WO2019007250A1 - 一种光纤扫描器及光纤扫描成像系统 - Google Patents

一种光纤扫描器及光纤扫描成像系统 Download PDF

Info

Publication number
WO2019007250A1
WO2019007250A1 PCT/CN2018/093242 CN2018093242W WO2019007250A1 WO 2019007250 A1 WO2019007250 A1 WO 2019007250A1 CN 2018093242 W CN2018093242 W CN 2018093242W WO 2019007250 A1 WO2019007250 A1 WO 2019007250A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan driver
fiber
optical fiber
scanner
optical fibers
Prior art date
Application number
PCT/CN2018/093242
Other languages
English (en)
French (fr)
Inventor
姚长呈
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2019007250A1 publication Critical patent/WO2019007250A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to the field of optical imaging, and more particularly to an optical fiber scanner and a fiber scanning imaging system.
  • the fiber scanner can scan the image according to the designer's pre-designed trajectory to replace the traditional LCD (Liquid Crystal Display), LCOS (Liquid Crystal on Silicon) and OLED. (Organic Light-Emitting Diode; OLED) image source, etc., integrated into HMD (Head Mount Display), pico projector, and vehicle HUD (Head Up Display), and also It can be used in medical endoscopes, scanning tunneling microscopes, etc., and its application is very extensive.
  • LCD Liquid Crystal Display
  • LCOS Liquid Crystal on Silicon
  • OLED Organic Light-Emitting Diode
  • HMD Head Mount Display
  • pico projector pico projector
  • vehicle HUD Head Up Display
  • the resolution of the scanned image of the fiber scanner is inversely proportional to the frame rate of the scanned image, so increasing the resolution of the scanned image and increasing the frame rate of the scanned image are contradictory. If you want to meet these needs at the same time, you need to further increase the scanning frequency of the fiber scanner.
  • the resolution and frame rate of the image are closely related to the natural frequency and scanning amplitude of the fiber, and the natural frequency and scanning amplitude are determined by the structure and parameters of the fiber, so that the multi-core fiber scanner and the single-core fiber scanner are Compared to the same scanning frequency, multi-core fiber can improve the resolution, but overall, due to the inherent frequency and scanning amplitude of the fiber, multi-core fiber scanner can not really achieve high-resolution display.
  • An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a scanner with high resolution, large scanning amplitude and easy implementation.
  • a fiber optic scanner including:
  • a scan driver and a plurality of optical fibers a plurality of said optical fibers are arranged on said one scan driver in a predetermined manner, said one scan driver for driving a plurality of said optical fibers to vibrate to output each of said optical fibers
  • the images are stitched together.
  • the scan driver is a two-dimensional scan driver, and the two-dimensional scan driver comprises an X-direction scan driver and a Y-direction scan driver perpendicular to the X direction.
  • the X-direction scan driver and the Y-direction scan driver are integrally formed; or the X-direction scan driver and the Y-direction scan driver are bonded or inlaid together; or
  • the X-direction scan driver and the Y-direction scan driver are connected by an orthogonal type adapter.
  • the X-direction scan driver and the Y-direction scan driver are piezoelectric scan drivers.
  • the X-direction scan driver and the Y-direction scan driver are made of piezoelectric ceramic.
  • the structure of the X-direction scan driver and the Y-direction scan driver is a wafer structure.
  • the scan driver is a wafer structure
  • the optical fiber is bonded on an outer surface of the scan driver; or the scan driver is provided with a groove matching a plurality of the optical fibers, and the optical fiber capacity is Placed in the groove.
  • the optical fiber is a single mode fiber or a multimode fiber.
  • the optical fiber is a double-clad fiber.
  • a second aspect of the embodiments of the present invention provides a fiber optic scanning imaging system comprising a plurality of fiber optic scanners as described in the first aspect.
  • the optical fiber scanner includes a scan driver and a plurality of optical fibers, and the plurality of optical fibers are arranged on a scan driver in a predetermined manner, and the plurality of optical fibers are vibrated by a scan driver to output an image of each optical fiber. Stitched together.
  • the invention scans a plurality of optical fibers at the same time by a scanning driver, thereby improving the scanning frequency of the optical fiber scanner and increasing the scanning amplitude of the optical fiber scanner as a whole, thereby achieving greater image resolution and scanning frame rate, thereby improving optical fiber scanning. The quality of the output image.
  • FIG. 1 is a schematic structural diagram of a fiber optic scanner according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of image stitching according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a possible optical fiber scanner according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a possible scan driver according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another possible scan driver according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an orthogonal type adapter according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a possible scan driver according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a fiber optic scanner according to an embodiment of the present invention.
  • the device includes a scan driver 10 and a plurality of optical fibers 20.
  • a plurality of the optical fibers 20 are arranged on the one scan driver 10 in a predetermined manner.
  • the scanning image driver 10 is configured to drive a plurality of the optical fibers 20 to vibrate to splicing together images output by each of the optical fibers 20.
  • the number of the optical fibers 20 is plural.
  • the number of the optical fibers 20 may be 2-10, for example, the number of the optical fibers 20 may be 2, 3 or 6, or the like.
  • the optical fibers 20 may be arranged in parallel on the scan driver 10.
  • the fiber scanner includes three optical fibers 20, and three optical fibers 20 are arranged in parallel on one side of the scan driver 10.
  • a plurality of optical fibers 20 may also be arranged on different faces of the scan driver 10.
  • the optical fibers 20 may also be located on the other side, top surface or bottom surface of the scan driver 10.
  • the optical fibers may be evenly arranged on the scan driver 10 at intervals, or may be arranged non-uniformly, and the interval between adjacent fibers is less than or equal to half of the sum of the maximum swing amplitudes of adjacent fibers.
  • the interval value between adjacent fibers is generally smaller than the maximum value, and those skilled in the art can determine the size between adjacent fibers according to the actual image size to be scanned. The interval is not limited by the present invention.
  • fiber cantilever 201 refers to the portion of fiber 20 that extends beyond scan driver 10.
  • the plurality of optical fibers 20 have the same scanning mode, and the scanning mode may be a spiral type, a grid type or a Lisa Ru graphic, etc., further, through precision
  • the size and modulation signals of the individual fibers 20 are controlled such that the images output by each of the fibers 20 can be seamlessly spliced into a complete image for display.
  • the complete image can be divided into three parts A, B, and C on the left side, and the output images are respectively scanned through three optical fibers 20.
  • the three parts of A, B and C are spliced to form a complete image.
  • a plurality of optical fibers 20 are driven to scan simultaneously by a scan driver, and the scanning frequency increases linearly as the number of optical fibers on the scan driver increases.
  • a plurality of optical fibers are simultaneously driven by a single scanner, and there is no consistency difference between the plurality of optical fibers, and there is no difference in consistency between the plurality of optical fibers, which is different from the single-fiber scanner splicing in the patent application No. 201480014814.9.
  • the number of scan drivers required in the embodiment of the present invention is significantly reduced as compared with the prior art, thereby providing an easy-to-implement high-resolution optical fiber.
  • a scanner to achieve greater image resolution and improved image quality for fiber optic scanner output.
  • the multi-core fiber scanner can provide resolution at the same scanning frequency as compared with the single-core fiber scanner. Improved, but due to the fixed frequency of the fiber, the swing amplitude of the multi-core fiber scanner is not improved, and the number of fiber cores is not proportional to the improvement of the image display resolution. Therefore, the multi-core fiber scanner cannot improve the display screen. Width and height, that is, multi-core fiber scanners do not really achieve high-resolution display.
  • the prior art requires a multi-core fiber scanner to swing more.
  • the fiber can achieve the swing.
  • the amplitude is limited.
  • the control voltage needs to be increased in geometric multiples, so that the power consumption is increased.
  • the display resolution and the overall swing amplitude of the optical fiber are both in a simple linear proportional relationship with the number of optical fibers, and the number of optical fibers can be increased to increase the overall swing amplitude and display resolution of the optical fiber, and the single optical fiber.
  • the amplitude of the wobble can be kept constant, so that the same display resolution and the width of the display screen can be achieved without increasing the driving voltage or increasing the driving power consumption.
  • the scan driver 10 may be a two-dimensional scan driver including an X-direction scan driver 101 and a Y-direction scan driver 102 perpendicular to the X direction.
  • the X direction means a direction perpendicular to the side surface of the X-direction scan driver 101
  • the Y direction means a direction perpendicular to the upper surface of the Y-direction scan driver 102.
  • the X-direction scan driver 101 and the Y-direction scan driver 102 there are many embodiments of the X-direction scan driver 101 and the Y-direction scan driver 102.
  • the X-direction scan driver 101 and the Y-direction scan driver 102 may be integrally formed.
  • the X-direction scan driver 101 and the Y-direction scan driver 102 may also be two independent structures, and then connected together by bonding or inlay consolidation.
  • the scan driver 10 further includes an orthogonal type adapter 103, and the X-direction scan driver 101 and the Y-direction scan driver 102 are connected together by an orthogonal type adapter 103, thereby enhancing the scan driver. 10 stability.
  • FIG. 6 is a schematic structural diagram of an orthogonal adapter 103 according to an embodiment of the present invention.
  • the orthogonal type adapter 103 includes a first groove corresponding to the X-direction scan driver 101 and a second groove corresponding to the Y-direction scan driver 102.
  • the end of the X-direction scan driver 101 is inserted into the first groove
  • the end of the Y-direction scan driver 102 is inserted into the second groove, and then fixed by the adhesive, thereby enhancing the X-direction scan driver 101 and Y.
  • the stability of the connection of the direction scan driver 102 is provided.
  • the scan driver 10 may be a piezoelectric scan driver, and the X-direction scan driver 101 and the Y-direction scan driver 102 may be separately polarized, so that the X-direction scan driver 101 vibrates in the X direction when a voltage is applied.
  • the Y-direction scan driver 102 vibrates in the Y direction perpendicular to the X direction when a voltage is applied.
  • the X-direction scan driver 101 and the Y-direction scan driver 102 are a monolithic piezoelectric ceramic, and when the monolithic piezoelectric ceramic is subjected to polarization processing, the X-direction scan driver 101 and the Y-direction scan driver 102 correspond to each other.
  • the two-part piezoelectric ceramics are separately polarized such that the X-direction scan driver 101 vibrates in the X direction when a voltage is applied, and the Y-direction scan driver 102 vibrates in the Y direction when a voltage is applied.
  • the scan driver 10 can be a piezoelectric scan driver
  • the X-direction scan driver 101 and the Y-direction scan driver 102 can be respectively driven by voltage signals to convert electrical energy into mechanical energy to drive the optical fiber 20 to vibrate.
  • the end portion 1011 of the X-direction scan driver 101 is a free end
  • the end portion 1021 of the Y-direction scan driver 102 is a fixed end
  • the X-direction scan driver 101 and the Y-direction scan driver 102 are simultaneously applied.
  • the voltage can realize the bending displacement of the scan driver 10 in the X direction and the Y direction, and combine the bending displacements in the two directions to realize the two-dimensional bending displacement, thereby driving the optical fiber 20 to realize the two-dimensional bending displacement.
  • the piezoelectric material constituting the piezoelectric scanning driver may be an inorganic piezoelectric material (including a piezoelectric crystal and a piezoelectric ceramic), an organic piezoelectric material, or a composite piezoelectric material, which is not limited in the present invention.
  • the structure of the scan driver 10 may be a wafer structure, which facilitates bonding the optical fiber directly to the outer surface of the scan driver 10.
  • the wafer structure may be a single-wafer structure, a dual-wafer structure, a stacked-type single-wafer structure, or a stacked-type dual-wafer structure, and the like, which is not limited by the present invention. Since the optical fiber is directly bonded to the scan driver 10, the bending deformation force generated by the scan driver 10 can be efficiently transmitted to the optical fiber without generating an attenuation, thereby increasing the amplitude of the swing of the optical fiber.
  • a groove 104 matching the optical fiber 20 may be disposed on the surface of the scan driver 10.
  • the number of the grooves 104 is the same as the number of the optical fibers 20, as shown in FIG.
  • a schematic cross-sectional view of the scan driver 10 is provided.
  • the two-dimensional piezoelectric scanner is configured by two one-dimensional piezoelectric scanners, which is easy to mass-produce, and the scanning driver is The size can be flexibly designed according to the characteristics of the piezoelectric material, and it is easy to achieve miniaturization.
  • the plurality of optical fibers 20 may be single-mode fibers or multi-mode fibers; on the other hand, the plurality of fibers 20 may be double-clad fibers; and, the plurality of fibers 20 may be single-core fibers or multi-core fibers.
  • the plurality of optical fibers 20 may also be photonic crystal fibers, and the photonic crystal fibers have many peculiar properties, such as: only one mode transmission can be supported over a wide bandwidth, and the arrangement of the pores in the cladding region can greatly affect Pattern nature and more.
  • the optical fiber may also be other special optical fibers, which is not limited by the present invention.
  • the optical fiber generally includes a core, a cladding layer and a protective coating from the inside to the outside.
  • the optical fiber cantilever 201 may be a bare optical fiber from which the protective coating is removed.
  • the fiber cantilever 201 can also be taper and welded to reduce the spot area of the fiber scanning and improve the resolution.
  • an embodiment of the present invention further provides an optical fiber scanning imaging system, including a plurality of optical fiber scanners, which can improve the resolution and scanning amplitude of the optical fiber scanning imaging system by scanning and image splicing through multiple optical fiber scanners. Thereby achieving high resolution display.
  • the various variations and specific examples of the optical fiber scanner in the foregoing embodiments of FIG. 1 to FIG. 7 are also applicable to the optical fiber scanning imaging system of the present embodiment.
  • the foregoing detailed description of the optical fiber scanner can be clearly understood by those skilled in the art. Knowing the implementation method of the optical fiber scanning imaging system in this embodiment, for the sake of brevity of the description, it will not be described in detail herein.
  • the optical fiber scanner includes a scan driver and a plurality of optical fibers, and the plurality of optical fibers are arranged on a scan driver in a predetermined manner, and the plurality of optical fibers are vibrated by a scan driver to output an image of each optical fiber. Stitched together.
  • the scanning frequency of the optical fiber scanning device can be improved, thereby achieving a larger image resolution and a scanning frame rate, thereby improving the quality of the output image of the optical fiber scanner.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种光纤扫描器及光纤扫描成像系统,光纤扫描器包括:一个扫描驱动器(10)和多个光纤(20),多个光纤(20)按照预定方式排布在一个扫描驱动器(10)上,一个扫描驱动器(10)用于带动多个光纤(20)振动,以使每个光纤(20)输出的图像拼接在一起。通过一个扫描驱动器同时驱动多个光纤进行扫描,可以提高光纤扫描装置的扫描频率,从而达到更大的图像分辨率和扫描频率,提高光纤扫描器输出的图像的质量。

Description

一种光纤扫描器及光纤扫描成像系统
本申请要求享有2017年7月6日提交的名称为“一种光纤扫描器及光纤扫描成像系统”的中国专利申请CN201710546697.6的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及光学成像领域,尤其涉及一种光纤扫描器及光纤扫描成像系统。
背景技术
光纤扫描器可以根据设计者预先设计好的轨迹进行扫描,以输出图像,从而替代传统的LCD(Liquid Crystal Display;液晶显示器)、LCOS(Liquid Crystal on Silicon;液晶附硅/硅基液晶)和OLED(Organic Light-Emitting Diode;有机发光二极管)图像源等,集成到HMD(Head Mount Display;头戴式显示器)、微型投影仪和车载HUD(Head Up Display;平视显示器)等设备中去,并且还可以用于医疗内窥镜、扫描隧道显微镜等设备中,其应用十分广泛。
为了提高光纤扫描器输出图像的质量,需要提高光纤扫描器扫描图像的分辨率、扫描图像的帧率等。但对于固定频率的光纤扫描器来说,扫描图像的分辨率和扫描图像的帧率呈反比,因此提升扫描图像的分辨率和提升扫描图像的帧率相矛盾。如果要同时满足这些需求,则需要进一步提高光纤扫描器的扫描频率。
在申请号为201480014814.9的中国专利申请中,公开了两种方案。一种方案是多个单光纤扫描器拼接。这种拼接方式对扫描器的相对位置要求极高,每一个扫描器都应当相对于邻近扫描器被精确放置,同时,为了实现高分辨率图像拼接,需要的扫描器个数很多,由于不同扫描器存在个体差异,因此很难实现良好的拼接效果。该专利申请中还提出了另一种方案,采用多芯光纤以实现高分辨率显示。在具体实现时,图像的分辨率、帧率与光纤的固有频率、扫描幅度密切相关,而固有频率和扫描幅度由光纤的结构和参数决定,使得多芯光纤扫描器与单芯光纤扫描器相比,在同样的扫描频率下,多芯光纤固然能将分辨率提高,但整体而言,由于光纤的固有频率和扫描幅度的限制,多芯光纤扫描器并不能真正实现高分辨率显示。
本发明的目的就是解决上述现有技术中存在的缺陷,提供一种高分辨率、扫描幅度大 且易于实现的扫描器。
发明内容
本发明的目的是提供一种光纤扫描器及光纤扫描成像系统,用于提高光纤扫描器的扫描频率。
为了实现上述发明目的,本发明实施例第一方面提供一种光纤扫描器,包括:
一个扫描驱动器和多个光纤;多个所述光纤按照预定方式排布在所述一个扫描驱动器上,所述一个扫描驱动器用于带动多个所述光纤振动,以使每个所述光纤输出的图像拼接在一起。
可选的,所述扫描驱动器为二维扫描驱动器,所述二维扫描驱动器包括X方向扫描驱动器和与X方向垂直的Y方向扫描驱动器。
可选的,所述X方向扫描驱动器和所述Y方向扫描驱动器为一体成型的;或所述X方向扫描驱动器和所述Y方向扫描驱动器粘接或镶嵌固结在一起;或
所述X方向扫描驱动器和所述Y方向扫描驱动器通过正交型转接器连接。
可选的,所述X方向扫描驱动器和所述Y方向扫描驱动器为压电扫描驱动器。
可选的,所述X方向扫描驱动器和所述Y方向扫描驱动器由压电陶瓷制成。
可选的,所述X方向扫描驱动器和所述Y方向扫描驱动器的结构为晶片结构。
可选的,所述扫描驱动器为晶片结构,所述光纤粘接在所述扫描驱动器的外表面上;或所述扫描驱动器上设置有与多个所述光纤匹配的凹槽,所述光纤容置在所述凹槽中。
可选的,所述光纤为单模光纤或多模光纤。
可选的,所述光纤为双包层光纤。
本发明实施例第二方面提供一种光纤扫描成像系统,包括多个如第一方面所述的光纤扫描器。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
本发明实施例中,光纤扫描器包括一个扫描驱动器和多个光纤,多个光纤按照预定方式排布在一个扫描驱动器上,通过一个扫描驱动器带动多个光纤振动,以使每个光纤输出的图像拼接在一起。本发明通过一个扫描驱动器同时驱动多个光纤进行扫描,可以提高光纤扫描器的扫描频率,增大光纤扫描器整体的扫描幅度,从而实现更大的图像分辨率和扫描帧率,进而提高光纤扫描器输出图像的质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1为本发明实施例提供的光纤扫描器的结构示意图;
图2为本发明实施例提供的图像拼接的示意图;
图3为本发明实施例提供的一种可能的光纤扫描器的结构示意图;
图4为本发明实施例提供的一种可能的扫描驱动器的结构示意图;
图5为本发明实施例提供的另一种可能的扫描驱动器的结构示意图;
图6为本发明实施例提供的正交型转接器的结构示意图;
图7为本发明实施例提供的一种可能的扫描驱动器的横截面示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明实施例提供的光纤扫描器的结构示意图,所述装置包括一个扫描驱动器10和多个光纤20。多个所述光纤20按照预定方式排布在所述一个扫描驱动器10上。所述扫描像驱动器10用于带动多个所述光纤20振动,以使每个所述光纤20输出的图像拼接在一起。
其中,光纤20的个数为多个。优选的,光纤20的个数可以为2-10个,例如:光纤20的个数可以为2个、3个或6个等。在本发明实施例中,光纤20可以平行排列在扫描驱动器10上。如图1所示,光纤扫描器包括3个光纤20,3个光纤20平行排布在扫描驱动器10的一个侧面上。当然,多个光纤20也可以排布在扫描驱动器10的不同面上,例如:光纤20还可以位于扫描驱动器10的另一侧面、顶面或底面上。在具体实施过程中,光纤可以间隔均匀地排布在扫描驱动器10上,也可以非均匀排布,相邻光纤之间的间隔小于等于相邻光纤的最大摆动幅度之和的一半。在实际应用中,为了使光纤扫描器的显示 效果更好,相邻光纤之间的间隔值一般会小于最大值,本领域技术人员可以根据实际需要扫描的图像尺寸来确定相邻光纤之间的间隔,本发明对此不作限制。然后,在确定光纤20的个数和排布方式后,根据多个光纤20的排布方式,精密计算多个光纤20之间的间隔和摆动幅度,避免光纤振动时造成光纤悬臂201之间的撞击,如图1所示,光纤悬臂201是指光纤20超出扫描驱动器10的部分。
在光纤扫描器的扫描成像过程中,在扫描驱动器10的驱动下,多个光纤20具有相同的扫描模式,扫描模式可以为螺旋式、栅格式或利萨茹图形等等,进一步,通过精密控制各个光纤20的尺寸和调制信号,使得每个光纤20输出的图像能够无缝拼接成完整的图像进行显示。
如图2所示,假设右侧为待拼接显示的完整图像,则在进行扫描成像时,可以将完整图像分为左侧的A、B和C三部分,通过3个光纤20分别扫描输出图像的A、B和C三部分,从而拼接形成完整图像。
本发明实施例中,采用一个扫描驱动器驱动多个光纤20同时进行扫描,随着扫描驱动器上的光纤数量的增加,扫描频率呈线性增长。相对于申请号为201480014814.9的专利申请中多个单光纤扫描器拼接的方案,本发明实施例通过单个扫描器同时驱动多个光纤,多个光纤之间不存在各个扫描驱动器的一致性差异,有利于控制,且即使需要采用多个扫描驱动器拼接,本发明实施例中的方案整体上所需扫描驱动器的个数相对于现有技术也会明显减少,从而提供一种易于实现的高分辨率光纤扫描器,以实现更大的图像分辨率,提高光纤扫描器输出的图像质量。
进一步,相对于申请号为201480014814.9的专利申请中的多芯光纤扫描器,如前所述,在同样的扫描频率下,与单芯光纤扫描器相比,多芯光纤扫描器固然能将分辨率提高,但由于光纤固定频率的限制,多芯光纤扫描器的摆动幅度并没有提高,光纤芯的数目与图像显示分辨率的提升也并不成正比,因此,多芯光纤扫描器无法提高显示画面的宽度和高度,也就是说,多芯光纤扫描器并不能真正实现高分辨率显示。
具体来讲,为了实现同样的显示分辨率和显示画面的宽度,现有技术要求多芯光纤扫描器的摆动幅度更大,一方面,由于光纤的固有频率和长度的限制,光纤能达到的摆动幅度是有限的,另一方面,即使摆动幅度可以增加,在采用压电控制方式时,其控制电压也需要成几何倍数的增加,使得功耗增加。而本发明实施例的方案中,显示分辨率与光纤的整体摆动幅度均与光纤数目成简单的线性正比关系,可以增加光纤的数量来增大光纤的整体摆动幅度和显示分辨率,而单个光纤的摆动幅度可以保持不变,因此,不需要增大驱动 电压,也不会导致驱动功耗增加,就可以实现同样的显示分辨率和显示画面的宽度。
接下来,对扫描驱动器10进行说明。
本发明实施例中,如图3和图4所示,扫描驱动器10可以为二维扫描驱动器,所述二维扫描驱动器包括X方向扫描驱动器101和与X方向垂直的Y方向扫描驱动器102。其中,X方向是指与X方向扫描驱动器101的侧面垂直的方向,Y方向是指与Y方向扫描驱动器102的上表面垂直的方向。
具体的,X方向扫描驱动器101和Y方向扫描驱动器102的实施方式有很多种。本发明实施例中,所述X方向扫描驱动器101和所述Y方向扫描驱动器102可以为一体成型的。另外,如图5所示,所述X方向扫描驱动器101和所述Y方向扫描驱动器102也可以为两个独立的结构,然后通过粘接或镶嵌固结等方式连接在一起。如图5所示,扫描驱动器10还包括正交型转接器103,所述X方向扫描驱动器101和所述Y方向扫描驱动器102通过正交型转接器103连接在一起,从而增强扫描驱动器10的稳定性。
其中,如图6所示,图6为本发明实施例提供的正交型转接器103的结构示意图。正交型转接器103包括与X方向扫描驱动器101对应的第一凹槽和与所述Y方向扫描驱动器102对应的第二凹槽。在连接时,将X方向扫描驱动器101的端部插入第一凹槽,将Y方向扫描驱动器102的端部插入第二凹槽,再通过粘接剂固定,从而增强X方向扫描驱动器101和Y方向扫描驱动器102的连接的稳定性。
本发明实施例中,扫描驱动器10可以为压电扫描驱动器,可以对X方向扫描驱动器101和Y方向扫描驱动器102进行分别极化,使得X方向扫描驱动器101在被施加电压时沿X方向振动,Y方向扫描驱动器102在被施加电压时沿与X方向垂直的Y方向振动。举例来讲,假设X方向扫描驱动器101和Y方向扫描驱动器102为一整块压电陶瓷,在对整块压电陶瓷进行极化处理时,对X方向扫描驱动器101和Y方向扫描驱动器102对应的两部分压电陶瓷进行分别极化,使得X方向扫描驱动器101在被施加电压时沿X方向振动,Y方向扫描驱动器102在被施加电压时沿Y方向振动。
本发明实施例中,由于扫描驱动器10可以为压电扫描驱动器,可以通过电压信号分别对X方向扫描驱动器101和Y方向扫描驱动器102进行驱动,将电能转换为机械能,以带动光纤20振动。其中,如图3所示,X方向扫描驱动器101的端部1011为自由端,Y方向扫描驱动器102的端部1021为固定端,通过对X方向扫描驱动器101和Y方向扫描驱动器102同时施加一定的电压,可以实现扫描驱动器10在X方向和Y方向的弯曲位移,将两个方向的弯曲位移合成,可以实现二维的弯曲位移,从而带动光纤20实现二维 的弯曲位移。
本发明实施例中,构成压电扫描驱动器的压电材料可以为无机压电材料(包括压电晶体和压电陶瓷)、有机压电材料或复合压电材料等,本发明对此不作限制。
本发明实施例中,所述扫描驱动器10的结构可以为晶片结构,便于将光纤直接粘接在扫描驱动器10的外表面上。晶片结构可以为单晶片结构、双晶片结构、堆叠型单晶片结构或堆叠型双晶片结构等等,本发明对此不做限制。由于光纤直接粘接在扫描驱动器10上,扫描驱动器10产生的弯曲变形的力可以不产生衰减而有效地传递给光纤,从而增大光纤的摆动幅度。
在另一实施例中,还可以在扫描驱动器10的表面设置有与光纤20匹配的凹槽104,凹槽104的数量和光纤20的数量相同,如图7所示,图7为本发明实施例提供的扫描驱动器10的横截面示意图。通过将光纤20部分或全部容置在凹槽104中,可以增加扫描驱动器10和光纤20之间的连接稳定性。当然,还可以通过胶粘等方式对容置在凹槽104中的光纤20进行进一步固定,本发明对此不做限制。
由于一维压电扫描驱动器工艺成熟,价格低廉,因此,本发明实施例中,通过两个一维的压电扫描器构成二维压电扫描器,易于实现量产化,并且,扫描驱动器的尺寸可以根据压电材料的特性进行灵活设计,易于实现小型化。
本发明实施例中,多个光纤20可以为单模光纤或多模光纤;另一方面,多个光纤20可以为双包层光纤;以及,多个光纤20可以为单芯光纤或多芯光纤;另外,多个光纤20还可以为光子晶体光纤,光子晶体光纤有很多奇特的性质,如:可以在很宽的带宽范围内只支持一个模式传输、包层区气孔的排列方式能够极大地影响模式性质等等。在具体实施过程中,光纤还可以为其他特种光纤,本发明对此不做限制。
本发明实施例中,光纤从内到外一般包括纤芯、包层和保护涂层,为了减小振动时的阻尼,光纤悬臂201可以为去除保护涂层的裸光纤。在具体实施过程中,还可以对光纤悬臂201进行拉锥和熔接处理,以减小光纤扫描时的光斑面积,提高分辨率。
基于同一发明构思,本发明实施例还提供一种光纤扫描成像系统,包括多个光纤扫描器,通过多个光纤扫描器进行扫描和图像拼接,可以提高光纤扫描成像系统的分辨率和扫描幅度,从而实现高分辨率显示。前述图1-图7实施例中的光纤扫描器的各种变化方式和具体实例同样适用于本实施例的光纤扫描成像系统,通过前述对光纤扫描器的详细描述,本领域技术人员可以清楚地知道本实施例中光纤扫描成像系统的实施方法,所以为了说明书的简洁,在此不再详述。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
本发明实施例中,光纤扫描器包括一个扫描驱动器和多个光纤,多个光纤按照预定方式排布在一个扫描驱动器上,通过一个扫描驱动器带动多个光纤振动,以使每个光纤输出的图像拼接在一起。本实施例通过一个扫描驱动器同时驱动多个光纤进行扫描,可以提高光纤扫描装置的扫描频率,从而达到更大的图像分辨率和扫描帧率,进而提高光纤扫描器输出图像的质量。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

  1. 一种光纤扫描器,其特征在于,包括:
    一个扫描驱动器和多个光纤;
    多个所述光纤按照预定方式排布在所述一个扫描驱动器上,所述一个扫描驱动器用于带动多个所述光纤振动,以使每个所述光纤输出的图像拼接在一起。
  2. 如权利要求1所述的光纤扫描器,其特征在于,所述扫描驱动器为二维扫描驱动器,所述二维扫描驱动器包括X方向扫描驱动器和与X方向垂直的Y方向扫描驱动器。
  3. 如权利要求2所述的光纤扫描器,其特征在于,所述X方向扫描驱动器和所述Y方向扫描驱动器为一体成型的;或
    所述X方向扫描驱动器和所述Y方向扫描驱动器粘接或镶嵌固结在一起;或
    所述X方向扫描驱动器和所述Y方向扫描驱动器通过正交型转接器连接。
  4. 如权利要求2所述的光纤扫描器,其特征在于,所述X方向扫描驱动器和所述Y方向扫描驱动器为压电扫描驱动器。
  5. 如权利要求4所述的光纤扫描器,其特征在于,所述X方向扫描驱动器和所述Y方向扫描驱动器由压电陶瓷制成。
  6. 如权利要求4所述的光纤扫描器,其特征在于,所述X方向扫描驱动器和所述Y方向扫描驱动器为晶片结构。
  7. 如权利要求1所述的光纤扫描器,其特征在于,所述扫描驱动器为晶片结构,
    所述光纤粘接在所述扫描驱动器的外表面上;或所述扫描驱动器上设置有与多个所述光纤匹配的凹槽,所述光纤容置在所述凹槽中。
  8. 如权利要求1所述的光纤扫描器,其特征在于,所述光纤为单模光纤或多模光纤。
  9. 如权利要求1所述的光纤扫描器,其特征在于,所述光纤为双包层光纤。
  10. 一种光纤扫描成像系统,其特征在于,包括:多个如权利要求1-9中任一项所述的光纤扫描器。
PCT/CN2018/093242 2017-07-06 2018-06-28 一种光纤扫描器及光纤扫描成像系统 WO2019007250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710546697.6 2017-07-06
CN201710546697.6A CN109212746A (zh) 2017-07-06 2017-07-06 一种光纤扫描器及光纤扫描成像系统

Publications (1)

Publication Number Publication Date
WO2019007250A1 true WO2019007250A1 (zh) 2019-01-10

Family

ID=64949728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093242 WO2019007250A1 (zh) 2017-07-06 2018-06-28 一种光纤扫描器及光纤扫描成像系统

Country Status (2)

Country Link
CN (2) CN112731655A (zh)
WO (1) WO2019007250A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669267B (zh) * 2019-01-18 2021-01-05 成都理想境界科技有限公司 一种扫描致动器及光纤扫描器
CN109799616A (zh) * 2019-02-20 2019-05-24 成都理想境界科技有限公司 一种投影显示装置
CN111751923B (zh) * 2019-03-29 2023-03-10 成都理想境界科技有限公司 一种光纤及扫描光成像显示装置
CN110376736A (zh) * 2019-04-30 2019-10-25 成都理想境界科技有限公司 一种扫描显示模组及近眼显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230393A (en) * 1978-07-31 1980-10-28 Mfe Corporation Two-axis optical scanner
WO1995025971A2 (en) * 1994-03-24 1995-09-28 Amfax Limited Scanning apparatus and method
US20160014383A1 (en) * 2008-05-19 2016-01-14 University Of Washington Scanning laser projection display for small handheld devices
CN106461935A (zh) * 2014-06-10 2017-02-22 奥林巴斯株式会社 光纤扫描器、照明装置以及观察装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593878A (ja) * 1991-10-01 1993-04-16 Hitachi Koki Co Ltd 多ビームによる光記録装置
JP2000275458A (ja) * 1999-03-25 2000-10-06 Minolta Co Ltd 光導波路
JP2003131155A (ja) * 2001-10-26 2003-05-08 Hitachi Koki Co Ltd 光ファイバアレイを用いた光記録装置
JP2004020786A (ja) * 2002-06-14 2004-01-22 Hitachi Printing Solutions Ltd 光ファイバおよびそれを用いたマルチビーム発生装置
CN1470935A (zh) * 2002-07-10 2004-01-28 ��ʿ��Ƭ��ʽ���� 显示装置
KR20040065645A (ko) * 2003-01-15 2004-07-23 삼성전자주식회사 광통합 소자 및 이를 채용한 칼라 레이저 디스플레이 장치
KR20060134584A (ko) * 2005-06-23 2006-12-28 삼성전자주식회사 멀티 빔주사장치
CN101923218B (zh) * 2010-08-04 2011-09-21 华中科技大学 单光纤扫描微器件及制备方法和控制方法
CN102435311B (zh) * 2011-09-07 2014-05-07 杭州远方光电信息股份有限公司 一种光纤束光谱仪
CN102525384B (zh) * 2011-12-23 2014-06-18 华中科技大学 光纤悬臂共振型扫描器的二维栅格式扫描方法
CN102589607B (zh) * 2012-03-14 2014-05-28 中国科学院国家天文台南京天文光学技术研究所 基于拼接大屏幕的多目标光纤定位模拟定标方法及其设备
JP6021575B2 (ja) * 2012-10-16 2016-11-09 オリンパス株式会社 光ファイバ走査装置、光ファイバ走査装置の駆動方法および光走査型内視鏡
KR102274413B1 (ko) * 2013-01-15 2021-07-07 매직 립, 인코포레이티드 초고해상도 스캐닝 섬유 디스플레이
US10178950B2 (en) * 2013-12-20 2019-01-15 Novartis Ag Imaging probes and associated devices, systems, and methods utilizing an elastomeric optical element
JP6345946B2 (ja) * 2014-02-26 2018-06-20 オリンパス株式会社 光ファイバスキャナ、照明装置および観察装置
JP6498214B2 (ja) * 2014-11-10 2019-04-10 オリンパス株式会社 光ファイバスキャナ、照明装置および観察装置
CN104568885A (zh) * 2015-01-05 2015-04-29 天津医科大学 光纤驱动双扫描荧光探针

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230393A (en) * 1978-07-31 1980-10-28 Mfe Corporation Two-axis optical scanner
WO1995025971A2 (en) * 1994-03-24 1995-09-28 Amfax Limited Scanning apparatus and method
US20160014383A1 (en) * 2008-05-19 2016-01-14 University Of Washington Scanning laser projection display for small handheld devices
CN106461935A (zh) * 2014-06-10 2017-02-22 奥林巴斯株式会社 光纤扫描器、照明装置以及观察装置

Also Published As

Publication number Publication date
CN109212746A (zh) 2019-01-15
CN112731655A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2019007250A1 (zh) 一种光纤扫描器及光纤扫描成像系统
CN104956251B (zh) 光扫描装置
CN207689756U (zh) 一种光纤扫描投影设备及光纤扫描装置
JP5310566B2 (ja) マイクロスキャナ装置およびマイクロスキャナ装置の制御方法
CN206990919U (zh) 一种光扫描装置
US8553303B2 (en) Optical scanner and image forming apparatus
CN208092336U (zh) 一种光纤扫描器及光纤扫描投影设备
DE112015002540T5 (de) Aktor zum optischen Scannen und optisches Scan-Gerät
US20080007811A1 (en) Scanning apparatus and method
CN109669267A (zh) 一种扫描致动器及光纤扫描器
US11902739B2 (en) Display device for generating sound from display panel
CN108267853A (zh) 一种光纤扫描器、光纤扫描装置和光纤扫描设备
CN105572859B (zh) 光学器件、光学器件的制造方法以及图像显示装置
EP1684108A1 (en) Electromagnetic scanning micro-mirror and optical scanning device using the same
CN114839764A (zh) 一种光纤扫描器及光纤扫描模组
JP2000131640A (ja) 画像表示装置
CN214540230U (zh) 一种扫描致动器及光纤扫描器
CN208092335U (zh) 一种光纤扫描器及光纤扫描投影设备
CN114488539A (zh) 一种扫描显示模组及近眼显示设备
CN109307932A (zh) 一种光纤扫描装置
CN110381301A (zh) 一种扫描显示装置及投影设备
WO2019154117A1 (zh) 一种光纤扫描器、光纤扫描装置和光纤扫描设备
CN216356516U (zh) 一种扫描致动器及光纤扫描器
CN209281072U (zh) 一种光纤扫描器
JP2015200747A (ja) 光ファイバ接続装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827370

Country of ref document: EP

Kind code of ref document: A1