrgt(x)において、減速開始位置xoからの離間位置xに応じて車速指令値(目標車速)が求まる。このとき、一定の減速度αが目標加速度とされる。
 第3車速指令生成部(制限車速)213は、図5に示すように、制限車速取得部213aと、車速指令算出部213bと、を有する。
制限車速取得部213aは、制限車速取得センサを、(GPS16+地図15)及び/又は前方認識カメラ11とし、道路の制限車速情報を取得する。車速指令算出部213bは、取得された制限車速に追従するために必要な車速指令値(制限車速)及び目標加速度を算出する。
 車速指令算出部213bでは、取得した制限車速に応じて自車の車速を制限車速以下にする目標車速の車速プロファイルが作成される。そして、作成された車速プロファイルでの現在位置からの離間位置に応じて車速指令値(目標車速)が求まる。このとき、現在車速から所定の離間位置での目標車速にするのに必要な減速度が目標加速度とされる。
 第4車速指令生成部(コーナー減速)214は、図6に示すように、道路曲率情報取得部214aと、車速指令算出部214bと、を有する。
道路曲率情報取得部214aは、曲率取得センサを、(GPS16+地図15)及び/又は前方認識カメラ11とし、走行経路の曲率を取得する。車速指令算出部214bは、取得した道路曲率情報に従って予め設定する限界横加速度を超えない車速指令値(コーナー減速)及び目標加速度を算出する。
 車速指令算出部214bでは、取得した走行経路の曲率に応じてコーナーを抜ける目標車速の車速プロファイルが作成される。そして、作成された車速プロファイルでの現在位置からの離間位置に応じて車速指令値(目標車速)が求まる。このとき、現在車速から所定の離間位置での目標車速にするのに必要な減速度が目標加速度とされる。
 [先読み車速指令算出部の詳細構成]
 以下、図7に基づいて先読み車速指令算出部22の詳細構成を説明する。
なお、第1先読み車速指令算出部(ACC)221、第2先読み車速指令算出部(停止線)222、第3先読み車速指令算出部(制限車速)223、第4先読み車速指令算出部(コーナー減速)224は、何れも基本構成を図7に示す構成としている。
 各先読み車速指令算出部221(222,223,224)は、図7に示すように、先読み車速指令計算部22aと、必要加速度計算部22bと、車速指令計算部22cと、車速リミッタ部22dと、加速抑制防止部22eと、を有する。
 先読み車速指令計算部22aは、車速指令生成部211(212,213,214)からの現時点の車速指令値(図7の「旧車速指令」)と目標加速度と先読み時間とを入力する。そして、現時点の車速指令値と目標加速度に基づき、先読み時間が経過した後の先読み車速指令値を計算する。つまり、車速指令生成部211,212,213,214により生成された車速プロファイルにおいて、現時点から所定の先読み時間が経過した後の車速指令値(目標車速)が、先読み車速指令値として計算される。
 ここで、「先読み時間」の設定に関しては、下記に示す条件(a)~(d)にしたがって可変時間(例えば、2sec~5sec程度)により設定される。
(a)目標とする加減速挙動によって変化させるとき、緩慢に制御したい場合は機敏に制御したい場合より長い時間に設定する。
(b)車速指令値が、制限車速に対する車速指令値である場合(第3先読み車速指令算出部223)、他の車速指令値に比べ先読み時間を長く設定する。
(c)目標とする加減速挙動によって変化させるとき、機敏に制御したい場合は緩慢に制御したい場合より短い時間に設定する。
(d)車速指令値が、先行車追従に対する車速指令値である場合(第1先読み車速指令算出部221)、他の車速指令値に比べ先読み時間を短く設定する。
 必要加速度計算部22bは、先読み車速指令計算部22aからの先読み車速指令値と、前回の車速指令値と、を入力する。そして、前回の車速指令値から今回の先読み車速指令値に至るまでに必要な加速度を計算する。
 車速指令計算部22cは、必要加速度計算部22bにより計算された必要加速度と、計算周期(サンプル時間)と、を入力する。そして、必要加速度と計算周期と前回の車速指令値から現在時刻の車速指令値を計算する。
 車速リミッタ部22dは、車速指令計算部22cにより計算された現在時刻の車速指令値と、現在車速と、を入力する。そして、現在時刻の車速指令値が、現在車速に基づいて決められる目標車速が取り得る車速領域を超えるとき、現在時刻の車速指令値を、目標車速が取り得る車速領域により制限する。
ここで、「目標車速が取り得る車速領域」とは、現在車速からの車速変化が許容される目標車速領域をいう。例えば、現在車速から減速側の許容車速乖離幅を差し引いた下限車速から、現在車速から加速側の許容車速乖離幅を加えた上限車速までの車速領域により決められる。
 加速抑制防止部22eは、車速指令生成部211(212,213,214)からの旧車速指令と、上限加速度と、必要加速度計算部22bからの必要加速度と、車速リミッタ部22dからの新車速指令とを入力する。そして、必要加速度が、事前に設定された上限加速度を超えた場合、新車速指令(今回の先読み車速指令値)を選択することなく、旧車速指令(前回の車速指令値)を選択する。
この加速抑制防止部22eにより選択された車速指令値が、最小車速指令値調停部23へ出力される最終の車速指令値(目標車速)とされる。
 次に、作用を説明する。
実施例1の作用を、「比較例の目標車速生成作用」、「目標車速生成処理作用」、「停止線がある減速停車シーンでの目標車速生成作用」、「停車車両がある減速停車シーンでの目標車速生成作用」、「減速旋回シーンでの目標車速生成作用」に分けて説明する。
 [比較例の目標車速生成作用]
 図9は、比較例において霧の発生により制限速度までの減速を開始した直後に先行車が消失した走行シーンでの目標車速(最小値)の特性を示す。以下、図9に基づいて比較例の目標車速生成作用を説明する。
 まず、比較例は、車速指令生成部として、車速指令生成部(ACC)と車速指令生成部(制限車速)とを有し、2つの車速指令生成部で生成される車速指令値のうち、最小値を目標車速とするものとする。
 時刻t0にて霧の発生により制限速度まで減速を開始し、減速を開始した直後の時刻t1にて先行車が消失したとする。この場合、車速指令生成部(制限車速)で生成される車速指令値(=速度制限目標車速)は、時刻t0までは高い車速指令値で、時刻t0から時刻t3に向かって一定の減速度により低下し、時刻t3から制限速度(霧)を保つ車速指令値特性となる。一方、車速指令生成部(ACC)で生成される車速指令値(=先行車追従目標車速)は、時刻t1までは先行車に追従する車間制御による車速指令値であり、時刻t1になるとドライバ設定車速に戻すように一気に高くした車速指令値特性になる。なお、車速指令生成部(ACC)では、車速指令値特性以外にドライバ設定車速が引かれる。
 そこで、2つの車速指令生成部で生成される車速指令値のうち、最小値を選択して目標車速特性を描くと、時刻t1までの目標車速特性は、先行車追従目標車速特に沿ったものになる。そして、時刻t1になると目標車速特性は、先行車が消失したときの自車速からドライバ設定車速まで一気に上昇する。そして、時刻t1から時刻t2までの目標車速特性は、ドライバ設定車速特性により一定車速となり、時刻t2からは制限速度特性に沿ったものになる。
 従って、図9の矢印Aで囲まれる目標車速特性に示すように、先で減速することがわかっていても、目標車速特性が、時刻t1にて先行車が消失したときの自車速からドライバ設定車速まで一気に上昇することで、不要な加速が生じる。さらに、自車の実車速は目標車速に対して応答遅れがあることで、時刻t2の直後にて加速から減速に遷移することになるが、このときに加速(正の加速度)から減速(負の加速度)に転じるときのジャーク(加速度の変化)が大きくなる。この「不要な加速」や「ジャーク大」は、自動運転車両のような運転支援車両の場合には、ドライバによるアクセル操作やブレーキ操作によるものではなく、ドライバにとって意図しないものとなるため、ドライバに違和感を与えることになる。同様に、同乗者にとっても「不要な加速」や「ジャーク大」は違和感となる。
 この比較例に対し、「不要な加速」を抑えるため、目標車速が切り替えられると加速を禁止する対策を講じるとする。この場合、例えば、停止線による目標車速が選択されたとき、停止線までの距離が相当に長い場合においても自車の加速が禁止されることになり、自車と周囲の他車との車速差により交通流の妨げになるという問題が生じる。
 [目標車速生成処理作用]
 図8は、実施例1の自動運転コントロールユニット2にて実行される目標車速生成処理の流れを示す。以下、図8の各ステップについて説明する。
 ステップS1では、目標車速の生成が開始されると、目標車速・加速度情報を取得し、ステップS2へ進む。
ここで、「目標車速・加速度情報の取得」とは、車速指令生成部211~214の各々において生成される車速指令値(目標車速)と目標加速度を、先読み車速指令算出部221~224において取得することをいう。
 ステップS2では、ステップS1での目標車速・加速度情報の取得に続き、先読み時間を設定し、ステップS3へ進む。
ここで、「先読み時間の設定」とは、先読み車速指令計算部22aにおいて、上記のように条件(a)~(d)にしたがって先読み時間を可変時間により設定することをいう。
 ステップS3では、ステップS2での先読み時間の設定に続き、先読み時間後の目標車速を計算し、ステップS4へ進む。
ここで、「先読み時間後の目標車速の計算」とは、先読み車速指令計算部22aにおいて、現時点の車速指令値と目標加速度に基づき、先読み時間が経過した後の先読み車速指令値(目標車速)を計算することをいう。
 ステップS4では、ステップS3での先読み時間後の目標車速計算に続き、先読み時間先の目標車速に達するための加速度を計算し、ステップS5へ進む。
ここで、「先読み時間先の目標車速に達するための加速度計算」とは、必要加速度計算部22bにおいて、前回の車速指令値(前回の目標車速)から今回の先読み車速指令値(先読み時間先の目標車速)に至るまでに必要な加速度を計算することをいう。
 ステップS5では、ステップS4での先読み時間先の目標車速に達するための加速度計算に続き、計算周期を取得し、ステップS5へ進む。
ここで、「計算周期の取得」とは、車速指令計算部22cにおいて、計算周期(サンプル時間)を取得することをいう。
 ステップS6では、ステップS5での計算周期の取得に続き、現在時刻における目標車速を計算し、ステップS7へ進む。
ここで、「現在時刻における目標車速の計算」とは、車速指令計算部22cにおいて、必要加速度と計算周期(サンプル時間)と前回の車速指令値から現在時刻の車速指令値(目標車速)を計算することをいう。
 ステップS7では、ステップS6での現在時刻における目標車速の計算に続き、他の車速指令値との調停により目標車速を選択(最小値)し、目標車速の生成終了へと進む。
ここで、「他の車速指令値との調停による目標車速の選択」とは、最小車速指令調停部23において、先読み車速指令算出部221,222,223,224によって算出された複数の先読み車速指令値のうち、最小値を目標車速として選択することをいう。
 このように、目標車速の生成が開始されると、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7へと進み、目標車速の生成が終了する。つまり、先読み車速指令算出部22において、複数の車速指令生成部211~214により生成された各々の車速指令値に対して、現時刻から所定時間を経過した後の先読み車速指令値が算出される。そして、最小車速指令調停部23において、先読み車速指令算出部221~224によって算出された複数の先読み車速指令値のうち、最小値が目標車速として選択される。
 そして、複数の先読み車速指令値のうち最小値を目標車速として選択することにより、自動運転などにより走行する際、不要な加速を抑制することができるのに加え、加速から減速に遷移するときのジャークを低減することができる。さらに、例えば、停止線による目標車速が選択されたとき、先読み時間により自車が到達する距離よりも停止線までの距離が長く、現時点の車速より先読み時間後の車速が高い場合においては、自車の加速が許容されることになる。このため、単に加速を禁止するだけの技術ではなく、先読み車速指令値のセレクトローを行うことにより、交通流の妨げになることを防ぐことができる。
 [停止線がある減速停車シーンでの目標車速生成作用]
 図10は、実施例1において先の停止線に向かって減速を開始した後に先行車が消失した減速停車シーンでの目標車速(先読み車速の最小値)の特性を示す。以下、図10に基づいて停止線がある減速停車シーンでの目標車速生成作用を説明する。
 時刻t0にて停止線を検知したことにより減速を開始し、減速を開始した後の時刻t2にて先行車が消失したとする。この場合、第1車速指令生成部(ACC)211で生成される車速指令値は、先行車が存在しない時刻t1まではドライバ設定車速であり、先行車が存在する時刻t1から時刻t2までは先行車に追従する車間制御による車速指令値である。時刻t2になるとドライバ設定車速に戻すように一気に高くした車速指令値特性になる。第2車速指令生成部(停止線)212で生成される車速指令値は、時刻t0までは高い車速指令値であり、時刻t0から時刻t6に向かって一定の減速度により低下し、時刻t6から時刻t7までは滑らかに停車する減速度の停止線特性に沿った車速指令値特性になる。第3車速指令生成部(制限車速)213で生成される車速指令値は、時刻にかかわらず一定の制限車速で引かれる車速指令値特性になる。
 そこで、3つの車速指令生成部211,212,213で生成される車速指令値のうち、最小値を選択して目標車速特性(太実線特性)を描くと、時刻t1から時刻t2までの目標車速特性は、先行車追従目標車速特性に沿ったものになる。そして、時刻t2になると目標車速特性は、先行車が消失したときの自車速から制限車速まで一気に上昇する。そして、時刻t2から時刻t3までの目標車速特性は、制限車速特性により一定車速となり、時刻t3からは停止線特性に沿ったものになる。
 これに対し、3つの車速指令生成部211,212,213で生成される車速指令値のそれぞれについて先読み時間(図10の時刻t2~時刻t4)を経過した先読み車速指令値のうち、最小値を選択して目標車速特性(太点線特性)を描く。この場合、時刻t2になると、時刻t4での先読み車速指令値の最小値に基づいて目標車速が決められることで、時刻t2での自車の実車速とほぼ変わらない。そして、時刻t2以降は、サンプル時間Δt毎に先読み時間での先読み車速指令値の最小値に基づいて目標車速が決められるため、サンプル時間Δt毎に決められた目標車速を繋いだ特性は、時刻t2から時刻t5に向かって滑らかに減速する特性になる。そして、時刻t5からは停止線特性に沿ったものになる。
 従って、実施例1での目標車速特性(太点線特性)は、図10の矢印Bで囲まれる目標車速特性(太実線特性、太点線特性)の対比から明らかなように、比較例での目標車速特性(太実線特性)を減速側に押し下げた特性になる。このため、先で減速することがわかっているとき、先読み車速指令値に基づいて目標車速が生成されることで、比較例のような不要な加速が生じることが抑制される。さらに、実施例1の目標車速特性は、時刻t2から時刻t5に向かって滑らかに減速する特性になるため、加速から減速に転じるときのジャークが殆ど無くなる、若しくは、ジャークが小さく低減される。
 この結果、自動運転車両のような運転支援車両の場合に要求される車両挙動の抑制機能が発揮されることになり、ドライバや同乗者に違和感を与えることが無い。さらに、複数の先読み車速指令値の最小値を選択して目標車速とすることで、複数の先読み車速指令値のうち、走行安全性が確保される車速計画になる。なお、比較例のように、霧の発生により制限速度までの減速を開始した直後に先行車が消失した走行シーンにおいても、先の停止線に向かって減速を開始する場合と同様の目標車速生成作用を示す。
 [停車車両がある減速停車シーンでの目標車速生成作用]
 図11は、実施例1において前方に停車車両が存在しているときに制限車速よりも低い車速での走行から停車車両の直前位置で停車する減速停車シーンでの自車から停車車両までの距離と目標車速の関係特性を示す。以下、図11に基づいて停車車両がある減速停車シーンでの目標車速生成作用を説明する。
 停車車両がある減速停車シーンでは、停車車両を認識したときの自車後輪位置をxoとし、減速して停止したときの自車後輪位置をx1とし、位置xoから自車前端位置までの距離をdminとする。このとき、位置xoでの自車前端位置から位置x1での自車前端位置までの距離がd(=e+dmin)になり、この距離dの間に、自車の車速を位置xoでの車速voからゼロ(停止)とする必要がある。
 この場合、第1車速指令生成部(ACC)211で生成される車速指令値は、制限車速よりも低い車速で走行している自車が位置xoにて停車車両を先行車として認識したことで、先行車に追従する車間制御により一気に高くする。そして、位置xo以降は車間制御により位置x1に向かって徐々に減速する車速指令値特性になる。第2車速指令生成部(停止線)212で生成される車速指令値は、停止線の認識がないことで、時刻にかかわらず一定の停止線車速で引かれる車速指令値特性になる。第3車速指令生成部(制限車速)213で生成される車速指令値は、時刻にかかわらず一定の制限車速(<停止線車速)で引かれる車速指令値特性になる。
 そこで、3つの車速指令生成部211,212,213で生成される車速指令値のうち、最小値を選択して目標車速特性(太実線特性)を描くと、位置xoでは先行車追従目標車速特性に沿って自車速から制限車速まで一気に上昇する。そして、位置xoから位置xo1までの目標車速特性は、制限車速特性により一定車速となり、位置xo1からは先行車追従目標車速特性に沿ったものになる。
 これに対し、3つの車速指令生成部211,212,213で生成される車速指令値のそれぞれについて先読み時間を経過した先読み車速指令値のうち、最小値を選択して目標車速特性(太点線特性)を描く。この場合、位置xoになると、サンプル時間Δt毎に先読み時間での先読み車速指令値の最小値に基づいて目標車速が決められる。このため、サンプル時間Δt毎に決められた目標車速を繋いだ特性は、位置xoから位置xo2に向かって緩やかな加速から緩やかな減速へと移行する滑らかな特性になる。そして、位置xo2からは減速特性である先行車追従目標車速特性に沿ったものになる。
 従って、実施例1での目標車速特性(太点線特性)は、図11の矢印Cで囲まれる目標車速特性(太実線特性、太点線特性)の対比から明らかなように、比較例での目標車速特性(太実線特性)を減速側に押し下げた特性になる。このため、先で減速することがわかっているとき、先読み車速指令値に基づいて目標車速が生成されることで、比較例のような不要な加速が生じることが抑制される。さらに、実施例1の目標車速特性は、位置xoから位置xo2に向かって緩やかな加速から緩やかな減速へと移行する滑らかな特性になるため、加速から減速に転じるときのジャークが小さく低減される。このように、前方に停車車両が存在しているときに制限車速よりも低い車速での走行から停車車両の直前位置で停車する減速停車シーンにおいて、制限車速に近づけるための加速が生じることが抑制される。
 [減速旋回シーンでの目標車速生成作用]
 図12は、実施例1において先行車は加速しているが先に減速すべきコーナーがある減速旋回シーンでの目標車速の特性を示す。以下、図12に基づいて減速旋回シーンでの目標車速生成作用を示す。
 先行車は加速しているが、時刻t0にてコーナー入りにより減速を開始し、コーナー旋回中の時刻t4にて最低車速になって減速から加速に移行し、時刻t6にてコーナー抜けしたとする。この場合、第1車速指令生成部(ACC)211で生成される車速指令値は、先行車が加速しているため、時刻t0の前から先行車に追従する車間制御により徐々に車速が上昇する先行車追従目標車速特性による車速指令値特性になる。第4車速指令生成部(コーナー減速)214で生成される車速指令値は、直進走行の時刻t0までは高い車速指令値である。そして、時刻t0から時刻t4に向かって減速により車速が徐々に低下し、最低車速になる時刻t4から時刻t6に向かって加速により車速が上昇するコーナー目標車速特性に沿った車速指令値特性になる。
 そこで、2つの車速指令生成部211,214で生成される車速指令値のうち、最小値を選択して目標車速特性(太実線特性)を描くと、時刻t2までの目標車速特性は、先行車追従目標車速特性に沿ったものになる。そして、時刻t2から時刻t5までの目標車速特性は、コーナー目標車速特性に沿ったものになる。そして、時刻t5からは再び先行車追従目標車速特性に沿ったものになる。
 これに対し、2つの車速指令生成部211,214で生成される車速指令値のそれぞれについて先読み時間(図12の時刻t1~時刻t3)を経過した先読み車速指令値のうち、最小値を選択して目標車速特性(太点線特性)を描く。この場合、時刻t0になると、先読み車速指令値の最小値に基づいて目標車速が決められることで、時刻t0での自車の実車速とほぼ変わらない。そして、時刻t0以降は、サンプル時間Δt毎に先読み時間での先読み車速指令値の最小値に基づいて目標車速が決められるため、サンプル時間Δt毎に決められた目標車速を繋いだ特性は、時刻t0から時刻t3に向かって緩やかに加速した後に緩やかに減速する特性になる。そして、時刻t3から時刻t5まではコーナー目標車速特性に沿ったものになり、時刻t5からは先行車追従目標車速特性に沿ったものになる。
 従って、実施例1での目標車速特性(太点線特性)は、図12の矢印Dで囲まれる目標車速特性(太実線特性、太点線特性)の対比から明らかなように、比較例での目標車速特性(太実線特性)を減速側に押し下げた特性になる。このため、先で減速することがわかっているとき、先読み車速指令値に基づいて目標車速が生成されることで、比較例のような不要な加速が生じることが抑制される。さらに、実施例1の目標車速特性は、時刻t0から時刻t3に向かって緩やかに加速した後に緩やかに減速する特性になるため、加速から減速に転じるときのジャークが小さく低減される。
 このように、先行車は加速しているが、先に減速すべきコーナーがある場合、加速している先行車に追従して自車が加速するのが抑制され、コーナーに併せて自車が減速を開始することになる。なお、前方に減速対象となるタイトコーナーがある場合も勿論、適用可能である。
 次に、効果を説明する。
実施例1における自動運転車両の目標車速生成方法及び目標車速生成装置にあっては、下記に列挙する効果が得られる。
 (1) 複数の車速指令値に基づいて車両が走行/停止するときの目標車速を生成する運転支援車両(自動運転車両)の目標車速生成方法である。
複数の車速指令値の各々の車速指令値に対して、現時刻から所定時間を経過した後の先読み車速指令値を算出する(先読み車速指令算出部22)。
算出された複数の先読み車速指令値のうち、最小値を目標車速として選択する(最小車速指令調停部23:図1)。
  このため、運転支援(自動運転)により走行する際、不要な加速を抑制することができるのに加え、加速から減速に遷移するときのジャークを低減する自動運転車両の目標車速生成方法を提供することができる。即ち、目標車速の将来値を見越した制御ができ、不要な加速を抑制できる。加速から減速に転じる際の、ジャークを低減できる。又、最小値をとることで、複数の車速指令値のうち安全サイドの車速計画を立案できる。
 (2) 先読み車速指令値を算出する際(先読み車速指令算出部22)、現時点の車速指令値と目標加速度と先読み時間とに基づき、先読み時間が経過した後の先読み車速指令値を計算する(先読み車速指令計算部22a)。
前回の車速指令値から今回の先読み車速指令値に至るまでに必要な必要加速度を計算する(必要加速度計算部22b)。
必要加速度と計算周期と前回の車速指令値から現在時刻の先読み車速指令値を計算する(車速指令計算部22c:図7)。
  このため、(1)の効果に加え、リアルタイムに先読み車速指令値を計算することができる。そして、計算周期(サンプル時間)毎に、先読み車速指令値を計算するため、将来の目標車速が分かっていない場合でも、適用することができる。
 (3) 先読み車速指令値を計算する際(先読み車速指令計算部22a)、先読み時間を、目標とする加減速挙動によって変化させるとき、緩慢に制御したい場合は機敏に制御したい場合より長い時間に設定する(図7)。
  このため、(2)の効果に加え、緩慢に制御したい場合、加減速挙動をより滑らかにすることができると共に、加速から減速に転じるまでに要する時間を早めることができる。
 (4) 先読み車速指令値を計算する際(先読み車速指令計算部22a)、先読み車速指令値が、制限車速に対する車速指令値である場合、他の車速指令値に比べ先読み時間を長く設定する(図7)。
  このため、(2)又は(3)の効果に加え、制限車速に対して、自車の車速を滑らかに追従させることができる。
 (5) 先読み車速指令値を計算する際(先読み車速指令計算部22a)、先読み時間を、目標とする加減速挙動によって変化させるとき、機敏に制御したい場合は緩慢に制御したい場合より短い時間に設定する(図7)。
  このため、(2)~(4)の効果に加え、機敏に制御したい場合、加減速挙動をより機敏にすることができると共に、加速から減速に転じるまでの時間が遅くなり、加速区間を多くすることができる。
 (6) 先読み車速指令値を計算する際(先読み車速指令計算部22a)、先読み車速指令値が、先行車追従に対する車速指令値である場合、他の車速指令値に比べ先読み時間を短く設定する(図7)。
  このため、(2)~(5)の効果に加え、先行車に対して、自車を機敏に追従させることができる。
 (7) 先読み車速指令値を算出する際(先読み車速指令算出部22)、必要加速度が、事前に設定された上限加速度を超えた場合、今回の先読み車速指令値を選択することなく、前回の先読み車速指令値を選択する(加速抑制防止部22c:図7)。
  このため、(2)~(6)の効果に加え、本来加速したいシーンで加速が抑制されてしまうことを防ぐことができる。
 (8) 先読み車速指令値を算出する際(先読み車速指令算出部22)、現在時刻の先読み車速指令値が、目標車速が取り得る車速領域を超えるとき、現在時刻の先読み車速指令値を、目標車速が取り得る車速領域により制限する(車速リミッタ部22d:図7)。
  このため、(2)~(7)の効果に加え、目標車速がマイナスとなり、必要以上に減速されることを防止することができる。
 (9) 複数の先読み車速指令値のうち最小値を選択して目標車速を生成する際、選択された先読み車速指令値の種類に応じた加減速度制限量を同時に選択する(最小車速指令調停部23:図1)。
  このため、(1)~(8)の効果に加え、選ばれた目標車速の種類に応じて加減速制限量を適用することで、種類の対応する個別の加減速挙動にすることができる。例えば、制限車速による目標車速が選択されるときは、加減速度を小さくすることで、滑らかに追従できる。又、ACCによる目標車速が選択されるときは、加減速度を大きくすることで、先行車の位置変化に対して、応答性よく追従することができる。
 (10) 車速指令値を生成する際(第1車速指令生成部211)、先行車との車間距離・相対車速を取得し(車間距離・相対車速取得部211b)、取得した車間距離・相対車速に応じて自車が先行車に追従するために必要な車速指令値を算出する(車速指令算出部211c:図2)。
  このため、(1)~(9)の効果に加え、前方に車両が停まっている場合や前方に低速の車両が存在している場合、その手前で発生する不要な加速(例えば、制限車速に追従するための加速など)を抑制することができる。
 (11) 車速指令値を生成する際(第3車速指令生成部213)、道路の制限車速情報を取得し(制限車速取得部213a)、取得された制限車速に追従するために必要な車速指令値を算出する(車速指令算出部213b:図5)。
  このため、(1)~(10)の効果に加え、自車の前方で制限車速が下がることが分かっている場合、その手前で発生する不要な加速を抑制することができる。
 (12) 車速指令値を生成する際(第2車速指令生成部212)、自車と停止線までの距離を取得し(停止線相対距離取得部212a)、取得された停止線相対距離に対して減速・停止するために必要な車速指令値を算出する(車速指令算出部212b:図3)。
  このため、(1)~(11)の効果に加え、減速・停止することがわかっている場合(例えば、前方に停止線がある、前方の信号が赤信号である、など)、その手前で発生する不要な加速を抑制することができる。
 (13) 車速指令値を生成する際(第4車速指令生成部214)、走行経路の曲率を取得し(道路曲率情報取得部214a)、取得した道路曲率情報に従って予め設定する限界横加速度を超えない車速指令値を算出する(車速指令算出部214b:図6)。
  このため、(1)~(12)の効果に加え、前方にタイトなコーナーがあり、予め減速することが分かっている場合、その手前で発生する不要な加速を抑制することができる。
 (14) 複数の車速指令生成部21を有し、車両が走行/停止するときの目標車速を生成するコントローラ(自動運転コントロールユニット2)を搭載した運転支援車両(自動運転車両)の目標車速生成装置であって、コントローラ(自動運転コントロールユニット2)は、先読み車速指令算出部22と、最小車速指令調停部23と、を備える。
先読み車速指令算出部22は、複数の車速指令生成部21により生成された各々の車速指令値に対して、現時刻から所定時間を経過した後の先読み車速指令値を算出する。
最小車速指令調停部23は、先読み車速指令算出部によって算出された複数の先読み車速指令値のうち、最小値を目標車速として選択する(図1)。
  このため、運転支援(自動運転)により走行する際、不要な加速を抑制することができるのに加え、加速から減速に遷移するときのジャークを低減する自動運転車両の目標車速生成装置を提供することができる。
 以上、本開示の運転支援車両の目標車速生成装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、車速指令生成部21及び先読み車速指令算出部22として、ACC,停止線,制限車速,コーナー減速に対応する4つの種類の車速指令生成部及び先読み車速指令算出部を備える例を示した。しかし、車速指令生成部及び先読み車速指令算出部としては、少なくとも2つ以上の種類の車速指令生成部及び先読み車速指令算出部を備える例であれば良く、2種類や3種類や5種類以上の車速指令生成部及び先読み車速指令算出部を備える例も含まれる。
 実施例1では、本開示の目標車速生成方法及び目標車速生成装置を、自動運転モードの選択により操舵/駆動/制動が自動制御される自動運転車両に適用する例を示した。しかし、本開示の目標車速生成方法及び目標車速生成装置は、目標車速を表示することでドライバの運転支援をする運転支援車両やACCのみを搭載した運転支援車両などにように、目標車速を用いてドライバの運転支援をする車両であれば適用することができる。

Claims (14)

  1.  複数の車速指令値に基づいて車両が走行/停止するときの目標車速を生成する運転支援車両の目標車速生成方法であって、
     前記複数の車速指令値の各々の車速指令値に対して、現時刻から所定時間を経過した後の先読み車速指令値を算出し、
     前記算出された複数の先読み車速指令値のうち、最小値を前記目標車速として選択する
     ことを特徴とする運転支援車両の目標車速生成方法。
  2.  請求項1に記載された運転支援車両の目標車速生成方法において、
     前記先読み車速指令値を算出する際、現時点の車速指令値と目標加速度と先読み時間とに基づき、前記先読み時間が経過した後の先読み車速指令値を計算し、
     前回の車速指令値から今回の先読み車速指令値に至るまでに必要な必要加速度を計算し、
     前記必要加速度と計算周期と前回の車速指令値から現在時刻の先読み車速指令値を計算する
     ことを特徴とする運転支援車両の目標車速生成方法。
  3.  請求項2に記載された運転支援車両の目標車速生成方法において、
     前記先読み車速指令値を計算する際、前記先読み時間を、目標とする加減速挙動によって変化させるとき、緩慢に制御したい場合は機敏に制御したい場合より長い時間に設定する
     ことを特徴とする運転支援車両の目標車速生成方法。
  4.  請求項2又は3に記載された運転支援車両の目標車速生成方法において、
     前記先読み車速指令値を計算する際前記先読み車速指令値が、制限車速に対する車速指令値である場合、他の車速指令値に比べ前記先読み時間を長く設定する
     ことを特徴とする運転支援車両の目標車速生成方法。
  5.  請求項2から4までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記先読み車速指令値を計算する際、前記先読み時間を、目標とする加減速挙動によって変化させるとき、機敏に制御したい場合は緩慢に制御したい場合より短い時間に設定する
     ことを特徴とする運転支援車両の目標車速生成方法。
  6.  請求項2から5までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記先読み車速指令値を計算する際、前記先読み車速指令値が、先行車追従に対する車速指令値である場合、他の車速指令値に比べ前記先読み時間を短く設定する
     ことを特徴とする運転支援車両の目標車速生成方法。
  7.  請求項2から6までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記先読み車速指令値を算出する際、前記必要加速度が、事前に設定された上限加速度を超えた場合、今回の先読み車速指令値を選択することなく、前回の先読み車速指令値を選択する
     ことを特徴とする運転支援車両の目標車速生成方法。
  8.  請求項2から7までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記先読み車速指令値を算出する際、前記現在時刻の先読み車速指令値が、前記目標車速が取り得る車速領域を超えるとき、前記現在時刻の先読み車速指令値を、前記目標車速が取り得る車速領域により制限する
     ことを特徴とする運転支援車両の目標車速生成方法。
  9.  請求項1から8までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記複数の先読み車速指令値のうち最小値を選択して前記目標車速を生成する際、選択された先読み車速指令値の種類に応じた加減速度制限量を同時に選択する
     ことを特徴とする運転支援車両の目標車速生成方法。
  10.  請求項1から9までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記車速指令値を生成する際、先行車との車間距離・相対車速を取得し、、取得した車間距離・相対車速に応じて自車が先行車に追従するために必要な車速指令値を算出する
     ことを特徴とする運転支援車両の目標車速生成方法。
  11.  請求項1から10までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記車速指令値を生成する際、道路の制限車速情報を取得し、取得された制限車速に追従するために必要な車速指令値を算出する
     ことを特徴とする運転支援車両の目標車速生成方法。
  12.  請求項1から11までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記車速指令値を生成する際、自車と停止線までの距離を取得し、取得された停止線相対距離に対して減速・停止するために必要な車速指令値を算出する
     ことを特徴とする運転支援車両の目標車速生成方法。
  13.  請求項1から12までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記車速指令値を生成する際、走行経路の曲率を取得し、取得した道路曲率情報に従って予め設定する限界横加速度を超えない車速指令値を算出する
     ことを特徴とする運転支援車両の目標車速生成方法。
  14.  複数の車速指令生成部を有し、車両が走行/停止するときの目標車速を生成するコントローラを搭載した運転支援車両の目標車速生成装置であって、
     前記コントローラは、
     前記複数の車速指令生成部により生成された各々の車速指令値に対して、現時刻から所定時間を経過した後の先読み車速指令値を算出する先読み車速指令算出部と、
     前記先読み車速指令算出部によって算出された複数の先読み車速指令値のうち、最小値を前記目標車速として選択する最小車速指令調停部と、
     を備えることを特徴とする運転支援車両の目標車速生成装置。
PCT/JP2017/024399 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置 WO2019008647A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112020000080-9A BR112020000080B1 (pt) 2017-07-03 2017-07-03 Método de geração de velocidade alvo de veículo e dispositivo de geração de velocidade alvo de veículo para veículo com direção assistida
CA3068898A CA3068898A1 (en) 2017-07-03 2017-07-03 Method and device for generating target vehicle speed of driving-assisted vehicle
RU2020104284A RU2723010C1 (ru) 2017-07-03 2017-07-03 Способ генерирования целевой скорости транспортного средства и устройство генерирования целевой скорости транспортного средства для транспортного средства с содействием вождению
US16/616,998 US11052925B2 (en) 2017-07-03 2017-07-03 Target vehicle speed generation method and target vehicle speed generation device for driving-assisted vehicle
MX2019015633A MX2019015633A (es) 2017-07-03 2017-07-03 Metodo de generacion de velocidad objetivo del vehiculo y dispositivo de generacion de velocidad objetivo del vehiculo para vehiculo de conduccion asistida.
EP17917209.3A EP3650258B1 (en) 2017-07-03 2017-07-03 Target vehicle speed generation method and target vehicle speed generation device for driving assistance vehicle
KR1020207001450A KR20200010577A (ko) 2017-07-03 2017-07-03 운전 지원 차량의 목표 차속 생성 방법 및 목표 차속 생성 장치
JP2019528214A JP6680403B2 (ja) 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置
CN201780092107.5A CN110770064B (zh) 2017-07-03 2017-07-03 驾驶辅助车辆的目标车速生成方法及目标车速生成装置
PCT/JP2017/024399 WO2019008647A1 (ja) 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024399 WO2019008647A1 (ja) 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置

Publications (1)

Publication Number Publication Date
WO2019008647A1 true WO2019008647A1 (ja) 2019-01-10

Family

ID=64949815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024399 WO2019008647A1 (ja) 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置

Country Status (10)

Country Link
US (1) US11052925B2 (ja)
EP (1) EP3650258B1 (ja)
JP (1) JP6680403B2 (ja)
KR (1) KR20200010577A (ja)
CN (1) CN110770064B (ja)
BR (1) BR112020000080B1 (ja)
CA (1) CA3068898A1 (ja)
MX (1) MX2019015633A (ja)
RU (1) RU2723010C1 (ja)
WO (1) WO2019008647A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020192942A (ja) * 2019-05-30 2020-12-03 日産自動車株式会社 走行支援方法および走行支援装置
RU2746533C1 (ru) * 2020-01-15 2021-04-15 Роман Павлович Курганов Система и способ контроля скорости автомобиля, автомобиль с системой контроля скорости
WO2021093341A1 (zh) * 2019-11-14 2021-05-20 东风商用车有限公司 一种自适应巡航系统的速度跟随控制方法及系统
WO2022153590A1 (ja) * 2021-01-18 2022-07-21 日立Astemo株式会社 車両制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017221097A1 (de) * 2017-11-24 2019-05-29 Daimler Ag Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs
DE102018210650A1 (de) * 2018-06-28 2020-01-02 Bayerische Motoren Werke Aktiengesellschaft Längsführendes Fahrerassistenzsystem in einem Kraftfahrzeug
US11794779B2 (en) * 2021-03-19 2023-10-24 Waymo Llc Pullover maneuvers for autonomous vehicles
JP2023013304A (ja) * 2021-07-15 2023-01-26 株式会社Subaru 車両制御システム
US11919451B2 (en) 2022-02-28 2024-03-05 Nissan North America, Inc. Vehicle data display system
CN116061933B (zh) * 2023-03-31 2023-06-16 深圳海星智驾科技有限公司 一种基于限速信息的车辆速度规划方法、装置和域控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028995A (ja) * 2003-07-11 2005-02-03 Nissan Motor Co Ltd 車両の車速制御装置
JP2015095907A (ja) * 2013-11-08 2015-05-18 トヨタ自動車株式会社 車両制御装置
JP2015129701A (ja) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 車速制御装置及び車速制御方法
JP2016141387A (ja) 2015-02-05 2016-08-08 富士重工業株式会社 車両の運転支援制御装置
JP2017081426A (ja) * 2015-10-28 2017-05-18 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199001B1 (en) * 1996-12-19 2001-03-06 Toyota Jidosha Kabushiki Kaisha Control system for controlling the behavior of a vehicle based on accurately detected route information
JP5061776B2 (ja) * 2007-08-03 2012-10-31 日産自動車株式会社 車両用走行制御装置および車両用走行制御方法
JP4712830B2 (ja) * 2008-06-19 2011-06-29 日立オートモティブシステムズ株式会社 車両制御装置
US20130297196A1 (en) * 2010-12-22 2013-11-07 Toyota Jidosha Kabushiki Kaisha Vehicular driving assist apparatus, method, and vehicle
SE539599C2 (sv) * 2014-05-21 2017-10-17 Scania Cv Ab Förfarande och system för att anpassa ett fordons acceleration vid framförande av fordonet utmed en färdväg
JP6446245B2 (ja) 2014-11-28 2018-12-26 日立オートモティブシステムズ株式会社 自動運転制御装置
WO2018057455A1 (en) * 2016-09-21 2018-03-29 Apple Inc. Vehicle control system
JP6642413B2 (ja) * 2016-12-27 2020-02-05 トヨタ自動車株式会社 車両走行制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028995A (ja) * 2003-07-11 2005-02-03 Nissan Motor Co Ltd 車両の車速制御装置
JP2015095907A (ja) * 2013-11-08 2015-05-18 トヨタ自動車株式会社 車両制御装置
JP2015129701A (ja) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 車速制御装置及び車速制御方法
JP2016141387A (ja) 2015-02-05 2016-08-08 富士重工業株式会社 車両の運転支援制御装置
JP2017081426A (ja) * 2015-10-28 2017-05-18 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650258A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020192942A (ja) * 2019-05-30 2020-12-03 日産自動車株式会社 走行支援方法および走行支援装置
JP7208106B2 (ja) 2019-05-30 2023-01-18 日産自動車株式会社 走行支援方法および走行支援装置
WO2021093341A1 (zh) * 2019-11-14 2021-05-20 东风商用车有限公司 一种自适应巡航系统的速度跟随控制方法及系统
RU2746533C1 (ru) * 2020-01-15 2021-04-15 Роман Павлович Курганов Система и способ контроля скорости автомобиля, автомобиль с системой контроля скорости
WO2022153590A1 (ja) * 2021-01-18 2022-07-21 日立Astemo株式会社 車両制御装置

Also Published As

Publication number Publication date
EP3650258A1 (en) 2020-05-13
CA3068898A1 (en) 2019-01-10
CN110770064A (zh) 2020-02-07
JPWO2019008647A1 (ja) 2020-01-23
BR112020000080B1 (pt) 2023-10-17
US11052925B2 (en) 2021-07-06
EP3650258B1 (en) 2023-03-15
CN110770064B (zh) 2021-08-10
BR112020000080A2 (pt) 2020-07-07
US20200391764A1 (en) 2020-12-17
EP3650258A4 (en) 2020-08-19
RU2723010C1 (ru) 2020-06-08
KR20200010577A (ko) 2020-01-30
MX2019015633A (es) 2020-02-20
JP6680403B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6680403B2 (ja) 運転支援車両の目標車速生成方法及び目標車速生成装置
JP6950546B2 (ja) 車両の走行制御装置
US11186275B2 (en) Vehicle control system
CN109070887B (zh) 车辆控制系统、车辆控制方法及存储介质
JP2020189543A (ja) 車両の走行制御装置
JP2020157985A (ja) 車両の走行制御装置
JP2019123377A (ja) 車両制御装置
US11247677B2 (en) Vehicle control device for maintaining inter-vehicle spacing including during merging
JP2009078733A (ja) 走行支援装置
US20180345957A1 (en) Vehicle control system
US10353391B2 (en) Travel control device
JP7266709B2 (ja) 車両制御方法及び車両制御装置
JP6573526B2 (ja) 車両の運転支援制御装置
JP2017136968A (ja) 車両制御装置
US20180345956A1 (en) Vehicle control system
US10953876B2 (en) Target vehicle speed generation method and target vehicle speed generation device for driving-assisted vehicle
JP2019153029A (ja) 車両制御装置
US20230234574A1 (en) Vehicle driving assist device
US20230022820A1 (en) Driving assistance device for vehicle
WO2021171049A1 (ja) 車両制御方法及び車両制御装置
WO2023054195A1 (ja) 車両制御装置及び車両制御プログラム
US20230234579A1 (en) Vehicle driving assist device
JP7208106B2 (ja) 走行支援方法および走行支援装置
US20240042997A1 (en) Travel control apparatus for vehicle
JP2023089623A (ja) 車両の走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528214

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3068898

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020000080

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207001450

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017917209

Country of ref document: EP

Effective date: 20200203

ENP Entry into the national phase

Ref document number: 112020000080

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200102