WO2021244394A1 - 光学引擎系统以及投影系统 - Google Patents

光学引擎系统以及投影系统 Download PDF

Info

Publication number
WO2021244394A1
WO2021244394A1 PCT/CN2021/096426 CN2021096426W WO2021244394A1 WO 2021244394 A1 WO2021244394 A1 WO 2021244394A1 CN 2021096426 W CN2021096426 W CN 2021096426W WO 2021244394 A1 WO2021244394 A1 WO 2021244394A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
modulated
light beam
combining element
modulated light
Prior art date
Application number
PCT/CN2021/096426
Other languages
English (en)
French (fr)
Inventor
张贤鹏
蒲栋
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021244394A1 publication Critical patent/WO2021244394A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam

Definitions

  • This application relates to the field of projection technology, in particular to an optical engine system and a projection system.
  • the pixel resolution of the displayed image is limited by the intrinsic pixels of the spatial light modulator.
  • XPR Extended Pixel Resolution
  • the basic principle is as follows: by implanting a reciprocating optical element in the optical path, deflecting the chief ray to form a repeated shift of half a pixel, combined with time-division image splitting processing, and timing output shift before and after the two states of DMD correspondence The image, through image superposition to achieve higher resolution.
  • the reciprocating optical element can adopt solutions including but not limited to voice coil motors, piezoelectric ceramics, etc. to achieve movement.
  • the second method to achieve high-resolution images is to perform DMD translation.
  • solutions such as piezoelectric ceramics to quickly move the DMD to and from the main optical axis of the vertical projection lens system in two positions that are half a pixel difference in the system, the up and down jitter of the picture can be realized, and the fast image splitting and image can be combined.
  • Time sequence display synthesis technology achieves the realization of similar high-resolution projection images. Similar to the first solution, this motion image resolution enhancement technology requires high reciprocating motion control and mechanical accuracy. At the same time, as the size and quality of the DMD increase, the driving force that needs to be achieved will also increase sharply.
  • the third method to improve the resolution is to splice images, that is, a method where multiple DMDs are directly spliced.
  • the specific design of the lens and the mirror realize the translation of the projected image to increase the screen resolution.
  • the projected image can be switched between position 1 and position 2 by rotating the mirror.
  • This method still uses motion devices as the core device, which requires high repeat positioning accuracy. It is difficult to achieve high-speed switching and long staying time at positions one and two at the same time. It also needs to overcome the problems of servo accuracy and driving force.
  • the purpose of this application is to provide an optical engine system and a projection system to realize high-resolution image display.
  • an embodiment of the present application provides an optical engine system, including a modulator and a light combining element.
  • the modulator is used to receive a first light beam, modulate the first light beam to emit the first modulated light, and is also used to receive the first light beam.
  • Two light beams, modulate the second light beam to emit the second modulated light, the first modulated light and the second modulated light are the same frame of image, and each of the first pixels in the first modulated light and the second modulated light
  • the second pixels corresponding to the first pixels are staggered by a preset displacement value on the projection surface.
  • the light combining element combines and emits the first modulated light and the second modulated light.
  • the modulator includes a first modulator and a second modulator.
  • the first modulator is used to modulate the first light beam to emit the first modulated light
  • the second modulator is used to modulate the second light beam to emit the second modulated light.
  • the light combining element includes a first area, a second area, and a third area, and image light of the same color in the first modulated light and the second modulated light are incident on different areas of the light combining element.
  • the first area can transmit blue light and reflect non-blue light
  • the second area can transmit red light and reflect non-red light
  • the third area can transmit green light and reflect non-green light.
  • the first area, the second area, and the third area are distributed in a fan shape.
  • the light combining element includes a first light combining element and a second light combining element, the first light combining element is located on the optical path of the first modulated light, and the second light combining element is located on the On the optical path of the second modulated light, the first modulated light and the second modulated light are staggered by a preset displacement value on the projection surface.
  • the optical engine system further includes a first light distribution system and a second light distribution system.
  • the first light distribution system receives the first light beam, converts the first light beam into a surface distribution state, and guides it to the first modulator.
  • the first modulated light is modulated to emit the first modulated light, and the first modulated light is guided to the light combining element through the first light distribution system.
  • the second light distribution system receives the second light beam to convert the second light beam into a planar distribution state, and guides it to the second modulator for modulation to emit the second modulated light, and the second modulated light is guided to the combined light through the second light distribution system element.
  • the optical engine system further includes a first lens and a second lens.
  • the first lens receives the first light beam and guides the first light beam to the first light distribution system
  • the second lens receives the second light beam and guides the second light beam to the first light distribution system. The light beam is guided to the second light distribution system.
  • the present application also provides a projection system, including a first light source, a second light source, and the above-mentioned optical engine system.
  • the first light source is used to emit the first light beam
  • the second light source is used to emit the second light beam.
  • the first light source and the second light source both include a first light emitting device, a second light emitting device, and a third light emitting device for emitting light of different colors, the first light emitting device, the second light emitting device The device and the third light emitting device are arranged in an annular array to emit the first light beam or the second light beam in an angular distribution.
  • the first light source further includes a first double fly eye lens, the first double fly eye lens is used for homogenizing the first light beam;
  • the second light source further includes a first double fly eye lens, and the second double fly eye lens is used for homogenization The second beam.
  • the projection system further includes a lens.
  • the lens includes a first lens group and a second lens group. On the optical path, the second lens group is located on the optical path of the image light emitted from the light combining element.
  • a first light beam is modulated by a modulator to form a first modulated light
  • a second light beam is modulated to form a second modulated light at the same time.
  • the second pixel corresponding to the first pixel on the second modulated light is staggered by a preset displacement value on the projection surface. Since the first modulated light and the second modulated light are the same frame of image, the first modulated light and the second modulated light They are superimposed on each other, so that the horizontal and vertical pixels of the projected image are doubled to achieve the purpose of pixel resolution expansion, thereby achieving high-resolution image display.
  • FIG. 1 is a schematic structural diagram of an optical engine system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a light combining element provided by an embodiment of the present application at a first viewing angle.
  • FIG. 3 is a schematic structural diagram of a light combining element provided by an embodiment of the present application at a second viewing angle.
  • Fig. 4 is a schematic structural diagram of a projection system provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a first light source or a second light source provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another projection system provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another optical engine system provided by an embodiment of the present application.
  • this embodiment provides an optical engine system 10, which includes a light combining element 500 and a modulator.
  • the modulator is a device used to modulate the received light beam emitted by the light source and emit the modulated light, which is arranged on the optical path of the light beam emitted by the light source.
  • the modulator is used to receive the first light beam, modulate the first light beam to emit the first modulated light, and is also used to receive the second light beam, and modulate the second light beam to emit the second modulated light.
  • the modulator can receive and modulate one or more light beams.
  • One light beam is emitted from one light source. When there are two or more light beams, it needs to be provided by two or more light sources. Alternatively, one light source can provide two or more light beams in different directions.
  • the first modulated light and the second modulated light are the same frame of image, and each first pixel in the first modulated light corresponds to the first pixel in the second modulated light.
  • the first light beam and the second light beam can be generated by different light sources, and are received and modulated by a modulator to form the first modulated light and the second modulated light.
  • the modulator may include a first modulator 200 and a second modulator 400, where the first modulator 200 is used to receive the first light beam and modulate the first light beam to emit the first modulated light, and the second modulator 400 is used to receive the second light beam and modulate the second light beam to emit the second modulated light, where the first modulated light and the second modulated light are the same frame of image.
  • the "same frame of image" means at the same time, The first modulated light generated by the first light beam modulation received by the first modulator 200 and the second modulated light generated by the second light beam modulation received by the second modulator 400 are the same frame image.
  • each first pixel in the first modulated light and the second pixel corresponding to the first pixel in the second modulated light are staggered by a preset displacement value on the projection surface.
  • the preset displacement value of each first pixel and the second pixel corresponding to the first pixel are the same, and the direction of the displacement is also the same. It is understandable that the "first" and "second” here are only used for distinction, and do not represent the difference in importance.
  • first modulated light and the second modulated light are staggered by a preset displacement value, when the first modulated light and the second modulated light are projected onto the projection surface at the same time, they will form a superimposed effect, and each first pixel and Each second pixel corresponding to the first pixel forms an offset effect of the pixel, which realizes the expansion of the pixel resolution, thereby increasing the resolution of the image displayed on the projection surface.
  • the preset displacement value is (n/2) pixel values, where n is a positive integer. That is, the preset displacement value can be half a pixel value, one pixel value, 3/2 pixel value, and so on. In particular, the preset displacement value may be 1/2 pixel value.
  • the advantage of this arrangement is that: since the first modulator 200 and the second modulator 400 are both formed by an array composed of a plurality of microlenses, one microlens corresponds to one pixel, and there will be subtle gaps between adjacent microlenses. The gap is generated. Therefore, in the first modulated light and the second modulated light, there will also be gaps between adjacent pixels.
  • the preset displacement value is 1/2 pixel value
  • the first modulated light and the second modulated light When the light is superimposed, it will cover the gap between each pixel to achieve a better effect of improving the resolution.
  • the preset displacement value may also be other values.
  • the first modulator 200 is used to receive the first light beam, modulate the first light beam to emit the first modulated light, and guide the first modulated light to the light combining element 500.
  • the second modulator 400 is used to receive the second light beam, modulate the second light beam to emit the second modulated light, and guide the second modulated light to the light combining element 500.
  • the optical engine system 10 further includes a first light distribution system 210 and a second light distribution system 410.
  • the first light distribution system 210 is located on the propagation path of the first light beam.
  • the system 210 receives the first light beam and converts the first light beam into the surface distribution state, and guides the first light beam converted into the surface distribution state to the first modulator 200 for modulation, so as to emit the first modulated light, and the first modulation after the emission After the light passes through the first light distribution system 210 again, it is guided to the light combining element 500.
  • the surface distribution of light can be understood as converting a beam of light with a certain divergence angle into light distributed on the same surface.
  • the angular distribution of light can be understood as converting the light distributed on the same plane into a beam of light with a certain divergence angle.
  • the second light distribution system 410 is located on the propagation path of the second light beam.
  • the second light distribution system 410 receives the second light beam and converts the second light beam into a surface distribution state, and guides the second light beam converted into the surface distribution state to the second light beam.
  • the modulator 400 modulates to emit the second modulated light. After the emitted second modulated light passes through the second light distribution system 410 again, it is guided to the light combining element 500. When the first modulated light passes through the second light distribution system 410 again, it is converted from the surface distribution state to the angular distribution state again. That is, when the second modulated light is guided to the light combining element 500, it assumes an angular distribution state.
  • the optical engine system 10 further includes a first lens 220 and a second lens 420.
  • the first lens 220 receives the first light beam and guides the first light beam to the first light distribution system 210, After the first light beam passes through the first lens 220 and the first light distribution system 210, the angular distribution state is changed to the surface distribution state.
  • the second lens 420 receives the second light beam and guides the second light beam to the second light distribution system 410. After the second light beam passes through the second lens 420 and the second light distribution system 410, the angular distribution state is changed to the surface distribution state.
  • the first light beam may be in a planar distribution state when it exits.
  • the first lens 220 may not be provided, and similarly, the second lens 420 may not be provided.
  • the light combining element 500 includes a first surface 510 and a second surface 520 opposite to each other, wherein the first surface 510 and the second surface 520 are both flat surfaces.
  • the first surface 510 and the second surface 520 are arranged substantially parallel to each other.
  • the light combining element 500 is a wavelength combining element 500, that is, the light combining element 500 can transmit light in a specific wavelength range, and at the same time can reflect light in a non-specific wavelength range, so that light beams of different wavelength bands are incident on When the light combining element 500 is combined, it is selectively reflected or transmitted.
  • the light combining element 500 includes a first area 521, a second area 522, and a third area 523.
  • the first area 521, the second area 522, and the third area 523 may be arranged adjacently or Interval settings.
  • the first area 521, the second area 522, and the third area 523 are distributed in a fan shape and form a substantially circular shape.
  • the area of the first area 521, the area of the second area 522, and the area of the third area 523 are The areas can be roughly equal. In this way, the first area 521, the second area 522, and the third area 523 can have the same transmission area.
  • the first light beam includes red light, blue light, and green light
  • the same second light beam includes red light, blue light, and green light.
  • the red light, blue light, and green light in the first light beam and the second light beam are all in an angular distribution form, that is, the red light, blue light, and green light are roughly arranged in a circular array, and the radiation area of each color of light is Roughly fan-shaped.
  • each color light is approximately equal to the areas of the first area 521, the second area 522, and the third area 523, so that after the first modulated light and the second modulated light are converted into an angular distribution state, each The light of each color can be guided to the first area 521, the second area 522 or the third area 523 correspondingly, and the light of each color can be efficiently used to reduce light loss.
  • the first modulated light is guided to the first surface 510 of the light combining element 500 and then passes through the first surface 510, and is combined with the second modulated light guided to the second surface 520 of the light combining element 500 and then exits. .
  • the first area 521 can transmit blue light and reflect non-blue light
  • the second area 522 can transmit red light and reflect non-red light
  • the third area 523 can transmit green light and reflect non-green light. That is, the first area 521 can transmit light in the blue wavelength range and reflect light in the non-blue wavelength range; the second area 522 can transmit light in the red wavelength range and reflect light in the non-red wavelength range; A region 521523 can transmit light in the green wavelength range and reflect light in the non-green wavelength range.
  • the blue wavelength range is, for example, 440-475 nm
  • the red wavelength range is, for example, 625-740 nm
  • the green wavelength range is, for example, 492. -577nm.
  • the first area 521 can transmit blue light and reflect green light
  • the second area 522 can transmit red light and reflect blue light
  • the third area 523 can transmit green light and reflect red light.
  • the image light of the same color in the first modulated light and the second modulated light are incident on different areas of the light combining element 500.
  • the blue light in the first modulated light is incident on the first area 521
  • the blue light in the second modulated light is incident on the first area 521.
  • the red light in the first modulated light is incident on the second area 522
  • the red light in the second modulated light is incident on the first area 521 or the third area 523.
  • the green light in the first modulated light is incident on the third area 523
  • the green light in the second modulated light is incident on the first area 521 or the second area 522.
  • the first area 521 can transmit non-blue light and reflect blue light
  • the second area 522 can transmit non-red light and reflect red light
  • the third area 523 can transmit non-green light. Light and reflect green light. At this time, the combination of the first light beam and the second light beam can also be realized.
  • the first modulator 200 modulates the first light beam to form first modulated light
  • the second modulator 400 modulates the second light beam to form second modulated light.
  • Each first pixel and the second pixel corresponding to the first pixel on the second modulated light are staggered by a preset displacement value on the projection surface. Since the first modulated light and the second modulated light are the same frame of image, the first The modulated light and the second modulated light are superimposed on each other, so that the horizontal and vertical pixel points of the projected image are doubled, so as to achieve the purpose of pixel resolution expansion, and then realize high-resolution image display.
  • this embodiment also provides a projection system 20, including a first light source 100, a second light source 300, and the above-mentioned optical engine system 10, wherein the first light source 100 is used to emit the first light beam, and the second light source 300 is used Yu emits a second light beam.
  • Both the first light source 100 and the second light source 300 include a first light emitting device 110, a second light emitting device 120, and a third light for emitting light of different colors. ⁇ 130 ⁇ Launching device 130.
  • the first light emitting device 110, the second light emitting device 120, and the third light emitting device 130 are arranged in a circular array and are carried on the support 150, that is, the first light emitting device 110 and the second light emitting device 120
  • the third light emitting device 130 is arranged around the main optical axis of the first light beam or the second light beam to emit the first light beam or the second light beam in an angular distribution.
  • the first light emitting device 110 is used for emitting red light
  • the second light emitting device 120 is used for emitting blue light
  • the third light emitting device 130 is used for emitting green light.
  • the arrangement of the three light emitting devices in the first light source 100 is different from the arrangement of the three light emitting devices in the second light source 300, so that the light of the same color in the first light source and the second light source enters the light combining device 500 when exiting. Different areas.
  • the arrangement of three light emitting devices in the first light source 100 is: the first light emitting device 110, the second light emitting device 120, and the third light emitting device 130; the position corresponding to the first light source 100, the second
  • the arrangement of the three light emitting devices in the light source 300 is: the second light emitting device 120, the third light emitting device 130, and the first light emitting device 110.
  • the excitation of the first light source 100 and the second light source 300 may be the light emitted by the light emitting device at the same position of the first light source 100 and the second light source 300.
  • the first light emitting device 110 for emitting red light, the second light emitting device 120 for emitting blue light, and the third light emitting device 130 for emitting green light as an example for description.
  • the second light emitting device 120 at the opposite position on the second light source 300 emits blue light; when the second light emitting device 120 on the first light source 100 emits blue light , The third light emitting device 130 at the opposite position on the second light source 300 emits green light; when the third light emitting device 130 on the first light source 100 emits green light, the first light emitting device 110 at the opposite position on the second light source 300 emits green light Red light.
  • the excitation of the first light source 100 and the second light source 300 may be the light emitted by the light emitting devices at different positions on the first light source 100 and the second light source 300.
  • the light of the same color of the first light source 100 and the second light source 300 may be emitted at the same time. Since the three light emitting devices of the first light source 100 and the three light emitting devices of the second light source 300 are arranged alternately, the light combining device 500 does not affect the combination of the first modulated light and the second modulated light. Light. Since the three light emitting devices of the first light source 100 and the three light emitting devices of the second light source 300 are arranged alternately, two image-modulated lights of the same color will be incident on different areas of the light combining element 500 respectively.
  • the first light emitting device 110, the second light emitting device 120, and the third light emitting device 130 are all configured to emit the radiation area of the light and the first area 521 and the first area of the light combining element 500.
  • the areas of the second area 522 and the third area 523 are equal, so that the first light beam emitted by the first light source 100 can be completely incident on the light combining element 500 after being modulated by the first modulator 200, and the first light beam emitted by the same second light source 300 The two light beams can be completely incident on the light combining element 500 after being modulated by the second modulator 400.
  • the first light source 100 further includes a first double fly-eye lens 140, which is located on the propagation path of the first light beam and is used to homogenize the first light beam, specifically
  • a first double fly-eye lens 140 which is located on the propagation path of the first light beam and is used to homogenize the first light beam, specifically
  • the second double fly-eye lens 340 is located on the propagation path of the second light beam and is used to homogenize the second light beam.
  • the second light beam exits it first passes through the second double fly-eye lens 340 for homogenization, and then passes through the second light beam.
  • the two lenses 420 are incident on the second light distribution system 410.
  • the projection system 20 also includes a lens 600, where the lens 600 includes a first lens group 610 and a second lens group 620. There are two first lens groups and two first lens groups 610. Located on the optical path of the first modulated light to the light combining element 500 and the optical path of the second modulated light to the light combining element 500 respectively, the second lens group 620 is located on the optical path of the image light emitted from the light combining element 500.
  • the first modulated light is generated and emitted from the first modulator 200
  • the image light of the first modulated light first passes through the first light distribution system 210, and then passes through one of the first lens groups 610 and then is guided to the light combining element 500.
  • the image light of the first modulated light is converted from the surface distribution state to the angular distribution state.
  • the image light of the second modulated light first passes through the second light distribution system 410, then passes through another first lens group 610, and then is guided to the light combining element 500.
  • the image light of the second modulated light is converted from the surface distribution state to the angular distribution state.
  • the light combining element 500 is placed at the focus position of the two first lens groups 610, that is, the image light forms a reduced image at the light combining element 500. That is, the first modulated light and the second modulated light share a part of the lens, which can save costs on the one hand, and can also improve the image clarity after combining the light on the other hand.
  • the projection system 20 may further include a control device 700, and the control device 700 is configured to receive an input image.
  • the control device 700 is further configured to split the input image into a first image and a second image.
  • the first image and the second image are the same frame of image, and the first image passes through the first light source.
  • 100 is projected in the form of a first light beam
  • the second image is projected in the form of a second light beam through the second light source 300.
  • the high-resolution image can be split diagonally into two low-resolution images according to the image disassembly algorithm.
  • the resolution of the first image and the resolution of the second image are both lower than the resolution of the input image.
  • the input image is split into two low-resolution images and modulated by a low-resolution modulator, and then the modulated image light is combined. Because the imaging positions of the first modulated image and the second modulated image form half Pixel dislocation, after combining the light, the first modulated light and the second modulated light are superimposed to form a stitched image, and in the stitched image, the first modulated light and the second modulated light are not completely overlapped, so that the resolution after imaging is improved. And the resolution of the superimposed first modulated light and the second modulated light is higher than the resolution of the input image.
  • the control device 700 may be a central processing unit (CPU), or other programmable controllers.
  • the projection system 20 provided in this embodiment applies the above-mentioned optical engine system 10, the first modulator 200 modulates the first light beam to form first modulated light, and the second modulator 400 modulates the second light beam to form second modulated light, At the same time, each first pixel on the first modulated light and the second pixel on the second modulated light corresponding to the first pixel are staggered by a preset displacement value on the projection surface, because the first modulated light and the second modulated light It is the same frame of image, so the first modulated light and the second modulated light are superimposed on each other to achieve the purpose of pixel resolution expansion, thereby achieving high-resolution image display.
  • This embodiment provides a projection system 20, referring to FIG. 7, which includes a first light source 100, a second light source 300, and an optical engine system 10, where the optical engine system 10 includes a modulator 30 and a light combining element 500.
  • the first light source 100 is used to emit a first light beam
  • the second light source 300 is used to emit a second light beam.
  • the first light source 100 and the second light source 300 are arranged side by side at intervals so that the first light beam and the second light beam are approximately parallel Way to shoot.
  • Each of the first light beam and the second light beam includes red light, green light, and blue light.
  • the optical engine system 10 only includes one modulator 30.
  • the modulator 30 is used to receive the first light beam and modulate the received first light beam to emit the first modulated light.
  • the modulator 30 is also used to receive the first light beam.
  • the two light beams modulate the received second light beam to emit the second modulated light, and the first modulated light and the second modulated light are the same frame of image.
  • the number of modulators 30 may be two or more than two.
  • the projection system 20 also includes a lens group 40 and a light distribution system 50.
  • the lens group 40 and the light distribution system 50 are located on the optical path between the first light source 100 and the second light source 300 to the modulator 30, and are used to transform the first light beam in an angular distribution state.
  • the second and second light beams are converted into surface distribution and guided to the modulator 30, and at the same time, the first and second light beams in the surface distribution state are converted into angular distributions and guided to the modulator 30.
  • the light combining element 500 is located on the optical path of the first modulated light and the second modulated light, and is used to combine the first modulated light and the second modulated light to emit light.
  • the light combining element 500 includes a first light combining element 530 and a second light combining element 540.
  • the first light combining element 530 and the second light combining element 540 are both relative to the first modulated light and the second modulated light.
  • the optical path of the light is arranged obliquely, and the first light combining element 530 and the second light combining element 540 are symmetrically arranged along the optical paths of the first modulated light and the second modulated light.
  • the first light combining element 530 is located on the optical path of the first modulated light
  • the second light combining element 540 is located on the optical path of the second modulated light.
  • the first light combining element 530 and the second light combining element 540 are used to disturb the first modulated light and the second modulated light, thereby causing an offset on the projection surface.
  • the first modulated light can be made
  • the second modulated light produces a pixel offset distance that meets the requirements, so a fixed pixel expansion effect can be achieved.
  • the pixel offset distance of the first modulated light and the second modulated light on the projection surface may be, for example, 1/2 pixel.
  • image display with higher pixel resolution can be achieved in the following ways:
  • the projection system 20 further includes a lens.
  • the lens includes a first lens group 610 and a second lens group 620.
  • the first lens group 610 is located on the optical path of the first modulated light and the second modulated light to the light combining element 500.
  • the second lens group 620 is located on the optical path of the image light emitted from the light combining element 500.
  • the optical engine system 10 and the projection system 20 in this embodiment by controlling the difference in the angular distribution of the first light source 100 and the second light source 300 incident on the modulator 30, light source switching and illumination of different light sources near the projection surface are realized. Separation. A fixed pixel expansion is realized, no vibrating element and driving device are required, and a stable, higher-resolution image display can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光学引擎系统(10)和投影系统(20),光学引擎系统(10)包括合光元件(500)以及调制器(200,400),调制器(200,400)用于接收、调制第一光束,以出射第一调制光,还用于接收、调制第二光束以出射第二调制光,第一调制光和第二调制光为同一帧图像,且第一调制光中的每一个第一像素,与第二调制光中与第一像素对应的第二像素,在投影面上错开一预设位移值。合光元件(500)将第一调制光和第二调制光进行合光并出射。当第一调制光和第二调制光之间相互叠加时,达到像素分辨率扩展的目的,进而实现高分辨率的图像显示。

Description

光学引擎系统以及投影系统 技术领域
本申请涉及投影技术领域,具体涉及一种光学引擎系统以及投影系统。
背景技术
投影技术,特别是基于空间光调制器(SLM,Spatial Light Modulator)的投影系统,其显示图像的像素分辨率受限于空间光调制器本征像素。利用扩展像素分辨率(Extended Pixel Resolution,XPR)技术,可以实现分辨率的提升。其基本原理如下:通过在光路中植入一个往返运动的光学元件、偏折主光线形成半个像素的反复偏移,结合时分图像拆分处理、时序输出偏移前后的两种状态下DMD对应的图像,通过图像叠加实现更高分辨率。为了实现这种偏折,往返运动的光学元件可以采用包括但不限于音圈马达、压电陶瓷等方案实现运动。但这种往返运动部件的转动惯量会随着尺寸增加而导致驱动力和控制难度激增。同时,低分辨实现高分辨的图像叠加,原则上需要稳态实现。因此对于运动部件而言,其动态特性增加了控制难度,也对器件使用环境提出了相对严格的要求。这种方法实现了低分辨率SLM可以输出近似4倍分辨率的图像信息。
第二种实现高分辨率图像的方法,是进行DMD的平移。通过利用压电陶瓷等方案将DMD在系统中快速往返于垂直投影镜头系统主光轴方向的、相聚半个像素差的两个位置,可以实现画面的上下抖动,进而结合快速图像拆分和图像时序显示合成技术,达到类似的高分辨率投影图像的实现。与第一种方案类似,这 种运动的图像分辨率增强技术,对往返运动控制及机械精度要求较高,同时随着DMD尺寸及质量增加,需要达到的驱动力也会实现激增。
第三种提高分辨率的方法是进行图像的拼接,即多个DMD直接进行拼接的方法,通过镜头的特定设计与反射镜实现投影图像的平移从而增加画面分辨率。该方案通过旋转反光镜实现投影图像在位置一与位置二之间的切换。这种方法仍然选用运动器件作为核心器件,重复定位精度要求高,要实现高速切换、同时在位置一、二处停留时间较长的效果比较困难,同样需要克服伺服精度和驱动力的难题。
上述的几种提高像素分辨率的方法,均需要使用运动器件,并且需要运动器件的运动位置能被精确控制才能实现像素的扩展,使得系统的稳定性差,不利于提供稳定的高分辨率的图像显示。
发明内容
本申请的目的在于提供一种光学引擎系统以及投影系统,以实现高分辨率的图像显示。
第一方面,本申请实施例提供了一种光学引擎系统,包括调制器以及合光元件,调制器用于接收第一光束,对第一光束进行调制以出射第一调制光,还用于接收第二光束,对第二光束进行调制以出射第二调制光,第一调制光和第二调制光为同一帧图像,且第一调制光中的每一个第一像素,与第二调制光中与第一像素对应的的第二像素,在投影面上错开一预设位移值。合光元件将第一调制光和第二调制光进行合光并出射。
在一些实施方式中,调制器包括第一调制器和第二调制器,第一调制器用于调制第一光束以出射第一调制光,第二调制器用于调制第二光束以出射第二调 制光。
在一些实施方式中,合光元件包括第一区域、第二区域以及第三区域,第一调制光中和第二调制光中相同颜色的图像光入射于合光元件的不同区域。
在一些实施方式中,第一区域可透射蓝光并反射非蓝光,第二区域可透射红光并反射非红光,第三区域可透射绿光并反射非绿光。
在一些实施方式中,第一区域、第二区域以及第三区域呈扇形分布。
在一些实施方式中,合光元件包括第一合光元件和第二合光元件,所述第一合光元件位于所述第一调制光的光路上,所述第二合光元件位于所述第二调制光的光路上,以使所述第一调制光和第二调制光在投影面上错开一预设位移值。
在一些实施方式中,光学引擎系统还包括第一光分布系统以及第二光分布系统,第一光分布系统接收第一光束将第一光束转换为面分布状态,并引导至第一调制器进行调制以出射第一调制光,第一调制光再经过第一光分布系统引导至合光元件。第二光分布系统接收第二光束将第二光束转换为面分布状态,并引导至第二调制器进行调制以出射第二调制光,第二调制光再经过第二光分布系统引导至合光元件。
在一些实施方式中,光学引擎系统还包括第一透镜和第二透镜,第一透镜接收第一光束并将第一光束引导至第一光分布系统,第二透镜接收第二光束并将第二光束引导至第二光分布系统。
第二方面,本申请还提供一种投影系统,包括第一光源、第二光源以及上述的光学引擎系统,第一光源用于发射第一光束,第二光源用于发射第二光束。
在一些实施方式中,第一光源和第二光源均包括用于发射不同颜色光的第一光发射装置、第二光发射装置以及第三光发射装置,第一光发射装置、第二光发射装置以及第三光发射装置呈环形阵列排布,以发射呈角分布的第一光束或 第二光束。
在一些实施方式中,第一光源还包括第一双复眼透镜,第一双复眼透镜用于匀化第一光束;第二光源还包括第一双复眼透镜,第二双复眼透镜用于匀化第二光束。
在一些实施方式中,投影系统还包括镜头,镜头包括第一透镜组和第二透镜组,第一透镜组位于第一调制光至合光元件的光路上以及第二调制光至合光元件的光路上,第二透镜组位于从合光元件出射的图像光的光路上。
本申请提供的光学引擎系统以及投影系统,通过调制器调制第一光束形成第一调制光,同时调制第二光束形成第二调制光,同时使得第一调制光上的每一个第一像素与第二调制光上与第一像素对应的第二像素,在投影面上错开一预设位移值,由于第一调制光和第二调制光为同一帧图像,因此第一调制光和第二调制光之间相互叠加,使投影图像的横向和纵向的像素点均增加一倍,以达到像素分辨率扩展的目的,进而实现高分辨率的图像显示。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种光学引擎系统的结构示意图。
图2是本申请实施例提供的一种合光元件在第一视角下的结构示意图。
图3是本申请实施例提供的一种合光元件在第二视角下的结构示意图。
图4是本申请实施例提供的一种投影系统的结构示意图。
图5是本申请实施例提供的一种第一光源或第二光源的结构示意图。
图6是本申请实施例提供的另一种投影系统的结构示意图。
图7是本申请实施例提供的另一种光学引擎系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的发明人提出了一种本申请实施例中的光学引擎系统以及投影系统。下面将结合附图具体描述本申请的各实施例。
参阅图1,本实施例提供一种光学引擎系统10,包括合光元件500和调制器。调制器是用于对接收到的由光源发射的光束进行调制,并出射调制光的器件,其设置于光源发射的光束的光路上。调制器用于接收第一光束,对所述第一光束进行调制以出射第一调制光,还用于接收第二光束,对所述第二光束进行调制以出射第二调制光。其中调制器可以是一个,此时调制器可以接收一路或一路以上的光束,并进行调制。调制器也可以是两个或者两个以上,并且每个调制器接收一路光束并进行调制。一路光束由一个光源出射,当有两路或者两路以上的光束时,需要由两个或者多个光源提供。或者,也可以由一个光源沿不同的方向提供两路或者两路以上的光束。
所述第一调制光和所述第二调制光为同一帧图像,且所述第一调制光中的每一个第一像素,与所述第二调制光中与所述第一像素对应的第二像素,在投影 面上错开一预设位移值。其中第一光束和第二光束可以由不同的光源产生,并由调制器进行接收、调制形成第一调制光和第二调制光。
具体地,调制器可以包括第一调制器200和第二调制器400,其中,第一调制器200用于接收第一光束,对第一光束进行调制以出射第一调制光,第二调制器400用于接收第二光束,对第二光束进行调制以出射第二调制光,其中第一调制光和第二调制光为同一帧图像,此处的“同一帧图像”是指在同一时刻,由第一调制器200接收第一光束调制产生的第一调制光,和由第二调制器400接收第二光束调制形成的第二调制光为同一帧图像。
且第一调制光中的每一个第一像素,与第二调制光中与第一像素对应的第二像素,在投影面上错开一预设位移值。每个第一像素与该第一像素对应的第二像素的预设位移值是相等的,且位移的方向也是相同的。可以理解的是,此处的“第一”和“第二”仅用作区分,不表征重要性的区别。
由于第一调制光和第二调制光在错开一预设位移值,因此当第一调制光和第二调制光同时投影至投影面时,会形成相互叠加的效果,并且每个第一像素和每个与第一像素对应的第二像素形成像素的偏移效果,实现像素分辨率的扩展,进而使得在投影面上显示的图像的分辨率提高。
在一些实施方式中,预设位移值为(n/2)个像素值,其中n为正整数。即预设位移值可以是半个像素值、一个像素值、3/2个像素值等。特别的,预设位移值可以是1/2个像素值。这样设置的好处在于:由于第一调制器200和第二调制器400均是由多个微透镜组成的阵列形成的,一个微透镜对应一个像素,而相邻的微透镜之间会有细微的间隙产生,因而在第一调制光和第二调制光中,相邻的像素点之间也会存在间隙,当预设位移值为1/2个像素值时,第一调制光和第二调制光在叠加时,会覆盖各个像素点之间的间隙,达到更好的提高分辨 率的效果。当然,可以理解的是,在其他的一些实施方式中,预设位移值也可以是其他数值。
具体的,第一调制器200用于接收第一光束,对第一光束进行调制以出射第一调制光,并将第一调制光引导至合光元件500。第二调制器400用于接收第二光束,对第二光束进行调制以出射第二调制光,并将第二调制光引导至合光元件500。
本实施例中,请继续参阅图1,光学引擎系统10还包括第一光分布系统210以及第二光分布系统410,第一光分布系统210位于第一光束的传播路径上,第一光分布系统210接收第一光束并将第一光束转换为面分布状态,并引导转换为面分布状态的第一光束至第一调制器200进行调制,以出射第一调制光,出射后的第一调制光再次经过第一光分布系统210后,被引导至合光元件500。光的面分布可以理解为将一束具有一定发散角的光转换为在同一个面上分布的光。当第一调制光再次经过第一光分布系统210时,再次由面分布状态转换为角分布状态。即当第一调制光被引导至合光元件500时,呈角分布状态。光的角分布可以理解为将同一平面上分布的光转换为具有一定发散角的一束光。
第二光分布系统410位于第二光束的传播路径上,第二光分布系统410接收第二光束并将第二光束转换为面分布状态,并引导转换为面分布状态的第二光束至第二调制器400进行调制,以出射第二调制光,出射后的第二调制光再次经过第二光分布系统410后,被引导至合光元件500。当第一调制光再次经过第二光分布系统410时,再次由面分布状态转换为角分布状态。即当第二调制光被引导至合光元件500时,呈角分布状态。
在一些实施方式中,请继续参阅图1,光学引擎系统10还包括第一透镜220和第二透镜420,第一透镜220接收第一光束并将第一光束引导至第一光分布系 统210,第一光束在透过第一透镜220以及第一光分布系统210之后,角分布状态转变为面分布状态。第二透镜420接收第二光束并将第二光束引导至第二光分布系统410,第二光束在透过第二透镜420以及第二光分布系统410之后,角分布状态转变为面分布状态。
可以理解的是,在一些实施方式中,也可以是第一光束在出射时就呈面分布状态,此时也可以不设置第一透镜220,同样的,也可以不设置第二透镜420。
参阅图2,合光元件500包括相背的第一表面510和第二表面520,其中第一表面510和第二表面520均为平面。本实施例中,第一表面510和第二表面520大致相互平行的设置。本实施例中,合光元件500为波长合光元件500,即合光元件500能透过处于特定波长段的光线,同时又能反射处于非特定波长段的光线,使得不同波段的光束入射于合光元件500时,被选择性的反射或透射。
作为一种实施方式,参阅图3,合光元件500包括第一区域521、第二区域522以及第三区域523,其中第一区域521、第二区域522以及第三区域523可以相邻设置或者间隔设置。本实施例中,第一区域521、第二区域522以及第三区域523呈扇形分布并共同组成大致为圆形,且第一区域521的面积、第二区域522的面积以及第三区域523的面积可以大致相等。这样设置,可以使得第一区域521、第二区域522以及第三区域523具有相同的透过面积。
承前述,第一光束包括红光、蓝光以及绿光,同样的第二光束包括红光、蓝光以及绿光。本实施例中,第一光束以及第二光束中的红光、蓝光以及绿光均呈角分布形态,即红光、蓝光以及绿光大致呈环形阵列排布,每种颜色的光的辐射面积大致为扇形。并且,每种颜色光的辐射面积与第一区域521、第二区域522以及第三区域523的面积大致相等,以使得第一调制光和第二调制光在被转换为角分布状态后,每种颜色的光线能够对应的引导至第一区域521、第二区域522 或第三区域523,每种颜色的光都能得到高效的利用,降低光损。
本实施例中,第一调制光被引导至合光元件500的第一表面510后透过第一表面510,与被引导至合光元件500的第二表面520的第二调制光合光后出射。
作为一种方式,第一区域521可透射蓝光并反射非蓝光,第二区域522可透射红光并反射非红光,第三区域523可透射绿光并反射非绿光。即第一区域521可供蓝光波长段的光线透过,并反射非蓝光波长段的光线;第二区域522可供红光波长段的光线透过,并反射非红光波长段的光线;第一区域521523可供绿光波长段的光线透过,并反射非绿光波长段的光线,蓝光波长段例如为440-475nm,红光波长段例如为625-740nm,绿光波长段例如为492-577nm。作为一种实施例,第一区域521可透射蓝光并反射绿光,第二区域522可透射红光并反射蓝光,第三区域523可透射绿光并反射红光。
第一调制光中和第二调制光中相同颜色的图像光入射于合光元件500的不同区域,例如第一调制光中的蓝色光入射于第一区域521,第二调制光中的蓝色光则入射于第二区域522或第三区域523,第一调制光中的红色光入射于第二区域522,第二调制光中的红色光则入射于第一区域521或第三区域523,第一调制光中的绿色光入射于第三区域523,第二调制光中的绿色光则入射于第一区域521或第二区域522。这样,第一调制光中的各个颜色光均能透过合光元件500,而第二调制光中的各个颜色光均被合光元件500反射,使得第一调制光和第二调制光合光后出射。
可以理解的是,在其他的一些实施方式中,也可以是第一区域521可透射非蓝光并反射蓝光,第二区域522可透射非红光并反射红光,第三区域523可透射非绿光并反射绿光。此时,也可以实现第一光束和第二光束的合光。
本实施例提供的光学引擎系统10,通过第一调制器200调制第一光束形成第一调制光,通过第二调制器400调制第二光束形成第二调制光,同时使得第一调制光上的每一个第一像素与第二调制光上与第一像素对应的第二像素,在投影面上错开一预设位移值,由于第一调制光和第二调制光为同一帧图像,因此第一调制光和第二调制光之间相互叠加,使投影图像的横向和纵向的像素点均增加一倍,达到像素分辨率扩展的目的,进而实现高分辨率的图像显示。
参阅图4,本实施例还提供一种投影系统20,包括第一光源100、第二光源300以及上述的光学引擎系统10,其中第一光源100用于出射第一光束,第二光源300用于出射第二光束。
本实施例中,请一并参阅图4和图5,第一光源100和第二光源300均包括用于发射不同颜色光的第一光发射装置110、第二光发射装置120以及第三光发射装置130。第一光发射装置110、第二光发射装置120以及第三光发射装置130呈环形阵列排布,并承载于支撑件150上,也即是第一光发射装置110、第二光发射装置120以及第三光发射装置130围绕第一光束或第二光束的主光轴设置,以发射呈角分布的第一光束或第二光束。作为一种示例,第一光发射装置110用于发射红光,第二光发射装置120用于发射蓝光,第三光发射装置130用于发射绿光。
第一光源100中三个光发射装置的排列方式与第二光源300中三个光发射装置的排列方式不同,以使第一光源和第二光源中相同颜色的光出射时进入合光装置500的不同区域。例如,第一光源100中三个光发射装置的排列方式为:第一光发射装置110、第二光发射装置120、第三光发射装置130;与第一光源100中对应的位置,第二光源300中三个光发射装置的排列方式为:第二光发射装置120、第三光发射装置130、第一光发射装置110。
作为一种实施例,第一光源100和第二光源300的激发,可以是第一光源100和第二光源300相同位置上的光发射装置出射光。以第一光发射装置110用于发射红光,第二光发射装置120用于发射蓝光,第三光发射装置130用于发射绿光为例进行说明。具体地,第一光源100上第一光发射装置110出射红光时,第二光源300上相对位置的第二光发射装置120出射蓝光;第一光源100上第二光发射装置120出射蓝光时,第二光源300上相对位置的第三光发射装置130出射绿光;第一光源100上第三光发射装置130出射绿光时,第二光源300上相对位置的第一光发射装置110出射红光。
作为另一种实施例,第一光源100和第二光源300的激发,可以是第一光源100和第二光源300上不同位置上的光发射装置出射光。例如,可以是第一光源100与第二光源300相同颜色的光在同一时刻出射。由于第一光源100的三个光发射装置与第二光源300的三个光发射装置交错设置,在合光装置500上进行合光时并不会影响第一调制光和第二调制光的合光。由于第一光源100的三个光发射装置与第二光源300的三个光发射装置交错设置,会使得相同颜色的两个图像调制的光分别入射到合光元件500的不同区域。
并且,作为一种实施方式,第一光发射装置110、第二光发射装置120以及第三光发射装置130均被配置为发射的光线的辐射面积与合光元件500的第一区域521、第二区域522以及第三区域523的面积相等,以使得第一光源100发射的第一光束在经第一调制器200调制后能完全入射于合光元件500,同样的第二光源300发射的第二光束在经第二调制器400调制后能完全入射于合光元件500。
在一些实施方式中,请再次参阅图4,第一光源100还包括第一双复眼透镜140,第一双复眼透镜140位于第一光束的传播路径上,用于匀化第一光束,具 体地,本实施例中,第一光束出射后首先经过第一双复眼透镜140匀光,然后经第一透镜220入射至第一光分布系统210。第二双复眼透镜340位于第二光束的传播路径上,用于匀化第二光束,具体地,本实施例中,第二光束出射后首先经过第二双复眼透镜340匀光,然后经第二透镜420入射至第二光分布系统410。
本实施例中,请继续参阅图4,投影系统20还包括镜头600,其中镜头600包括第一透镜组610和第二透镜组620,第一透镜组为两个,两个第一透镜组610分别位于第一调制光至合光元件500的光路上以及第二调制光至合光元件500的光路上,第二透镜组620位于从合光元件500出射的图像光的光路上。当第一调制光从第一调制器200产生并出射时,第一调制光的图像光首先经第一光分布系统210,然后经其中一个第一透镜组610后引导至合光元件500上,由此第一调制光的图像光由面分布状态转换为角分布状态。当第二调制光从第二调制器400产生并出射时,第二调制光的图像光首先经第二光分布系统410,然后经另一个第一透镜组610后引导至合光元件500上,由此第二调制光的图像光由面分布状态转换为角分布状态。合光元件500放置于两个第一透镜组610的聚焦位置处,即图像光在合光元件500处形成缩小的像。即第一调制光和第二调制光共用一部分镜头,一方面可以节省成本,另一方面也可以提高合光后的图像清晰度。
参阅图6,投影系统20还可以包括控制装置700,控制装置700用于接收输入图像。本实施例中,作为一种实施方式,控制装置700还用于将输入图像拆分为第一图像和第二图像,第一图像和第二图像为同一帧图像,第一图像经由第一光源100以第一光束的方式投射,第二图像经由第二光源300以第二光束的方式投射。在图像拆分时,可以根据图像拆解算法沿对角线的方式将高分辨率的图像拆分为两个低分辨率的图像。第一图像的分辨率以及第二图像的分辨率均 低于输入图像的分辨率。即将输入图像拆分成两个低分辨率的图像由低分辨率的调制器进行调制后,再将调制图像光进行合束,由于第一调制图像和第二调制图像的成像位置形成有半个像素的位错,在合光后第一调制光和第二调制光叠加形成拼接图像,且拼接图像中,第一调制光和第二调制光不完全重合,使得成像后的分辨率得到提高,并且第一调制光与第二调制光叠加后的分辨率高于输入图像的分辨率。
其中,控制装置700可以是中央处理器(CPU),或者其他可编程控制器等。
本实施例提供的投影系统20,应用了上述的光学引擎系统10,通过第一调制器200调制第一光束形成第一调制光,通过第二调制器400调制第二光束形成第二调制光,同时使得第一调制光上的每一个第一像素与第二调制光上与第一像素对应的第二像素,在投影面上错开一预设位移值,由于第一调制光和第二调制光为同一帧图像,因此第一调制光和第二调制光之间相互叠加,达到像素分辨率扩展的目的,进而实现高分辨率的图像显示。
第二实施例
本实施例提供一种投影系统20,参阅图7,其包括第一光源100、第二光源300以及光学引擎系统10,其中光学引擎系统10包括调制器30以及合光元件500。
第一光源100用于发射第一光束,第二光源300用于发射第二光束,其中,第一光源100和第二光源300间隔并排设置,以使第一光束和第二光束大致以相互平行的方式出射。其中第一光束和第二光束中的每一者均包括红光、绿光以及蓝光。
本实施例中,光学引擎系统10仅包括一个调制器30,调制器30用于接收第一光束并对接收到的第一光束进行调制以出射第一调制光,调制器30还用于 接收第二光束并对接收到的第二光束进行调制以出射第二调制光,且第一调制光和第二调制光为同一帧图像。当第一调制光和第二调制光从调制器30出射时,沿着相同的光路出射。可以理解的是,在其他的一些实施方式中,调制器30的数量可以是两个或者两个以上。
投影系统20还包括透镜组40和光分布系统50,透镜组40和光分布系统50位于第一光源100和第二光源300至调制器30之间的光路上,并用于将角分布状态的第一光束和第二光束转换为面分布,并引导至调制器30,同时还用于将面分布状态的第一光束和第二光束转换为角分布,并引导至调制器30。
合光元件500位于第一调制光以及第二调制光的光路上,并用于将第一调制光和第二调制光进行合光出射。其中,本实施例中,合光元件500包括第一合光元件530和第二合光元件540,第一合光元件530和第二合光元件540均相对于第一调制光和第二调制光的光路倾斜设置,且第一合光元件530和第二合光元件540沿第一调制光以及第二调制光的光路对称布置。第一合光元件530位于第一调制光的光路上,第二合光元件540位于第二调制光的光路上。第一合光元件530和第二合光元件540用于对第一调制光以及第二调制光形成扰动,进而在投影面上产生偏移,通过合理控制偏移量,可以使第一调制光和第二调制光产生符合要求的像素偏移距离,因此可以实现固定式的像素扩展效果。其中,第一调制光和第二调制光在投影面上的像素偏移距离例如可以是1/2像素。
具体的,可以通过以下方式实现更高像素分辨率的图像显示:
1)间隔时序开启/关闭第一光源100以及第二光源300,即当开启第一光源100时关闭第二光源300,开启第二光源300时关闭第一光源100,交替进行上述操作。由于第一光束被调制器30调制后的第一调制光与第二光束被调制器30调制后的第二调制光在投影面上形成的图像之间存在偏移,当间隔时序足够短 时,由于视觉暂留现象,用户观看的图像是第一调制光和第二调制光的叠加,因此可以实现更高像素分辨率的显示。
2)将输入投影系统20的图像拆分成第一图像和第二图像,第一图像和第二图像为同一帧图像,第一图像和第二图像分别经第一光源100和第二光源300投射,并且通过控制第一光源100和第二光源300的输出时序,使得第一调制光和第二调制光在投影面上形成像素偏移的效果,实现更高分辨率的图像显示。
3)还可以将上述的1)和2)结合实现更高分辨率的图像显示。
在一些实施方式中,投影系统20还包括镜头,镜头包括第一透镜组610和第二透镜组620,第一透镜组610位于第一调制光以及第二调制光至合光元件500的光路上。第二透镜组620位于从合光元件500出射的图像光的光路上。
本实施例中的光学引擎系统10以及投影系统20,通过控制第一光源100和第二光源300入射到调制器30上的角分布的不同,实现光源切换和在投影面附近的不同光源照明光的分离。实现了固定式的像素扩展,无需振动元件和驱动装置,可以提供稳定的更高分辨率的图像显示。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种光学引擎系统,其特征在于,包括:
    调制器,用于接收第一光束,对所述第一光束进行调制以出射第一调制光,还用于接收第二光束,对所述第二光束进行调制以出射第二调制光,所述第一调制光和所述第二调制光为同一帧图像,且所述第一调制光中的每一个第一像素,与所述第二调制光中与所述第一像素对应的第二像素,在投影面上错开一预设位移值;
    合光元件,将所述第一调制光和所述第二调制光进行合光并出射。
  2. 根据权利要求1所述的光学引擎系统,其特征在于,所述调制器包括第一调制器和第二调制器,所述第一调制器用于调制所述第一光束以出射所述第一调制光,所述第二调制器用于调制所述第二光束以出射所述第二调制光。
  3. 根据权利要求1所述的光学引擎系统,其特征在于,所述合光元件包括第一区域、第二区域以及第三区域,所述第一调制光中和所述第二调制光中相同颜色的图像光入射于所述合光元件的不同区域。
  4. 根据权利要求3所述的光学引擎系统,其特征在于,所述第一区域可透射蓝光并反射非蓝光,所述第二区域可透射红光并反射非红光,所述第三区域可透射绿光并反射非绿光。
  5. 根据权利要求3或4所述的光学引擎系统,其特征在于,所述第一区域、所述第二区域以及所述第三区域呈扇形分布。
  6. 根据权利要求1所述的光学引擎系统,其特征在于,所述合光元件包括第一合光元件和第二合光元件,所述第一合光元件位于所述第一调制光的光路上,所述第二合光元件位于所述第二调制光的光路上,以使所述第一调制光和第 二调制光在投影面上错开一预设位移值。
  7. 根据权利要求1所述的光学引擎系统,其特征在于,所述光学引擎系统还包括第一光分布系统以及第二光分布系统,所述第一光分布系统接收所述第一光束将所述第一光束转换为面分布状态,并引导至所述第一调制器进行调制以出射第一调制光,所述第一调制光再经过所述第一光分布系统引导至所述合光元件;
    所述第二光分布系统接收所述第二光束将所述第二光束转换为面分布状态,并引导至所述第二调制器进行调制以出射第二调制光,所述第二调制光再经过所述第二光分布系统引导至所述合光元件。
  8. 根据权利要求7所述的光学引擎系统,其特征在于,所述光学引擎系统还包括第一透镜和第二透镜,所述第一透镜接收所述第一光束并将所述第一光束引导至所述第一光分布系统,所述第二透镜接收所述第二光束并将所述第二光束引导至所述第二光分布系统。
  9. 一种投影系统,其特征在于,包括:
    第一光源,用于发射第一光束;
    第二光源,用于发射第二光束;以及
    如权利要求1-8任一项所述的光学引擎系统。
  10. 根据权利要求9所述的投影系统,其特征在于,所述第一光源和所述第二光源均包括用于发射不同颜色光的第一光发射装置、第二光发射装置以及第三光发射装置,所述第一光发射装置、所述第二光发射装置以及所述第三光发射装置呈环形阵列排布,以发射呈角分布的所述第一光束或所述第二光束。
  11. 根据权利要求10所述的投影系统,其特征在于,所述第一光源还包括第一双复眼透镜,所述第一双复眼透镜用于匀化所述第一光束;
    所述第二光源还包括第二双复眼透镜,所述第二双复眼透镜用于匀化所述第二光束。
  12. 根据权利要求9所述的投影系统,其特征在于,所述投影系统还包括镜头,所述镜头包括第一透镜组和第二透镜组,所述第一透镜组位于所述第一调制光至所述合光元件的光路上以及所述第二调制光至所述合光元件的光路上,所述第二透镜组位于从所述合光元件出射的图像光的光路上。
PCT/CN2021/096426 2020-06-05 2021-05-27 光学引擎系统以及投影系统 WO2021244394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010508054.4 2020-06-05
CN202010508054.4A CN113766197A (zh) 2020-06-05 2020-06-05 光学引擎系统以及投影系统

Publications (1)

Publication Number Publication Date
WO2021244394A1 true WO2021244394A1 (zh) 2021-12-09

Family

ID=78785202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096426 WO2021244394A1 (zh) 2020-06-05 2021-05-27 光学引擎系统以及投影系统

Country Status (2)

Country Link
CN (1) CN113766197A (zh)
WO (1) WO2021244394A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1509887A (zh) * 2002-12-20 2004-07-07 伊斯曼柯达公司 用景物内容的空间平移对象素缺陷进行补偿
US6903785B2 (en) * 2002-05-08 2005-06-07 Nippon Hoso Kyokai Liquid crystal projector device
CN105842845A (zh) * 2015-01-30 2016-08-10 精工爱普生株式会社 图像显示装置
CN105988266A (zh) * 2015-02-05 2016-10-05 深圳市绎立锐光科技开发有限公司 投影设备、投影控制系统及投影控制方法
CN108628070A (zh) * 2017-03-23 2018-10-09 深圳市光峰光电技术有限公司 一种显示系统
WO2020055853A1 (en) * 2018-09-10 2020-03-19 Texas Instruments Incorporated Compact display with extended pixel resolution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903785B2 (en) * 2002-05-08 2005-06-07 Nippon Hoso Kyokai Liquid crystal projector device
CN1509887A (zh) * 2002-12-20 2004-07-07 伊斯曼柯达公司 用景物内容的空间平移对象素缺陷进行补偿
CN105842845A (zh) * 2015-01-30 2016-08-10 精工爱普生株式会社 图像显示装置
CN105988266A (zh) * 2015-02-05 2016-10-05 深圳市绎立锐光科技开发有限公司 投影设备、投影控制系统及投影控制方法
CN108628070A (zh) * 2017-03-23 2018-10-09 深圳市光峰光电技术有限公司 一种显示系统
WO2020055853A1 (en) * 2018-09-10 2020-03-19 Texas Instruments Incorporated Compact display with extended pixel resolution

Also Published As

Publication number Publication date
CN113766197A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
JP7398131B2 (ja) 画像プロジェクタ
EP2187259B1 (en) Projector
US9488849B2 (en) Coherent light source device and projector
USRE43743E1 (en) Projection-type image display apparatus and method
JP4301282B2 (ja) プロジェクタ
US7255448B2 (en) Pixelated color management display
US11874486B2 (en) Compact display with extended pixel resolution
US20160327783A1 (en) Projection display system and method
JP4183663B2 (ja) 照明装置及び投写型映像表示装置
US9160992B2 (en) Projection apparatus having MEMS mirror with plural projection paths
JPWO2008111275A1 (ja) 照明装置及び画像投写装置
US20230314921A1 (en) Laser source and laser projection apparatus
WO2021244394A1 (zh) 光学引擎系统以及投影系统
JP2015132797A (ja) 照明装置、投射装置、光学モジュールおよび走査装置
KR20030030226A (ko) 가동 미러 장치 및 이를 채용한 프로젝터
KR101167747B1 (ko) 마이크로 프로젝터를 위한 광학 엔진
JP2020118829A (ja) プロジェクターおよびプロジェクターの画像表示方法
TWI754955B (zh) 光路調整機構及其製造方法
TWI765235B (zh) 光路調整機構及其製造方法
US11982932B2 (en) Projection display device
CN113495335B (zh) 光路调整机构及其制造方法
CN218213763U (zh) 一种投影设备
JP7329665B1 (ja) 投射型表示装置
TWI838675B (zh) 光路調整機構
WO2024066229A1 (zh) 光源模组及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21816994

Country of ref document: EP

Kind code of ref document: A1