WO2019007070A1 - 复合道路模块、单元和系统 - Google Patents

复合道路模块、单元和系统 Download PDF

Info

Publication number
WO2019007070A1
WO2019007070A1 PCT/CN2018/076245 CN2018076245W WO2019007070A1 WO 2019007070 A1 WO2019007070 A1 WO 2019007070A1 CN 2018076245 W CN2018076245 W CN 2018076245W WO 2019007070 A1 WO2019007070 A1 WO 2019007070A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
road
channel
main
composite
Prior art date
Application number
PCT/CN2018/076245
Other languages
English (en)
French (fr)
Inventor
张惠东
Original Assignee
都快通(北京)交通疏导设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 都快通(北京)交通疏导设备有限公司 filed Critical 都快通(北京)交通疏导设备有限公司
Priority to US16/626,120 priority Critical patent/US11359337B2/en
Priority to CN201880044415.5A priority patent/CN111065778B/zh
Priority to EA202090059A priority patent/EA202090059A1/ru
Publication of WO2019007070A1 publication Critical patent/WO2019007070A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/02Crossings, junctions or interconnections between roads on the same level
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/002Design or lay-out of roads, e.g. street systems, cross-sections ; Design for noise abatement, e.g. sunken road
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/04Road crossings on different levels; Interconnections between roads on different levels

Definitions

  • the present invention generally relates to a composite road module.
  • the invention also relates to a composite road unit and a composite road system comprising the composite road module.
  • the root cause of urban traffic congestion is precisely the “right and left mixed”: at the intersection of planes, vehicles that go straight and turn left and right need to be commanded by signal lights, waiting in line and taking turns through the intersection. This makes the vehicle long waiting time and the traffic efficiency is low. Plane intersections, like the “bottlenecks” located in urban roads, can seriously reduce the ability of urban roads to pass. Coupled with the increasing number of cars in modern cities, the congestion problem has become increasingly prominent and has become a major social problem.
  • the main object of the present invention is to fundamentally solve the chronic diseases of urban traffic congestion, and the main idea is to provide a road driving scheme of "left and right driving".
  • left genus and "right genus"
  • vehicles from the north, west, south, and east directions each side arrives by car.
  • After the intersection there will be three choices of straight, left or right turn.
  • Each choice will form a traffic flow.
  • the first thing to do is to divide the above 12 road traffic into two categories: left and right.
  • the four left turns are “natural left”, and the two straight lines, such as the south to the north and the north to the south, are classified as “definition left”; correspondingly, the four right turns are “natural right”,
  • the next eastward westward and westward eastward straight line is "definition right”.
  • the twelve-way car at the intersection is divided into six "left-handed vehicles" and six "right-handed vehicles".
  • the present invention provides a composite road module comprising a first road and a second road, one of which is a left-hand road and the other is a right-hand road, and the vehicle follows the left-hand traffic in the left-hand road. Rules, follow the traffic rules that drive right on the right road. "According to the rules of the left-hand vehicle entering the left-hand road and the right-hand vehicle entering the right-hand road, the traffic mode of "left and right driving" is implemented. This will completely eliminate the conflict point, the vehicles will go their own way and can smoothly pass the intersection, the city Signal lights are no longer needed in the road network.
  • the composite road module of the present invention is particularly a double-deck road module, wherein the first and second roads are respectively formed as an upper layer and a lower road, and correspondingly, the intersections are also divided into an upper intersection and a lower intersection, at the intersection
  • the six roads are on the upper level and the six roads are on the lower level, and the average distribution is carried out on the categories.
  • the inventive composite road module can also be a planar road module in which the first and second roads are substantially on the same level.
  • the "left genus” or “right genus” of the vehicle is relative to the front intersection, where the intersection is “left genus” and may become “right genus” to the next intersection. Therefore, whether the vehicle is suitable for traveling on the first road or suitable for traveling on the second road is determined according to whether the front intersection is straight, left or right.
  • the first and second roads need to have a powerful "interconnection” function, enabling the vehicle to change its "left genus” or "right genus” attributes at any time and in order to pass each road quickly and efficiently. Intersection.
  • connection channels The so-called “interconnected” function is actually implemented by a set of connection channels.
  • the connecting passage is a ramp connecting different height roads.
  • the above-mentioned connecting passage is a bypass passage, an archway or a curve that connects the same height road.
  • the composite road module of the present invention may also have more than two outlets and/or more than two inlets.
  • the present invention provides a composite road module comprising a first road and a second road extending substantially in parallel, one of the first road and the second road being arranged for a left-passing rule of the vehicle Driving, another setting is for the vehicle to travel according to the right traffic rule, the first road includes a first lane and a second lane, and the second road includes a third lane and a fourth lane, wherein The first lane and the third lane are in communication with each other, and the vehicle is driven in the first direction, and wherein the second lane and the fourth lane are connected to each other, and the vehicle is in the vehicle Driving in a second direction opposite to the first direction.
  • the first lane and the second lane are arranged side by side to form an upper road, and the third lane and the fourth lane are arranged side by side to form a lower road, and wherein The third lane and the fourth lane are respectively located below the second lane and the first lane.
  • the composite road module further includes: a first connecting passage connecting the first lane to the third lane; and a second connecting passage connecting the second lane to the a fourth lane; a third connecting passage connecting the third lane to the first lane; and a fourth connecting passage connecting the fourth lane to the second lane.
  • one end of the first, second, third and fourth connecting channels is located between the first lane and the second lane, the other end is located in the third lane and the first Between the four lanes.
  • the upper road comprises a first partition and a second partition between the first lane and the second lane
  • the lower road comprises a third lane and a The third divider between the fourth lanes.
  • first, second, fourth and third connecting channels are arranged one after the other in the longitudinal direction.
  • the one end of the first connecting passage and the one end of the second connecting passage are laterally located on both sides of the first dividing rail, the one end and the third connecting passage
  • the one end of the fourth connecting passage is laterally located on both sides of the second dividing rail, and the other end of the second connecting passage and the other end of the fourth connecting passage are laterally located The same side of the third divider.
  • the composite road module further includes two ramps between the upper road and the lower road, one of the two ramps being the first connecting passage and the second connecting passage Formed, the other is formed by the fourth connecting channel and the third connecting channel.
  • the third dividing column includes a dividing post at a side thereof located at the fourth lane, thereby the other end of the second connecting passage and the other of the fourth connecting passage One end is isolated in the longitudinal direction.
  • the third, first, fourth, and second connecting passages are sequentially arranged in the longitudinal direction.
  • said one end of said third connecting passage and said one end of said first connecting passage are laterally located on the same side of said first dividing rail
  • said one end of said fourth connecting passage The one end of the second connecting passage is laterally located on the same side of the second dividing rail, and the other end of the first connecting passage and the other end of the fourth connecting passage are laterally located Both sides of the third dividing column.
  • the composite road module further includes two ramps between the upper road and the lower road, and one of the two ramps is connected by the third connecting passage and the first connecting passage Formed, the other is formed by the fourth connecting channel and the second connecting channel.
  • the first dividing column includes a dividing post at a side thereof located at the first lane, such that the one end of the third connecting passage and the one end of the first connecting passage are at Isolated vertically.
  • said second dividing column comprises a dividing post at a side thereof at said second lane, such that said one end of said fourth connecting passage and said one end of said second connecting passage are Isolated vertically.
  • each ramp has a generally trapezoidal longitudinal section, preferably each ramp includes two U-turn channels for communicating the third lane and the fourth lane.
  • the upper road further includes a fourth partition between the first lane and the second lane, the fourth partition being located at the first partition and the second partition Between the columns, and spaced apart from the first divider and the second divider to allow the first lane and the second lane to communicate.
  • one or more of the first dividing rail, the second dividing rail, the third dividing rail, and the fourth dividing rail are provided with a no-go zone or a parking zone on both sides.
  • the lower road is flush with the ground and the upper road is elevated above the lower road.
  • the lower road is wider than the upper road.
  • the upper road is flush with the ground and the lower road sinks below the upper road.
  • the second lane, the third lane, the fourth lane, and the first lane are sequentially arranged side by side in the lateral direction.
  • the composite road module further includes first, second, third, and fourth connecting passages
  • the second road further includes a first road segment and a second road segment, wherein the first connecting channel bypasses One port of the first road segment communicates the first traffic lane to the third traffic lane, and the second connection channel bypasses one port of the second road segment to connect the second traffic lane To the fourth lane, the third connecting passage bypasses another port of the first road segment to connect the third lane to the first lane, and the fourth connecting channel is wound
  • the fourth lane is connected to the second lane through another port of the second section.
  • the first road segment and the second road segment sink below the third lane and the fourth lane, or are elevated above the third lane and the fourth lane on.
  • the composite road module further includes: a first archway that communicates the first lane to the third lane across the fourth lane; and a second archway that spans The third lane connects the second lane to the fourth lane; the third lane crosses the fourth lane to connect the third lane to the first lane a row of lanes; and a fourth archway that communicates the fourth lane to the second lane across the third lane.
  • each of the composite road modules is in communication with each of the other three of the other composite road modules via a curve.
  • the curve is located in the intersection.
  • the present invention provides a composite road unit comprising: a composite road module according to the present invention; and one or two road junctions for a plurality of road directions, each road hub including a primary intersection and a secondary An intersection, wherein the main intersection includes a main central portion and a plurality of pairs of main channels extending outward from the main central portion in the plurality of road directions, each pair of main channels including a main uplink arranged side by side a passage and a main descending passage, the auxiliary intersection being independent of the main intersection, and including a sub-center portion and a plurality of pairs of sub-channels extending outward from the sub-center portion in the plurality of road directions, respectively
  • the pair of secondary channels include a secondary upstream channel and a secondary downstream channel arranged side by side, wherein the primary upstream channel in each pair of primary channels is in a direction of one of a clockwise direction and a counterclockwise direction and an adjacent pair of primary channels
  • the main downstream channel is connected via the main central portion, and the secondary upstream
  • the main uplink channel and the main downlink channel of the first pair of main channels are respectively connected to the main downlink channel and the main uplink channel of the third pair of main channels via the main central portion, and the second The main channel is not in communication with the fourth pair of main channels.
  • the secondary upstream channel and the secondary downstream channel of the second pair of secondary channels are respectively in communication with the secondary downstream channel and the secondary upstream channel of the fourth pair of secondary channels via the secondary central portion, and the first The secondary channel is not in communication with the third pair of secondary channels.
  • the main uplink channel and the main downlink channel of the first pair of main channels are respectively connected to the main downlink channel and the main uplink channel of the third pair of main channels via the main central portion, and the second The main up channel and the main down channel in the main channel are respectively connected to the main down channel and the main up channel in the fourth pair of main channels via the main central part.
  • the first pair of secondary channels are not in communication with the third pair of secondary channels, and the second pair of secondary channels are not in communication with the fourth pair of secondary channels.
  • the secondary intersection is in the same plane as the primary intersection, and each pair of primary channels is located on opposite sides of a corresponding pair of secondary channels.
  • the main ascending channel in each road direction is in communication with the other sub-downstream passages in the other three road directions via the main central portion, and the sub-upstream passages in each road direction are via the main central portion and the other three The main downstream channel in the direction of the road is connected.
  • the present invention provides a composite road system comprising one or more composite road units in accordance with the present invention and/or one or more composite road modules in accordance with the present invention.
  • the composite road system further comprises one or more existing roads.
  • the composite road system comprises a plurality of composite road modules, the plurality of composite road modules comprising at least one first composite road module arranged in a double layer form and at least one second composite road module arranged in a planar form,
  • the first road and the second road of the second composite road module are respectively connected to the first road and the second road of the first composite road module.
  • Figure 1 shows schematically an embodiment of a composite road unit according to the invention, which is a double-deck road unit;
  • FIGS. 2 to 5 are schematic views of an entrance region of a double-deck road unit according to the present invention.
  • 6 to 9 are schematic views of an exit region of a double-deck road unit according to the present invention.
  • Figure 10 shows the difference between an inlet zone and an outlet zone in accordance with the present invention
  • 11 and 12 are schematic views of a partition of a double-deck road unit according to the present invention.
  • FIG. 13 and 14 are schematic views of intersections of double-deck road units in accordance with the present invention.
  • 21 and 22 schematically illustrate another embodiment of a composite road unit according to the present invention, the composite road unit being a planar road unit;
  • Figures 29 and 30 schematically illustrate an embodiment of a two-story road system in accordance with the present invention.
  • upstream or “downstream” does not refer to “upper” or “lower” in height, but rather to entering or leaving an intersection.
  • upstream channel or “downstream channel” refers to the passage of a vehicle into or out of an intersection, regardless of the height change as the vehicle enters or leaves.
  • connection means that a vehicle traveling in one lane lane can be transferred to another lane.
  • Figure 1 is a typical left and right split double-deck road unit, which is a two-story structure, including two adjacent intersections and a road between them, where (a) is the upper road and (b) is the lower the way.
  • the upper and lower roads travel in the opposite direction, one to the right and one to the left.
  • the basic road unit can be divided into five parts, which are the left side intersections 1A, 1B, the entrance areas 2A, 2B, the separation areas 3A, 3B, the exit areas 4A, 4B, and the right side intersections 5A, 5B.
  • the structure and use of the basic road unit will be introduced in turn according to the four parts of the entrance area, the exit area, the separation area and the intersection.
  • FIG. 2 is a schematic illustration of the inlet zone.
  • the vehicle in the upper road 6A travels to the right, and the vehicle in the lower road 6B travels to the left.
  • This is a "two-in-one" composite entrance with two inlets 8A and 8B.
  • the two inlets are separated by a partition 7 which is integrally connected with the fence 7A of the left inlet 8A and the fence 7B of the right inlet 8B.
  • the openings of the two inlets 8A and 8B are oppositely arranged.
  • the vehicles 9A and 9B which are preparing to drive from the upper floor to the lower floor, turn left and adjust the front end, ready to enter the respective entrances 8A and 8B.
  • the vehicle U-turn areas 10A and 10B are respectively provided.
  • the two figures (a) and (b) in Fig. 3 are a side view and a plan view, respectively, of the inlet region in Fig. 2.
  • the trapezoidal ramp 11 that connects the upper and lower roads is a double-sided ramp, and the left inclined surface 11A and the right inclined surface 11B are the downward passages of the vehicle.
  • Fig. 4 is a cross-sectional view of the inlet zone of Fig. 2, which allows a more intuitive view of the opposite direction of travel of the upper road and the lower road.
  • the vehicle 18A on the right side of the upper floor and the vehicle 18B on the left side of the lower floor have their tails outward.
  • the vehicle 19A on the left side of the upper floor and the vehicle 19B on the right side of the lower floor have their front faces outward.
  • This "diagonally directional" nature makes “diagonal intercommunication” possible.
  • the vehicles from the left side of the upper layer can smoothly enter the "diagonal" lower right side road after passing through the four key positions of 17A, 17B, 17C and 17D.
  • the U-turn vehicle 20 on the left side of the lower floor is moving from the U-turn channel into the lower right-hand road.
  • FIG. 5 is a perspective view of another angle of the inlet zone of FIG. 2, which can completely see the trajectory of the vehicle interconnecting the upper and lower interconnections.
  • 21A is the downward trajectory line on the left side. The vehicle travels along the trajectory line and keeps straight ahead at the 22A position. When it reaches the 22B position, the left transition track starts. The 22C position is in the downhill ramp, and then to the 22D position. Drive to the lower road and you will switch to the left again.
  • the trajectory 21A has two lane change curves and one down ramp line.
  • the other trajectory 21B is also the same, and the vehicle completes the interconnection from the upper layer to the lower layer along the trajectories 21A and 21B, and needs to undergo two left turns and one down course.
  • FIG. 6 is a schematic illustration of the exit zone.
  • This is a “two-in-one” composite exit with two exits 23A and 23B, which are the exits on the left and right sides of the lower road leading to the right and left sides of the upper road.
  • the two outlets are separated by a divider 25.
  • the openings of the two outlets 23A and 23B are oppositely disposed.
  • the vehicles 24A and 24B which are opened from the left and right sides of the lower layer have successfully passed the exits 23A and 23B on the respective sides, and are preparing to adjust the front of the vehicle to enter the right and left sides of the upper road.
  • the two figures (a) and (b) in Fig. 7 are a side view and a plan view, respectively, of the exit region in Fig. 6.
  • the lower vehicle has experienced four key points 26A, 26B, 26C and 26D, and the lower road passes through the exit to the upper road.
  • the underlying vehicle has traveled to the upper road via another exit after experiencing four key points 27A, 27B, 27C and 27D.
  • (a) diagram combined with (b) diagram, we can see the state of the uplink vehicles at their respective key points.
  • the vehicle turns and changes lanes, ready to enter the ramp.
  • positions 26B and 27B it is the point at which the vehicle runs on the ramp and travels upward.
  • the 26C and 27C positions the vehicle has moved away from the upper exit, is turning right to adjust the direction, ready to enter the upper lane, and in the 26D and 27D positions, it is the point of normal forward travel after entering the upper road completely. .
  • Figure 8 is a cross-sectional view of the exit zone of Figure 6, it can be seen that the vehicle driving inward from the left side of the lower layer passes through the ramps into the upper right and then passes through the four key positions 28A, 28B, 28C and 28D. The situation of the side lane. Similarly, the vehicle on the right side of the lower level passes through the visible 29A, the invisible uphill position, and the visible 29C and 29D key positions, and then enters the upper left side road through the opposite side invisible ramp.
  • FIG 9 is a perspective view of another angle of the exit zone of Figure 6, showing the vehicle trajectory of the vehicle's upper and lower interconnections relatively completely.
  • 30B is the upward trajectory on the right side.
  • the vehicle travels along the trajectory, and the right transition track starts at the 31A position.
  • the 31B position is in the uphill ramp, and the right transition track is needed at the 31C position, and the 31D position is required.
  • the trajectory line 30B has two lane changing curves and one uphill ramp line.
  • the other track line 30A is also the same.
  • the vehicle completes the interconnection from the lower layer to the upper layer along the tracks 30A and 30B, and needs to undergo two right turns and one up course.
  • Figure 10 shows the lower road and two trapezoidal ramps seen after removing the upper road, where (a) is the exit ramp and (b) is the entrance ramp.
  • the sloping platform 32 is installed in the sub-line MN at the bottom road, and there are two ramps 32A and 32B at both ends of the sloping platform.
  • the guardrails on both sides of the ramp are connected structures.
  • the guard rail 35A on the side of the ramp 32A is a composite guard rail that connects the lower guide rail, and the other side guard rail is a composite guard rail 34A that connects the upper partition rail.
  • the guard rail 33A on the side of the ramp 32B is a composite guard rail that connects the lower guide rail, and the other side is the guard rail 34A.
  • FIG 11 is a schematic illustration of a separation zone.
  • the partition is the area between the exit area and the entrance area, that is, a portion between the entrance fence 38A and the exit fence 38B in the figure.
  • the partition area except the normal lane on both sides of the road, the center of the area, corresponding to the entrance fences 38A and 38B In the area, there is an on-street parking area.
  • the parking area is divided into two parts by a curved isolation fence 37 and floor markings 39A and 39B, which are a right parking area 40A and a left parking area 40B, respectively.
  • the vehicle parked in the parking area is in the same direction as the vehicle on the side, and the vehicles 41A and 41B are preparing to exit from the parking area where they are located.
  • Figure 12 shows the lower layer of the separation zone, which is what you see after removing the upper road.
  • the side rail 44A of the left ramp is coupled to the bay 43A, wherein the bay 43A is a straight rail.
  • the side rail 44B of the right ramp is connected to the rail 43B, which is a curved rail with a guiding function.
  • the partition 43A and the floor scribe line 45A enclose a left parking area 42A, and the compartment 43B and the floor scribe line 45B enclose a right parking area 42B.
  • the two parking zones are separated by struts 42C.
  • Figure 13 is a schematic illustration of an intersection.
  • the intersection is divided into upper and lower layers.
  • the letters corresponding to the direction signs in the figure are: North-N, West-W, South-S, East-E.
  • This embodiment stipulates that the upper vehicle is driven to the right and only two straight and four right-turn vehicles are allowed to pass east to west and west to east.
  • the north-south straight direction is blocked by the isolation column 47.
  • the upper level of the intersection also has an on-street parking area, which also serves as an isolation function.
  • the isolation fence 47 utilizes its bending characteristics to align the two parking areas 47A and 47B with the road markings.
  • the closed curve line 48 defines another parking area 48A, and the opposite side is also symmetrically disposed with a parking area 48B.
  • the vehicle 46 traveling west to east can choose to go straight to the 46A position and continue to the east, or you can choose to turn right along the right turn trajectory line to the 46B position and then go south.
  • the car 49 can only choose to turn right and drive east through 49A.
  • the vehicle of the lower road follows the rule of driving to the left, and the left turn vehicle 50 and the upper right turn vehicle 46B are opposite in direction.
  • Figure 14 is a schematic illustration of the lower level intersection, which is seen after the upper intersection is removed.
  • the lower vehicles are driven to the left and only allow two straight north and north to south and four left turns.
  • the east-west direction is blocked by the two parking areas 51A and 51C.
  • the center of the two parking areas is the pillar 51 supporting the upper road.
  • Vehicles 52 from the upper road and passing through the south ramp can go straight to 52A and continue northward, then go up to the upper road via the 52B of the north ramp to complete the south that cannot be realized in the upper level. Go straight north.
  • the vehicle 52 can also make a left turn through the 52C position, then go up from the 52D position on the west side ramp, and return to the upper road to complete the south-west turn left that cannot be realized in the upper layer.
  • the vehicle 53 coming down from the east ramp can only choose to turn to the 53B left turn after changing the lane 53A, and then drive south.
  • Elevated left and right split double-deck road units are more suitable for the expansion and reconstruction of existing trunk roads in the old city.
  • This embodiment is a case where the country is applied to the right.
  • the bottom layer of the two-story road is the existing road, called the main floor, and the vehicle is driven to the right.
  • the new elevated road is called the auxiliary layer, and the vehicle is driving to the left.
  • the elevated auxiliary layer is preferably used as a car, and the road is generally not larger than the main floor, and the road width is narrower than the main layer.
  • the elevated partition is distinguished from the typical partition. Other parts such as entrances, exits, and intersections are similar in structure, so only the separation area is described here.
  • Figure 15 shows the separation zone for the elevated left and right split double-deck road units.
  • the vehicle on the upper road 56 travels to the left.
  • the overhead type cancels the upper parking area and is replaced by a linear isolation fence 57 and two half-width lanes on both sides.
  • Two ramming zones 57A and 57B for the U-turn of the upper vehicle are retained between the two ends of the barrier 57 and the fences 56A and 56B.
  • FIG. 16 are a side view and a plan view, respectively, of the partition in Fig. 15.
  • a two-story road structure can be seen from the side view, as well as a post 58C supporting the upper road 59.
  • the two ramps 58A and 58B at both ends of the lower road 58 have the same driving direction.
  • 58A is the down ramp and 58B is the uphill ramp.
  • the side rails 60A and 60B on the upper road and the center rail 60 can be seen, and the three divide the upper road into two lane areas 61A and 61B.
  • the width of the upper road in the non-exit and entrance areas is the standard two-way four-lane width.
  • lane areas 61A and 61B are generally used as widened single lanes, so vehicles 62A and 62B are both centered.
  • Fig. 17 (a) is a cross-sectional view of the partition in Fig. 15, and (b) is a plan view of a small upper road.
  • An elevated auxiliary layer 65 can be seen in (a) which is wider than the ground main layer 63.
  • the ramp 63A in the middle of the road is cut away and its width is the width L of a standard lane.
  • the narrowness of the upper road is the distance between the side guard rail 65A and the road middle fence 65B, which is 1.5 times that of the standard lane L.
  • the distribution characteristics of the lane can be seen by comparing the (b) diagram with the diagram below (a): the upper road has two sections: wide and narrow. There are two types of road width: 2L in the width and no entrance and exit fence, and 1.5L in the narrow entrance and exit fence.
  • the sunken double-deck road unit is especially suitable for new urban roads, and needs to be planned in advance.
  • the ground is the main road
  • the underground layer is the auxiliary layer.
  • the main road on the ground is driven to the right, while the auxiliary road on the ground is driven to the left.
  • Figure 18 is a section of a sunken composite road unit consisting of an upper road 66A and a lower road 66B, wherein the upper road 66A is cut away from the left half.
  • the north side-N and the south side-S are residential areas, and the secondary roads in the community are flat roads that are not layered.
  • the 66A leading to the upper level of the main road is the right-hand trunk road 69A, both of which are driven to the right.
  • To the lower 66b of the main road is the left-hand trunk road 69B, both of which are driven to the left.
  • the south side -S is a case where the right row trunk road 69A and the left row secondary trunk road 69B are separately provided.
  • the north side-N is a situation in which the left-row trunk road 67B and the right-row trunk road 67A are integrally arranged, wherein the south-north and north-south lanes of the right-row secondary trunk road 67A are distributed in the left-row trunk road.
  • the left and right sides of the 67B The figure shows that the vehicle 68A, which is preparing to turn left from the lower level 66B of the main road, enters the left main trunk road 67B, and the vehicle that has just left to enter the lower level 66B of the main road from the left main trunk road 67B. 68B.
  • Fig. 19 is a partial cross-sectional view showing the sunken composite road unit of Fig. 18, and the left line trunk road 70 can be seen, and the white solid line 74 in the middle of the road divides the road into two, and goes up and down.
  • a vehicle is driven from the lower level of the main road to the ground via the left main trunk road 70, and 72A and 72B are the two positions in the road.
  • Another vehicle enters the lower main road from the left main trunk 70, and 73A and 73B are the two positions of the vehicle.
  • Another vehicle turns right from the upper level of the main road into the right line.
  • 71A, 71B and 71C are the three positions of the vehicle.
  • Figure 20 shows the intersection of a sunken composite road unit that requires complete isolation of the vehicle.
  • Pedestrians can reach the circular corridor 77 on the second floor of the underground via the ramp 75B of the underground passage.
  • a protective fence 75A is provided at the entrance.
  • the lower level 78 of the double-decker road is on the basement level, and the circular corridor 77 is on the lower level.
  • the two figures (a) and (b) in Fig. 21 respectively show the connection manner of the respective channels of the planar composite road module.
  • the first road is a road including the first lane 81 and the second lane 82 and following the right-travel rule
  • the second road is a road including the third lane 83 and the fourth lane 84 and following the left-travel rule .
  • the second road is located between the first lane and the second lane of the first road.
  • two lane changeover bridges 80A and 80B are constructed, and the second road sinks at the two lane changeover bridges to Below the ground.
  • the first connecting passage 88 bypasses the lower port of the lane changing interchange 80A to communicate the first lane to the third lane
  • the second connecting passage 87 bypasses the upper port of the lane changing bridge 80B to connect the second lane to the fourth lane.
  • the third communication passage 86 bypasses the upper port of the lane changeover bridge 80A and communicates with the third lane to the first lane.
  • the fourth communication passage 89 bypasses the lower port of the lane changeover bridge 80B and communicates with the fourth lane to the first lane.
  • Two lanes Those skilled in the art will envision that the second road can also be elevated above the ground at the two lane changeover bridges.
  • Fig. 22 schematically shows another manner of communication of a planar composite road unit.
  • the communication of the various channels is completed at the intersections at both ends of the composite road module.
  • the vehicle 108 from the fourth lane on the south side and ready to sail off the second road mainly enters the first lane of the first road on the east side in the form of a right turn, and the vehicle also It can enter the first lane of the first road on the north or west side in the form of a previous or left turn.
  • the vehicle 109 from the second lane on the south side and ready to leave the first road may enter the north, west or east side in the form of a forward, a left turn or a right turn.
  • the second lane of the second road may be provided in (a).
  • FIG. 23 is a schematic structural view of an inter-turn ramp group for a two-layer composite road module.
  • four ramp stages 112, 113, 114, 115 need to be prepared.
  • the four ramps are similar in structure, but the direction of the opening and the height of the opening are different.
  • the basic structure of the ramp table is similar to the ramp table 114, and is divided into a high platform 114A, a low platform 114B and a ramp 114C.
  • the platform and the sides of the slope are surrounded by guardrails.
  • the openings of the high and low platforms are located at the front and rear ends of the slope and are distributed on the left and right sides.
  • Figure 24 shows schematically two types of inter-pass ramp groups.
  • a complete interpenetrating ramp group has four slopes and four platforms.
  • the platform is divided into a high platform and a low platform according to the location; according to the structure, it is divided into an open side platform and an open platform on the same side.
  • the figure shows an open-sided open platform with openings on both sides of the diagonal barrier. The positions of the two openings are left and right, and are staggered in front and back.
  • the figure is a platform with the same side opening, the two openings are on the opposite side of the barrier, and are separated by a triangular block.
  • (b) and (c) are two types of interpenetrating ramps, including two high-level platforms and two low-level platforms, and four slopes.
  • the structure can be decomposed into two sections A and B.
  • the long axis is similar to the mirror symmetrical structure, and the two sections A and B can form a complete inter-slope group wall.
  • (b) is a two-unit section 116A and 116B of the open-ended platform at the upper position
  • (c) is a two-unit section 117A and 117B of the same-side open platform at the upper position.
  • Figure 25 is a partial schematic view of a two-story road module in which a second road, that is, a lower road, sinks.
  • a second road that is, a lower road, sinks.
  • some of the upper roads have been removed from the map. From the road markings, you can see the characteristics of the lower road driving to the left.
  • an inter-turn ramp unit placed at a high position on the opposite side of the open platform is used, and the opposite-side open platforms 118A and 118B that are flush with the upper pavement can be seen, and the ipsilateral open platform placed at a low position between the two platforms is 120.
  • the two outer passages 119 and 121 belonging to the upper road are also visible in the outer view, and the two lanes follow the principle of driving to the right.
  • FIG. 26 respectively show a cross-sectional view and a longitudinal cross-sectional view of the overhead double-layer composite road module.
  • the upper vehicle is driving to the left
  • the lower vehicle is driving to the right
  • the middle is the inter-turning ramp group with pillars on both sides. Due to the large and small vehicles, the height of the roads and viaducts including the inter-slope ramps are designed to be large.
  • the forward direction in the figure is marked as "X”, and the outward direction is marked as " ⁇ ”.
  • the figure shows the basic structure and function distinction of the interlaced ramp group.
  • the functional unit of the ramp group is the part from the center line of the high platform to the center line of the adjacent low platform.
  • the complete functional unit includes the reverse downlink section 131.
  • the four consecutive partial functional units are the reverse upward interval 132, the forward upward interval 133, and the forward downward interval 134.
  • the composite road module includes an upper left area road board GL (or a second lane), an upper right area road board GR (or a first lane), a lower left area road board BL (or a third lane), and a lower right area road. Board BR (or the fourth lane).
  • the first lane GR to the third lane BL corresponds to the reverse downlink section 131
  • the third lane BL to the first lane GR pair In the upward direction, the interval 132, the fourth lane BR to the second lane GL correspond to the upward row section 133, and the second lane GL to the fourth lane BR correspond to the forward down section 134.
  • the connecting passages in the section 132 and the section 133 are respectively guided to the first lane and the second lane, and therefore the outlets of the two connecting lanes are located on both sides of the corresponding dividing rail in the upper road.
  • the connecting passages in the sections 134 and 131 are respectively from the second lane and the first lane, and therefore the entrances of the two connecting passages are also located on both sides of the corresponding partition in the upper road.
  • the connecting passages in the sections 133 and 134 are respectively from the fourth lane and the fourth lane, so that the entrance of the previous connecting passage and the exit of the latter connecting passage are located on the same side of the corresponding dividing rail in the lower road.
  • Figure 27 is similar to Figure 26 except that the arrangement of the connecting channels is such.
  • the connecting passages in the section 132 and the section 131 are respectively guided to the first lane and from the first lane, so that the exit of the previous connecting passage and the entrance of the latter connecting passage are located in the same partition in the upper road. side.
  • the connecting passages in the sections 134 and 133 are respectively guided to the fourth lane and from the fourth lane, so that the exit of the previous connecting passage and the entrance of the latter connecting passage are located on the same side of the corresponding dividing rail in the upper road.
  • the connecting passages in the sections 131 and 134 are respectively guided to the third lane and the fourth lane, and therefore the entrances of the two connecting passages are located on both sides of the corresponding partition in the lower road.
  • (a) and (b) of Fig. 28 are the case of the elevated deck surface and the lower deck surface seen by the removal deck surface, respectively.
  • the second road of this example is on the elevated road surface, and the first road is on the surface. It can be seen from (b) that the vehicle on the lower surface is driving to the right, and the ramp group in the middle of the road is continuous and develops along with the road.
  • a set of ramp units 138 and 139 are arranged in a repeating cycle along the road.
  • (a) The figure corresponds to the case where the (b) figure is equipped with a high-rise road board. The vehicle is driven to the left, and the long-elliptical road center entrances and exits 136 and 137 which are arranged in a loop can be seen, and between the two road center entrances and exits are provided. Separate the railings.
  • Figure 29 is a schematic representation of a two-story road system in accordance with the present invention.
  • the center is a city functional area located in the city's “boardboard” grid, such as the living community.
  • the four main roads around the community intersect at four intersections, and intersection 140 is one of them.
  • the main road is a three-dimensional type of sinking of the second road.
  • the building is near the trunk road 142 to the main road.
  • the secondary trunk road 142 in the figure uses a planar composite road module.
  • the road center of the main road is regularly distributed with the road center entrance and exit, and arranged according to the principle of A-type and B-type staggered arrangement.
  • Figure 30 is an enlarged view of the intersection of the secondary trunk road 142 and the main road in Figure 29, (a) is a diagram of the (b) diagram taken along the cutting plane AA, and the vehicles 148A, 149A, 150A are the vehicles 148, 149, respectively. Another view of 150.
  • the main road is a three-dimensional mode, that is, a double-layer composite road module.
  • the secondary trunk road adopts a planar composite road module, and the first road includes two passages 143 and 144, and the upper road leading from the surface to the main road.
  • the second road on the left side includes two passages 145 and 146 leading to the lower road of the main road.
  • planar and three-dimensional handover The principle of the planar and three-dimensional handover is that the planar first road is connected to the three-dimensional first road; the planar second road is connected to the three-dimensional second road.
  • the right turn road to the main road, the right turn vehicle 147 and the left turn vehicle 150, respectively, direct turn from the ground and underground, and the right turn vehicle 148 and left from the main road Turning the vehicle 149 can also achieve a direct turn without bypassing.
  • the first road and the second road in the composite road module or unit are interdependent and cooperate with each other; if advanced computer control technology and traffic command system are supplemented, the supply and demand relationship of urban traffic is further optimized, and the urban traffic will be effectively reversed.
  • the dilemma makes the overall benefits of urban transportation closer to the ideal goal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)
  • Traffic Control Systems (AREA)
  • Road Signs Or Road Markings (AREA)

Abstract

一种复合道路模块,包括大致平行延伸的第一道路和第二道路,第一道路和第二道路中的一个设置为供车辆按靠左通行规则行驶,另一个设置为供车辆按靠右通行规则行驶,第一道路包括第一行车道(81)和第二行车道(82),第二道路包括第三行车道(86)和第四行车道(89),其中,第一行车道(81)和第三行车道(86)彼此连通,且供车辆在第一方向上行驶,并且其中,第二行车道(82)和第四行车道(89)彼此连通,且供车辆在与第一方向相反的第二方向上行驶。复合道路单元包括该复合道路模块以及一个或两个道路枢纽。复合道路系统包括该复合道路单元及/或一个或多个该复合道路模块。

Description

复合道路模块、单元和系统 技术领域
本发明大体涉及一种复合道路模块。本发明还涉及包含该复合道路模块的复合道路单元和复合道路系统。
背景技术
在行驶规则方面,世界上一些国家如中国、美国、加拿大和大部分欧洲国家的道路按照靠右通行规则供车辆行驶,而其它一些国家如英国、日本、印度等国家的道路按照靠左通行规则供车辆行驶。然而,在同一个国家和地区,同一段道路一般只允许按照一种规则行驶,要么靠左行驶,要么靠右行驶,一般不允许两者兼有。
城市交通拥堵的根源恰恰在于“左右混行”:在平面交叉路口处,直行车辆和左、右转弯的车辆需要靠信号灯指挥,排队等待并轮流通过交叉口。这使得车辆等待时间长,交通效率低下。平面交叉口如同设在城市道路中的一个个“瓶颈”,会严重地降低城市道路的通过能力。再加上现代城市汽车保有量逐年增长,拥堵问题变得日益突出并成为了很大的社会问题。
修建立交桥能够比较好地解决平面交叉口的矛盾冲突,完全功能的互通式立交桥能够消除所有的冲突点。但这样的立交桥体量庞大,占地极广,在地形局促的城区一般无法应用。
只在一小部分重要交叉口修建立交桥,其他交叉口仍保留平面交叉口的现状,相当于木桶的“短板原理”,几座立交桥不可能系统地解决问题;而每个交叉口都修建完全功能的互通式立交桥又绝无实现的可能。因此,城市交通拥堵问题成为了棘手的世界难题。
发明内容
本发明的主要目的是从根本上解决城市交通拥堵的顽症,其主要构思在于提供一种“左右分驶”的道路行驶方案。在此,首先需要做出关于“左属”、“右属”的如下定义,以最常见的十字交叉口为例:来自北、西、南、东四个方向的车辆,每侧来车到达交叉口后,都会面临直行、左转弯或右转弯三种选择,每种选择都会形成一股车流,四个方向共有十二路车流,这些车流之间会形成很多的交通冲突点。
“左右分驶”首先要做的就是将上述十二路车流分为左属和右属这两大类。四个左转弯是“天然左”,将两个对向直行,比如南向北和北向南这两个直行划归为“定义左”;相应的,四个右转弯是“天然右”,剩下的东向西和西向东直行是“定义右”。根据上面的归类方法,十字交叉口的十二路来车被分为六种“左属车辆”和六种“右属车辆”。
本发明提供了一种复合道路模块,包括第一道路和第二道路,所述道路两者之一是左属道路,另一个是右属道路,车辆在左属道路中遵循靠左行驶的交通规则,在右属道路中遵循靠右行驶的交通规则。“按照左属车辆进左属道路,右属车辆进右属道路的规则,实行“左右分驶”的交通模式。这样就能完全消灭冲突点,车辆各行其道并能顺畅通过交叉口,城市路网中将不再需要信号灯。
本发明的复合道路模块特别是一种双层道路模块,其中第一和第二道路分别形成为上层和下层道路,相应地,十字交叉口全部也分为上层交叉口和下层交叉口,在交叉口的十二路车流中按“左右分驶“的规则,六路在上层,六路在下层,在类别上实行平均分配。
替代地,发明的复合道路模块也可以是一种平面式道路模块,其中第一和第二道路大致位于同一水平面上。
当然,车辆的“左属”或“右属”是相对于前方交叉口来说的,在此交叉口是“左属”,可能到下一交叉口就变为“右属”了。因此,车辆适合在第一道路行驶还是适合在第二道路行驶,要根据其到前方交叉口是直行、左转还是右转来判定。鉴于这个特点,第一和第二道路需要有强大的“互连互通”功能,使车辆能够随时、任意的改变其“左属”或“右属”的属性,以快速高效的通过每一个道路交叉口。
所谓的“互连互通”功能,实际上就是依靠一组连接通道来实现的。为实现完整的“互连互通”功能,需要有“两入两出”共四条连接通道,这样才能保证第一道路两侧的车辆能开行到第二道路中去,同时第二道路两侧的车辆也能够驶入第一道路中。在双层道路的情况下,连接通道为连通不同高度道路的坡道。在平面式道路的情况下,上述连接通道为连通相同高度道路的绕行通道、拱道或弯道。
综上所述,具有两个按不同通行规则供车辆行驶的道路、并且位于两个相邻的道路交叉口之间、有满足完全互通功能的连接通道及相 应出口、入口的复合道路段,才能被称为具有完整功能的“左右分驶复合道路模块”。同时,一个复合道路模块及其一端或两端的交叉口形成一个基本的复合道路单元。另外,一个或多个复合道路单元、一个或多个复合道路模块以及/或者一个或多个现有道路一起形成复合道路系统。另外,本发明的复合道路模块也可以具有多于两个的出口和/或多于两个的入口。
在一个方面,本发明提供了一种复合道路模块,包括大致平行延伸的第一道路和第二道路,所述第一道路和所述第二道路中的一个设置为供车辆按靠左通行规则行驶,另一个设置为供车辆按靠右通行规则行驶,所述第一道路包括第一行车道和第二行车道,所述第二道路包括第三行车道和第四行车道,其中,所述第一行车道和所述第三行车道彼此连通,且供车辆在第一方向上行驶,并且其中,所述第二行车道和所述第四行车道彼此连通,且供车辆在与所述第一方向相反的第二方向上行驶。
在一个优选方案中,所述第一行车道和所述第二行车道并排布置以形成上层道路,所述第三行车道和所述第四行车道并排布置以形成下层道路,并且其中,所述第三行车道和所述第四行车道分别位于所述第二行车道和所述第一行车道下方。
优选地,所述复合道路模块进一步包括:第一连接通道,其将所述第一行车道连通至所述第三行车道;第二连接通道,其将所述第二行车道连通至所述第四行车道;第三连接通道,其将所述第三行车道连通至所述第一行车道;以及第四连接通道,其将所述第四行车道连通至所述第二行车道。有利地,所述第一、第二、第三和第四连接通道的一端位于所述第一行车道和所述第二行车道之间,另一端位于所述第三行车道和所述第四行车道之间。有利地,所述上层道路包括位于所述第一行车道和所述第二行车道之间的第一分隔栏和第二分隔栏,且所述下层道路包括位于所述第三行车道和所述第四行车道之间的第三分隔栏。
在一个变型中,所述第一、第二、第四和第三连接通道沿纵向依次布置。有利地,所述第一连接通道的所述一端和所述第二连接通道的所述一端在横向上位于所述第一分隔栏的两侧,所述第三连接通道的所述一端和所述第四连接通道的所述一端在横向上位于所述第二分 隔栏的两侧,并且所述第二连接通道的所述另一端和所述第四连接通道的所述另一端在横向位于所述第三分隔栏的同一侧。
优选地,所述复合道路模块进一步包括位于所述上层道路和所述下层道路之间的两个坡台,所述两个坡台中的一个由所述第一连接通道和所述第二连接通道形成,另一个由所述第四连接通道和所述第三连接通道形成。
优选地,所述第三分隔栏在其位于所述第四行车道的一侧处包括分隔柱,从而将所述第二连接通道的所述另一端和所述第四连接通道的所述另一端在纵向上隔离开。
在另一个变型中,所述第三、第一、第四和第二连接通道沿纵向依次布置。有利地,所述第三连接通道的所述一端和所述第一连接通道的所述一端在横向上位于所述第一分隔栏的同一侧,所述第四连接通道的所述一端和所述第二连接通道的所述一端在横向上位于所述第二分隔栏的同一侧,并且所述第一连接通道的所述另一端和所述第四连接通道的所述另一端在横向位于所述第三分隔栏的两侧。
优选地,所述复合道路模块进一步包括位于所述上层道路和所述下层道路之间的两个坡台,所述两个坡台中的一个由所述第三连接通道和所述第一连接通道形成,另一个由所述第四连接通道和所述第二连接通道形成。
优选地,所述第一分隔栏在其位于所述第一行车道的一侧处包括分隔柱,从而将所述第三连接通道的所述一端和所述第一连接通道的所述一端在纵向上隔离开。有利地,所述第二分隔栏在其位于所述第二行车道的一侧处包括分隔柱,从而将所述第四连接通道的所述一端和所述第二连接通道的所述一端在纵向上隔离开。
优选地,每一个坡台均具有大致呈梯形的纵向截面,优选地,每一个坡台包括两个掉头通道,以便连通所述第三行车道和所述第四行车道。
优选地,所述上层道路还包括位于所述第一行车道和所述第二行车道之间的第四分隔栏,所述第四分隔栏位于所述第一分隔栏和所述第二分隔栏之间,且与所述第一分隔栏和所述第二分隔栏间隔开,以便允许所述第一行车道和所述第二行车道连通。
优选地,所述第一分隔栏、所述第二分隔栏、所述第三分隔栏和 所述第四分隔栏中的一个或更多个在两侧设有禁驶区或停车区。
优选地,所述下层道路与地面平齐,且所述上层道路高架于所述下层道路之上。优选地,所述下层道路宽于所述上层道路。
替代地,所述上层道路与地面平齐,且所述下层道路下沉于所述上层道路之下。
在另一个优选方案中,所述第二行车道、所述第三行车道、所述第四行车道和所述第一行车道在横向上依次并排布置。
优选地,所述复合道路模块进一步包括第一、第二、第三和第四连接通道,并且所述第二道路进一步包括第一路段和第二路段,其中,所述第一连接通道绕过所述第一路段的一个端口而将所述第一行车道连通至所述第三行车道,所述第二连接通道绕过所述第二路段的一个端口而将所述第二行车道连通至所述第四行车道,所述第三连接通道绕过所述第一路段的另一个端口而将所述第三行车道连通至所述第一行车道,并且所述第四连接通道绕过所述第二路段的另一个端口而将所述第四行车道连通至所述第二行车道。优选地,所述第一路段和所述第二路段下沉于所述第三行车道和所述第四行车道之下,或者高架于所述第三行车道和所述第四行车道之上。
替代地,所述复合道路模块进一步包括:第一拱道,其跨过所述第四行车道而将所述第一行车道连通至所述第三行车道;第二拱道,其跨过所述第三行车道而将所述第二行车道连通至所述第四行车道;第三拱道,其跨过所述第四行车道而将所述第三行车道连通至所述第一行车道;以及第四拱道,其跨过所述第三行车道而将所述第四行车道连通至所述第二行车道。
替代地,所述复合道路模块中的每一个通道经由弯道与另一复合道路模块中的其它三个通道中的每一个连通。有利地,所述弯道位于交叉口中。
在另一个方面,本发明提供了一种复合道路单元,包括:根据本发明的复合道路模块;以及一个或两个用于多个道路方向的道路枢纽,每一个道路枢纽包括主交叉口和副交叉口,其中,所述主交叉口包括主中央部以及分别在所述多个道路方向上从所述主中央部向外延伸的多对主通道,每一对主通道包括并排布置的主上行通道和主下行通道,所述副交叉口独立于所述主交叉口,并且包括副中央部以及分别在所 述多个道路方向上从所述副中央部向外延伸的多对副通道,每一对副通道包括并排布置的副上行通道和副下行通道,其中,每一对主通道中的主上行通道在顺时针方向和逆时针方向中的一个方向上与相邻的一对主通道中的主下行通道经由所述主中央部连通,并且每一对副通道中的副上行通道在顺时针方向和逆时针方向中的另一个方向上与相邻的一对副通道中的副下行通道经由所述副中央部连通,并且其中,所述多对主通道中的一对主通道的主上行通道和主下行通道分别与所述第一行车道和所述第二行车道连通,并且所述多对副通道中的相应一对副通道的副上行通道和副下行通道分别与所述第三行车道和所述第四行车道连通。
优选地,所述第一对主通道中的主上行通道和主下行通道分别与所述第三对主通道中的主下行通道和主上行通道经由所述主中央部连通,且所述第二对主通道与所述第四对主通道不连通。有利地,所述第二对副通道中的副上行通道和副下行通道分别与所述第四对副通道中的副下行通道和副上行通道经由所述副中央部连通,且所述第一对副通道与所述第三对副通道不连通。
替代地,所述第一对主通道中的主上行通道和主下行通道分别与所述第三对主通道中的主下行通道和主上行通道经由所述主中央部连通,且所述第二对主通道中的主上行通道和主下行通道分别与所述第四对主通道中的主下行通道和主上行通道经由所述主中央部连通。有利地,所述第一对副通道与所述第三对副通道不连通,且所述第二对副通道与所述第四对副通道不连通。
优选地,所述副交叉口与所述主交叉口处于同一平面中,且每一对主通道位于相应的一对副通道的两侧。有利地,每一个道路方向上的主上行通道经由所述主中央部与其它三个道路方向上的副下行通道连通,且每一个道路方向上的副上行通道经由所述主中央部与其它三个道路方向上的主下行通道连通。
在又一个方面,本发明提供了一种复合道路系统,包括一个或多个根据本发明的复合道路单元以及/或者一个或多个根据本发明的复合道路模块。优选地,所述复合道路系统还包括一个或多个现有道路。
优选地,所述复合道路系统包括多个复合道路模块,所述多个复合道路模块包括至少一个以双层形式布置的第一复合道路模块和至少 一个以平面形式布置的第二复合道路模块,其中,所述第二复合道路模块的第一道路和第二道路分别连接到所述第一复合道路模块的第一道路和第二道路。
就本发明的经济效益来说,主要有两个方面:
第一,将彻底消除道路交叉口的冲突点。城市道路交叉口的矛盾冲突是引发交通拥堵的最主要因素。以中国为例,在靠右行驶的交通体系里,左转弯会带来很多冲突点。如果能将所有主干道都应用左右分驶复合道路单元,相当于在每一个交叉口都架设了完全功能的立交桥,这对破解拥堵困局来说非常有效。
第二,将彻底消除左转远引掉头现象。为保障行车安全,现代城市的道路多用隔离栏、绿化隔离带等隔离设施将路板一分为二,对于主干道旁、通往城市功能区的次干路来说,其与主干道的交汇点处便形成了一系列的“T”字路口。以中国靠右行驶的交通体系为例,车辆不能直接左转弯,需要先右转弯然后到前方交叉口掉头才能间接地实现左转弯,这种“远引掉头”的模式造成了时间和程序上的浪费。引入左右分驶复合道路单元后,车辆能够实现直接左弯转出入主干道,将极大的提高效率,节省时间和、降低油耗,仅此一项便能带来巨大的经济效益。
本发明的社会效益更为可观:可以深刻的改变现有城市道路的格局,促进未来全面自动驾驶目标的早日实现,对智慧城市的建设和促进社会和谐来说意义重大。
附图说明
图1示意性地显示了根据本发明的复合道路单元的一个实施方案,该复合道路单元为双层道路单元;
图2至图5为根据本发明的双层道路单元的入口区的示意图;
图6至图9为根据本发明的双层道路单元的出口区的示意图;
图10显示了根据本发明的入口区和出口区的区别;
图11和图12为根据本发明的双层道路单元的分隔区的示意图;
图13和图14为根据本发明的双层道路单元的交叉口的示意图;
图15至图17示意性地显示了高架式双层道路单元;
图18至图20示意性地显示了下沉式双层道路单元;
图21、图22示意性地显示了根据本发明的复合道路单元的另一个实施方案,该复合道路单元为平面式道路单元;
图23至图28示意性地显示了根据本发明的双层道路单元的连通方式;以及
图29、图30示意性地显示了根据本发明的双层道路系统的一个实施方案。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是为了更加全面透彻地理解本发明的公开内容。
术语“上行”或“下行”并非指高度上的“上”或“下”,而是表示进入或离开交叉口。同样,“上行通道”或“下行通道”是指车辆进入或离开交叉口的通道,而与车辆进入或离开时的高度变化无关。
术语“连接”或“连通”指的是在一个行车道道中行驶的车辆能够转移到另一个行车道中行驶。
术语“纵向”指道路延伸的方向,且“横向”指横穿道路的方向。
以下将结合附图,详细介绍根据本发明的各个实施方案。
图1是一种典型的左右分驶双层道路单元,为两层结构,包括两个相邻交叉口和两者之间的道路,其中(a)图是上层道路,(b)图是下层道路。上、下两层道路的行驶方向相反,一个靠右行驶,一个靠左行驶。
基本道路单元可以分为五个部分,依次是左侧交叉口1A、1B,入口区2A、2B,分隔区3A、3B,出口区4A、4B,右侧交叉口5A、5B。
以下将按照入口区、出口区、分隔区和交叉口这四个部分来依次介绍基本道路单元的结构和用途。
图2是入口区的示意图。在上层道路6A中的车辆靠右行驶,在下层道路6B中的车辆靠左行驶。这是一个“二合一”的复合式入口,包含有两个入口8A和8B。两个入口用分隔栏7隔离开来,分隔栏7与左侧入口8A的围栏7A以及右侧入口8B的围栏7B连为一体。两个入 口8A和8B的开口相对设置。正准备从上层开往下层的车辆9A和9B左转并调整车头,准备进入各自的入口8A和8B中。两侧围栏7A和7B的圆端处,分别设有车辆掉头区10A和10B。
图3中的(a)、(b)两图分别是图2中的入口区的侧视图和俯视图。在(a)图中可以看到在外侧的下层车辆12A车头向左,而上层的车辆12B车头向右,两车的行驶方向相反。联系上、下道路的梯形坡台11是一个双面坡台,其左侧斜面11A和右侧斜面11B是车辆下行的通道。梯形坡台正中下部有两处贯通的掉头通道,下层道路的掉头车辆13A和13B在此处掉头。在(b)图中可以看到上层车辆通往下层的过程。行驶在上层左侧的车辆在14A处还保持直行,到14B处时开始左转换道准备开进入口,之后进入坡道的14C处并继续向下行驶,至下层14D处后,需要再经一次左转换道后才能进入下层道路的右侧。同样地,行驶在上层右侧的车辆经15A、15B、15C和15D几个关键位置点后进入下层左侧。经过入口但无互连互通需要的车辆16A和16B仍沿各自的方向继续直行。
图4是图2中的入口区的横截面图,可以更加直观的看到上层道路和下层道路行驶方向相反的特性。上层右侧的车辆18A和下层左侧的车辆18B,其车尾向外。上层左侧的车辆19A和下层右侧的车辆19B,其车头向外。这种“对角同向”的特性使“对角互通”成为可能。从上层左侧而来的车辆在经过17A、17B、17C和17D四个关键位置后,可以顺利地进入“对角”的下层右侧道路。下层左侧的掉头车辆20正在从掉头通道进入下层右侧道路中去。
图5是图2中的入口区的另一个角度的立体图,可以比较完整地看到车辆上下互连互通的行车轨迹。图中21A是左侧的下行轨迹线,车辆沿该轨迹线行驶,在22A位置还保持直行,到22B位置时,开始左转换道,其22C位置是在下行坡道中,再到22D位置时已经行驶到下层道路中来,此时将再一次左转换道。轨迹线21A除上、下层两条直行线外,还有两条变道曲线和一条下行坡道线。同样,另一条轨迹线21B也是如此,车辆沿轨迹21A和21B完成由上层到下层的互连互通,需要经历两次左转弯和一个沿坡道下行的过程。
图6是出口区的示意图。这是一个“二合一”的复合式出口,包含两个出口23A和23B,分别是下层道路的左、右两侧通往上层道路 右、左两侧的出口。两个出口用分隔栏25隔开。两个出口23A和23B的开口相对设置。从下层左、右两侧开出来的车辆24A和24B,已经顺利通过了各侧的出口23A和23B,正准备调整车头,驶入上层的右、左两侧道路中去。
图7中的(a)、(b)两图分别是图6中的出口区的侧视图和俯视图。在(a)图中可以看到,下层的车辆经历了26A、26B、26C和26D四个关键点位,由下层道路经出口行驶到了上层道路中。同样地,下层的车辆在经历了27A、27B、27C和27D四个关键点位后,经另一出口行驶到了上层道路中。对应(a)图,再结合(b)图,可以看到上行车辆在各自的关键点位的状态。在26A和27A位置,是车辆转弯换道,准备要进入坡道的点位。在26B和27B位置,是车辆运行在坡道中并向上行驶的点位。在26C和27C位置,是车辆已驶离上层出口,正在右转弯调整方向,准备进入上层车道的点位,在26D和27D位置,则是完全进入上层道路后,各自正常向前行驶的点位。
图8是图6中的出口区的横截面图,可以看到从下层左侧向里驶去的车辆在依次经过28A、28B、28C和28D四个关键位置后,经坡道驶入上层右侧车道的情形。同样地,下层右侧的车辆在经过可见的29A、不可见的上坡位置、可见的29C和29D这几个关键位置后,经对侧不可见的坡道驶入上层左侧道路的情形。
图9是图6中的出口区的另一个角度的立体图,可以比较完整地看到车辆上下互连互通的行车轨迹。图中30B是右侧的上行轨迹线,车辆沿该轨迹线行驶,在31A位置开始右转换道,其31B位置在上行坡道中,在31C位置时需要再一次右转换道,及到31D位置时已经行驶到上层道路中了。轨迹线30B除上、下层两条直行线外,还有两条变道曲线和一条上行坡道线。同样,另一条轨迹线30A也是如此,车辆沿轨迹30A和30B完成由下层到上层的互连互通,需要经历两次右转弯和一个沿坡道上行的过程。
图10是移去上层道路后所看到的下层道路及两种梯形坡台的情形,其中(a)是出口坡台,(b)是入口坡台。以(a)图为例,坡台32安装在底层道路中分线MN处,坡台两端有两个坡道32A和32B,坡道两侧的护栏是连体式结构。坡道32A一侧的护栏35A是连接下层导引栏的复合式护栏,另一侧护栏是连接上层分隔栏的复合式护栏 34A。坡道32B一侧的护栏33A是连接下层导引栏的复合式护栏,另一侧是护栏34A。(b)图坡台与(a)图坡台相比,入口坡台的护栏33A、34A、35A与出口坡台的护栏33B、34B、35B正好关于道路中线MN左右对称。当然也可以说(a)图的出口坡台和(b)图的入口坡台正好关于道路中线MN左右对称。坡台下部设有两个掉头通道,车辆36A、36B正在进行掉头。
图11是分隔区的示意图。分隔区是出口区和入口区之间的区域,也就是图中入口围栏38A和出口围栏38B之间的一部分,分隔区除了道路两侧的正常车道,其正中地带、对应出入口围栏38A和38B的区域,设置有路中停车区。该停车区被弯曲隔离栏37、地面划线39A和39B分为两个部分,分别是右侧停车区40A和左侧停车区40B。停靠在停车区里的车辆和本侧车辆方向一致,图中车辆41A和41B正准备从各自所处停车区开出。
图12示出了分隔区的下层,这是移去上层道路后看到的情形。左边斜坡台的一侧护栏44A与隔栏43A连接在一起,其中隔栏43A是直栏杆。右边斜坡台的一侧护栏44B与隔栏43B连接在一起,隔栏43B是附带导引功能的弯曲栏杆。隔栏43A和地面划线45A围成左侧停车区42A,隔栏43B和地面划线45B围成右侧停车区42B。两停车区以支柱42C隔开。
图13是交叉口的示意图。交叉口分为上下两层,图中方向标对应的字母分别是:北-N、西-W、南-S、东-E。本实施例规定上层的车辆靠右行驶,并且只允许东向西和西向东两个直行及四个右转弯车辆通行。南北直行方向被隔离栏47隔断。交叉口上层也设路中停车区,兼起隔离作用。隔离栏47利用其弯折特性,配合路面划线标定了47A和47B两块停车区。封闭的弯道划线48划定了另一块停车区48A,其对侧还对称的布置有停车区48B。西向东行驶的车辆46,可以选择直行到46A位并继续向东,也可以选择沿右转弯轨迹线右转到46B位后向南去。南侧来车49,只能选择右转弯,经49A位往东行驶。下层道路的车辆遵循靠左行驶的规则,其左转弯车辆50和上层右转弯车辆46B方向相反。
图14是下层交叉口的示意图,这是移除了上层交叉口后看到的情形。下层车辆均靠左行驶,并且只允许南向北和北向南两个直行及四 个左转弯通行。东西直行方向被两停车区51A和51C隔断。两停车区正中是支撑上层道路的支柱51。此外还有利用封闭弯道线54和导引栏55划出的停车区51D,以及对称布置的停车区51B。从上层道路下来、行经南侧坡道的车辆52,可以直行到52A位并继续向北前行,再经北侧坡道的52B位上行,返回到上层道路,以完成不能在上层实现的南向北直行。除此之外,车辆52还可以经52C位左转弯,然后从西侧坡道上的52D位上行,返回到上层道路,完成不能在上层实现的南向西左转弯。从东侧坡道下来的车辆53,经53A位换道后,只能选择到53B位左转弯,然后向南行驶。
高架式左右分驶双层道路单元比较适合于旧城的既有干道扩容改造。本实施例是在靠右行驶国家应用的情形。两层道路的底层是现有道路,称为主层,车辆靠右行驶。而新建的高架道路称为辅助层,车辆靠左行驶。高架的辅助层,最好是作为小汽车专用,其道路的规模一般不大于主层,道路宽度较主层为窄。与典型的左右分驶双层道路单元相比,高架式的分隔区与典型式的分隔区有区别。其它部分比如入口、出口和交叉口的结构都很相似,因此这里只介绍分隔区。
图15显示了高架式左右分驶双层道路单元的分隔区。上层道路56上的车辆靠左行驶。与典型的左右分驶双层道路单元相比,高架式取消了上层的停车区,取而代之的是直线隔离栏57及其两侧的两条半宽车道。隔离栏57的两端和围栏56A及56B之间保留了供上层车辆掉头用的两处调头区57A和57B。
图16中的(a)和(b)分别是图15中的分隔区的侧视图和俯视图。从侧视图中可以看到两层道路结构,以及支撑上层道路59的支柱58C。下层道路58两端的两个坡道58A和58B,其行车方向相同。58A是下行坡道,58B是上行坡道。从俯视图中可以看到上层道路两侧护栏60A和60B,以及正中的隔离栏60,三者将上层道路均分为两个车道区61A和61B。上层道路在非出、入口区的宽度是标准的双向四车道宽度。但一般都将车道区61A和61B都当做加宽单车道使用,因此车辆62A和62B均居中行驶。
图17中的(a)是图15中的分隔区的横截面图,(b)是一小段上层道路的俯视图。在(a)图中可以看到高架的辅助层65,其宽度小于地面主层63。地面正中有不可见的停车区,可以看到正在驶出停车 区的车辆64C和64D。道路正中的坡道63A被剖开,其宽度是一个标准车道的宽度L。上层道路的狭窄处是边侧护栏65A与路中围栏65B的间距,这是标准车道L的1.5倍,当前方出现坏车时,可容后面的小汽车低速通过。通过(b)图与下方(a)图的对比可以看到车道的分布特点:上层道路有宽、窄两种区段。其路宽尺寸有两种:宽处无出入口围栏,为2L,窄处有出入口围栏,为1.5L。
下沉式左右分驶双层道路单元特别适合于新建城市道路,需要提前整体规划设计。一般以地面为主层道路,地下层为辅助层。以中国为例,地面的主层道路靠右行驶,而地下的辅助层道路则靠左行驶。
图18是下沉式复合道路单元的一段,主干道由上层道路66A和下层道路66B组成,其中上层道路66A被切去了左侧的一半。北侧-N和南侧-S是居住小区,小区内的次干路都是不分层的平面道路。以南侧-S为例,通往主干道上层66A的是右行次干路69A,两者都是靠右行驶。通往主干道下层66B的是左行次干路69B,两者都是靠左行驶。南侧-S是右行次干路69A和左行次干路69B分开设置的情形。而北侧-N则是左行次干路67B和右行次干路67A一体式设置的情形,其中右行次干路67A的南向北及北向南两条车道分布在左行次干路67B的左右两侧。图中可见正准备左转驶离主干道下层66B后进入左行次干路67B中去的车辆68A,以及从左行次干路67B中而来,刚刚左转进入主干道下层66B中的车辆68B。
图19是图18中的下沉式复合道路单元的局部剖开图,可以看到左行次干路70,其道路正中的白实线74将道路一分为二,一边上行,一边下行。一个车辆从主干道下层经左行次干路70开往地面,72A和72B是其行驶中的两个位置点。另一车辆从左行次干路70进入主干道下层,73A和73B是该车的两个位置点。又一车辆则从主干道上层右转弯进入右行次干路,图中71A、71B和71C是该车的三个位置点。
图20示出了下沉式复合道路单元的交叉口,其要求人车完全隔离。为此,在道路交叉口设有四组隔离栏76,并且相应的设置有八个类似75的人行地下通道,行人经由地下通道的斜坡75B可以到达地下二层的环形走廊77中去,地下通道的入口处设有防护围栏75A。双层道路的下层78在地下一层,环形走廊77在其更下面的一层。
图21中的(a)、(b)两图分别示出了平面式复合道路模块的各 通道的连方式。其中第一道路是包括第一行车道81和第二行车道82且遵循靠右行驶规则的道路,第二道路是包括第三行车道83和第四行车道84且遵循靠左行驶规则的道路。所述第二道路位于第一道路的第一行车道和第二行车道之间。为了实现第一和第二道路的互连互通,在道路的非交叉口处,也就是路段部分处,构造了两个换道立交桥80A和80B,第二道路在两换道立交桥处下沉至地面之下。第一连接通道88绕过换道立交桥80A的下端口而连通第一行车道至第三行车道,第二连接通道87绕过换道立交桥80B的上端口而连通第二行车道至第四行车道,第三连通通道86绕过换道立交桥80A的上端口而连通第三行车道至第一行车道,第四连通通道89绕过换道立交桥80B的下端口而连通第四行车道至第二行车道。本领域技术人员将会设想到,第二道路在两换道立交桥处也可以高架于地面之上。
图22示意性地显示了平面式复合道路单元的另一种连通方式。在这种方式中,各通道的连通在复合道路模块两端的交叉口完成。例如,在(a)图中,来自南侧第四行车道、准备驶离第二道路的车辆108,主要以右转弯的形式进入东侧的第一道路的第一行车道中,该车也可伺机以前行或左转弯的形式进入北侧或西侧的第一道路的第一行车道中。在(b)图中,来自南侧第二行车道、准备驶离第一道路的车辆109,可以按照前行、左转弯或右转弯的形式分别进入北侧、西侧或东侧中的第二道路的第三行车道中。这样,就实现了一个复合道路模块的第一道路与另一个复合道路模块的第二道路之间的互连互通。图23是用于双层复合道路模块的互通坡道组的示意性结构图。为满足四个通道“对角互通”的四种需求,需要准备四种斜坡台112、113、114、115。四个斜坡台结构相似,但其开口的方向及开口的高低位置各不相同。斜坡台的基本结构都相似于斜坡台114,分为高位平台114A、低位平台114B和斜坡114C三部分。除划虚线的开口处外,平台和斜坡边侧围有护栏。高、低位平台的开口位于斜坡的前、后两端,分布在左、右两侧。
图24示意性地显示了两种类型的互通坡道组。一段完整的互通坡道组有四个斜坡和四个平台。平台按所处位置的不同分为高位平台和低位平台;按照结构不同分为异侧开口平台和同侧开口平台。(a)图显示的是异侧开口平台,其开口在斜向隔栏两侧划虚线处,两开口的 位置一左一右、并前、后错开。(d)图是同侧开口的平台,其两个开口同在隔栏对侧,两者之间用三角形挡块隔离。(b)图和(c)图是两种互通坡道组,包括两个高位平台和两个低位平台,以及四个斜坡,其结构可以分解为A、B两段,B段是A段沿长轴类似镜像对称的结构体,A、B两段首尾相接就能构成一段完整的互通坡道组墙体。(b)图是异侧开口平台在高位的两单元段116A和116B,(c)图是同侧开口平台在高位的两单元段117A和117B。
图25是第二道路即下层道路下沉的双层道路模块的局部示意图。为了清楚显示,图中移去了部分上层道路。从路面标线可以看到下层道路靠左行驶的特点。在下层路面的正中,采用了异侧开口平台高位放置的互通坡道组单元,可以看到与上层路面平齐的异侧开口平台118A和118B,两平台之间是低位放置的同侧开口平台120。图中还可以看到位于最外侧的属于上层道路的两条通道119和121,这两条车道遵循靠右行驶的原则。
图26中的(a)图和(b)图分别示出了高架式双层复合道路模块的横截面图和纵截面图。在(a)图中,上层车辆靠左行驶,下层车辆靠右行驶,正中是互通坡道组,两侧有支柱。因车辆大、小混行,因此包括互通坡道组在内的道路及高架桥高度都按大尺寸设计。图中往里去的顺向标为“×”,而向外来的逆向标为“○”。(b)图显示了互通坡道组的基本结构及功能区分,坡道组部分功能单元是从高位平台的中线到相邻低位平台的中线间的部分,其完整功能单元包括逆向下行区间131、逆向上行区间132、顺向上行区间133、顺向下行区间134这四个连续的部分功能单元。复合道路模块包括左上区路板G-L(或称第二行车道)、右上区路板G-R(或称第一行车道)、左下区路板B-L(或称第三行车道)、右下区路板B-R(或称第四行车道)。“四区四向”对角互通通道共有四组,其组配关系是:第一行车道G-R至第三行车道B-L对应于逆向下行区间131,第三行车道B-L至第一行车道G-R对逆向上行应区间132,第四行车道B-R至第二行车道G-L对应顺向上行区间133,并且第二行车道G-L至第四行车道B-R对应顺向下行区间134。可以发现,在区间132和区间133中的连接通道分别导向第一行车道和第二行车道,因此这两个连接通道的出口位于上层道路中相应分隔栏的两侧。同样,在区间134和131中的连接通道 分别来自第二行车道和第一行车道,因此这两个连接通道的入口也位于上层道路中相应分隔栏的两侧。然而,在区间133和134中的连接通道分别来自第四行车道和导向第四行车道,因此前一连接通道的入口与后一连接通道的出口位于下层道路中相应分隔栏的同一侧。
图27与图26相似,不同之处在于各连接通道的排列方式。具体而言,在区间132和区间131中的连接通道分别导向第一行车道和来自第一行车道,因此前一连接通道的出口与后一连接通道的入口位于上层道路中相应分隔栏的同一侧。同样,在区间134和区间133中的连接通道分别导向第四行车道和来自第四行车道,因此前一连接通道的出口与后一连接通道的入口位于上层道路中相应分隔栏的同一侧。然而,在区间131和134中的连接通道分别导向第三行车道和第四行车道,因此这两个连接通道的入口位于下层道路中相应分隔栏的两侧。
图28中(a)、(b)分别是高架的桥面和移除桥面看到的下层路面的情形。本例的第二道路在高架路面,第一道路在地表。从(b)图中可以看到,下层地表的车辆靠右行驶,位于道路正中的坡道组延绵不断,随道路的走向发展。一组坡道单元138和139沿道路走向重复循环排列。(a)图相当于(b)图加装了高层路板的情形,车辆靠左行驶,可以看到循环布置的长椭圆形的路心出入口136和137,两个路心出入口之间设有分隔栏杆。
图29示意性地显示了根据本发明的双层道路系统。正中是位于城市“棋盘路”网格中的一个城市功能区,比如生活社区,该社区四周的四条主干道相交于四个交叉口,交叉口140是其中之一。主干道是第二道路下沉的立体式类型。该社区有类似楼宇141的建筑物共九座,楼宇附近是通往主干道的次干路142,类似的次干路共有八条。图中的次干路142采用平面式复合道路模块。图中主干道的路心处规律地分布有路心出入口,并且按照A型、B型交错布置的原则排列。如前所述,路心出入口共有两大类,一种是异侧开口平台置上,其构成单元是A1和B1;另一种是同侧开口平台置上,其构成单元是A2和B2。图(a)和图(b)分别是这两大类路心出入口的放大视图。
图30是图29中次干路142与主干道交汇处的放大图,(a)图是(b)图沿剖切面A-A剖切后的情形,车辆148A、149A、150A分别是车辆148、149、150的另一个视图。主干道是立体模式,即采用双层 复合道路模块。次干路采用平面式复合道路模块,其第一道路包括两个通道143和144,由地表通往主干道的上层道路。在其左侧的第二道路包括两个通道145和146,通往主干道的下层道路。平面式和立体式交接的原则是:平面式的第一道路与立体式的第一道路连接;平面式的第二道路与立体式的第二道路连接。结合(a)、(b)两图,次干路开往主干道的右转弯车辆147和左转弯车辆150,分别从地上、地下实现直接转弯,而驶离主干道的右转弯车辆148和左转弯车辆149,也都能实现直接转弯,不用迂回绕行。
复合道路模块或单元中的第一道路和第二道路相互依存,相互配合;如果再辅以先进的计算机控制技术和交通指挥系统,进一步优化配置城市交通的供求关系,将有效的扭转城市交通的困局,使城市交通的综合效益更加接近理想的目标。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种复合道路模块,包括大致平行延伸的第一道路和第二道路,所述第一道路和所述第二道路中的一个设置为供车辆按靠左通行规则行驶,另一个设置为供车辆按靠右通行规则行驶,所述第一道路包括第一行车道和第二行车道,所述第二道路包括第三行车道和第四行车道,其中,所述第一行车道和所述第三行车道彼此连通,且供车辆在第一方向上行驶,并且其中,所述第二行车道和所述第四行车道彼此连通,且供车辆在与所述第一方向相反的第二方向上行驶。
  2. 根据权利要求1所述的复合道路模块,其中,所述第一行车道和所述第二行车道并排布置以形成上层道路,所述第三行车道和所述第四行车道并排布置以形成下层道路,并且其中,所述第三行车道和所述第四行车道分别位于所述第二行车道和所述第一行车道下方。
  3. 根据权利要求2所述的复合道路模块,进一步包括:
    第一连接通道,其将所述第一行车道连通至所述第三行车道;
    第二连接通道,其将所述第二行车道连通至所述第四行车道;
    第三连接通道,其将所述第三行车道连通至所述第一行车道;以及
    第四连接通道,其将所述第四行车道连通至所述第二行车道,
    其中,所述第一、第二、第三和第四连接通道的一端位于所述第一行车道和所述第二行车道之间,另一端位于所述第三行车道和所述第四行车道之间,并且
    其中,所述上层道路包括位于所述第一行车道和所述第二行车道之间的第一分隔栏和第二分隔栏,且所述下层道路包括位于所述第三行车道和所述第四行车道之间的第三分隔栏。
  4. 根据权利要求3所述的复合道路模块,其中,所述第一、第二、第四和第三连接通道沿纵向依次布置,并且
    其中,所述第一连接通道的所述一端和所述第二连接通道的所述一端在横向上位于所述第一分隔栏的两侧,所述第三连接通道的所述一端和所述第四连接通道的所述一端在横向上位于所述第二分隔栏的两侧,并且所述第二连接通道的所述另一端和所述第四连接通道的所述另一端在横向位于所述第三分隔栏的同一侧。
  5. 根据权利要求4所述的复合道路模块,进一步包括位于所述上层道路和所述下层道路之间的两个坡台,所述两个坡台中的一个由所述第一连接通道和所述第二连接通道形成,另一个由所述第四连接通道和所述第三连接通道形成。
  6. 根据权利要求4所述的复合道路模块,其中,所述第三分隔栏在其位于所述第四行车道的一侧处包括分隔柱,从而将所述第二连接通道的所述另一端和所述第四连接通道的所述另一端在纵向上隔离开。
  7. 根据权利要求3所述的复合道路模块,其中,所述第三、第一、第二和第四连接通道沿纵向依次布置,并且
    其中,所述第三连接通道的所述一端和所述第一连接通道的所述一端在横向上位于所述第一分隔栏的同一侧,所述第四连接通道的所述一端和所述第二连接通道的所述一端在横向上位于所述第二分隔栏的同一侧,并且所述第一连接通道的所述另一端和所述第四连接通道的所述另一端在横向位于所述第三分隔栏的两侧。
  8. 根据权利要求7所述的复合道路模块,进一步包括位于所述上层道路和所述下层道路之间的两个坡台,所述两个坡台中的一个由所述第三连接通道和所述第一连接通道形成,另一个由所述第四连接通道和所述第二连接通道形成。
  9. 根据权利要求7所述的复合道路模块,其中,所述第一分隔栏在其位于所述第一行车道的一侧处包括分隔柱,从而将所述第三连接通道的所述一端和所述第一连接通道的所述一端在纵向上隔离开,优选地,所述第二分隔栏在其位于所述第二行车道的一侧处包括分隔柱,从而将所述第四连接通道的所述一端和所述第二连接通道的所述一端在纵向上隔离开。
  10. 根据权利要求5或8所述的复合道路模块,其中,每一个坡台均具有大致呈梯形的纵向截面,优选地,每一个坡台包括两个掉头通道,以便连通所述第三行车道和所述第四行车道。
  11. 根据权利要求3所述的复合道路模块,其中,所述上层道路还包括位于所述第一行车道和所述第二行车道之间的第四分隔栏,所述第四分隔栏位于所述第一分隔栏和所述第二分隔栏之间,且与所述第一分隔栏和所述第二分隔栏间隔开,以便允许所述第一行车道和所述 第二行车道连通,优选地,所述第一分隔栏、所述第二分隔栏、所述第三分隔栏和所述第四分隔栏中的一个或更多个在两侧设有禁驶区或停车区。
  12. 根据权利要求1所述的复合道路模块,其中,所述第二行车道、所述第三行车道、所述第四行车道和所述第一行车道在横向上依次并排布置。
  13. 根据权利要求12所述的复合道路模块,进一步包括第一、第二、第三和第四连接通道,并且所述第二道路包括第一路段和第二路段,
    其中,所述第一路段和所述第二路段下沉于所述第三行车道和所述第四行车道之下,或者高架于所述第三行车道和所述第四行车道之上;并且
    其中,所述第一连接通道绕过所述第一路段的一个端口而将所述第一行车道连通至所述第三行车道,所述第二连接通道绕过所述第二路段的一个端口而将所述第二行车道连通至所述第四行车道,所述第三连接通道绕过所述第一路段的另一个端口而将所述第三行车道连通至所述第一行车道,并且所述第四连接通道绕过所述第二路段的另一个端口而将所述第四行车道连通至所述第二行车道。
  14. 一种复合道路单元,包括:
    根据权利要求1至13中任一项所述的复合道路模块;以及
    一个或两个用于多个道路方向的道路枢纽,每一个道路枢纽包括主交叉口和副交叉口,其中,所述主交叉口包括主中央部以及分别在所述多个道路方向上从所述主中央部向外延伸的多对主通道,每一对主通道包括并排布置的主上行通道和主下行通道,所述副交叉口独立于所述主交叉口,并且包括副中央部以及分别在所述多个道路方向上从所述副中央部向外延伸的多对副通道,每一对副通道包括并排布置的副上行通道和副下行通道,
    其中,每一对主通道中的主上行通道在顺时针方向和逆时针方向中的一个方向上与相邻的一对主通道中的主下行通道经由所述主中央部连通,并且每一对副通道中的副上行通道在顺时针方向和逆时针方向中的另一个方向上与相邻的一对副通道中的副下行通道经由所述副中央部连通,并且
    其中,所述多对主通道中的一对主通道的主上行通道和主下行通道分别与所述复合道路模块的所述第一行车道和所述第二行车道连通,并且所述多对副通道中的相应一对副通道的副上行通道和副下行通道分别与所述复合道路模块的所述第三行车道和所述第四行车道连通。
  15. 一种复合道路系统,包括一个或多个根据权利要求14所述的复合道路单元以及/或者一个或多个根据权利要求1至13中任一项所述的复合道路模块。
PCT/CN2018/076245 2017-07-01 2018-02-11 复合道路模块、单元和系统 WO2019007070A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/626,120 US11359337B2 (en) 2017-07-01 2018-02-11 Composite road module, unit and system
CN201880044415.5A CN111065778B (zh) 2017-07-01 2018-02-11 复合道路模块、单元和系统
EA202090059A EA202090059A1 (ru) 2017-07-01 2018-02-11 Композиционный дорожный модуль, элемент и система

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710527697.1A CN109208416A (zh) 2017-07-01 2017-07-01 一种加入小循环系统的复合式城市交通系统
CN201710527697.1 2017-07-01

Publications (1)

Publication Number Publication Date
WO2019007070A1 true WO2019007070A1 (zh) 2019-01-10

Family

ID=64949685

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/076245 WO2019007070A1 (zh) 2017-07-01 2018-02-11 复合道路模块、单元和系统
PCT/CN2018/076244 WO2019007069A1 (zh) 2017-07-01 2018-02-11 用于多个道路方向的道路枢纽以及道路行车方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076244 WO2019007069A1 (zh) 2017-07-01 2018-02-11 用于多个道路方向的道路枢纽以及道路行车方法

Country Status (4)

Country Link
US (1) US11359337B2 (zh)
CN (3) CN109208416A (zh)
EA (1) EA202090059A1 (zh)
WO (2) WO2019007070A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020243109A1 (en) * 2019-05-24 2020-12-03 Elreich Ahmad Abu Transportation systems for hybrid vehicles
CN115605646A (zh) * 2020-12-23 2023-01-13 都快通(北京)交通疏导设备有限公司(Cn) 紧凑型复合道路模块、单元和系统
CN114481903B (zh) * 2021-12-17 2023-03-24 中电建(四川)城市运营管理有限公司 一种高速公路收费站限流装置及方法
CN118015842B (zh) * 2024-04-09 2024-06-14 经智信息科技(山东)有限公司 一种基于图像处理的交通拥堵预测方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921701A (en) * 1997-06-25 1999-07-13 Clayton; Robert F. Traffic interchange
RU2152471C1 (ru) * 1999-12-31 2000-07-10 ООО "Организатор" Транспортная развязка
CN1542225A (zh) * 2003-11-07 2004-11-03 雍尚平 在信号交叉口一种新型的车道设置方式及其交通控制组织
CN101538820A (zh) * 2009-04-10 2009-09-23 马建明 机动车“快速左移左转、直线同步行进”通行模式
CN101581064A (zh) * 2009-04-14 2009-11-18 燕山大学 分离型分道高速公路
GB2466279A (en) * 2008-12-18 2010-06-23 David Charles Edwards Motorway junction system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915580A (en) * 1974-06-21 1975-10-28 Raymond Lee Organization Inc Traffic intersection
US5049000A (en) * 1987-12-23 1991-09-17 Mier Francisco D Continuous flow intersection
US4955751A (en) * 1989-08-22 1990-09-11 John Tsai Crossroad without traffic lights
CN1105084A (zh) * 1994-06-07 1995-07-12 阴继庞 4/4(4/3)车道地上双层无交叉立交桥
CN1123859A (zh) * 1995-09-29 1996-06-05 李祥裕 十字双坡单层架空立体交叉桥
US5846020A (en) * 1997-06-26 1998-12-08 Mckeown; Kevin Pre-fabricated multi-level roadway structure
CN1379156A (zh) * 2002-04-30 2002-11-13 王占元 万象轴立体交叉路口
CN100408757C (zh) * 2005-08-23 2008-08-06 邹世才 城市干道平交十字路口汽车、自行车无冲突左转的方法
CA2630869A1 (en) * 2005-11-24 2007-05-31 Jozef Goj Traffic control intersection
CN101033598A (zh) * 2006-03-07 2007-09-12 程祖本 一种全流通法交叉路口的道路设置、信号灯控制及通行方法
DE202006020422U1 (de) * 2006-08-07 2008-08-28 Günther Tröster e.K. Verkehrseinrichtung
CN200974950Y (zh) * 2006-08-23 2007-11-14 杜三平 城市交通组合立交桥
CN1958956A (zh) * 2006-10-02 2007-05-09 林书潮 左转车辆并向、并道、同步通行控制模式
WO2008150317A1 (en) * 2007-06-06 2008-12-11 Sing Robert L Double-deck covered roadway
US7739030B2 (en) * 2007-11-13 2010-06-15 Desai Shitalkumar V Relieving urban traffic congestion
CN101256716A (zh) * 2008-04-11 2008-09-03 张南 道路平面交叉口无冲突交通模式设置及其控制方法
CN102493298B (zh) * 2011-11-17 2014-01-01 何晓艳 能同时实现左转的交叉路口
CN103161105A (zh) * 2011-12-12 2013-06-19 洛阳丰兴机械科技有限公司 交叉路口畅通桥
CN102425090B (zh) * 2011-12-28 2014-12-03 陈清伟 可集约利用土地并能避免交通堵塞的城市立体道路
CN204530359U (zh) * 2015-03-27 2015-08-05 张文泉 城市多层环岛式立交桥
CN106381788A (zh) * 2016-11-11 2017-02-08 李玉杰 一种城市道路全网贯通结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921701A (en) * 1997-06-25 1999-07-13 Clayton; Robert F. Traffic interchange
RU2152471C1 (ru) * 1999-12-31 2000-07-10 ООО "Организатор" Транспортная развязка
CN1542225A (zh) * 2003-11-07 2004-11-03 雍尚平 在信号交叉口一种新型的车道设置方式及其交通控制组织
GB2466279A (en) * 2008-12-18 2010-06-23 David Charles Edwards Motorway junction system
CN101538820A (zh) * 2009-04-10 2009-09-23 马建明 机动车“快速左移左转、直线同步行进”通行模式
CN101581064A (zh) * 2009-04-14 2009-11-18 燕山大学 分离型分道高速公路

Also Published As

Publication number Publication date
US11359337B2 (en) 2022-06-14
WO2019007069A1 (zh) 2019-01-10
CN109208416A (zh) 2019-01-15
CN111133150A (zh) 2020-05-08
EA202090059A1 (ru) 2020-04-16
CN111065778A (zh) 2020-04-24
US20200224370A1 (en) 2020-07-16
CN111065778B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN100473782C (zh) 无红绿灯无障碍的城市立体快速交通道路结构
WO2019007070A1 (zh) 复合道路模块、单元和系统
EP2821549B1 (en) Stacked city road
US20070189851A1 (en) Full interchange urban road system and the traffic method of using it
CN102817295B (zh) 立体十字路口驻停多交直通连锁枢纽式钟摆立交桥
WO2006060950A1 (fr) Installation de circulation routiere et son procede de construction
WO2011140928A1 (zh) 右行制四个"卜"字形单元的组合桥或组合隧道
CN101008171A (zh) 城市道路十字路口无障碍立交桥
WO2016165637A1 (zh) 优化开发多维交通路网
CN105951549A (zh) 一种多功能十字立交桥
CN113597488B (zh) 用于多个道路方向的立交桥、道路系统以及道路行车方法
WO2013007100A1 (zh) 立交桥
CN107988866B (zh) 一种简易立交桥
CN106223149A (zh) 一种十字路口垂直换乘立交桥
CN105714632A (zh) 密柱窄跨低层高式城市穿越架高路
CN108978384A (zh) 一种地上直行立交桥
CN107119518A (zh) 一种十字路口单层无障碍全互通立交系统
CN211112965U (zh) 一种立体交通桥
CN210797135U (zh) 一种单线小高架交通系统
CN111996853A (zh) 一种十字路口立交桥
EA040977B1 (ru) Композиционный двухуровневый дорожный модуль
WO2022134289A1 (zh) 紧凑型复合道路模块、单元和系统
CN205741808U (zh) 密柱窄跨低层高式城市穿越架高路
CN211171463U (zh) 一种人车一体式双层立交桥结构
CN210826962U (zh) 一种新型交叉路口

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828724

Country of ref document: EP

Kind code of ref document: A1