WO2019007069A1 - 用于多个道路方向的道路枢纽以及道路行车方法 - Google Patents

用于多个道路方向的道路枢纽以及道路行车方法 Download PDF

Info

Publication number
WO2019007069A1
WO2019007069A1 PCT/CN2018/076244 CN2018076244W WO2019007069A1 WO 2019007069 A1 WO2019007069 A1 WO 2019007069A1 CN 2018076244 W CN2018076244 W CN 2018076244W WO 2019007069 A1 WO2019007069 A1 WO 2019007069A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
pair
channel
road
sub
Prior art date
Application number
PCT/CN2018/076244
Other languages
English (en)
French (fr)
Inventor
张惠东
Original Assignee
都快通(北京)交通疏导设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 都快通(北京)交通疏导设备有限公司 filed Critical 都快通(北京)交通疏导设备有限公司
Priority to CN201880044432.9A priority Critical patent/CN111133150A/zh
Publication of WO2019007069A1 publication Critical patent/WO2019007069A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/02Crossings, junctions or interconnections between roads on the same level
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/002Design or lay-out of roads, e.g. street systems, cross-sections ; Design for noise abatement, e.g. sunken road
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/04Road crossings on different levels; Interconnections between roads on different levels

Definitions

  • the present invention generally relates to a road hub or road hub facility for guiding a vehicle in a plurality of road directions. More specifically, the present invention relates to an overpass. In addition, the present invention also relates to a road driving method.
  • intersection at the road junction is a key node affecting the overall situation of traffic, and the lack of capacity at the intersection of the intersection is the direct cause of traffic congestion.
  • the left and right turns and the straight-through vehicles pass at the same intersection, there are bound to be many conflict points.
  • the vehicles in all directions have to rely on the control of the traffic lights in order to make the vehicles wait for a long time and pass the inefficiency.
  • the overpass bridge is called the “three-dimensional cross bridge” and refers to the modern bridge that is built up at the intersection of two or more intersecting roads and that is multi-directional and non-interfering.
  • Overpasses generally include sunken tunnels in a three-dimensional crossover project, the main function of which is to allow vehicles in all directions to pass quickly without being controlled by traffic lights on the intersection.
  • the full-interchange overpass is an overpass that can realize mutual wrap in all directions.
  • the advantage is that it can achieve all-round intercommunication.
  • the disadvantage is that the structure is complicated and the space is occupied very much, and it is difficult to rebuild once it is built.
  • the non-interlaced overpass can realize the safe and rapid turning of the vehicle in all directions.
  • the turning ramp has to adopt a multi-layer structure or bypass, which also has a huge amount of engineering, design and construction. Difficulties and the disadvantages of expensive construction.
  • the present invention provides a "road intersection” which is either elevated or sunk on an existing surface road intersection or on the outside of an existing surface road intersection and is relatively Independent, hence the name “deputy intersection.”
  • the intersection of the surface is called the “main intersection”.
  • the main and secondary intersections travel in opposite directions. If the main intersection is driving to the right, the secondary intersection is driven to the left; if the main intersection is driving to the left, the secondary intersection is driven to the right.
  • the present invention provides a road junction for four road directions, comprising: a main intersection including a main central portion and extending outward from the main central portion in the four road directions, respectively a first pair, a second pair, a third pair, a fourth pair of main channels, each pair of main channels including a main up channel and a main down channel; and a sub intersection, independent of the main intersection, and including a pair a central portion and a first pair, a second pair, a third pair, and a fourth pair of sub-channels extending outward from the sub-center portion in the four road directions, each pair of sub-channels including a sub-upstream channel and a secondary down channel, wherein the main upstream channel of each pair of main channels communicates with the main downstream channel of the adjacent pair of main channels via the main central portion in one of a clockwise direction and a counterclockwise direction, And the sub-upstream channel of each pair of sub-channels communicates with the sub-downstream channel of the adjacent pair of sub-channels via
  • the main up channel and the main down channel in each pair of main channels are arranged side by side.
  • the sub-upstream channel and the sub-downstream channel in each pair of sub-channels are arranged side by side.
  • the main up channel and the main down channel in the first pair of main channels are respectively connected to the main down channel and the main up channel in the third pair of main channels via the main central portion
  • the second The sub-upstream channel and the sub-downlink channel in the sub-channel are respectively connected to the sub-downstream channel and the sub-upstream channel in the fourth pair of sub-channels via the sub-central portion.
  • the second pair of primary channels are not in communication with the fourth pair of primary channels
  • the first pair of secondary channels are not in communication with the third pair of secondary channels.
  • the main uplink channel and the main downlink channel of the first pair of main channels are respectively connected to the main downlink channel and the main uplink channel of the third pair of main channels via the main central portion, and the second The main up channel and the main down channel in the main channel are respectively connected to the main down channel and the main up channel in the fourth pair of main channels via the main central part.
  • the first pair of secondary channels are not in communication with the third pair of secondary channels, and the second pair of secondary channels are not in communication with the fourth pair of secondary channels.
  • the secondary central portion has a rotatable barrier that selectively communicates the first pair of secondary channels with the third pair of secondary channels or with the second pair of secondary channels The fourth pair of secondary channels.
  • the main central portion and/or the secondary central portion is in the form of a roundabout.
  • the secondary intersection is elevated above the main intersection.
  • the secondary intersection sinks below the main intersection.
  • the secondary intersection is in the same plane as the primary intersection, and each pair of secondary channels is located on either side of a respective pair of primary channels.
  • the main central portion includes a first main central portion and a second main central portion, and the main upstream channel and the main downlink channel of the first pair of main channels and the main downlink of the third pair of main channels respectively
  • the channel and the main uplink channel are connected by the first main central portion, and the main uplink channel and the main downlink channel of the second pair of main channels and the main downlink channel and the main uplink channel of the fourth pair of main channels respectively Communicating via the second main central portion, and wherein the first main central portion sinks below the second main central portion.
  • the secondary intersection is in the same plane as the main intersection, and each pair of main channels is located on two sides of a corresponding pair of sub-channels, and wherein the main upstream channel in each road direction passes through
  • the main central portion communicates with the sub-downward passages in the other three road directions, and the sub-upward passages in each of the road directions communicate with the main descending passages in the other three road directions via the main central portion.
  • each pair of sub-channels includes a lane changing device, and the lane changing device is configured to respectively connect the sub-upstream channel and the sub-downlink channel of the sub-channel to the main uplink channel and the main downlink of the corresponding pair of main channels aisle.
  • the secondary central portion has a barrier extending from the second pair of secondary channels to the fourth pair of secondary channels such that the first pair of secondary channels are not in communication with the third pair of secondary channels.
  • the secondary central portion has an isolation region on both sides of the isolation barrier. More preferably, the isolation zone is in the form of a parking zone, a no-go zone, a lightening hole or an abutment.
  • the secondary down channel has more than one outlet.
  • the road hub further includes a third intersection independent of the main intersection and the secondary intersection.
  • the present invention provides a road junction for three road directions, comprising: a main intersection including a main central portion and outward from the main central portion in the three road directions, respectively An extended first pair, a second pair, a third pair of main channels, each pair of main channels including a main up channel and a main down channel; and a secondary intersection independent of the main intersection and including a sub-center and a first pair and a second pair of sub-channels, the first pair of sub-channels including a sub-upstream channel and a sub-downstream channel extending outward from the sub-center portion in a first direction of the three road directions
  • the second pair of secondary channels includes a secondary upstream channel and a secondary downstream channel extending outward from the secondary central portion in a second direction of the three road directions and a third direction, wherein each pair of primary channels
  • the main upstream channel communicates with the main downstream channel of the adjacent pair of main channels in one of a clockwise direction and a counterclockwise direction, and the secondary upstream channel in each pair of
  • the present invention provides a road driving method for performing at a road junction having a plurality of road directions, the road hub including mutually independent main intersections and secondary intersections, the main intersections A plurality of primary uplink channels and a primary downlink channel extending in the plurality of road directions, the secondary intersections including a plurality of secondary uplink channels and sub-downlink channels extending in the plurality of road directions, the method
  • the method includes: allowing a vehicle to pass from one of a clockwise direction and a counterclockwise direction to a main downstream passage in a direction of a main upward passage in a road direction to another adjacent road direction; and allowing the vehicle to be from a direction of the road
  • the upstream channel passes in the other of the clockwise direction and the counterclockwise direction to the sub-downstream channel in the direction of the adjacent other road.
  • the turning vehicle avoids crossing the straight lane at the intersection and can be easily realized with only one structure. It has all the functions of a fully interchanged overpass.
  • the turnover bridge on the auxiliary intersection can complete the direct steering of 90 degrees through the large radius curve without turning the hovering like the ⁇ leaf type overpass. 270 degree steering.
  • the former turns the road to expand outside the road and occupy the land outside the road, while the latter's ramp is built on the intersection and does not occupy any land outside the road. This feature is especially suitable for the soil.
  • the central area of the city is especially suitable for the soil.
  • the setting of the secondary intersection is a modification of the existing urban roads.
  • the secondary intersection is generally an elevated installation, which can be modularized and easy to construct and demolish.
  • there is a new type of overpass that uses the secondary intersection that is, a sunken overpass that uses the secondary intersection.
  • This type of overpass is a new planning design, does not affect the urban landscape of the ground, only excavates a layer underground; does not occupy the underground space outside the road, has a compact structure, a small footprint, a complete function, and can be very good Solve the congestion problem at important intersections.
  • 1 to 5 schematically show an embodiment of a road junction for four road directions according to the present invention
  • FIGS 6 and 7 schematically illustrate one way in which the vehicle switches between the primary and secondary intersections
  • Figure 8 shows schematically an embodiment of a sub-downstream channel according to the invention
  • Figure 9 shows schematically a variant of a secondary crossing according to the invention.
  • Figure 10 shows schematically another variant of a secondary crossing according to the invention.
  • Figure 11 shows schematically an embodiment of a road junction for three road directions according to the invention
  • FIGS 14 and 15 schematically illustrate another way in which the vehicle switches between the primary and secondary intersections
  • Figure 16 shows schematically a further variant of the secondary crossing according to the invention.
  • 17 and 18 schematically show still another embodiment of a road junction for four road directions in accordance with the present invention.
  • Figure 19 is a schematic illustration of yet another way in which the vehicle switches between the primary and secondary intersections
  • 20 to 22 schematically show schematic views of a road junction where a secondary intersection sinks.
  • upstream or “downstream” does not refer to “upper” or “lower” in height, but rather to entering or leaving an intersection.
  • upstream channel or “downstream channel” refers to the passage of a vehicle into or out of an intersection, regardless of the height change as the vehicle enters or leaves.
  • connection means that a vehicle traveling in one lane can be transferred to another lane.
  • Figure 1 shows schematically a road junction that can be implemented in a country running to the right, which is adapted to guide the vehicle in four road directions.
  • a secondary intersection is formed above the main intersection of the road, and the secondary intersection is composed of a top plate 1 and a four-side bridge channel such as the upper channel 2 on the bridge, and the channel structure on the four sides is similar.
  • the letters N, W, S, and E represent the north, west, south, and east directions, respectively.
  • the on-bridge channel 2 includes an upstream channel 2A and a downstream channel 2B.
  • the up channel 2A is on the left side
  • the down channel 2B is on the right side
  • the vehicle is driving on the left side, which is the opposite of the case where the road is driven to the right on the road surface under the bridge.
  • the east-west isolation fence 5 on the top plate 1 partitions the north-south straight lane on the bridge.
  • the vehicle 3 from the west side of the bridge can go straight along the 3A and 3B points; it can also make a left turn along the 3C and 3D points.
  • the vehicle 4 on the south side of the bridge is only able to turn left along the 4A point and the 4B point because the straight ahead lane is blocked. Under the bridge, the right-hand traffic rules are followed, and all right turns, including the west-right turn vehicle 7, are completed at the main intersection.
  • the road junction shown in Figure 2 is similar to Figure 1, but is suitable for implementation in countries that drive to the left.
  • the top plate 8 is connected to the upper bridge channel on the north, west, south and east sides.
  • the up channel 9A of the channel 9 on the west side of the bridge is on the right side
  • the down channel 9B is on the left side
  • the vehicle is driven to the right, which is opposite to the case where the road surface under the bridge is driven to the left.
  • the vehicle 10 from the west side can go straight through the 10A point and the 10B point, or turn right along the 10C point and the 10D point. All road surface turn including the left turn vehicle 11 from the south side is completed at the main intersection.
  • Figure 3 shows schematically a lightweight secondary intersection.
  • Two closed fences 12A and 12B are disposed on both sides of the isolation rail 12C of the top plate 12, and the weight reduction holes penetrating the bottom of the chassis are between the fences. This design not only reduces the weight of the top plate, but also enhances the natural illuminance of the main intersection of the surface road under the roof.
  • the channel on the side bridge is composed of an up channel 13A and a down channel 13B, wherein a section of the down channel 13B is an elevated straight lane supported by the gate pillar 13C.
  • the main intersection of the ground is similar to the existing urban road intersection, with a parking line 14A and a zebra crossing 14B, and each side signal 16 is provided, and the ground road basically maintains the existing traffic rules.
  • the road hubs shown in Figures 1 to 4 can be used to construct urban car overpasses, that is, the lane sizes of the auxiliary intersections and the bridges are designed according to the standards specific to the car, regardless of the passage of large vehicles. In this way, the requirements for slope slope and bridge strength are low, and the engineering quantity is relatively small.
  • the surface traffic pressure was greatly reduced, and the main intersection of the surface generally retained the existing traffic rules for large vehicles and Non-motorized vehicles and pedestrians pass.
  • the straight green light time will have a big difference.
  • the ratio of the green time between north and south and east and west straight can be chosen to be 3 or greater.
  • Figure 5 shows schematically the road intersections used only for left turns.
  • the secondary intersection is provided with four large-radius left-turning ramps 17A, 17B, 17C and 17D, where the vehicle can achieve a fast left turn.
  • Four right turns are completed at the main intersection of the surface road surface, and right-turning vehicles 18A, 18B, 18C, and 18D from the north, west, south, and east directions are all under the bridge.
  • the straight line in four directions is also realized at the main intersection of the surface road surface.
  • Fig. 6 shows schematically a lane change mode according to the invention whereby the vehicle can switch between the left line rule and the right line rule.
  • the upper channel on the side of the road auxiliary intersection includes the lower bridge channel 19 and the upper bridge channel 20.
  • the upper bridge passage includes an upper bridge ramp 20A and a lane change guide rail 20B.
  • the lower bridge passage includes an elevated straight passage 19A, a curved transition lane 19B, and a lower bridge ramp 19C.
  • the upper bridge ramp 20A and the lower bridge ramp 19C are arranged one behind the other and occupy the same lane.
  • Fig. 7 shows schematically a top view of a channel on the east side bridge according to the invention.
  • the driving trajectory 21D of the upper bridge vehicle 21 and the three key points 21A, 21B and 21C in sequence can be seen from the figure.
  • the vehicle 21 has undergone a right-to-left lane change and uphill process during travel.
  • the lower bridge vehicle 22, along its lane trajectory 22D completes the process of lane change from left to right after passing through the three key points 22A, 22B and 22C in sequence.
  • the two lanes 21D and 22D are cross-arranged as seen from the top view, but do not actually intersect because they are not on one floor.
  • Figure 8 is a schematic view of the lower bridge channel of Figure 6 with the secondary lower bridge ramp installed. Due to the arrangement of the upper bridge ramp and the main lower bridge ramp, the groove of the main lower bridge ramp 25A will be farther away from the road intersection. If you want to enter a city function area that is closer to the intersection, such as a residential area, it will be very inconvenient. To compensate for this drawback, a main outlet end 24A and a secondary outlet end 24B are provided at the elevated bend change lane 24, which passes through the sub-lower bridge ramp 25B. Through this passage, the vehicle can quickly reach the urban functional area on the side of the road.
  • the two figures (a) and (b) in Fig. 9 schematically show a top view of a road secondary intersection to which the top plate is applied.
  • the center of the top plate has a selector turn door.
  • the revolving door is located at a position 30A that blocks the east and west straight lanes, and the vehicle 26 from the west side of the bridge can only make a left turn via the 26A point and the 26B point, while the vehicle 27 from the south side of the bridge is left. It can go straight north through the 27A point, and turn left in the west through the 27B point. Therefore, the vehicles on the south and north sides of the bridge can be mixed with straight and left turns, and the bridges from the east and west sides can only be left-turn vehicles.
  • the revolving door is located at a position 30B that blocks the northbound and northward straight lanes, and the vehicle 29 from the south side of the bridge can only make a left turn via the 29A point and the 29B point, and the vehicle 28 from the west side. It can go straight to the east through the 28A point, and turn left to the left through the 28B point. Therefore, the vehicles on the east and west sides of the bridge can be a mixture of straight and left turns, and the bridges from the south and north sides can only be left-turn vehicles.
  • the two figures (a) and (b) in Fig. 10 schematically show a plan view of an alternate road intersection.
  • the secondary intersection is characterized by a signal light and a parking line.
  • a total of four parking lines on each side of the north, west, south and east are just enclosed by a box 34.
  • the bridges in all directions are mixed trains with straight and left turns.
  • the south and north sides are red lights 32A and 32B, and the straight and left-turn mixed teams 33A and 33B from the north and south sides wait for parking.
  • the east and west sides are green lights.
  • the vehicle 31 on the west side of the bridge can go straight through the 31A position or the left turn through the 31B position.
  • the east and west sides are red lights 35B and 35A, and the straight and left-turn mixed vehicles 36B and 36A from the east and west sides are parked.
  • the south and north sides are green lights.
  • the vehicle 37 from the south side of the bridge can go straight through the 37A position or turn left through the 37B position.
  • FIG 11 shows schematically another embodiment of a road junction according to the invention, which is suitable for use in a T-junction.
  • the top plate 42 has three ports connecting the upper, south, and east side bridge passages, and the east side bridge upper passage 38 is composed of an upper bridge passage 38A and a lower bridge passage 38B, and the north and south sides are two.
  • the vehicle 40 from the north side of the bridge can go straight down the bridge via 40A, or turn left at the 40B point.
  • the vehicle 39 from the east side can only pass 39A and 39B left. Turn down the bridge.
  • only two left turn channels can be provided in the top plate 42 without setting a north-south straight path, which is implemented in the main intersection.
  • Fig. 12 schematically shows another embodiment of a road junction according to the invention, wherein the road intersection is sunken. From the figure you can see the four entrances 44A, 44B, 44C and 44D leading to the underground sub-intersection, all of which are left-turn vehicles or straight and left hybrid vehicles.
  • the main intersection of the surface road surface is similar to an ordinary road intersection, including each side zebra crossing 46 and a signal light 47.
  • the ground vehicles include, for example, a straight-through vehicle 45 traveling north to south, and right-turning vehicles 43A, 43B, 43C, and 43D in four directions. All left-turn vehicles on the ground and some of the straight-through vehicles are guided to the underground intersection.
  • Figure 13 is a view of the road junction of Figure 12 as seen after the road surface layer has been removed.
  • the structure of the sub-intersection at the underground is clearly visible.
  • the east and west straight lanes are separated by a fence 50.
  • the sides of the fence are the abutments 50A and 50B which are both load-bearing and isolating.
  • the curved side of the pier is a left turn.
  • the vehicle 48 from the north entrance may choose to go straight south through the 48A point and the 48B point, or may turn left to the east via the 48C point and the 48D point.
  • the vehicle 49 from the west side can only make a left turn through the 49A point and the 49B point.
  • Figure 14 is a schematic illustration of one side bridge passage of a secondary intersection in accordance with the present invention.
  • the inlet passage 51 and the outlet passage 55 of the passage on the east side bridge can be seen.
  • the entrance lane is also connected to the lane change guide 52.
  • the vehicle approaches from the right inner lane 54 from east to west, it is guided by the guide arrow 53 and turned leftward along the guide fence 52 to enter the entrance passage 51.
  • the vehicle coming out of the exit 55 is merged into the right lane of the surface.
  • Fig. 15 schematically shows that the road intersection is a sunken road junction.
  • the figure is a view seen after removing the surface layer of the road, and the exit passage located underground is divided into three parts: an underground straight road 58A, a curved change lane 58B, and an uphill ramp 58C.
  • the vehicle 57 ready to leave is sequentially driven out of the underground bridge via the three key points 57A, 57B and 57C.
  • the vehicle 56 ready to enter the underground bridge can either go straight through the 56A point or turn left at the 56B point.
  • the figure is a case where the road surface is not cut, and the vehicle enters the trajectory line 59 and the exit trajectory line 60, and the invisible portions of the two trajectories located underground are indicated by broken lines.
  • the front section 59A and the rear section 59B of the trajectory 59 are respectively located in two adjacent lanes, and the front section 60A and the rear section 60B of the exit trajectory 60 are also located in two adjacent lanes, respectively.
  • the two trajectories 59 and 60 "cross" but do not intersect. Whether entering or leaving the underground bridge, before entering or leaving, you have to make a left and right position change before entering the down or uphill ramp.
  • FIGS. 14 and 15 The manner in which the vehicle switches between different travel rules of the primary and secondary intersections can also be achieved by the manner described in FIGS. 14 and 15.
  • FIG. 14 and FIG. 15 are described in connection with the case of a sunken-type secondary intersection, but those skilled in the art will appreciate that the lane-changing method is equally applicable to the case of an overhead type secondary intersection.
  • Fig. 16 schematically shows a situation in which a road intersection intersects into a toroidal intersection.
  • the problem of traffic congestion can be properly solved, but in the case of continuous increase in traffic volume, congestion is still inevitable.
  • the roundabout will also cause inconvenience to left-turning vehicles.
  • Left-turn vehicles from four directions require a continuous turn of 3/4 circumference, which is farther away, and will also affect straight-going vehicles, with a higher risk of congestion.
  • the technical solution given in the figure is to construct an underground circular lane 62B under the surface annular lane 62A of the roundabout 61, the opposite direction of the traffic flow; the surface traffic flow is right-handed, counterclockwise; the traffic flow in the underground passage is left-handed, clockwise direction.
  • the lane setting on the side of the ground surface, for example, the east side is the same as that shown in Figs. 15 and 16, the inlet passage 63A is on the left, and the outlet passage 63B on the underground is on the right.
  • the two passages have an isolation table 64 at the junction with the underground circular driveway 62B.
  • the left-turning vehicle passes through the underground passage 62B, and only needs to bypass the 1/4 circumference, which saves the distance and greatly reduces the traffic pressure of the right-hand circular circular lane 62A.
  • it can be arbitrarily selected to pass through the surface ring road or the underground ring road, because the distance between the two passes is the same, and the circle is 1/2 circle.
  • Figure 17 shows schematically a further embodiment of a road junction according to the invention.
  • the lanes of the primary intersection and the secondary intersection are substantially in the same plane.
  • the downstream channel 102 and the upstream channel 104 of the primary intersection are located on both sides of the upstream channel 101 and the downstream channel 103 of the secondary intersection.
  • the main intersection is driving to the right and the secondary intersection is driving to the left.
  • the figure highlights the situation of the south side -S, and other three sides such as North-N, West-W, and East-E are also the same structure as the south side.
  • the inline type of secondary intersection generally does not interfere with the main intersection and usually sinks below the main intersection.
  • the lane of the secondary intersection is divided into two lanes near the intersection, one leading to the main intersection, and the other passing through the descending ramp 105 to the sub-junction of the underground.
  • Fig. 18 schematically shows the secondary intersection of the road junction in Fig. 17.
  • the secondary intersection is located underground, directly above the main intersection, and the secondary intersection is only allowed to pass straight and left-turn mixed formation cars.
  • the straight and left turn vehicles from the east and west directions are passing through the secondary intersection, while the straight and left mixed trains 106A and 106B from the south and north are waiting at their respective stop lines.
  • the straight and left turn vehicles from the south and north directions pass, and the straight and left mixed trains 107A and 107B from the east and west directions wait at their respective stop lines.
  • Fig. 19 is a schematic view showing the interconnection between the main intersection and the sub-intersection. This interconnection is generally done at the main intersection of the surface.
  • the vehicle 108 from the south side, ready to leave the secondary intersection enters the lane of the east main intersection mainly in the form of a right turn, and the vehicle can also wait for an opportunity to enter in a straight or left turn. Go to the main intersection lane on the north and west sides.
  • the vehicle 109 that is to enter the secondary intersection from the main intersection can enter the lane of the secondary intersection via the north, west, and east entrances in the form of straight, left, and right turns.
  • Figure 20 is a schematic illustration of a road junction where the secondary intersection sinks.
  • Two lanes in the north-south direction separated by the isolation bar 123, and four left-turn lanes are in the lower road plane, and two straight lanes 125 in the east-west direction pass through the plane.
  • the four right turns belonging to the main intersection of the surface in order to avoid pedestrians and non-motor vehicles on the road surface, use the slope to sink to the lower road surface.
  • the east side right turn downhill ramp 122B and its north side rise ramp 122A are visible.
  • the four right turns and the four left turns, while on the same plane, are separated from each other by the isolation bar 124 and are not connected to each other.
  • 21 is a top plan view of the road hub of FIG. 20. From the figure, it can be seen more intuitively that the vehicles in each direction do not interfere with each other in the same space, and are free to pass. In the figure, except for the two straight lines in the east and west, the remaining four right turns, the four left turns and the north and south directions are in the same plane, and the left and right turn trajectories are adjacent. However, it does not interfere, and it has truly achieved the goal of completely eliminating conflict points at the intersection.
  • Figure 22 is a view of Figure 20 with the surface plate optionally added.
  • the surface lane belongs to the existing road and the vehicle runs to the right.
  • the branch line in the road plate is regularly arranged with a long elliptical road center entrance and exit, which is divided into a type 127 of the open side platform at the high side and a type 130 of the open side platform at the high side.
  • the road entrances and exits are connected by a barrier 126. It can also be seen from the figure that the right turn sinking inlet 129 and the rising outlet 128 on the west side of the road board, and the other three sides also have such a right turn exit and entrance.
  • the road hub shown in Fig. 21 can also be implemented in another manner.
  • the main intersection and the auxiliary intersection and its driving passage are substantially on the same plane, and the auxiliary intersection is centered, and the passage of the main intersection is located on both sides (outside) of the corresponding passage of the auxiliary intersection.
  • the main intersection and the secondary intersection can realize the right turn and the left turn of the vehicle in one plane, respectively.
  • the secondary intersection may include a first secondary intersection of the surface and a second intersection that sinks. The first secondary intersection is separated, for example, in the east-west direction, thereby allowing the vehicle to go straight in the north and south.
  • the second secondary intersection is spaced apart in the north-south direction, allowing the vehicle to go straight in the east-west direction. In this way, the vehicle makes a left turn, a right turn and a straight line in a more compact and compact structure.
  • the situation shown in FIG. 21 can also be implemented in the opposite case, that is, the main intersection and the auxiliary intersection and its driving passage are substantially on the same plane, and the main intersection is centered, and the passage of the auxiliary intersection is located at the main intersection.
  • the corresponding channels are on both sides (outside).

Abstract

一种用于多个道路方向的道路枢纽以及道路行车方法。该道路枢纽包括:主交叉口以及副交叉口,其独立于主交叉口,并且包括副中央部以及副通道,每一对副通道包括并排布置的副上行通道和副下行通道,每一对主通道中的主上行通道在顺时针方向和逆时针方向中的一个方向上与相邻的一对主通道中的主下行通道经由主中央部连通。该行车方法包括:允许车辆从一个道路方向上的主上行通道沿顺时针方向和逆时针方向中的一个方向通行到相邻的另一个道路方向上的主下行通道;允许车辆从副上行通道沿顺时针方向和逆时针方向中的另一个方向通行到相邻的另一个道路方向上的副下行通道。

Description

用于多个道路方向的道路枢纽以及道路行车方法 技术领域
本发明大体涉及一种道路枢纽或道路枢纽设施,用于在多个道路方向上引导车辆。更具体地,本发明涉及一种立交桥。另外,本发明还涉及一种道路行车方法。
背景技术
道路枢纽处的交叉口是影响交通全局的关键节点,而平面交叉路口通过能力不足是造成交通拥堵的直接原因。当左、右转弯以及直行车辆在同一平面交叉口通行时,必然会造成很多的冲突点。在同一平面交叉口处,各方向来车不得不依靠信号灯的管制依次通行,从而使车辆等待时间长,通过效率低下。
立交桥全称为“立体交叉桥”,是指在两条以上的交叉道路交汇处建立的上下分层、多方向互不相扰的现代化桥梁。立交桥一般包括立体交叉工程中的下沉式隧道,其主要作用是使各个方向的车辆不受路口上的红绿灯管制而快速通过。
全互通式立交桥是能实现所有方向互相换行的立交桥,其优点是可以实现全方位互通,缺点是结构复杂导致空间占用很大,且一经建成很难再进行改造。
常见的全互通式立交桥有苜蓿叶型和无交织型。苜蓿叶型立交桥需要多条迂回匝道以实现车辆的左转,当车流量大、车速较快时,受匝道半径要求的局限,会导致整个立交桥的规模增加,并占用大量土地。
无交织型立交桥可以实现车辆在各方向上安全快速地转弯变线,但由于要避开直行桥梁,转弯匝道不得不采用多层结构或迂回绕行,这同样存在工程体量庞大、设计和施工困难以及造价昂贵的缺点。
发明内容
为了克服现有技术的不足,本发明提供了一种“道路副交叉口”,该交叉口或高架、或下沉于既有地表道路交叉口上,或者处于既有地表道路交叉口外侧,并且相对独立,因此称为“副交叉口”。相应地, 地表既有交叉口称为“主交叉口”。主、副两个交叉口的行驶方向相反。如果主交叉口靠右行驶,那么副交叉口靠左行驶;如果主交叉口靠左行驶,则副交叉口靠右行驶。
在一个方面,本发明提供了一种用于四个道路方向的道路枢纽,包括:主交叉口,其包括主中央部以及分别在所述四个道路方向上从所述主中央部向外延伸的第一对、第二对、第三对、第四对主通道,每一对主通道包括主上行通道和主下行通道;以及副交叉口,其独立于所述主交叉口,并且包括副中央部以及分别在所述四个道路方向上从所述副中央部向外延伸的第一对、第二对、第三对、第四对副通道,每一对副通道包括副上行通道和副下行通道,其中,每一对主通道中的主上行通道在顺时针方向和逆时针方向中的一个方向上与相邻的一对主通道中的主下行通道经由所述主中央部连通,并且每一对副通道中的副上行通道在顺时针方向和逆时针方向中的另一个方向上与相邻的一对副通道中的副下行通道经由所述副中央部连通。
优选地,每一对主通道中的主上行通道和主下行通道并排布置。
优选地,每一对副通道中的副上行通道和副下行通道并排布置。
优选地,所述第一对主通道中的主上行通道和主下行通道分别与所述第三对主通道中的主下行通道和主上行通道经由所述主中央部连通,并且所述第二对副通道中的副上行通道和副下行通道分别与所述第四对副通道中的副下行通道和副上行通道经由所述副中央部连通。有利地,所述第二对主通道与所述第四对主通道不连通,且所述第一对副通道与所述第三对副通道不连通。
替代地,所述第一对主通道中的主上行通道和主下行通道分别与所述第三对主通道中的主下行通道和主上行通道经由所述主中央部连通,且所述第二对主通道中的主上行通道和主下行通道分别与所述第四对主通道中的主下行通道和主上行通道经由所述主中央部连通。有利地,所述第一对副通道与所述第三对副通道不连通,且所述第二对副通道与所述第四对副通道不连通。
替代地,所述副中央部具有可转动隔离栏,所述可转动隔离栏选择性地连通所述第一对副通道与所述第三对副通道,或者连通所述第二对副通道与所述第四对副通道。
替代地,所述主中央部和/或所述副中央部为环岛的形式。
优选地,所述副交叉口高架于所述主交叉口上方。替代地,所述副交叉口下沉于所述主交叉口下方。替代地,所述副交叉口与所述主交叉口处于同一平面中,且每一对副通道位于相应的一对主通道的两侧。
优选地,所述主中央部包括第一主中央部和第二主中央部,所述第一对主通道中的主上行通道和主下行通道分别与所述第三对主通道中的主下行通道和主上行通道经由所述第一主中央部连通,且所述第二对主通道中的主上行通道和主下行通道分别与所述第四对主通道中的主下行通道和主上行通道经由所述第二主中央部连通,并且其中,所述第一主中央部下沉于所述第二主中央部下方。
优选地,所述副交叉口与所述主交叉口处于同一平面中,且每一对主通道位于相应的一对副通道的两侧,并且其中,每一个道路方向上的主上行通道经由所述主中央部与其它三个道路方向上的副下行通道连通,且每一个道路方向上的副上行通道经由所述主中央部与其它三个道路方向上的主下行通道连通。
优选地,每一对副通道均包括换道装置,所述换道装置用于将所述副通道的副上行通道和副下行通道分别连通到相应的一对主通道的主上行通道和主下行通道。
优选地,所述副中央部具有从第二对副通道延伸到第四对副通道的隔离栏,从而使所述第一对副通道与所述第三对副通道不连通。优选地,所述副中央部具有位于所述隔离栏两侧的隔离区。更优选地,所述隔离区为泊车区、禁驶区、减重孔或墩台的形式。
优选地,所述副下行通道具有多于一个的出口。
优选地,所述的道路枢纽进一步包括独立于所述主交叉口和所述副交叉口的第三交叉口。
在另一个方面,本发明提供了一种用于三个道路方向的道路枢纽,包括:主交叉口,其包括主中央部以及分别在所述三个道路方向上从所述主中央部向外延伸的第一对、第二对、第三对主通道,每一对主通道包括主上行通道和主下行通道;以及副交叉口,其独立于所述主交叉口,并且包括副中央部以及第一对、第二对副通道,所述第一对副通道包括在所述三个道路方向中的第一方向上从所述副中央部向外延伸的副上行通道和副下行通道,所述第二对副通道包括分别在所述 三个道路方向中的第二方向和第三方向上从所述副中央部向外延伸的副上行通道和副下行通道,其中,每一对主通道中的主上行通道在顺时针方向和逆时针方向中的一个方向上与相邻的一对主通道中的主下行通道连通,并且每一对副通道中的副上行通道在顺时针方向和逆时针方向中的另一个方向上与相邻的一对副通道中的副下行通道经由所述副中央部连通。
在又一个方面,本发明提供了一种用于在具有多个道路方向的道路枢纽处执行的道路行车方法,所述道路枢纽包括相互独立的主交叉口和副交叉口,所述主交叉口包括在所述多个道路方向上延伸的多个主上行通道和主下行通道,所述副交叉口包括在所述多个道路方向上延伸的多个副上行通道和副下行通道,所述方法包括:允许车辆从一个道路方向上的主上行通道沿顺时针方向和逆时针方向中的一个方向通行到相邻的另一个道路方向上的主下行通道;并且允许车辆从一个道路方向上的副上行通道沿顺时针方向和逆时针方向中的另一个方向通行到相邻的另一个道路方向上的副下行通道。
以靠右行驶的国家和地区中十字交叉口为例,在设置了主、副两套交叉口后,主交叉口靠右行驶,四个来向的右转弯和两个方向的直行,比如东向西、西向东直行在主交叉口通行;副交叉口靠左行驶,四个左转弯和剩余的两个直行,比如南向北、北向南两个直行靠左行驶。各路车辆各行其道,从根本上杜绝了不同通行方向上的车辆需要轮流通行的问题。
与既有无交织式立交桥必须构建多层结构或迂回绕行的结构不同,应用副交叉口后,转弯的车辆避开了在交叉口跨越直行车道,而且只需要用一层结构即可轻松实现既有全互通式立交桥的全部功能。与同样一层结构的苜蓿叶型立交桥相比,应用副交叉口的立交桥,其桥上的转弯车辆经大半径弯道可完成90度的直接转向,不用像苜蓿叶型立交桥那样要迂回盘旋并270度转向。两者相比,前者的转弯匝道要向路外扩张,并且占用道路之外的土地,而后者的匝道建在交叉口之上,并不占用道路之外的任何土地,这种特点尤其适合寸土寸金的城市中心区。
设置副交叉口是一种对既有城市道路的改造方案,副交叉口一般是高架设置,可以采用模块化结构,建造和拆除都很容易。除此之外 还有一种应用副交叉口的新式立交桥,也即应用副交叉口的下沉式立交桥。这种立交桥属于全新规划设计,不影响地面的城市景观,只向地下开挖一层;不占用道路之外的地下空间,具有结构紧凑,占地小、功能完备的显著有点,能够很好的解决重要交叉口的拥堵问题。
附图说明
图1至图5示意性地显示了根据本发明的用于四个道路方向的道路枢纽的一个实施方案;
图6和图7示意性地显示了车辆在主副交叉口之间切换的一种方式;
图8示意性地显示了根据本发明的副下行通道的一个实施方案;
图9示意性地显示了根据本发明的副交叉口的一个变型;
图10示意性地显示了根据本发明的副交叉口的另一个变型;
图11示意性地显示了根据本发明的用于三个道路方向的道路枢纽的一个实施方案;
图12和图13示意性地显示了根据本发明的用于四个道路方向的道路枢纽的另一个实施方案;
图14和图15示意性地显示了车辆在主副交叉口之间切换的另一种方式;
图16示意性地显示了根据本发明的副交叉口的又一个变型;
图17和图18示意性地显示了根据本发明的用于四个道路方向的道路枢纽的又一个实施方案;
图19示意性地显示了车辆在主副交叉口之间切换的又一种方式;以及
图20至图22示意性地显示了副交叉口下沉的道路枢纽的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是为了更加全面透彻地理解本发明的公开内容。
术语“上行”或“下行”并非指高度上的“上”或“下”,而是表示进入或离开交叉口。同样,“上行通道”或“下行通道”是指车辆进入或离开交叉口的通道,而与车辆进入或离开时的高度变化无关。
术语“连通”指的是在一个通道中行驶的车辆能够转移到另一个通道中行驶。
术语“纵向”指道路延伸的方向,且“横向”指横穿道路的方向。
以下将结合附图,详细介绍根据本发明的各个实施方案的道路枢纽的结构和功能。
图1示意性地显示了可以在靠右行驶的国家实施的道路枢纽,其适于在四个道路方向上引导车辆。在道路主交叉口之上架设了副交叉口,副交叉口由一个顶盘1和诸如桥上通道2的四侧桥上通道构成,四侧的桥上通道结构相似。此处用字母N、W、S、E分别代表北、西、南、东四个方向。这里以西侧为例,其桥上通道2包括上行通道2A和下行通道2B。上行通道2A位于左侧,下行通道2B位于右侧,车辆靠左行驶,这与桥下地表路面上靠右行驶的情形正好相反。顶盘1上东西走向的隔离栏5将桥上的南北直行车道隔断。在隔离栏5的两侧具有以封闭的弯道线6A和6B划分的两块机动泊车区5A和5B。从西侧上桥的车辆3,可以沿3A点位和3B点位直行;也可以沿3C点位和3D点位左转弯。而从南侧上桥的车辆4,由于前方直行车道被隔断,只能沿4A点位和4B点位左转弯。桥下遵循的是靠右行驶的交通规则,包括西侧右转弯车辆7在内的所有右转弯都在主交叉口完成。
图2显示的道路枢纽与图1相似,但适于在靠左行驶的国家实施。在道路主交叉口之上架设的副交叉口,其顶盘8连接北、西、南、东四侧的桥上通道。其西侧桥上通道9的上行通道9A在右侧,下行通道9B在左侧,车辆靠右行驶,这与桥下地表路面靠左行驶的情形相反。来自西侧的车辆10,可以经10A点位和10B点位直行,也可以沿10C点位和10D点位右转弯。包括来自南侧的左转弯车辆11在内的所有地表路面左转弯都在主交叉口完成。
图3示意性地显示了一种轻型副交叉口。在其顶盘12的隔离栏12C两侧设置有两处封闭围栏12A和12B,围栏中间是贯通到底盘底部的减重孔。这样的设计不但减轻了顶盘的重量,还加强了顶盘之下地表路面主交叉口的自然光照度。
图4是图1所示的道路枢纽被移除道路副交叉口的顶盘后的情形,可以看到支撑顶盘的支柱15和北、西、南、东四侧的桥上通道。这里以北侧为例,该侧桥上通道由上行通道13A和下行通道13B组成,其中下行通道13B中的一段为被门形支柱13C支撑的高架平直车道。地面的主交叉口和现有城市道路交叉口相似,划有停车线14A和斑马线14B,并且设置有各侧信号灯16,地面道路基本维持现有的交通规则。
图1至图4所示的道路枢纽可以用于构建城市轿车用立交桥,也就是副交叉口和桥上通道的车道尺寸都是按照轿车专用的标准来设计,不考虑大型车辆通过。这样对坡道坡度、桥梁强度的要求低,工程量也比较小。高架的副交叉口分流了四个方向左转弯和东向西、西向东两方向直行轿车后,地表交通压力大大降低,地表的主交叉口一般还保留既有的交通规则,以备大型车和非机动车及行人通过。然而,直行的绿灯时间会有比较大的差别,南北方向直行没有桥上通道,绿灯时间较长,而东西方向由于有高架的轿车直行通道,绿灯较短。南北直行和东西直行的绿灯时间之比可以选择3或者更大的值。
图5示意性地显示了只用于左转弯的道路副交叉口。副交叉口设有四个大半径的左转弯匝道17A、17B、17C和17D,车辆在此可以实现快速左转弯。四个右转弯在地表路面的主交叉口完成,来自北、西、南、东四个方向的右转弯车辆18A、18B、18C、18D均在桥下通行。同时,四个方向的直行也在地表路面的主交叉口实现。
图6示意性地显示了根据本发明的一种换道方式,车辆由此可以实现在左行规则和右行规则之间的切换。这里以东侧为例,从图中可以看到道路副交叉口一侧桥上通道包括下桥通道19和上桥通道20。上桥通道包括上桥坡道20A和换道导引栏20B。下桥通道包括高架直道19A、弯曲变换车道19B和下桥坡道19C。上桥坡道20A和下桥坡道19C前后布置,并且占用同一条车道。
图7示意性地显示了根据本发明的东侧桥上通道的俯视图。从图中可以看到上桥车辆21的行车轨迹线21D,以及顺序的三个关键点位21A、21B和21C。从行车轨迹及关键点位可以看到,车辆21在行进过程中,经历了从右到左的换道过及上坡过程。相似地,下桥车辆22沿其行车轨迹线22D,在经过了顺序的三个关键点位22A、22B和22C后,完成了从左向右换道和下坡的过程。两条行车轨迹线21D和22D, 从俯视图上看去是交叉布置的,但由于不在一层,实际上并不相交。
图8是图6中的下桥通道加装了副下桥坡道的示意图。由于上桥坡道和主下桥坡道前后布置的缘故,主下桥坡道25A的坡口会距离道路交叉口比较远。如果要进入离交叉口较近的城市功能区,比如居住小区就会很不方便。为了弥补这种缺陷,在高架的弯曲变换车道24处设置主出口端24A和副出口端24B,后者直通副下桥坡道25B。经由此通道,车辆可以快捷的到达道路一侧的城市功能区。
图9中的(a)、(b)两图示意性地显示了一种应用选向顶盘的道路副交叉口的俯视图。该顶盘中心设有一个选向转动门。在(a)图中转动门位于隔断东、西直行车道的位置30A,从西侧上桥的车辆26只能经由26A点位和26B点位左转弯,而从南侧上桥的车辆27则既可以经27A点位向北直行,又可以经27B点位向西左转弯。因此,从南、北两侧上桥的车辆可以是直行与左转弯混合编队,而从东、西两侧上桥的就只能是左转弯车辆。在(b)图中转动门位于隔断南、北方向直行车道的位置30B,从南侧上桥的车辆29只能经由29A点位和29B点位左转弯,而从西侧上桥的车辆28,既可以经28A点位向东直行,又可以经28B点位向北左转弯。因此,从东、西两侧上桥的车辆可以是直行与左转弯混合编队,而从南、北两侧上桥的只能是左转弯车辆。
图10中的(a)、(b)两图示意性地显示了一种交替通行的道路副交叉口的俯视图。该副交叉口的特点是设有信号灯,并且划有停车线。北、西、南、东各侧共四条停车线正好围成一个方框34,从各个方向上桥的都是直行与左转弯的混编车队。在(a)图中,南、北两侧是红灯32A和32B,来自北、南两侧的直行与左转混编车队33A和33B停车等待。此时东、西两侧是绿灯,比如从西侧上桥的车辆31,既可以经31A位直行,也可以经31B位左转弯。在(b)图中,东、西两侧是红灯35B和35A,来自东、西两侧的直行与左转混编车辆36B和36A停车等待。此时南、北两侧是绿灯,比如从南侧上桥的车辆37,既可以经37A位直行,也可以经37B位左转弯。
图11示意性地显示了根据本发明的道路枢纽的另一个实施方案,其适用于T字路口。在该道路枢纽中,顶盘42具有三个端口,连接北、南、东三侧桥上通道,其东侧桥上通道38由上桥通道38A和下桥通道38B组成,而北、南两侧桥上通道分别只有单一的上行坡道41A和下 行坡道41B。从北侧上桥的车辆40,既可以经40A点位直行下桥,也可以经40B点位左转下桥;从东侧上桥的车辆39,只能经39A点位和39B点位左转下桥。当然,在顶盘42中也可仅设置两个左转弯通道,而不设置北向南的直行通道,该直行功能在主交叉口中实现。
图12示意性地显示了根据本发明的道路枢纽的另一个实施方案,其中道路副交叉口是下沉式的。从图中可以看到通往地下副交叉口的四个入口44A、44B、44C和44D,进入这四个入口的都是左转弯车辆或直、左混编车辆。地表路面的主交叉口与普通的道路交叉口相似,包括各侧斑马线46和信号灯47。地面车辆包括比如北向南行驶的直行车辆45,以及四个方向的右转弯车辆43A、43B、43C和43D。地面上的所有左转弯车辆及一部分直行车辆被引导到地下交叉口。
图13是图12中的道路枢纽被移除道路表面层后看到的情形。位于地下的副交叉口的结构明显可见,其东、西直行车道被隔离栏50隔开,隔离栏两侧是兼承重与隔离功能的墩台50A和50B,该墩台的弯曲侧面是左转弯通道的一个侧面。来自北侧入口的车辆48,既可选择经48A点位和48B点位向南直行,也可以选择经48C点位和48D点位向东左转。来自西侧的车辆49,只能经49A点位和49B点位左转弯。
图14示意性地显示了根据本发明的副交叉口的一侧桥上通道。可以看到东侧桥上通道的入口通道51和出口通道55。入口通道还连接着换道导引栏52,当车辆从右侧内车道54由东向西驶来,经导引箭头53指引、沿导引栏52向左转弯后才能进入入口通道51内。从出口55出来的车辆则汇入地表的右侧车道中去。
图15示意性地显示了道路副交叉口为下沉式的道路枢纽。(a)图是移除道路表面层后看到的情形,位于地下的出口通道分为地下直道58A、弯曲变换车道58B和上行坡道58C三个部分。准备驶离的车辆57顺序经由57A、57B和57C这三个关键点位后驶离地下桥。准备驶入地下桥的车辆56,既可以经56A点位直行,也可以经56B点位左转弯。(b)图是路面未剖的情形,图中标注了车辆的驶入轨迹线59和驶出轨迹线60,两轨迹线位于地下的不可见部分用虚线表示。从图中可以看到,驶入轨迹线59的前段59A和后段59B分别位于两条相邻的车道,驶出轨迹线60的前段60A和后段60B也分别位于两条相邻的车道。两轨迹线59和60“交叉”但不相交。无论进入,或是驶离地下 桥的车辆,在进入或驶离前,都要做一次左、右位置的变换后才进入下行或上行的坡道内。通过图14和图15描述的方式,同样可以实现车辆在主、副交叉口的不同行驶规则之间的切换。另外,图14和图15结合下沉式副交叉口的情形进行了描述,但本领域技术人员将会意识到,该换道方式同样适用于高架式副交叉口的情形。
图16示意性地显示了道路副交叉口演变为环形道路副交叉口的情形。现有城市道路的交叉口设置为环岛后,可以适当地解决交通拥挤的问题,但是在车流量持续增大的情况下,拥堵仍不可避免。此外,环岛也会给左转弯车辆带来不便。来自四个方向的左转弯车辆,都需要连续转弯3/4圆周,绕行较远,并且还会影响直行车辆,拥堵风险较高。图中给出的技术方案是,在环岛61的地表环形车道62A之下构建地下环形车道62B,两者车流方向相反;地表车流右旋,为逆时针方向;地下通道里车流左旋,为顺时针方向。地表一侧比如东侧的车道设置和图15、图16所示情形相同,入口通道63A在左,位于地下的出口通道63B在右。两通道在与地下环形车道62B交接处有隔离台64。采用环形道路副交叉口后,左转弯车辆从地下通道62B中通过,只需要绕行1/4圆周,既节省距离,又大大减轻了地面右旋环形车道62A的交通压力。而对于直行车辆来说,则可以任意选择在地表环形车道或地下环形车道通过,因为两者通过的距离相同,都是绕行1/2圆周。
图17示意性地显示了根据本发明的道路枢纽的又一个实施方案。在该实施方式中,主交叉口和副交叉口的车道大致位于同一平面中。如图所示,主交叉口的下行通道102和上行通道104位于副交叉口的上行通道101和下行通道103的两侧。本例中主交叉口靠右行驶,副交叉口靠左行驶。图中重点展示了南侧-S的情形,其他如北-N,西-W,东-E三侧也是与南侧相同的结构。内嵌型的副交叉口一般不与主交叉口干涉,通常会下沉至主交叉口之下。副交叉口的车道在临近交叉口时分为两路,一路通往主交叉口,另一路经下行坡道105被导引到地下的副交叉口处。
图18示意性地显示了图17中的道路枢纽的副交叉口。该副交叉口位于地下,其正上方是主交叉口,且该副交叉口只允许直行与左转弯混合编队的小轿车通行。在(a)图中,由东、西两方向来的直行与左转弯车辆正在通过副交叉口,而南、北方向来的直、左混编车列106A 和106B则在各自的停车线处等待。在(b)图中,南、北方向来的直行与左转弯车辆通行,由东、西方向来的直、左混编车列107A和107B在各自的停车线处等待。
图19示意性地显示了主交叉口和副交叉口之间互连互通的示意图。该互连互通一般都在地表的主交叉口完成。在(a)图中,来自南侧、准备驶离副交叉口的车辆108,主要以右转弯的形式进入东侧主交叉口的车道中,该车也可伺机以直行或左转弯的形式进入北侧、西侧的主交叉口车道中去。在(b)图中,准备由主交叉口进入副交叉口的车辆109,可以直行、左转弯、右转弯的形式经北侧、西侧、东侧入口进入到副交叉口的车道中去。
图20示意性地显示了副交叉口下沉的道路枢纽的示意图。以隔离栏123隔开的南北方向两条车道,以及四个左转弯车道同在下层道路平面,而东西方向两条直行车道125则下穿该平面。四个属于地表主交叉口的右转弯,为了避让路面行人及非机动车,利用斜坡下沉至下层路面,图中可见东侧右转弯下行坡道122B和其在北侧的上升坡道122A。四个右转弯和四个左转弯虽然在同一个平面上,但彼此被隔离栏124隔离开来,互不相通。
图21是图20中的道路枢纽的俯视图。从该图中可以更直观地看到各方向来车在同一空间里互不干扰,并且自如通行的状况。图中除东、西方向两个直行下穿地下路面外,剩余的四个右转弯,四个左转弯和南北方向两个直行都在同一个平面内,而且左、右转弯的轨迹线相邻却并不干涉,真正达到了在交叉口完全消灭冲突点的目的。
图22是图20可选地加了地表路板后的情形。地表车道属于现有道路,车辆靠右行驶。路板中分线上则规律的布置有长椭圆形的路心出入口,分为异侧开口平台在高位的类型127和同侧开口平台在高位的类型130。路心出入口之间以隔离栏126相连。从图中还可以看到路板西侧的右转弯下沉入口129和上升出口128,其他三侧也都有这样的右转弯出口和入口。
图21所示的道路枢纽还可以按照另一种方式实施。在该方式中,主交叉口和副交叉口及其行车通道大致位于同一平面上,且副交叉口居中,主交叉口的通道位于副交叉口的相应通道两侧(外侧)。这样,主交叉口和副交叉口在一个平面上即可分别实现车辆的右转弯和左转 弯。另外,如图所示,副交叉口可以包括地表的第一副交叉口和下沉的第二幅交叉口。第一副交叉口例如在东西方向上被隔开,从而允许车辆在南北方向上直行。相应地,第二副交叉口在南北方向上被隔开,从而允许车辆在东西方向上直行。这样,就以一种更为简洁和紧凑的结构实现了车辆的左转弯、右转弯和直行。当然,图21所示的情形也可以按照相反的情形实施,即,主交叉口和副交叉口及其行车通道大致位于同一平面上,且主交叉口居中,副交叉口的通道位于主交叉口的相应通道两侧(外侧)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种用于四个道路方向的道路枢纽,包括:
    主交叉口,其包括主中央部以及分别在所述四个道路方向上从所述主中央部向外延伸的第一对、第二对、第三对、第四对主通道,每一对主通道包括主上行通道和主下行通道;以及
    副交叉口,其独立于所述主交叉口,并且包括副中央部以及分别在所述四个道路方向上从所述副中央部向外延伸的第一对、第二对、第三对、第四对副通道,每一对副通道包括副上行通道和副下行通道,
    其中,每一对主通道中的主上行通道在顺时针方向和逆时针方向中的一个方向上与相邻的一对主通道中的主下行通道经由所述主中央部连通,并且每一对副通道中的副上行通道在顺时针方向和逆时针方向中的另一个方向上与相邻的一对副通道中的副下行通道经由所述副中央部连通。
  2. 根据权利要求1所述的道路枢纽,其中,所述第一对主通道中的主上行通道和主下行通道分别与所述第三对主通道中的主下行通道和主上行通道经由所述主中央部连通,并且
    其中,所述第二对副通道中的副上行通道和副下行通道分别与所述第四对副通道中的副下行通道和副上行通道经由所述副中央部连通。
  3. 根据权利要求1所述的道路枢纽,其中,所述第一对主通道中的主上行通道和主下行通道分别与所述第三对主通道中的主下行通道和主上行通道经由所述主中央部连通,且所述第二对主通道中的主上行通道和主下行通道分别与所述第四对主通道中的主下行通道和主上行通道经由所述主中央部连通。
  4. 根据权利要求1所述的道路枢纽,其中,所述副中央部具有可转动隔离栏,所述可转动隔离栏选择性地连通所述第一对副通道与所述第三对副通道,或者连通所述第二对副通道与所述第四对副通道。
  5. 根据权利要求1所述的道路枢纽,其中,所述主中央部和/或所述副中央部为环岛的形式。
  6. 根据权利要求1至5中任一项所述的道路枢纽,其中,所述副交叉口高架于所述主交叉口上方,或者下沉于所述主交叉口下方。
  7. 根据权利要求3所述的道路枢纽,其中,所述副交叉口与所述 主交叉口处于同一平面中,且每一对副通道位于相应的一对主通道的两侧。
  8. 根据权利要求3或7所述的道路枢纽,其中,所述主中央部包括第一主中央部和第二主中央部,所述第一对主通道中的主上行通道和主下行通道分别与所述第三对主通道中的主下行通道和主上行通道经由所述第一主中央部连通,且所述第二对主通道中的主上行通道和主下行通道分别与所述第四对主通道中的主下行通道和主上行通道经由所述第二主中央部连通,并且
    其中,所述第一主中央部下沉于所述第二主中央部下方。
  9. 根据权利要求3所述的道路枢纽,其中,所述副交叉口与所述主交叉口处于同一平面中,且每一对主通道位于相应的一对副通道的两侧,并且
    其中,每一个道路方向上的主上行通道经由所述主中央部与其它三个道路方向上的副下行通道连通,且每一个道路方向上的副上行通道经由所述主中央部与其它三个道路方向上的主下行通道连通。
  10. 根据权利要求1至5中任一项所述的道路枢纽,其中,每一对副通道均包括换道装置,所述换道装置用于将所述副通道的副上行通道和副下行通道分别连通到相应的一对主通道的主上行通道和主下行通道。
  11. 根据权利要求2所述的道路枢纽,其中,所述副中央部具有从第二对副通道延伸到第四对副通道的隔离栏,从而使所述第一对副通道与所述第三对副通道不连通,优选地,所述副中央部具有位于所述隔离栏两侧的隔离区,更优选地,所述隔离区为泊车区、禁驶区、减重孔或墩台的形式。
  12. 根据权利要求1至5中任一项所述的道路枢纽,其中,所述副下行通道具有多于一个的出口。
  13. 根据权利要求1至5中任一项所述的道路枢纽,进一步包括独立于所述主交叉口和所述副交叉口的第三交叉口。
  14. 一种用于三个道路方向的道路枢纽,包括:
    主交叉口,其包括主中央部以及分别在所述三个道路方向上从所述主中央部向外延伸的第一对、第二对、第三对主通道,每一对主通道包括主上行通道和主下行通道;以及
    副交叉口,其独立于所述主交叉口,并且包括副中央部以及第一对、第二对副通道,所述第一对副通道包括在所述三个道路方向中的第一方向上从所述副中央部向外延伸的副上行通道和副下行通道,所述第二对副通道包括分别在所述三个道路方向中的第二方向和第三方向上从所述副中央部向外延伸的副上行通道和副下行通道,
    其中,每一对主通道中的主上行通道在顺时针方向和逆时针方向中的一个方向上与相邻的一对主通道中的主下行通道连通,并且每一对副通道中的副上行通道在顺时针方向和逆时针方向中的另一个方向上与相邻的一对副通道中的副下行通道经由所述副中央部连通。
  15. 一种用于在具有多个道路方向的道路枢纽处执行的道路行车方法,所述道路枢纽包括相互独立的主交叉口和副交叉口,所述主交叉口包括在所述多个道路方向上延伸的多个主上行通道和主下行通道,所述副交叉口包括在所述多个道路方向上延伸的多个副上行通道和副下行通道,所述方法包括:
    允许车辆从一个道路方向上的主上行通道沿顺时针方向和逆时针方向中的一个方向通行到相邻的另一个道路方向上的主下行通道;并且
    允许车辆从一个道路方向上的副上行通道沿顺时针方向和逆时针方向中的另一个方向通行到相邻的另一个道路方向上的副下行通道。
PCT/CN2018/076244 2017-07-01 2018-02-11 用于多个道路方向的道路枢纽以及道路行车方法 WO2019007069A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880044432.9A CN111133150A (zh) 2017-07-01 2018-02-11 用于多个道路方向的道路枢纽以及道路行车方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710527697.1 2017-07-01
CN201710527697.1A CN109208416A (zh) 2017-07-01 2017-07-01 一种加入小循环系统的复合式城市交通系统

Publications (1)

Publication Number Publication Date
WO2019007069A1 true WO2019007069A1 (zh) 2019-01-10

Family

ID=64949685

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/076244 WO2019007069A1 (zh) 2017-07-01 2018-02-11 用于多个道路方向的道路枢纽以及道路行车方法
PCT/CN2018/076245 WO2019007070A1 (zh) 2017-07-01 2018-02-11 复合道路模块、单元和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076245 WO2019007070A1 (zh) 2017-07-01 2018-02-11 复合道路模块、单元和系统

Country Status (4)

Country Link
US (1) US11359337B2 (zh)
CN (3) CN109208416A (zh)
EA (1) EA202090059A1 (zh)
WO (2) WO2019007069A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020243109A1 (en) * 2019-05-24 2020-12-03 Elreich Ahmad Abu Transportation systems for hybrid vehicles
CN115605646A (zh) * 2020-12-23 2023-01-13 都快通(北京)交通疏导设备有限公司(Cn) 紧凑型复合道路模块、单元和系统
CN114481903B (zh) * 2021-12-17 2023-03-24 中电建(四川)城市运营管理有限公司 一种高速公路收费站限流装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921701A (en) * 1997-06-25 1999-07-13 Clayton; Robert F. Traffic interchange
RU2152471C1 (ru) * 1999-12-31 2000-07-10 ООО "Организатор" Транспортная развязка
CN1542225A (zh) * 2003-11-07 2004-11-03 雍尚平 在信号交叉口一种新型的车道设置方式及其交通控制组织
CN101538820A (zh) * 2009-04-10 2009-09-23 马建明 机动车“快速左移左转、直线同步行进”通行模式
CN101581064A (zh) * 2009-04-14 2009-11-18 燕山大学 分离型分道高速公路
GB2466279A (en) * 2008-12-18 2010-06-23 David Charles Edwards Motorway junction system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915580A (en) * 1974-06-21 1975-10-28 Raymond Lee Organization Inc Traffic intersection
US5049000A (en) * 1987-12-23 1991-09-17 Mier Francisco D Continuous flow intersection
US4955751A (en) * 1989-08-22 1990-09-11 John Tsai Crossroad without traffic lights
CN1105084A (zh) * 1994-06-07 1995-07-12 阴继庞 4/4(4/3)车道地上双层无交叉立交桥
CN1123859A (zh) * 1995-09-29 1996-06-05 李祥裕 十字双坡单层架空立体交叉桥
US5846020A (en) * 1997-06-26 1998-12-08 Mckeown; Kevin Pre-fabricated multi-level roadway structure
CN1379156A (zh) * 2002-04-30 2002-11-13 王占元 万象轴立体交叉路口
CN100408757C (zh) * 2005-08-23 2008-08-06 邹世才 城市干道平交十字路口汽车、自行车无冲突左转的方法
CA2630869A1 (en) * 2005-11-24 2007-05-31 Jozef Goj Traffic control intersection
CN101033598A (zh) * 2006-03-07 2007-09-12 程祖本 一种全流通法交叉路口的道路设置、信号灯控制及通行方法
ATE458860T1 (de) * 2006-08-07 2010-03-15 Troester E K G Verkehrseinrichtung
CN200974950Y (zh) * 2006-08-23 2007-11-14 杜三平 城市交通组合立交桥
CN1958956A (zh) * 2006-10-02 2007-05-09 林书潮 左转车辆并向、并道、同步通行控制模式
WO2008150317A1 (en) * 2007-06-06 2008-12-11 Sing Robert L Double-deck covered roadway
US7739030B2 (en) * 2007-11-13 2010-06-15 Desai Shitalkumar V Relieving urban traffic congestion
CN101256716A (zh) * 2008-04-11 2008-09-03 张南 道路平面交叉口无冲突交通模式设置及其控制方法
CN102493298B (zh) * 2011-11-17 2014-01-01 何晓艳 能同时实现左转的交叉路口
CN103161105A (zh) * 2011-12-12 2013-06-19 洛阳丰兴机械科技有限公司 交叉路口畅通桥
CN102425090B (zh) * 2011-12-28 2014-12-03 陈清伟 可集约利用土地并能避免交通堵塞的城市立体道路
CN204530359U (zh) * 2015-03-27 2015-08-05 张文泉 城市多层环岛式立交桥
CN106381788A (zh) * 2016-11-11 2017-02-08 李玉杰 一种城市道路全网贯通结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921701A (en) * 1997-06-25 1999-07-13 Clayton; Robert F. Traffic interchange
RU2152471C1 (ru) * 1999-12-31 2000-07-10 ООО "Организатор" Транспортная развязка
CN1542225A (zh) * 2003-11-07 2004-11-03 雍尚平 在信号交叉口一种新型的车道设置方式及其交通控制组织
GB2466279A (en) * 2008-12-18 2010-06-23 David Charles Edwards Motorway junction system
CN101538820A (zh) * 2009-04-10 2009-09-23 马建明 机动车“快速左移左转、直线同步行进”通行模式
CN101581064A (zh) * 2009-04-14 2009-11-18 燕山大学 分离型分道高速公路

Also Published As

Publication number Publication date
CN111065778B (zh) 2021-06-29
US20200224370A1 (en) 2020-07-16
EA202090059A1 (ru) 2020-04-16
CN111133150A (zh) 2020-05-08
CN109208416A (zh) 2019-01-15
CN111065778A (zh) 2020-04-24
US11359337B2 (en) 2022-06-14
WO2019007070A1 (zh) 2019-01-10

Similar Documents

Publication Publication Date Title
US3394638A (en) Road junctions
WO2005031069A1 (fr) Systeme routier urbain d'echangeur complet et sa methode d'utilisation par le trafic
WO2019007069A1 (zh) 用于多个道路方向的道路枢纽以及道路行车方法
CN103046444A (zh) 优化设置的路口及其交通控制方法
KR20150105949A (ko) 도시 사거리 구조
CN105788305B (zh) 防止大都市中心区交通堵塞的方法
CN105862531A (zh) 一种组合式立交桥
WO2014063611A1 (zh) 多维交通路网
CN102268852A (zh) 一种城市道路交通系统的两相位实施方法
CN113597488B (zh) 用于多个道路方向的立交桥、道路系统以及道路行车方法
WO2013007100A1 (zh) 立交桥
US20180266056A1 (en) Interchange Crossroad with People Walking on Ground, Vehicles Traveling Above and Under Ground, and Only Vehicles on the Same Way Giving Way to One Another
WO2012116480A1 (zh) 五桥立交桥
CN105714632A (zh) 密柱窄跨低层高式城市穿越架高路
KR19980073738A (ko) 교통의 흐름을 원활하게 하기 위한 교차로 시스템
KR102246680B1 (ko) 교차로 통행 체계
CN107988866B (zh) 一种简易立交桥
CN108867217A (zh) 十字路快速通行立交桥
CN211227907U (zh) 组合互通立交桥
CN204435148U (zh) 一种小空间无冲突点的交叉路口结构
CN112376341A (zh) 地下回转式全互通十字路口和丁字路口
JP3194228U (ja) 立体インターチェンジ道路構造体
CN204825536U (zh) 一种人车分层的互通式立交桥
CN202559203U (zh) 十字形畅通式立交桥
CN217869756U (zh) 十字形单导向直通式立交桥

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827810

Country of ref document: EP

Kind code of ref document: A1