WO2019154117A1 - 一种光纤扫描器、光纤扫描装置和光纤扫描设备 - Google Patents

一种光纤扫描器、光纤扫描装置和光纤扫描设备 Download PDF

Info

Publication number
WO2019154117A1
WO2019154117A1 PCT/CN2019/073137 CN2019073137W WO2019154117A1 WO 2019154117 A1 WO2019154117 A1 WO 2019154117A1 CN 2019073137 W CN2019073137 W CN 2019073137W WO 2019154117 A1 WO2019154117 A1 WO 2019154117A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fast
laser
optical fiber
axis driving
Prior art date
Application number
PCT/CN2019/073137
Other languages
English (en)
French (fr)
Inventor
姚长呈
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820236193.4U external-priority patent/CN208092334U/zh
Priority claimed from CN201810136357.0A external-priority patent/CN108267853B/zh
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Priority to US16/968,265 priority Critical patent/US20210033850A1/en
Publication of WO2019154117A1 publication Critical patent/WO2019154117A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10861Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices sensing of data fields affixed to objects or articles, e.g. coded labels
    • G06K7/10871Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices sensing of data fields affixed to objects or articles, e.g. coded labels randomly oriented data-fields, code-marks therefore, e.g. concentric circles-code

Definitions

  • the present invention relates to the field of optical fiber scanning, and more particularly to an optical fiber scanner, a fiber scanning device, and a fiber scanning device.
  • the fiber scanner can scan according to the designer's pre-designed trajectory to output images, which replaces the traditional LCD (Liquid Crystal Display), LCOS (Liquid Crystal on Silicon) and OLED. (Organic Light-Emitting Diode; organic light emitting diode) image source.
  • the fiber scanner can be integrated into devices such as HMD (Head Mount Display), pico projector, and vehicle head HUD (Head Up Display).
  • fiber optic scanners can also be used in medical endoscopes, scanning tunneling microscopes, etc., for a wide range of applications.
  • the fiber scanner capable of driving only one fiber can no longer meet the needs.
  • Embodiments of the present invention provide a fiber optic scanner, an optical fiber scanning device, and an optical fiber scanning device for outputting images of higher quality.
  • a first aspect of an embodiment of the present invention provides a fiber optic scanner including a slow axis drive unit, a connector and N fast axis drive units, the connector having a connection for the one a slow axis connection structure of the slow axis drive unit and N fast axis connection structures for connecting the N fast axis drive units, the slow axis drive unit passing the connector and the N fast axis drive units Connected, where N is an integer greater than or equal to 2.
  • the fast axis driving unit has a shape of a sheet, and the N fast axis driving units are fixed in parallel on the connector or are radially fixed on the connector.
  • one or more optical fibers are fixed on each of the fast axis driving units.
  • a second aspect of an embodiment of the present invention provides a fiber optic scanning apparatus comprising a base and at least one fiber optic scanner as described in the first aspect.
  • the surface of the base on which the fiber scanner is carried is a plane or a curved surface.
  • the number of the fiber scanners is plural, and the plurality of fiber scanners are in an array of j*k, and j and k are positive integers.
  • the number of the fiber scanners is plural, and the plurality of fiber scanners are radially disposed.
  • a third aspect of the embodiments of the present invention provides an optical fiber scanning projection apparatus, including the optical fiber scanning device and the plurality of laser light sources introduced in the second aspect, wherein the optical fibers in the optical fiber scanning device are in one-to-one correspondence with the laser light source.
  • the laser source is a solid laser, a gas laser or a fiber laser.
  • the laser light source comprises a red laser, a green laser, a blue laser, and a light combining unit.
  • a slow axis drive unit is connected to N fast axis drive units through a connector, that is, a slow axis drive unit can simultaneously drive N fast axis drive units, so that N fast axis drive units can be in a slow axis drive unit
  • the synchronous movement in the direction of vibration achieves the technical effect of outputting a higher quality image.
  • the large-size display and the high-resolution display be realized by splicing the N images of the N fast-axis driving units, but also the synchronous display without delay between the images emitted by the respective fast-axis driving units can be reduced, and the lowering of the images can be reduced.
  • the vibration frequency of the slow axis drive unit enables the slow axis drive unit to achieve a large swing in a short size, and the drive mode is simple, which is advantageous for miniaturization of the fiber scanner, thereby expanding the application scenario of the fiber scanner.
  • FIG. 1 is a schematic structural diagram of a fiber optic scanner according to an embodiment of the present invention.
  • 2A is a schematic structural view showing a number of fast axis driving units in the optical fiber scanner of 2;
  • FIG. 2B is a schematic diagram of a first stitching image according to an embodiment of the present invention.
  • 2C is a schematic diagram of two fast axis driving units in a fiber optic scanner being radially fixed on a connector according to an embodiment of the present invention
  • FIG. 2D and FIG. 2E are schematic diagrams showing two optical fibers disposed on each fast axis driving unit in the optical fiber scanner according to an embodiment of the present invention
  • 2F is a schematic diagram of a second spliced image according to an embodiment of the present invention.
  • 3A and 3B are schematic diagrams showing the structure of the fast axis driving unit in the optical fiber scanner when the number is 3;
  • 3C is a schematic diagram of a third stitching image according to an embodiment of the present invention.
  • FIGS. 4A and 4B are schematic diagrams showing arrangement of a plurality of optical fiber scanners in a fiber scanning device when the base is a curved surface according to an embodiment of the present invention
  • 4C is a schematic diagram of a plurality of optical fiber scanners arranged in a fiber scanning device when the base is a plane according to an embodiment of the present invention
  • Figure 4D is a comparison diagram of two fiber scanners arranged in parallel and arranged radially;
  • FIG. 5 is a schematic structural diagram of a laser provided by an embodiment of the present invention.
  • Embodiments of the present invention provide a fiber optic scanner, an optical fiber scanning device, and a fiber optic scanning device for outputting images of large size, high resolution, and high frame rate.
  • FIG. 1 is a schematic structural diagram of a fiber optic scanner according to an embodiment of the present invention.
  • the fiber optic scanner includes a slow axis drive unit 101, a connector 102, and N fast axis drive units 103.
  • N is an integer greater than or equal to 2.
  • the connector 102 has a slow axis connection structure 1021 and N fast axis connection structures 1022.
  • the N fast axis connection structures 1022 are in one-to-one correspondence with the N fast axis drive units 103.
  • the slow axis drive unit 101 can be connected to the slow axis connection structure 1021, and each of the N fast axis drive units 103 can be connected to the corresponding fast axis connection structure 1022.
  • the slow axis drive unit 101 is coupled together by the connector 102 and the N fast axis drive units 103.
  • the base 200 is used to carry the fiber optic scanner 210, and the fiber optic scanner 210 is provided with the optical fiber 220. It should be noted that the optical fiber 220 is not fully labeled.
  • FIG. 2A is a schematic structural diagram of the number of fast-axis driving units in the optical fiber scanner.
  • a slow axis drive unit 2101 is coupled to a slow axis connection structure (not shown) on the connector 2102, and two fast axis drive units 2103 are respectively coupled to the two fast axes on the connector 2102. Connection structure (not shown).
  • the slow axis drive unit 2101 is coupled to the two fast axis drive units 2103 via the connector 2102. Therefore, one slow axis driving unit 2101 can simultaneously drive two fast axis driving units 2103, and the two fast axis driving units 2103 can drive their own optical fibers for scanning.
  • FIG. 2B FIG.
  • FIG. 2B is a schematic diagram of a first stitching image according to an embodiment of the present invention.
  • the two sub-images 251 of the two fast-axis driving units 2103 are spliced together to form a larger-sized image.
  • the size of the fiber scanner shown in FIG. 2A is equivalent to doubling the resolution, and the resolution is also doubled, achieving the purpose of outputting a higher quality image. I won't go into details here.
  • the distance between the fiber scanner and the imaging screen changes, the distance, angle, and the like between the respective fast axis driving units need to be changed, or the scanning trajectories of the respective fiber scanners are adjusted accordingly.
  • Those skilled in the art can adjust according to the actual situation, otherwise the spliced image may have image overlap or splicing gaps and the like, which affects the image quality.
  • one slow axis driving unit 101 is connected to the N fast axis driving units 103 through the connector 102, that is, one slow axis driving unit 101 can simultaneously drive the N fast axis driving units 103, thus, N fast axes
  • the driving unit 103 can synchronously move in the vibration direction of one slow axis driving unit 101, achieving the technical effect of outputting an image of high quality.
  • the large-size display and the high-resolution display be realized by splicing the N images of the N fast-axis driving units 103, but also the synchronous display of the images emitted from the respective fast-axis driving units 103 without delay can be ensured.
  • the slow axis driving unit 101 can realize a large swing in a short size, and the driving mode is simple, which is advantageous for miniaturization of the optical fiber scanner, thereby expanding the optical fiber scanner.
  • the slow axis driving unit 101 and the fast axis driving unit 103 in the fiber scanner are generally made of piezoelectric ceramic, and the shape thereof is generally a sheet shape, and the N fast axis driving units can be fixed in parallel to the connector. Upper, it can also be fixed radially on the connector.
  • FIG. 2A also illustrates the situation in which two fast axis drive units are fixed in parallel on the connector in the fiber optic scanner.
  • FIG. 2C is a schematic diagram of the two fast axis driving units fixed radially on the connector in the fiber scanner according to the embodiment of the present invention.
  • the distance or angle between the fast axis drive units can be set according to the actual situation to meet the needs of the actual situation, and no limitation is imposed here.
  • FIG. 2A and FIG. 2B are schematic diagrams showing the fixing of one optical fiber on each of the fast axis driving units in the optical fiber scanner.
  • FIG. 2D and FIG. 2E are schematic diagrams showing two optical fibers disposed on each fast-axis driving unit in the optical fiber scanner according to an embodiment of the present invention, wherein FIG. 2D shows the optical fiber scanner.
  • FIG. 2D shows the optical fiber scanner.
  • FIG. 2E shows the case where the two fast axis drive units in the fiber scanner are radially fixed to the connector.
  • FIG. 2F is a schematic diagram of a second spliced image according to an embodiment of the present invention. As shown in FIG. 2F, four sub-images 252 of two fast-axis driving units in the optical fiber scanner are spliced together. I won't go into details here.
  • the base 300 is used to carry a fiber optic scanner 310.
  • the fiber optic scanner 310 includes a slow axis driving unit 3101, a connector 3102, and a slow axis driving unit 3103.
  • the fiber scanner 310 is provided with For fiber 320, it should be noted that fiber 320 is not fully labeled.
  • FIG. 3A and FIG. 3B are schematic diagrams showing the structure of the fast axis driving unit in the fiber scanner.
  • 3A shows a case where three fast-axis driving units in the fiber scanner are fixed in parallel on the connector
  • FIG. 3B shows that three fast-axis driving units in the fiber scanner are radially fixed to the connector.
  • FIG. 3C is a schematic diagram of a third mosaic image according to an embodiment of the present invention.
  • each of the fast axis driving units is provided with two optical fibers, so that the six sub-images 351 of the three fast-axis driving units in the optical fiber scanner are spliced together, and will not be described here. .
  • a second aspect of the embodiments of the present invention further provides an optical fiber scanning device including a base and the optical fiber scanner introduced in the first aspect.
  • the optical fiber scanner has been described in detail in the first aspect. This will not go into details.
  • the connection between the base and the fiber optic scanner has been shown.
  • the face on the base carrying the fiber optic scanner can be planar or curved.
  • the surface can be set to other shapes to meet the needs of the actual situation, and no limitation is imposed here.
  • multiple fiber scanners may be in an array of j*k, where j and k are positive integers.
  • the base 400 is used to carry the fiber optic scanner 410, and the fiber optic scanner 410 is provided with an optical fiber 420. It should be noted that the optical fiber 420 is not fully labeled.
  • FIG. 4A and FIG. 4B are schematic diagrams showing the arrangement of a plurality of optical fiber scanners in the optical fiber scanning device when the base is a curved surface according to an embodiment of the present invention.
  • three fiber scanners present a 1*3 array, each fiber optic scanner including two fast axis drive units, each of which is radially disposed between the fiber optic scanners.
  • nine fiber scanners present a 3*3 array, and three rows of fiber scanners are radially arranged, with each fiber scanner in each row being radially disposed.
  • the angle and distance between the fiber scanners can be set according to actual conditions to meet the needs of the actual situation, and no limitation is imposed here.
  • FIG. 4C is a schematic diagram of a plurality of fiber scanners arranged in a fiber scanning device when the base is a flat surface according to an embodiment of the present invention.
  • the four fiber scanners are in a 2*2 array, each fiber scanner includes three fast axis drive units, two rows of fiber scanners are arranged in parallel, and each row of fiber scanners is also arranged in parallel.
  • the angle and distance between the fiber scanners can be set according to actual conditions to meet the needs of the actual situation, and no limitation is imposed here.
  • FIG. 4D is a comparison diagram of two optical fiber scanners arranged in parallel and arranged radially, wherein the broken line 461 is a laser scanning range of the parallel optical fiber scanner, and the broken line 462 is a laser of the radially disposed optical fiber scanner. Scan range.
  • the two fiber scanners are radially arranged, the beams of all the projected images are emitted at approximately a cone angle, and the laser scanning range 462 of the radially disposed fiber scanner is significantly larger than the fibers arranged in parallel.
  • the laser scanning range 461 of the scanner can realize a larger projection picture with a smaller light output size, and the smaller light output size is more convenient for miniaturization of the device, and is more convenient for the user to carry and use.
  • the plurality of fiber scanners referred to in the present invention are radially disposed, and the distance between the two ends of the at least two fiber scanners on the base is smaller than the distance between the two fiber scanners and the base.
  • the distance between the two ends of the two optical fiber scanners in this embodiment is less than the distance between the two ends of the two optical fiber scanners away from the base.
  • the scheme of the distance between the ends is for illustrative purposes only and is not intended to limit the invention.
  • a slow axis driving unit in the fiber scanning device is connected to the N fast axis driving units through the connector, that is, a slow axis driving unit can simultaneously drive N fast axis driving units, thus, N fast axes
  • the driving unit can synchronously move in the vibration direction of a slow axis driving unit, and realizes the technical effect of outputting a high quality image.
  • the large-size display and the high-resolution display be realized by splicing the N images of the N fast-axis driving units, but also the synchronous display without delay between the images emitted by the respective fast-axis driving units can be reduced, and the lowering of the images can be reduced.
  • the vibration frequency of the slow axis drive unit enables the slow axis drive unit to achieve a large swing in a shorter size, and the drive mode is simple, which is advantageous for miniaturization of the fiber scanner and the fiber scanning projection device.
  • a third aspect of the embodiments of the present invention further provides an optical fiber scanning projection apparatus, comprising the optical fiber scanning device and the plurality of laser light sources as described in the second aspect, wherein the optical fiber in the optical fiber scanning device and the laser light source are in one-to-one correspondence That is, the laser light emitted by each fiber is provided by an independent laser light source.
  • the laser may be a solid laser, a gas laser or a fiber laser.
  • a solid-state laser uses a solid-state laser material as a laser for generating a laser as a working substance.
  • a gas laser is a device that uses a gas as a working substance to generate a laser.
  • a fiber laser is a laser that uses a rare earth-doped glass fiber as a gain medium.
  • the laser provided by the embodiment of the present invention includes a red laser, a green laser, a blue laser, and a light combining unit.
  • FIG. 5 is a schematic structural diagram of a laser according to an embodiment of the present invention, wherein an arrow indicates a laser propagation direction.
  • the laser 501 may specifically include a red laser 5011, a green laser 5012, a blue laser 5013, and a light combining unit 5014.
  • the light combining unit 5014 is configured to respectively emit the red laser 5011, the green laser 5012, and the blue laser 5013. The lights are combined.
  • FIG. 5 as shown in FIG.
  • the red laser 5011 may be a red laser source
  • the green laser 5012 may be a green laser source
  • the blue laser 5013 may be a blue laser source, which is not limited herein.
  • the light combining unit 5014 includes a red light combining unit 50141 disposed at an exit end of the red laser 5011, a green light combining unit 50142 disposed at an exit end of the green laser 5012, and a blue light disposed at an exit end of the blue laser 5013.
  • Light combining unit 50143 As shown in FIG. 5, in the embodiment, the red light combining unit 50141 is specifically an anti-red color filter disposed at the exit end of the red laser 5011, and the green light combining unit 50142 is specifically disposed at the exit end of the green laser 5012.
  • the red light translucent color filter 50143 is specifically an anti-red-green light transmissive blue color filter disposed at the exit end of the blue laser 5013.
  • the combination of the red laser 5011, the green laser 5012 or the blue laser 5013 can be combined by the anti-red light filter, the red-transverse anti-green filter and the anti-red-green light-transparent blue filter.
  • the characteristics of the reflected light or the transmitted light of each light combining unit in the light combining unit 5014 are also different. This is not a limitation.
  • a slow axis driving unit in the fiber scanning projection device is connected to the N fast axis driving units through the connector, that is, a slow axis driving unit can simultaneously drive N fast axis driving units, thus, N fast
  • the shaft drive unit can synchronously move in the vibration direction of a slow axis drive unit, achieving the technical effect of outputting a high quality image.
  • the large-size display and the high-resolution display be realized by splicing the N images of the N fast-axis driving units, but also the synchronous display without delay between the images emitted by the respective fast-axis driving units can be reduced, and the lowering of the images can be reduced.
  • the vibration frequency of the slow axis drive unit enables the slow axis drive unit to achieve a large swing in a shorter size, and the drive mode is simple, which is advantageous for miniaturization of the fiber scanner and the fiber scanning projection device.
  • a slow axis drive unit is connected to N fast axis drive units through a connector, that is, a slow axis drive unit can simultaneously drive N fast axis drive units, so that N fast axis drive units can be in a slow axis drive unit
  • the synchronous movement in the direction of vibration achieves the technical effect of outputting a higher quality image.
  • the large-size display and the high-resolution display be realized by splicing the N images of the N fast-axis driving units, but also the synchronous display without delay between the images emitted by the respective fast-axis driving units can be reduced, and the lowering of the images can be reduced.
  • the vibration frequency of the slow axis drive unit enables the slow axis drive unit to achieve a large swing in a short size, and the drive mode is simple, which is advantageous for miniaturization of the fiber scanner, thereby expanding the application scenario of the fiber scanner.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

本发明公开了一种光纤扫描器、光纤扫描装置和光纤扫描设备,所述光纤扫描器包括一个慢轴驱动单元、一个连接器和N个快轴驱动单元,所述连接器具有一个慢轴连接结构和N个快轴连接结构,所述慢轴驱动单元通过所述连接器和所述N个快轴驱动单元相连,其中,N为大于等于2的整数。由于一个慢轴驱动单元通过连接器与N个快轴驱动单元相连,也即一个慢轴驱动单元能够同时驱动N个快轴驱动单元,这样,N个快轴驱动单元能够在慢轴驱动单元的振动方向上同步运动,实现了输出质量较高的图像的技术效果。

Description

一种光纤扫描器、光纤扫描装置和光纤扫描设备
本申请要求享有于2018年2月9日提交的名称为“一种光纤扫描器、光纤扫描装置和光纤扫描设备”的中国专利申请CN201810136357.0、以及于2018年2月9日提交的名称为“一种光纤扫描器、光纤扫描装置和光纤扫描设备”的中国专利申请CN201820236193.4的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及光纤扫描领域,尤其涉及一种光纤扫描器、光纤扫描装置和光纤扫描设备。
背景技术
光纤扫描器可以根据设计者预先设计好的轨迹进行扫描,以输出图像,从而替代传统的LCD(Liquid Crystal Display;液晶显示器),LCOS(Liquid Crystal on Silicon;液晶附硅/硅基液晶)和OLED(Organic Light-Emitting Diode;有机发光二极管)图像源等。另外,光纤扫描器还可以集成到HMD(Head Mount Display;头戴式显示器)、微型投影仪和车载HUD(Head Up Display;平视显示器)等设备中去。此外,光纤扫描器还可以用于医疗内窥镜,扫描隧道显微镜等设备中,应用范围十分广泛。
随着对图像的质量要求越来越高,同时也对图像的尺寸和分辨率等参数要求越来越高,仅仅能够驱动一根光纤的光纤扫描器已经无法满足需要。
发明内容
本发明实施例提供一种光纤扫描器、光纤扫描装置和光纤扫描设备,用以输出质量较高的图像。
为了实现上述发明目的,本发明实施例第一方面提供了一种光纤扫描器,其包括一个慢轴驱动单元、一个连接器和N个快轴驱动单元,所述连接器具有用于连接所述一个慢轴驱动单元的一个慢轴连接结构和用于连接所述N个快轴驱动单元的N个快轴连接结构,所述慢轴驱动单元通过所述连接器和所述N个快轴驱动单元相连,其中,N为大于等于2的整数。
可选地,所述快轴驱动单元的形状为片状,所述N个快轴驱动单元平行地固定在所述连接器上,或者呈放射状地固定在所述连接器上。
可选地,每个所述快轴驱动单元上固定有一根或者多根光纤。
本发明实施例第二方面提供了一种光纤扫描装置,包括底座和至少一个如第一方面介绍的光纤扫描器。
可选地,所述底座上承载所述光纤扫描器的面为平面或者弧面。
可选地,所述光纤扫描器的数量为多个,多个所述光纤扫描器呈j*k的阵列,j和k为正整数。
可选地,所述光纤扫描器的数量为多个,多个所述光纤扫描器呈放射状设置。
本发明实施例第三方面提供了一种光纤扫描投影设备,包括第二方面介绍的光纤扫描装置和多个激光光源,所述光纤扫描装置中的光纤与激光光源一一对应。
可选地,所述激光光源为固体激光器、气体激光器或者光纤激光器。
可选地,所述激光光源包括红色激光器、绿色激光器、蓝色激光器和合光单元。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
由于一个慢轴驱动单元通过连接器与N个快轴驱动单元相连,也即一个慢轴驱动单元能够同时驱动N个快轴驱动单元,这样,N个快轴驱动单元能够在一个慢轴驱动单元的振动方向上同步运动,实现了输出质量较高的图像的技术效果。另外,不仅能够在通过拼接N个快轴驱动单元的N个图像实现大尺寸显示和高分辨率显示的同时,保证各个快轴驱动单元出射的图像间无延迟的同步显示,还有助于降低慢轴驱动单元的振动频率,使得慢轴驱动单元能够在较短的尺寸下实现较大摆幅,并且驱动方式简洁,有利于光纤扫描器的小型化,从而能够扩大光纤扫描器的应用场景。
附图说明
图1为本发明实施例提供的光纤扫描器的结构示意图;
图2A为光纤扫描器中快轴驱动单元的数量为2时的结构示意图;
图2B为本发明实施例提供的第一种拼接图像的示意图;
图2C为本发明实施例提供的光纤扫描器中2个快轴驱动单元被呈放射状地固定在连接器上的示意图;
图2D和图2E为本发明实施例提供的光纤扫描器中每个快轴驱动单元上设置两根光纤的示意图;
图2F为本发明实施例提供的第二种拼接图像的示意图;
图3A和图3B为光纤扫描器中快轴驱动单元的数量为3时的结构示意图;
图3C为本发明实施例提供的第三种拼接图像的示意图;
图4A和图4B为本发明实施例提供的底座为弧面时光纤扫描装置中多个光纤扫描器排列的示意图;
图4C为本发明实施例提供的底座为平面时光纤扫描装置中多个光纤扫描器排列的示意图;
图4D为2个光纤扫描器平行设置和呈放射状设置的对比图;
图5为本实用新型实施例提供的激光器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种光纤扫描器、光纤扫描装置和光纤扫描设备,用以输出大尺寸、高分辨率和高帧率的图像。
本发明实施例第一方面提供一种光纤扫描器,请参考图1,图1为本发明实施例提供的光纤扫描器的结构示意图。如图1所示,该光纤扫描器包括一个慢轴驱动单元101、一个连接器102和N个快轴驱动单元103。这里,N为大于等于2的整数。相对应地,连接器102具有一个慢轴连接结构1021和N个快轴连接结构1022。N个快轴连接结构1022与N个快轴驱动单元103一一对应。这样,慢轴驱动单元101即能够连接在慢轴连接结构1021上,N个快轴驱动单元103中的每个快轴驱动单元103即能够连接相对应的快轴连接结构1022上。换言之,慢轴驱动单元101通过连接器102和N个快轴驱动单元103连接在一起。
在接下来介绍的图2A-图2E中,底座200用于承载光纤扫描器210,光纤扫描器210上设置有光纤220,需要注意的是,光纤220未全部标注。
请同时参考图2A,图2A为光纤扫描器中快轴驱动单元的数量为2时的结构示意图。如图2A所示,一个慢轴驱动单元2101连接在连接器2102上的一个慢轴连接结构(未图示)上,两个快轴驱动单元2103分别连接在连接器2102上的两个快轴连接结构(未图示)上。这样,慢轴驱动单元2101即通过连接器2102与两个快轴驱动单元2103连接在一起。因此,一个慢轴驱动单元2101能够同时驱动两个快轴驱动单元2103,而两个快轴驱动单元2103可以驱动自身的光纤进行扫描。请继续参考图2B,图2B为本发明实施例提供的第一种拼接图像的示意图。如图2B所示,两个快轴驱动单元2103出射的两幅子图像251拼接在了一起,形成了一幅尺寸较大的图像。与驱动一根光纤的光纤扫描器相比,图2A所示的光纤扫描器的尺寸相当于提高了一倍,分辨率也相当于提高了一倍,实现了输出质量较高的图像的目的,在此就不再赘述了。
当然了,需要说明的是,随着光纤扫描器与成像屏幕之间的距离变化,各个快轴驱动单元之间的距离、角度等需要随之变化,或者相应调解各个光纤扫描器的扫描轨迹,本领域所属的技术人员能够根据实际情况进行调整,否则会导致拼接图像出现图像重叠或者拼接缝隙等缺陷,影响成像质量。
可以看出,由于一个慢轴驱动单元101通过连接器102与N个快轴驱动单元103相连,也即一个慢轴驱动单元101能够同时驱动N个快轴驱动单元103,这样,N个快轴驱动单元103能够在一个慢轴驱动单元101的振动方向上同步运动,实现了输出质量较高的图像的技术效果。另外,不仅能够在通过拼接N个快轴驱动单元103的N个图像实现大尺寸显示和高分辨率显示的同时,保证各个快轴驱动单元103出射的图像间无延迟的同步显示,还有助于降低慢轴驱动单元101的振动频率,使得慢轴驱动单元101能够在较短的尺寸下实现较大摆幅,并且驱动方式简洁,有利于光纤扫描器的小型化,从而能够扩大光纤扫描器的应用场景。
在具体实施过程中,光纤扫描器中的慢轴驱动单元101和快轴驱动单元103一般为压电陶瓷制成,其形状一般为片状,N个快轴驱动单元可以被平行固定在连接器上,也可以被呈放射状地固定在连接器上。请继续参考图2A,图2A同时示出了光纤扫描器中两个快轴驱动单元被平行固定在连接器上的情形。请继续参考图2C,图2C为本发明实施例提供的光纤扫描器中两个快轴驱动单元被呈放射状地固定在连接器上的示意图。当然了,需要说明的是,快轴驱动单元之间的距离或角度等可以根据实际情况进行设置,以满足实际情况的需要,在此不做限制。
在具体实施过程中,每个快轴驱动单元上可以固定一根光纤,也可以固定多根光纤。 请继续参考图2A和图2B,图2A和图2B为光纤扫描器中每个快轴驱动单元上固定一根光纤的示意图。请继续参考图2D和图2E,图2D和图2E为本发明实施例提供的光纤扫描器中每个快轴驱动单元上设置两根光纤的示意图,其中,图2D示出了光纤扫描器中两个快轴驱动单元被平行固定在连接器上的情形,图2E示出了光纤扫描器中两个快轴驱动单元被呈放射状地固定在连接器上的情形。请参考图2F,图2F为本发明实施例提供的第二种拼接图像的示意图,如图2F所示,光纤扫描器中两个快轴驱动单元出射的四副子图像252拼接在了一起,在此就不再赘述了。
在接下来介绍的图3A-图3C中,底座300用于承载光纤扫描器310,光纤扫描器310包括慢轴驱动单元3101、连接器3102和慢轴驱动单元3103,光纤扫描器310上设置有光纤320,需要注意的是,光纤320未全部标注。
请继续参考图3A和图3B,图3A和图3B为光纤扫描器中快轴驱动单元的数量为3时的结构示意图。其中,图3A示出了光纤扫描器中三个快轴驱动单元被平行固定在连接器上的情形,图3B示出了光纤扫描器中三个快轴驱动单元被呈放射状地固定在连接器上的情形。请继续参考图3C,图3C为本发明实施例提供的第三种拼接图像的示意图。如图3C所示,每个快轴驱动单元上设置有两根光纤,这样,光纤扫描器中三个快轴驱动单元出射的六副子图像351拼接在了一起,在此就不再赘述了。
通过本实施例的介绍,本领域所属的技术人员能够类推得知,光纤扫描器中快轴驱动单元的数量为4个或者更多时的具体结构,在此就不再赘述了。
基于同一发明构思,本发明实施例第二方面还提供一种光纤扫描装置,该光纤扫描装置包括底座和第一方面介绍的光纤扫描器,在第一方面中已经详细介绍了光纤扫描器,在此就不再赘述。如图2A-图3C中,已经示出了底座和光纤扫描器之间的连接情况,如图2A-图3C所示,底座上承载光纤扫描器的面可以为平面或者弧面。当然了,还可以根据实际情况的需要,将该面设置为其他形状,以满足实际情况的需要,在此不做限制。
在具体实施过程中,在光纤扫描器的数量为多个的时候,多个光纤扫描器可以呈j*k的阵列,其中j和k为正整数。
在接下来介绍的图4A-图4C中,底座400用于承载光纤扫描器410,光纤扫描器410上设置有光纤420,需要注意的是,光纤420未全部标注。
请参考图4A和图4B,图4A和图4B为本发明实施例提供的底座为弧面时光纤扫描装置中多个光纤扫描器排列的示意图。如图4A所示,三个光纤扫描器呈现1*3的阵列,每个光纤扫描器包括两个快轴驱动单元,各个光纤扫描器之间是呈放射状设置的。如图 4B所示,九个光纤扫描器呈现3*3的阵列,三行光纤扫描器是呈放射状设置的,每行中各个光纤扫描器是呈放射状设置的。当然了,在实际应用中,光纤扫描器之间的角度和距离可以根据实际情况进行设置,以满足实际情况的需要,在此不做限制。
请参考图4C,图4C为本发明实施例提供的底座为平面时光纤扫描装置中多个光纤扫描器排列的示意图。如图4C所示,4个光纤扫描器呈2*2的阵列,每个光纤扫描器包括3个快轴驱动单元,2行光纤扫描器为平行设置,每行光纤扫描器也为平行设置。当然了,在实际应用中,光纤扫描器之间的角度和距离可以根据实际情况进行设置,以满足实际情况的需要,在此不做限制。
请参考图4D,图4D为2个光纤扫描器平行设置和呈放射状设置的对比图,其中虚线461为平行设置的光纤扫描器的激光扫描范围,虚线462为呈放射状设置的光纤扫描器的激光扫描范围。从图4D可以明显看出,在2个光纤扫描器呈放射状设置时,所有投影画面的光束近似按照一个锥角出射,且呈放射状设置的光纤扫描器的激光扫描范围462明显大于平行设置的光纤扫描器的激光扫描范围461,这样能够以较小的出光尺寸实现较大的投影画面,较小的出光尺寸更便于设备的小型化,也更便于用户携带和使用。
需要说明的是,本发明所指的多个光纤扫描器呈放射状设置,是指至少有两个光纤扫描器在底座上的两个端部之间的距离,小于该两个光纤扫描器远离底座的两个端部之间的距离,而本实施例中所介绍的任意两个光纤扫描器在底座上的两个端部之间的距离,均小于该两个光纤扫描器远离底座的两个端部之间的距离这一方案,仅仅是为了举例而不能用于限定本发明。
可以看出,由于光纤扫描装置中的一个慢轴驱动单元通过连接器与N个快轴驱动单元相连,也即一个慢轴驱动单元能够同时驱动N个快轴驱动单元,这样,N个快轴驱动单元能够在一个慢轴驱动单元的振动方向上同步运动,实现了输出质量较高的图像的技术效果。另外,不仅能够在通过拼接N个快轴驱动单元的N个图像实现大尺寸显示和高分辨率显示的同时,保证各个快轴驱动单元出射的图像间无延迟的同步显示,还有助于降低慢轴驱动单元的振动频率,使得慢轴驱动单元能够在较短的尺寸下实现较大摆幅,并且驱动方式简洁,有利于光纤扫描器和光纤扫描投影设备的小型化。
基于同一发明构思,本发明实施例第三方面还提供一种光纤扫描投影设备,其包括如第二方面介绍的光纤扫描装置和多个激光光源,光纤扫描装置中的光纤与激光光源一一对应,也即是每根光纤出射的激光均有独立的激光光源来提供。
在具体实施过程中,激光器可以为固体激光器、气体激光器或光纤激光器。固体激光 器用固体激光材料作为工作物质产生激光的激光器,气体激光器是利用气体作为工作物质产生激光的器件,光纤激光器是用掺稀土元素玻璃光纤作为增益介质的激光器。当然了,通过本实施例的介绍,本领域所属的技术人员也能够根据实际情况,采用其他合适的材料作为工作物质来产生激光,以满足实际情况的需要,在此不做限制。
在具体实施过程中,为了使得激光光源能够出射各种色彩的激光,本实用新型实施例提供的激光器包括红色激光器、绿色激光器、蓝色激光器和合光单元。请参考图5,图5为本实用新型实施例提供的激光器的结构示意图,其中箭头所示为激光传播方向。如图5所示,激光器501具体可以包括红色激光器5011、绿色激光器5012、蓝色激光器5013和合光单元5014,合光单元5014用于将红色激光器5011、绿色激光器5012和蓝色激光器5013各自出射的光线组合在一起。请继续参考图5,如图5所示,红色激光器5011具体可以是红色激光光源,绿色激光器5012具体可以是绿色激光光源,蓝色激光器5013具体可以是蓝色激光光源,在此不做限制。在本实施例中,合光单元5014包括设置于红色激光器5011的出射端的红光合光单元50141、设置于绿色激光器5012的出射端的绿光合光单元50142和设置于蓝色激光器5013的出射端的蓝光合光单元50143。如图5所示,在本实施例中,红光合光单元50141具体为设置于红色激光器5011的出射端的反红光滤色片,绿光合光单元50142具体为设置于绿色激光器5012的出射端的透红光反绿光滤色片,蓝光合光单元50143具体为设置于蓝色激光器5013的出射端的反红绿光透蓝光滤色片。这样,通过反红光滤色片、透红光反绿光滤色片和反红绿光透蓝光滤色片,即能够将红色激光器5011、绿色激光器5012或蓝色激光器5013各自出射的光线组合在一起。在其他实施例中,根据红色激光器5011、绿色激光器5012和蓝色激光器5013之间的光路设计的不同,合光单元5014中各个合光单元的反射光或透射光的特性也会相应不同,在此不做限制。
可以看出,由于光纤扫描投影设备中的一个慢轴驱动单元通过连接器与N个快轴驱动单元相连,也即一个慢轴驱动单元能够同时驱动N个快轴驱动单元,这样,N个快轴驱动单元能够在一个慢轴驱动单元的振动方向上同步运动,实现了输出质量较高的图像的技术效果。另外,不仅能够在通过拼接N个快轴驱动单元的N个图像实现大尺寸显示和高分辨率显示的同时,保证各个快轴驱动单元出射的图像间无延迟的同步显示,还有助于降低慢轴驱动单元的振动频率,使得慢轴驱动单元能够在较短的尺寸下实现较大摆幅,并且驱动方式简洁,有利于光纤扫描器和光纤扫描投影设备的小型化。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应 将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”或“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序,可将这些单词解释为名称。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
由于一个慢轴驱动单元通过连接器与N个快轴驱动单元相连,也即一个慢轴驱动单元能够同时驱动N个快轴驱动单元,这样,N个快轴驱动单元能够在一个慢轴驱动单元的振动方向上同步运动,实现了输出质量较高的图像的技术效果。另外,不仅能够在通过拼接N个快轴驱动单元的N个图像实现大尺寸显示和高分辨率显示的同时,保证各个快轴驱动单元出射的图像间无延迟的同步显示,还有助于降低慢轴驱动单元的振动频率,使得慢轴驱动单元能够在较短的尺寸下实现较大摆幅,并且驱动方式简洁,有利于光纤扫描器的小型化,从而能够扩大光纤扫描器的应用场景。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

  1. 一种光纤扫描器,其特征在于,包括一个慢轴驱动单元、一个连接器和N个快轴驱动单元,所述连接器具有用于连接所述一个慢轴驱动单元的一个慢轴连接结构和用于连接所述N个快轴驱动单元的N个快轴连接结构,所述慢轴驱动单元通过所述连接器和所述N个快轴驱动单元相连,其中,N为大于等于2的整数。
  2. 如权利要求1所述的光纤扫描器,其特征在于,所述快轴驱动单元的形状为片状,所述N个快轴驱动单元平行地固定在所述连接器上,或者呈放射状地固定在所述连接器上。
  3. 如权利要求1所述的光纤扫描器,其特征在于,每个所述快轴驱动单元上固定有一根或者多根光纤。
  4. 一种光纤扫描装置,其特征在于,包括底座和至少一个如权利要求1-3中任一项所述的光纤扫描器。
  5. 如权利要求4所述的光纤扫描装置,其特征在于,所述底座上承载所述光纤扫描器的面为平面或者弧面。
  6. 如权利要求4所述的光纤扫描装置,其特征在于,所述光纤扫描器的数量为多个,多个所述光纤扫描器呈j*k的阵列,j和k为正整数。
  7. 如权利要求4所述的光纤扫描装置,其特征在于,所述光纤扫描器的数量为多个,多个所述光纤扫描器呈放射状设置。
  8. 一种光纤扫描投影设备,其特征在于,包括如权利要求4-7中任一项所述的光纤扫描装置和多个激光光源,所述光纤扫描装置中的光纤与激光光源一一对应。
  9. 如权利要求8所述的光纤扫描投影设备,其特征在于,所述激光光源为固体激光器、气体激光器或者光纤激光器。
  10. 如权利要求8所述的光纤扫描投影设备,其特征在于,所述激光光源包括红色激光器、绿色激光器、蓝色激光器和合光单元。
PCT/CN2019/073137 2018-02-09 2019-01-25 一种光纤扫描器、光纤扫描装置和光纤扫描设备 WO2019154117A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/968,265 US20210033850A1 (en) 2018-02-09 2019-01-25 Optical fiber scanner, optical fiber scanning device and optical fiber scanning apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820236193.4U CN208092334U (zh) 2018-02-09 2018-02-09 一种光纤扫描器、光纤扫描装置和光纤扫描设备
CN201810136357.0 2018-02-09
CN201810136357.0A CN108267853B (zh) 2018-02-09 2018-02-09 一种光纤扫描器、光纤扫描装置和光纤扫描设备
CN201820236193.4 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019154117A1 true WO2019154117A1 (zh) 2019-08-15

Family

ID=67548128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073137 WO2019154117A1 (zh) 2018-02-09 2019-01-25 一种光纤扫描器、光纤扫描装置和光纤扫描设备

Country Status (2)

Country Link
US (1) US20210033850A1 (zh)
WO (1) WO2019154117A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133636A1 (en) * 2007-04-26 2008-11-06 University Of Washington Driving scanning fiber devices with variable frequency drive signals
CN102525384A (zh) * 2011-12-23 2012-07-04 华中科技大学 光纤悬臂共振型扫描器的二维栅格式扫描方法
CN102540671A (zh) * 2012-02-15 2012-07-04 凝辉(天津)科技有限责任公司 光驱动分离式微型激光投影装置
CN103782223A (zh) * 2011-09-02 2014-05-07 奥林巴斯株式会社 光扫描器件及具有光扫描器件的内窥镜、显微镜、投影仪
CN108267853A (zh) * 2018-02-09 2018-07-10 成都理想境界科技有限公司 一种光纤扫描器、光纤扫描装置和光纤扫描设备
CN208092334U (zh) * 2018-02-09 2018-11-13 成都理想境界科技有限公司 一种光纤扫描器、光纤扫描装置和光纤扫描设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132750A1 (ja) * 2011-03-31 2012-10-04 オリンパスメディカルシステムズ株式会社 走査型内視鏡装置
US9742993B2 (en) * 2012-02-16 2017-08-22 University Of Washington Through Its Center For Commercialization Extended depth of focus for high-resolution optical image scanning
JP5825161B2 (ja) * 2012-03-16 2015-12-02 旭硝子株式会社 走査型表示装置
EP2848188B1 (en) * 2012-10-22 2019-01-30 Olympus Corporation Scanning endoscope system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133636A1 (en) * 2007-04-26 2008-11-06 University Of Washington Driving scanning fiber devices with variable frequency drive signals
CN103782223A (zh) * 2011-09-02 2014-05-07 奥林巴斯株式会社 光扫描器件及具有光扫描器件的内窥镜、显微镜、投影仪
CN102525384A (zh) * 2011-12-23 2012-07-04 华中科技大学 光纤悬臂共振型扫描器的二维栅格式扫描方法
CN102540671A (zh) * 2012-02-15 2012-07-04 凝辉(天津)科技有限责任公司 光驱动分离式微型激光投影装置
CN108267853A (zh) * 2018-02-09 2018-07-10 成都理想境界科技有限公司 一种光纤扫描器、光纤扫描装置和光纤扫描设备
CN208092334U (zh) * 2018-02-09 2018-11-13 成都理想境界科技有限公司 一种光纤扫描器、光纤扫描装置和光纤扫描设备

Also Published As

Publication number Publication date
US20210033850A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN108267853B (zh) 一种光纤扫描器、光纤扫描装置和光纤扫描设备
JP4031481B2 (ja) 投影型表示器
CN204650119U (zh) 一种一维成像器件及其整行扫描式激光投影显示系统
CN1734313A (zh) 照明单元和采用该照明单元的图像投影设备
JP2007213078A (ja) レーザディスプレイ装置
CN208092333U (zh) 一种光纤扫描装置和光纤扫描投影设备
US20050052376A1 (en) Method and apparatus for light emitting devices based display
CN208092336U (zh) 一种光纤扫描器及光纤扫描投影设备
KR100648929B1 (ko) 레이저 프로젝터
WO2019154117A1 (zh) 一种光纤扫描器、光纤扫描装置和光纤扫描设备
CN208092334U (zh) 一种光纤扫描器、光纤扫描装置和光纤扫描设备
CN101075081A (zh) 投影透镜装置及具有其的光学器械
CN101684925B (zh) 一种面光源
CN208092335U (zh) 一种光纤扫描器及光纤扫描投影设备
CN209784716U (zh) 一种拼接式投影设备
KR101336164B1 (ko) 마이크로디스플레이 장치
CN114488539A (zh) 一种扫描显示模组及近眼显示设备
JP2008033039A (ja) 背面投影型表示装置
CN110381301A (zh) 一种扫描显示装置及投影设备
CN214540232U (zh) 一种扫描致动器及光纤扫描器
KR101371069B1 (ko) 마이크로디스플레이 장치
EP4250003B1 (en) Projection display device
TW201836351A (zh) 影像投射裝置
CN216356516U (zh) 一种扫描致动器及光纤扫描器
WO2021244394A1 (zh) 光学引擎系统以及投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750933

Country of ref document: EP

Kind code of ref document: A1