WO2019006820A1 - 一种用于驱动像素电路的方法 - Google Patents

一种用于驱动像素电路的方法 Download PDF

Info

Publication number
WO2019006820A1
WO2019006820A1 PCT/CN2017/097038 CN2017097038W WO2019006820A1 WO 2019006820 A1 WO2019006820 A1 WO 2019006820A1 CN 2017097038 W CN2017097038 W CN 2017097038W WO 2019006820 A1 WO2019006820 A1 WO 2019006820A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
driving thin
driving
drain
Prior art date
Application number
PCT/CN2017/097038
Other languages
English (en)
French (fr)
Inventor
曾玉超
梁鹏飞
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/565,461 priority Critical patent/US10650743B2/en
Publication of WO2019006820A1 publication Critical patent/WO2019006820A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • G09G3/325Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention belongs to the field of display control technologies, and in particular, to a method for driving an AMOLED pixel circuit.
  • FIG. 1 is a schematic diagram of a structure of an AMOLED (Active Matrix Organic Light Emitting Diode) pixel circuit including a switching thin film transistor T11, a driving thin film transistor T12, and a control thin film transistor. T13, storage capacitor C14 and organic light emitting diode OLED15.
  • the gate of the switching thin film transistor T11 is used for inputting a scan signal
  • the source is for inputting a data signal
  • the drain is connected to the gate of the driving thin film transistor T12.
  • the source of the driving thin film transistor T12 is used to input the first driving voltage OVDD, and the drain is connected to control the drain of the thin film transistor T13 and the anode of the organic light emitting diode OLED15.
  • the gate of the control thin film transistor T13 is used to input the control signal SEN, and the source is used to input the enable signal VCM_en.
  • One end of the storage capacitor C14 is connected to the gate of the driving thin film transistor T12, and the other end is connected to the drain of the driving thin film transistor T12.
  • the cathode of the organic light emitting diode OLED 15 is connected to the second driving voltage OVSS.
  • the panel luminance is uniform by compensating for the difference between the threshold voltage Vth and the current-voltage conversion coefficient k between the gate and the drain of the driving thin film transistor T12 in each pixel circuit structure. Sex.
  • the difference in the luminous efficiency ⁇ of the organic light emitting diode OLED 15 also causes the panel luminance to be uneven.
  • the existing pixel circuit can compensate for the difference of k and Vth, but fails to compensate for the difference in luminous efficiency ⁇ of the organic light emitting diode OLED15.
  • the present invention provides a method for driving a pixel circuit for compensating for luminous efficiency of an organic light emitting diode to improve brightness uniformity of the panel.
  • a method for driving a pixel circuit including a switching thin film transistor, a driving thin film transistor, a control thin film transistor, a storage capacitor, and an organic light emitting diode
  • the switching thin film transistor a gate for inputting a scan signal, a source for inputting a data signal, a drain connected to a gate of the driving thin film transistor, a source of the driving thin film transistor for inputting a first driving voltage, and a drain connecting the control a drain of the thin film transistor and an anode of the organic light emitting diode; a gate of the control thin film transistor for inputting a control signal, a source for inputting an enable signal; and a first end of the storage capacitor connected to the driving film a gate of the transistor, a second end of which is connected to a drain of the driving thin film transistor, and a cathode of the organic light emitting diode is connected to a second driving voltage
  • the method includes:
  • obtaining the threshold voltage of the driving thin film transistor comprises:
  • the actual threshold voltage of the driving thin film transistor is calculated based on the potential value of the gate of the driving thin film transistor and the potential value of the drain.
  • the first preset initial potential, the threshold voltage of the driving thin film transistor, and the predetermined initial potential satisfy the following conditions:
  • the Vth OLED represents a threshold voltage of the organic light emitting diode
  • Vdata represents the first preset initial potential
  • VCM represents the predetermined initial potential
  • Vth represents a threshold voltage of the driving thin film transistor
  • calculating the threshold voltage of the driving thin film transistor further comprises obtaining the actual threshold voltage by calculating a potential difference between a gate and a drain of the driving thin film transistor.
  • obtaining a current-voltage conversion coefficient of the driving thin film transistor includes:
  • calculating a current-voltage conversion coefficient of the driving thin film transistor includes: calculating the current-voltage conversion coefficient by:
  • k0 represents a predetermined target current voltage conversion coefficient of the driving thin film transistor
  • k represents an actual current voltage conversion coefficient of the driving thin film transistor
  • Vs represents a potential of a drain corresponding to an actual current voltage conversion coefficient of the driving thin film transistor
  • Vs01 represents the potential of the drain corresponding to the predetermined target current-voltage conversion coefficient of the driving thin film transistor.
  • obtaining the luminous efficiency of the organic light emitting diode comprises:
  • calculating the third preset initial potential comprises: calculating the third preset initial potential by:
  • V g ′′ represents the third preset initial potential
  • ⁇ V th represents a difference between a predetermined target threshold voltage of the driving thin film transistor and an actual threshold voltage.
  • calculating the luminous efficiency of the organic light emitting diode comprises: calculating an actual luminous efficiency of the organic light emitting diode by:
  • ⁇ 0 represents a predetermined target luminous efficiency of the organic light emitting diode
  • represents an actual luminous efficiency of the organic light emitting diode
  • Vs02 represents a potential of a drain of the driving thin film transistor corresponding to a predetermined target luminous efficiency of the organic light emitting diode
  • OVSS represents the second driving voltage
  • Vs represents the actual luminous efficiency of the organic light emitting diode corresponding to the potential of the drain of the driving thin film transistor.
  • the data signal input to the source of the switching thin film transistor is calculated according to the obtained actual threshold voltage and current voltage conversion coefficient of the driving thin film transistor and the luminous efficiency of the organic light emitting diode.
  • V g ' represents a potential of the gate after compensating for an actual current-voltage conversion coefficient of the driving thin film transistor and an actual luminous efficiency of the organic light-emitting diode
  • the actual threshold voltage of the driving thin film transistor is compensated by the following formula
  • V′′ g V′ g + ⁇ V th
  • V g ′′ represents a potential value of the gate after compensating for an actual threshold voltage of the driving thin film transistor
  • ⁇ V th represents a difference between a predetermined target threshold voltage of the driving thin film transistor and an actual threshold voltage
  • a compensation data signal input to a source of the switching thin film transistor is determined according to a potential of the gate after compensation of an actual threshold voltage of the driving thin film transistor.
  • the present invention can obtain and compensate the actual threshold voltage and the actual current voltage conversion coefficient of the driving thin film transistor and the actual luminous efficiency of the organic light emitting diode by a predetermined order, and can improve the brightness uniformity of the panel.
  • FIG. 1 is a schematic structural diagram of an AMOLED pixel circuit in the prior art
  • FIG. 2a is a flow chart of detecting a threshold voltage and a current-voltage conversion coefficient of a driving thin film transistor in the pixel circuit structure shown in FIG. 1 in the prior art;
  • 2b is a flow chart of the threshold voltage and current-voltage conversion coefficient compensation sequence of driving the thin film transistor in the pixel circuit structure shown in FIG. 1 in the prior art;
  • FIG. 3 is a flow chart of a method for driving a pixel circuit in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an AMOLED pixel circuit according to an embodiment of the present invention.
  • 5a is a schematic diagram of waveforms of respective signals when threshold voltage detection of a driving thin film transistor is performed according to an embodiment of the present invention
  • FIG. 5b is a current-voltage conversion coefficient detector for driving a thin film transistor according to an embodiment of the present invention. Schematic diagram of each signal waveform during measurement;
  • FIG. 5c is a schematic diagram of waveforms of respective signals when the luminous efficiency of the organic light emitting diode is detected according to an embodiment of the invention.
  • the luminance L of the organic light emitting diode OLED 15 is proportional to its current I OLED :
  • represents the luminous efficiency of the organic light emitting diode OLED 15.
  • the driving thin film transistor T12 operates in a saturation region, and controls the current Ids between the source and the drain through the voltage of its gate:
  • I ds k(Vg-Vg-Vth) 2 (2)
  • k represents the actual current-voltage conversion coefficient of the driving thin film transistor
  • Vg represents the gate potential of the driving thin film transistor T12
  • Vs represents the drain potential of the driving thin film transistor T12
  • Vth represents the actual threshold voltage of the driving thin film transistor T12.
  • the current between the pixels and the Id is caused by the same Vth and k. has a difference.
  • the sequence shown in FIG. 2a is used to obtain the threshold voltage and the current-voltage conversion coefficient of the driving thin film transistor
  • the sequence shown in FIG. 2b is used to compensate the threshold voltage and the current-voltage conversion coefficient of the driving thin film transistor.
  • the voltage of the gate is compensated by driving the threshold voltage and current-voltage conversion coefficient of the thin film transistor:
  • k represents the actual current-voltage conversion coefficient of the driving thin film transistor of the current pixel
  • k0 represents a predetermined target current-voltage conversion coefficient
  • ⁇ V th represents a difference value between the actual threshold voltage of the current pixel and the target threshold voltage
  • the present invention provides a method for driving an AMOLED pixel circuit, as shown in FIG. 3 is a flow chart of a method in accordance with an embodiment of the present invention, which is described in detail below with reference to FIG.
  • the method is for driving the AMOLED pixel circuit shown in FIG. 4, and the pixel circuit includes a switching thin film transistor T21, a driving thin film transistor T22, a control thin film transistor T23, a storage capacitor C, and an organic light emitting diode OLED.
  • the gate of the switching thin film transistor T21 is used for inputting a scan signal SCAN, the source is for inputting a data signal DATA, and the drain is connected to a gate of the driving thin film transistor.
  • the source of the driving thin film transistor T22 is for inputting the first driving voltage OVDD, and the drain is connected to control the drain of the thin film transistor T23 and the anode of the organic light emitting diode OLED.
  • the cathode of the organic light emitting diode OLED is connected to the second driving voltage OVSS, the gate of the control thin film transistor T23 is used for inputting the control signal SEN, and the source is used for inputting the enable signal VCM.
  • the first end of the storage capacitor C is connected to the gate of the driving thin film transistor T22, and the second end is connected to the drain of the driving thin film transistor T22.
  • a data acquisition circuit ADC is further disposed at the drain of the control thin film transistor T23.
  • step S110 a corresponding scan signal, a data signal, a control signal, an enable signal, a first driving voltage, and a second driving voltage are applied to the pixel circuit, and the actual threshold voltage and the actual current voltage conversion coefficient of the driving thin film transistor are sequentially obtained.
  • the actual luminous efficiency of the organic light emitting diode In step S120, the compensation data signal input to the source of the switching thin film transistor is calculated according to the actual threshold voltage of the obtained driving thin film transistor and the actual current voltage conversion coefficient and the actual luminous efficiency of the organic light emitting diode to threshold the driving thin film transistor. The voltage and current voltage conversion coefficients and the luminous efficiency of the organic light emitting diode are compensated.
  • step S110 the threshold voltage Vth of the driving thin film transistor T22 is first obtained. Specifically, referring to FIG. 5a, the scan signal SCAN is applied to the gate of the switching thin film transistor T21, and the first data signal DATA1 is applied to the source, so that the gate of the driving thin film transistor T22 reaches the first preset initial potential Vdata. A control signal SEN and a source application enable signal VCM_en are applied to the gate of the control thin film transistor T23, respectively, so that the drain of the driving thin film transistor T22 reaches a predetermined initial potential VCM.
  • the application of the enable signal VCM_en to the source of the control thin film transistor T23 is stopped, and the first driving voltage OVDD charges the drain of the driving thin film transistor, after the pixel circuit reaches a steady state, The potential value Vs of the drain of the driving thin film transistor T22 is collected. After the pixel circuit is stabilized, the drain of the driving thin film transistor is charged to Vdata-Vth, and the potential value at this point can be read by the data acquisition circuit ADC.
  • the actual threshold voltage Vth of the driving thin film transistor T22 is calculated from the potential value of the gate of the driving thin film transistor T22 and the potential value of the drain.
  • the actual threshold voltage Vth is obtained by finding the potential difference between the gate and the drain of the driving thin film transistor, that is:
  • Vth Vg-Vs (5)
  • the actual current-voltage conversion coefficient k of the driving thin film transistor T22 is obtained.
  • the scan signal SCAN is applied to the gate of the switching thin film transistor T21
  • the second data signal DATA2 is applied to the source so that the gate of the driving thin film transistor T22 reaches the second preset initial potential Vdata+Vth.
  • a control signal SEN and a source application enable signal VCM_en are applied to the gate of the control thin film transistor T23, respectively, so that the drain of the driving thin film transistor T22 reaches a predetermined initial potential VCM.
  • the second preset initial potential is equal to the sum of the first preset initial potential and the threshold voltage of the driving thin film transistor. This process corresponds to the t41 time period in Figure 5b.
  • the scanning signal is applied to the gate of the switching thin film transistor T21 and the enable signal is applied to the source of the control thin film transistor T22, and the first driving voltage OVDD charges the drain of the driving thin film transistor T22.
  • the voltage difference Vgs between the gate and the drain of the driving thin film transistor T22 is constant and larger than the actual threshold voltage Vth, and then driven
  • the thin film transistor T22 is turned on, and a fixed current Ids charges the drain of the driving thin film transistor T22. At this time, Ids has eliminated the influence of the actual threshold voltage of the driving thin film transistor T22, which is expressed as:
  • k represents the actual current-voltage conversion coefficient of the driving thin film transistor T22 of the current pixel.
  • the potential value of the drain of the driving thin film transistor 22 is collected. Specifically, the drain of the driving thin film transistor 22 is charged for a predetermined time t42 (for example, a certain period of time during the change of the potential value of the drain point after the power supply of the gate and the drain of the driving thin film transistor 22 is turned off may be selected, otherwise the drain point After the bit is stabilized, no current flows in the circuit, and the current flow cannot be monitored. Then, the drain of the driving thin film transistor 22 is sampled. At this time, the potential of the drain is VCM+Ids*t42/C, and C represents the storage capacitor C. Capacitance value, and VCM+Ids*t41/C ⁇ Vth OLED , then:
  • Ids (Vs-VCM)*C/t41 (7)
  • the actual current voltage conversion coefficient of the driving thin film transistor T22 is calculated according to the predetermined target current voltage conversion coefficient of the driving thin film transistor T22 and the corresponding drain potential value, and the potential value of the drain of the driving thin film transistor T22 and the predetermined initial potential. . Specifically, the predetermined target current voltage conversion coefficient of the driving thin film transistor T22 and the potential value of the corresponding drain are selected, and the driving film is calculated according to the potential value of the drain of the driving thin film transistor T22 and the enable signal (the predetermined initial potential VCM can be obtained). The actual current voltage conversion factor of transistor T22.
  • a current-voltage conversion coefficient k0 of a predetermined target driving thin film transistor is selected, and a potential Vs01 of a drain of the driving thin film transistor corresponding to the k0 is known (a plurality of current-voltage conversion coefficients of the driving thin film transistor can be obtained by a statistical method)
  • the average value of k 0 is obtained, and the average value of the corresponding drain potential value is Vs01), and k can be calculated by the following formula:
  • Equation (8) can be derived by Equations (7) and (9), and the capacitance value of the storage capacitor C and the time t41 can be avoided.
  • the scan signal SCAN and the source application third data signal DATA3 are respectively applied to the gate of the switching thin film transistor T21, so that the gate of the driving thin film transistor T23 reaches the third preset initial potential:
  • ⁇ V th represents a difference value between the actual threshold voltage of the driving thin film transistor T23 of the current pixel and a predetermined target threshold voltage.
  • the third preset initial potential is calculated according to the first preset initial potential Vdata and the threshold voltage Vth, the predetermined target threshold voltage, and the first predetermined initial potential VCM, and a control signal and a source application enable signal are applied to the gate of the control thin film transistor.
  • VCM_en is such that the drain of the driving thin film transistor reaches a predetermined initial potential VCM.
  • the potential value of the drain of the driving thin film transistor T23 is collected.
  • the data acquisition circuit ADC reads the voltage at the drain of the driving thin film transistor T23, and the organic light emitting diode OLED can be obtained in the same manner. Different cross-pressures driven by current.
  • the luminous efficiency of the organic light emitting diode OLED is calculated according to the predetermined target luminous efficiency of the organic light emitting diode and the potential value of the drain of the corresponding driving thin film transistor and the second driving voltage OVSS.
  • the luminous efficiency ⁇ of the organic light emitting diode OLED is inversely proportional to the voltage across the voltage, and a target luminous efficiency ⁇ 0 is selected to compensate the luminous efficiency ⁇ of the OLED of the pixel.
  • the relationship between the actual luminous efficiency ⁇ of the organic light emitting diode OLED and the target luminous efficiency ⁇ 0 is expressed as:
  • Vs02 represents the Vs voltage when the organic light emitting diode OLED is the target luminous efficiency ⁇ 0 ((the average value of the luminous efficiency of the plurality of organic light emitting diodes OLED can be obtained by a statistical method to obtain ⁇ 0, and the average value of the corresponding drain potential value is obtained as Vs02 ).
  • step S120 at the time of display, ⁇ , k compensation is performed first, and a fourth data signal is applied to the source of the switching thin film transistor T21, the fourth data signal causing the potential of the gate of the driving thin film transistor to be:
  • the threshold voltage of the driving thin film transistor is compensated, and after compensation, the potential of the gate is:
  • V g ” V g '+ ⁇ V th (14)
  • the calculated formula of the illuminance of the compensated organic light emitting diode OLED is:
  • the actual threshold voltage ⁇ V th is a driving thin film transistor with predetermined threshold voltage detection obtained.
  • the method provided by the present invention can compensate the Vth, k of the AMOLED display panel driving thin film transistor and the ⁇ of the organic light emitting diode OLED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种用于驱动像素电路的方法,包括:依次获得驱动薄膜晶体管(T22)的实际阈值电压(Vth)和实际电流电压转换系数(k)、有机发光二极管(OLED)的实际发光效率(η)(S110);根据获得的驱动薄膜晶体管(T22)的实际阈值电压(Vth)和实际电流电压转换系数(k)、有机发光二极管(OLED)的实际发光效率(η),计算输入至开关薄膜晶体管(T21)的源极的补偿数据信号(S120)。

Description

一种用于驱动像素电路的方法
相关申请的交叉引用
本申请要求享有2017年7月6日提交的名称为“一种用于驱动像素电路的方法”的中国专利申请CN201710545849.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明属于显示控制技术领域,具体地说,尤其涉及一种用于驱动AMOLED像素电路的方法。
背景技术
如图1所示为现有技术中一种AMOLED(Active Matrix Organic Light Emitting Diode,有源矩阵有机发光二极管)像素电路结构示意图,该像素电路包括开关薄膜晶体管T11、驱动薄膜晶体管T12、控制薄膜晶体管T13、存储电容C14和有机发光二极管OLED15。其中,开关薄膜晶体管T11的栅极用于输入扫描信号,源极用于输入数据信号,漏极连接驱动薄膜晶体管T12的栅极。驱动薄膜晶体管T12的源极用于输入第一驱动电压OVDD,漏极连接控制薄膜晶体管T13的漏极和有机发光二极管OLED15的阳极。控制薄膜晶体管T13的栅极用于输入控制信号SEN,源极用于输入使能信号VCM_en。存储电容C14的一端连接驱动薄膜晶体管T12的栅极,另一端连接驱动薄膜晶体管T12的漏极。有机发光二极管OLED15的阴极连接第二驱动电压OVSS。
对于图1所示的像素电路结构,通过对各像素电路结构中的驱动薄膜晶体管T12的栅极和漏极之间的阈值电压Vth和电流电压转换系数k的差异性进行补偿来提高面板亮度均匀性。但是,有机发光二极管OLED15的发光效率η的差异性也会导致面板亮度不均匀。现有像素电路可补偿k、Vth差异,但未能补偿有机发光二极管OLED15发光效率η的差异。
发明内容
为解决以上问题,本发明提供了一种用于驱动像素电路的方法,用以补偿有机发光二极管的发光效率,以提高面板的亮度均匀性。
根据本发明的一个实施例,提供了一种用于驱动像素电路的方法,所述像素电路包括开关薄膜晶体管、驱动薄膜晶体管、控制薄膜晶体管、存储电容和有机发光二极管,所述开关薄膜晶体管的栅极用于输入扫描信号,源极用于输入数据信号,漏极连接所述驱动薄膜晶体管的栅极;所述驱动薄膜晶体管的源极用于输入第一驱动电压,漏极连接所述控制薄膜晶体管的漏极和所述有机发光二极管的阳极;所述控制薄膜晶体管的栅极用于输入控制信号,源极用于输入使能信号;所述存储电容的第一端连接所述驱动薄膜晶体管的栅极,第二端连接所述驱动薄膜晶体管的漏极,所述有机发光二极管的阴极连接第二驱动电压,
所述方法包括:
向所述像素电路施加扫描信号、数据信号、控制信号、使能信号、第一驱动电压和第二驱动电压,并依次获得所述驱动薄膜晶体管的实际阈值电压和实际电流电压转换系数、所述有机发光二极管的实际发光效率;
根据获得的所述驱动薄膜晶体管的实际阈值电压和实际电流电压转换系数、所述有机发光二极管的实际发光效率,计算输入至所述开关薄膜晶体管的源极的补偿数据信号,以对所述驱动薄膜晶体管的阈值电压和电流电压转换系数、所述有机发光二极管的发光效率进行补偿。
根据本发明的一个实施例,获得所述驱动薄膜晶体管的阈值电压,包括:
分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第一数据信号,以使得所述驱动薄膜晶体管的栅极达到第一预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位;
停止向所述控制薄膜晶体管的源极施加使能信号,在所述第一驱动电压对所述驱动薄膜晶体管的漏极进行充电至所述像素电路稳定后,采集所述驱动薄膜晶体管的漏极的电位值;
根据所述驱动薄膜晶体管的栅极的电位值和漏极的电位值,计算得到所述驱动薄膜晶体管的实际阈值电压。
根据本发明的一个实施例,所述第一预置初始电位、所述驱动薄膜晶体管的阈值电压和所述预定初始电位满足以下条件:
VthOLED>Vdata-VCM>Vth
其中,VthOLED表示所述有机发光二极管的阈值电压,Vdata表示所述第一预置初始电位,VCM表示所述预定初始电位,Vth表示所述驱动薄膜晶体管的阈值电压。
根据本发明的一个实施例,计算得到所述驱动薄膜晶体管的阈值电压进一步包括通过计算所述驱动薄膜晶体管的栅极和漏极之间的电位差得到所述实际阈值电压。
根据本发明的一个实施例,获得所述驱动薄膜晶体管的电流电压转换系数,包括:
分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第二数据信号,以使得所述驱动薄膜晶体管的栅极达到第二预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位,其中,所述第二预置初始电位等于所述第一预置初始电位与所述驱动薄膜晶体管的实际阈值电压的和;
同时停止向所述开关薄膜晶体管的栅极施加扫描信号和向所述控制薄膜晶体管的源极施加使能信号,所述第一驱动电压对所述驱动薄膜晶体管的漏极进行充电;
对所述驱动薄膜晶体管的漏极充电预定时间后,采集所述驱动薄膜晶体管的漏极的电位值;
根据所述驱动薄膜晶体管的预定目标电流电压转换系数及对应的漏极电位值,以及获得的所述驱动薄膜晶体管的漏极的电位值和所述预定初始电位计算所述驱动薄膜晶体管的实际电流电压转换系数。
根据本发明的一个实施例,计算所述驱动薄膜晶体管的电流电压转换系数,包括:通过下式计算所述电流电压转换系数:
k0/k=(Vs01-VCM)/(Vs-VCM)
其中,k0表示所述驱动薄膜晶体管的预定目标电流电压转换系数,k表示所述驱动薄膜晶体管的实际电流电压转换系数,Vs表示所述驱动薄膜晶体管的实际电流电压转换系数对应的漏极的电位,Vs01表示所述驱动薄膜晶体管的预定目标电流电压转换系数对应的漏极的电位。
根据本发明的一个实施例,获得所述有机发光二极管的发光效率,包括:
分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第三数据信号,以使得所述驱动薄膜晶体管的栅极达到第三预置初始电位,同时分别向所述控制 薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位,其中,通过所述驱动薄膜晶体管的第一预置初始电位和实际阈值电压、预定目标阈值电压、预定初始电位计算所述第三预置初始电位;
同时停止向所述开关薄膜晶体管的栅极施加扫描信号和向所述控制薄膜晶体管的源极施加使能信号,使得所述第一驱动电压经由所述驱动薄膜晶体管流过所述有机发光二极管的电流恒定;
对所述有机发光二极管充电至其两端跨压稳定后,采集所述驱动薄膜晶体管的漏极的电位值;
基于有机发光二极管发光效率与跨压的反比例关系,根据有机发光二极管的预定目标发光效率及对应的驱动薄膜晶体管的漏极的电位值、所述第二驱动电压,计算所述有机发光二极管的实际发光效率。
根据本发明的一个实施例,计算所述第三预置初始电位,包括:通过下式计算所述第三预置初始电位:
Figure PCTCN2017097038-appb-000001
其中,Vg”表示所述第三预置初始电位,ΔVth表示所述驱动薄膜晶体管的预定目标阈值电压与实际阈值电压的差值。
根据本发明的一个实施例,计算所述有机发光二极管的发光效率,包括:通过下式计算所述有机发光二极管的实际发光效率:
η0/η=(Vs-OVSS)/(Vs02-OVSS)
其中,η0表示所述有机发光二极管的预定目标发光效率,η表示所述有机发光二极管的实际发光效率,Vs02表示所述有机发光二极管的预定目标发光效率对应的驱动薄膜晶体管的漏极的电位,OVSS表示所述第二驱动电压,Vs表示所述有机发光二极管的实际发光效率对应驱动薄膜晶体管的漏极的电位。
根据本发明的一个实施例,根据获得的所述驱动薄膜晶体管的实际阈值电压和电流电压转换系数、所述有机发光二极管的发光效率,计算输入至所述开关薄膜晶体管的源极的数据信号,包括:
利用下式对所述驱动薄膜晶体管的实际电流电压转换系数、所述有机发光二极管的实际发光效率进行补偿:
Figure PCTCN2017097038-appb-000002
其中,Vg'表示对所述驱动薄膜晶体管的实际电流电压转换系数、所述有机发光二极管的实际发光效率进行补偿后的栅极的电位;
利用下式对所述驱动薄膜晶体管的实际阈值电压进行补偿;
V″g=V′g+ΔVth
其中,Vg”表示对所述驱动薄膜晶体管的实际阈值电压进行补偿后的栅极的电位值,ΔVth表示所述驱动薄膜晶体管的预定目标阈值电压与实际阈值电压的差值;
根据所述驱动薄膜晶体管的实际阈值电压进行补偿后的栅极的电位,确定输入至所述开关薄膜晶体管的源极的补偿数据信号。
本发明的有益效果:
本发明通过预定顺序获得并补偿驱动薄膜晶体管的实际阈值电压和实际电流电压转换系数、有机发光二极管的实际发光效率,可以提高面板的亮度均匀性。
本发明的其他优点、目标,和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书,权利要求书,以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1是现有技术中一种AMOLED像素电路结构示意图;
图2a是现有技术中对图1所示像素电路结构进行驱动薄膜晶体管的阈值电压和电流电压转换系数侦测顺序的流程图;
图2b是现有技术中对图1所示像素电路结构进行驱动薄膜晶体管的阈值电压和电流电压转换系数补偿顺序的流程图;
图3是根据本发明的一个实施例的用于驱动像素电路的方法流程图;
图4是根据本发明的一个实施例的AMOLED像素电路结构示意图;
图5a是根据本发明的一个实施例的驱动薄膜晶体管的阈值电压侦测时各信号波形示意图;
图5b是根据本发明的一个实施例的驱动薄膜晶体管的电流电压转换系数侦 测时各信号波形示意图;
图5c是根据本发明的一个实施例的有机发光二极管的发光效率侦测时各信号波形示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
如图1所示的AMOLED像素电路结构中,有机发光二极管OLED15的亮度L与其电流IOLED成正比:
L=η*IOLED           (1)
其中,η表示有机发光二极管OLED15的发光效率。
驱动薄膜晶体管T12工作在饱和区,通过其栅极的电压控制其源漏极之间的电流Ids:
Ids=k(Vg-Vg-Vth)2         (2)
其中,k表示驱动薄膜晶体管的实际电流电压转换系数,Vg表示驱动薄膜晶体管T12的栅极电位,Vs表示驱动薄膜晶体管T12的漏极电位,Vth表示驱动薄膜晶体管T12的实际阈值电压。
由于有机发光二极管OLED15与驱动薄膜晶体管T12串联,所以:
Ids=IOLED           (3)
对于显示面板中的每个像素,由于驱动薄膜晶体管T12的Vth、k差异性,以及有机发光二极管T12的发光效率η的差异性,会导致Vth、k相同的情况下,像素间电流Ids存在差异。
现有技术中采用图2a所示的顺序来获得驱动薄膜晶体管的阈值电压和电流电压转换系数,采用图2b所示的顺序来补偿驱动薄膜晶体管的阈值电压和电流电压转换系数。通过驱动薄膜晶体管的阈值电压和电流电压转换系数对栅极的电压进行补偿:
Figure PCTCN2017097038-appb-000003
其中,k表示当前像素的驱动薄膜晶体管的实际电流电压转换系数,k0表示预定目标电流电压转换系数,ΔVth表示当前像素的实际阈值电压与目标阈值 电压的差异值。
将每个像素的驱动薄膜晶体管栅极处的电位由Vg”代替Vg进行驱动,可补偿像素的驱动薄膜晶体管的k、Vth差异,但未能补偿有机发光二极管的发光效率η的差异。
因此,本发明提供了一种用于驱动AMOLED像素电路的方法,如图3所示为根据本发明的一个实施例的方法流程图,以下参考图3来对本发明进行详细说明。
该方法用于驱动图4所示的AMOLED像素电路,该像素电路包括开关薄膜晶体管T21、驱动薄膜晶体管T22、控制薄膜晶体管T23、存储电容C和有机发光二极管OLED。该开关薄膜晶体管T21的栅极用于输入扫描信号SCAN,源极用于输入数据信号DATA,漏极连接驱动薄膜晶体管的栅极。驱动薄膜晶体管T22的源极用于输入第一驱动电压OVDD,漏极连接控制薄膜晶体管T23的漏极和有机发光二极管OLED的阳极。有机发光二极管OLED的阴极连接第二驱动电压OVSS,控制薄膜晶体管T23的栅极用于输入控制信号SEN,源极用于输入使能信号VCM。存储电容C的第一端连接驱动薄膜晶体管T22的栅极,第二端连接驱动薄膜晶体管T22的漏极。另外,为方便数据采集,在控制薄膜晶体管T23的漏极还设置有数据采集电路ADC。
该方法包括以下两个步骤。在步骤S110中,向像素电路施加对应的扫描信号、数据信号、控制信号、使能信号、第一驱动电压和第二驱动电压,并依次获得驱动薄膜晶体管的实际阈值电压和实际电流电压转换系数、有机发光二极管的实际发光效率。在步骤S120中,根据获得的驱动薄膜晶体管的实际阈值电压和实际电流电压转换系数、有机发光二极管的实际发光效率计算输入至开关薄膜晶体管的源极的补偿数据信号,以对驱动薄膜晶体管的阈值电压和电流电压转换系数、有机发光二极管的发光效率进行补偿。
在步骤S110中,首先获得驱动薄膜晶体管T22的阈值电压Vth。具体的,参见图5a,先分别向开关薄膜晶体管T21的栅极施加扫描信号SCAN、源极施加第一数据信号DATA1,以使得驱动薄膜晶体管T22的栅极达到第一预置初始电位Vdata,同时分别向控制薄膜晶体管T23的栅极施加控制信号SEN、源极施加使能信号VCM_en,以使得驱动薄膜晶体管T22的漏极达到预定初始电位VCM。
然后,停止向控制薄膜晶体管T23的源极施加使能信号VCM_en,第一驱动电压OVDD对驱动薄膜晶体管的漏极进行充电,待像素电路达到稳定状态后, 采集驱动薄膜晶体管T22的漏极的电位值Vs。待像素电路稳定后,驱动薄膜晶体管的漏极会充电至Vdata-Vth,该处的电位值可通过数据采集电路ADC读取。
最后,根据驱动薄膜晶体管T22的栅极的电位值和漏极的电位值计算得到驱动薄膜晶体管T22的实际阈值电压Vth。实际阈值电压Vth通过求取驱动薄膜晶体管的栅极和漏极之间的电位差得到,即:
Vth=Vg-Vs             (5)
由式(5)可知,为保证驱动薄膜晶体管管的漏极会充电至Vdata-Vth,驱动薄膜晶体管T22需打开,使得第一驱动电压对驱动薄膜晶体管管的漏极充电,需满足Vdata-VCM>Vth;但不需要点亮有机发光二极管OLED,需满足VthOLED>Vdata-VCM>Vth,VthOLED表示有机发光二极管OLED的阈值电压。
接着,获得驱动薄膜晶体管T22的实际电流电压转换系数k。具体的,参见图5b,先向开关薄膜晶体管T21的栅极施加扫描信号SCAN、源极施加第二数据信号DATA2,以使得驱动薄膜晶体管T22的栅极处达到第二预置初始电位Vdata+Vth。同时分别向控制薄膜晶体管T23的栅极施加控制信号SEN、源极施加使能信号VCM_en,以使得驱动薄膜晶体管T22的漏极达到预定初始电位VCM。其中,第二预置初始电位等于第一预置初始电位与驱动薄膜晶体管的阈值电压的和。该过程对应图5b中的t41时间段。
然后,同时停止向开关薄膜晶体管T21的栅极施加扫描信号和向控制薄膜晶体管T22的源极施加使能信号,第一驱动电压OVDD对驱动薄膜晶体管T22的漏极进行充电。同时断开驱动薄膜晶体管T22的栅极和控制薄膜晶体管T23的源极的电源供应后,驱动薄膜晶体管T22的栅极和漏极之间的压差Vgs恒定并且大于其实际阈值电压Vth,则驱动薄膜晶体管T22打开,有一固定电流Ids对驱动薄膜晶体管T22的漏极充电。此时,Ids已经消除驱动薄膜晶体管T22的实际阈值电压的影响,该固定电流Ids表示为:
Ids=k(Vgs-Vth)2=k(Vdata-VCM)2        (6)
其中,k表示当前像素的驱动薄膜晶体管T22的实际电流电压转换系数。
然后,对该驱动薄膜晶体管的漏极充电预定时间后,采集驱动薄膜晶体管22的漏极的电位值。具体的,对驱动薄膜晶体管22的漏极充电预定时间t42(例如可选取断开驱动薄膜晶体管22的栅极和漏极的电源供应后漏极点电位值变化过程中的某一段时间,否则漏极点位稳定后电路中无电流流动,无法监测电流的流量)后,再对驱动薄膜晶体管22的漏极进行采样,此时,漏极的电位为 VCM+Ids*t42/C,C表示存储电容C的电容值,并且VCM+Ids*t41/C<VthOLED,则:
Ids=(Vs-VCM)*C/t41          (7)
最后,根据驱动薄膜晶体管T22的预定目标电流电压转换系数及对应的漏极电位值,以及获得的驱动薄膜晶体管T22的漏极的电位值和预定初始电位计算驱动薄膜晶体管T22的实际电流电压转换系数。具体的,选取驱动薄膜晶体管T22的预定目标电流电压转换系数及对应的漏极的电位值,根据驱动薄膜晶体管T22的漏极的电位值和使能信号(可以得到预定初始电位VCM)计算驱动薄膜晶体管T22的实际电流电压转换系数。具体的,选取一预定目标驱动薄膜晶体管的电流电压转换系数k0,并且该k0对应的驱动薄膜晶体管的漏极的电位Vs01已知(可通过统计方法求取驱动薄膜晶体管的多个电流电压转换系数的平均值得到k0,对应的漏极电位值的平均值得到Vs01),则通过下式可计算得到k:
k0/k=(Vs01-VCM)/(Vs-VCM)         (8)
或者,由式(6)可推知:
k=Ids/(Vdata-VCM)2        (9)
则根据式(7)计算得到的Ids,通过式(9)计算得到驱动薄膜晶体管的电流电压转换系数k。式(8)可通过式(7)和式(9)推导得出,可避免引入存储电容C的电容值和时间t41。
接下来,获得有机发光二极管OLED的实际发光效率η。具体的,先分别向开关薄膜晶体管T21的栅极施加扫描信号SCAN、源极施加第三数据信号DATA3,以使得驱动薄膜晶体管T23的栅极达到第三预置初始电位:
Figure PCTCN2017097038-appb-000004
其中,ΔVth表示当前像素的驱动薄膜晶体管T23的实际阈值电压与预定目标阈值电压的差异值。第三预置初始电位根据第一预置初始电位Vdata和阈值电压Vth、预定目标阈值电压、第一预定初始电位VCM计算得到,向控制薄膜晶体管的栅极施加控制信号、源极施加使能信号VCM_en,以使得驱动薄膜晶体管的漏极达到预定初始电位VCM。
然后,同时停止向开关薄膜晶体管T21的栅极施加扫描信号和向控制薄膜晶体管T23的源极施加使能信号VCM_en,使得第一驱动电压经由驱动薄膜晶体管流过有机发光二极管的电流恒定。同时断开驱动薄膜晶体管的栅极和漏极的电源供应后,两者之间压差Vgs恒定,且能保证流过有机发光二极管OLED的电流恒定,此时:
Ids=k(Vg”-VCM)2=k0(Vdata-VCM)2      (11)
然后,对有机发光二极管OLED充电至其两端跨压稳定后,采集驱动薄膜晶体管T23的漏极的电位值。如图5c所示,有机发光二极管OLED充电一段时间后,其阳极和阴极跨压达到稳定后,数据采集电路ADC读取驱动薄膜晶体管T23的漏极处的电压,可以获得有机发光二极管OLED在相同电流驱动下的不同跨压。
最后,基于有机发光二极管发光效率与跨压的反比例关系,根据有机发光二极管的预定目标发光效率及对应的驱动薄膜晶体管的漏极的电位值、第二驱动电压OVSS计算有机发光二极管OLED的发光效率。相同电流下,有机发光二极管OLED发光效率η与跨压成反比,选取一目标发光效率η0对该像素的OLED的发光效率η进行补偿。有机发光二极管OLED的实际发光效率η与目标发光效率η0的关系表示为:
η0/η=(Vs-OVSS)/(Vs02-OVSS)      (12)
其中,Vs02表示有机发光二极管OLED为目标发光效率η0时的Vs电压((可通过统计方法求取多个有机发光二极管OLED发光效率的平均值得到η0,对应的漏极电位值的平均值得到Vs02)。
接下来,在步骤S120中,在显示时,先进行η、k补偿,向开关薄膜晶体管T21的源极施加第四数据信号,该第四数据信号使得驱动薄膜晶体管的栅极的电位为:
Figure PCTCN2017097038-appb-000005
然后补偿驱动薄膜晶体管的阈值电压,补偿后使得栅极的电位为:
Vg”=Vg'+ΔVth        (14)
经过补偿后的有机发光二极管OLED的发光亮度计算公式为:
L=η0*k0(Vg-Vs-Vth0)2         (15)
其中,Vth0表示驱动薄膜晶体管的预定阈值电压,ΔVth为驱动薄膜晶体管的预定阈值电压与侦测得到的实际阈值电压的差值。
由式(15)可以看出,本发明提供的方法可以补偿AMOLED显示面板驱动薄膜晶体管的Vth、k,及有机发光二极管OLED的η。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节 上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (20)

  1. 一种用于驱动像素电路的方法,所述像素电路包括开关薄膜晶体管、驱动薄膜晶体管、控制薄膜晶体管、存储电容和有机发光二极管,所述开关薄膜晶体管的栅极用于输入扫描信号,源极用于输入数据信号,漏极连接所述驱动薄膜晶体管的栅极;所述驱动薄膜晶体管的源极用于输入第一驱动电压,漏极连接所述控制薄膜晶体管的漏极和所述有机发光二极管的阳极;所述控制薄膜晶体管的栅极用于输入控制信号,源极用于输入使能信号;所述存储电容的第一端连接所述驱动薄膜晶体管的栅极,第二端连接所述驱动薄膜晶体管的漏极,所述有机发光二极管的阴极连接第二驱动电压,
    所述方法包括:
    向所述像素电路施加扫描信号、数据信号、控制信号、使能信号、第一驱动电压和第二驱动电压,并依次获得所述驱动薄膜晶体管的实际阈值电压和实际电流电压转换系数、所述有机发光二极管的实际发光效率;
    根据获得的所述驱动薄膜晶体管的实际阈值电压和实际电流电压转换系数、所述有机发光二极管的实际发光效率,计算输入至所述开关薄膜晶体管的源极的补偿数据信号,以对所述驱动薄膜晶体管的阈值电压和电流电压转换系数、所述有机发光二极管的发光效率进行补偿。
  2. 根据权利要求1所述的方法,其中,获得所述驱动薄膜晶体管的阈值电压,包括:
    分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第一数据信号,以使得所述驱动薄膜晶体管的栅极达到第一预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位;
    停止向所述控制薄膜晶体管的源极施加使能信号,在所述第一驱动电压对所述驱动薄膜晶体管的漏极进行充电至所述像素电路稳定后,采集所述驱动薄膜晶体管的漏极的电位值;
    根据所述驱动薄膜晶体管的栅极的电位值和漏极的电位值,计算得到所述驱动薄膜晶体管的实际阈值电压。
  3. 根据权利要求2所述的方法,其中,所述第一预置初始电位、所述驱动薄膜晶体管的阈值电压和所述预定初始电位满足以下条件:
    VthOLED>Vdata-VCM>Vth
    其中,VthOLED表示所述有机发光二极管的阈值电压,Vdata表示所述第一预置初始电位,VCM表示所述预定初始电位,Vth表示所述驱动薄膜晶体管的阈值电压。
  4. 根据权利要求2所述的方法,其中,计算得到所述驱动薄膜晶体管的阈值电压进一步包括通过计算所述驱动薄膜晶体管的栅极和漏极之间的电位差得到所述实际阈值电压。
  5. 根据权利要求2所述的方法,其中,获得所述驱动薄膜晶体管的电流电压转换系数,包括:
    分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第二数据信号,以使得所述驱动薄膜晶体管的栅极达到第二预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位,其中,所述第二预置初始电位等于所述第一预置初始电位与所述驱动薄膜晶体管的实际阈值电压的和;
    同时停止向所述开关薄膜晶体管的栅极施加扫描信号和向所述控制薄膜晶体管的源极施加使能信号,所述第一驱动电压对所述驱动薄膜晶体管的漏极进行充电;
    对所述驱动薄膜晶体管的漏极充电预定时间后,采集所述驱动薄膜晶体管的漏极的电位值;
    根据所述驱动薄膜晶体管的预定目标电流电压转换系数及对应的漏极电位值,以及获得的所述驱动薄膜晶体管的漏极的电位值和所述预定初始电位计算所述驱动薄膜晶体管的实际电流电压转换系数。
  6. 根据权利要求3所述的方法,其中,获得所述驱动薄膜晶体管的电流电压转换系数,包括:
    分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第二数据信号,以使得所述驱动薄膜晶体管的栅极达到第二预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位,其中,所述第二预置初始电位等于所述第一预置初始电位与所述驱动薄膜晶体管的实际阈值电压的和;
    同时停止向所述开关薄膜晶体管的栅极施加扫描信号和向所述控制薄膜晶体管的源极施加使能信号,所述第一驱动电压对所述驱动薄膜晶体管的漏极进行充电;
    对所述驱动薄膜晶体管的漏极充电预定时间后,采集所述驱动薄膜晶体管的漏极的电位值;
    根据所述驱动薄膜晶体管的预定目标电流电压转换系数及对应的漏极电位值,以及获得的所述驱动薄膜晶体管的漏极的电位值和所述预定初始电位计算所述驱动薄膜晶体管的实际电流电压转换系数。
  7. 根据权利要求4所述的方法,其中,获得所述驱动薄膜晶体管的电流电压转换系数,包括:
    分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第二数据信号,以使得所述驱动薄膜晶体管的栅极达到第二预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位,其中,所述第二预置初始电位等于所述第一预置初始电位与所述驱动薄膜晶体管的实际阈值电压的和;
    同时停止向所述开关薄膜晶体管的栅极施加扫描信号和向所述控制薄膜晶体管的源极施加使能信号,所述第一驱动电压对所述驱动薄膜晶体管的漏极进行充电;
    对所述驱动薄膜晶体管的漏极充电预定时间后,采集所述驱动薄膜晶体管的漏极的电位值;
    根据所述驱动薄膜晶体管的预定目标电流电压转换系数及对应的漏极电位值,以及获得的所述驱动薄膜晶体管的漏极的电位值和所述预定初始电位计算所述驱动薄膜晶体管的实际电流电压转换系数。
  8. 根据权利要求5所述的方法,其中,计算所述驱动薄膜晶体管的电流电压转换系数,包括:通过下式计算所述电流电压转换系数:
    k0/k=(Vs01-VCM)/(Vs-VCM)
    其中,k0表示所述驱动薄膜晶体管的预定目标电流电压转换系数,k表示所述驱动薄膜晶体管的实际电流电压转换系数,Vs表示所述驱动薄膜晶体管的实际电流电压转换系数对应的漏极的电位,Vs01表示所述驱动薄膜晶体管的预定目标电流电压转换系数对应的漏极的电位。
  9. 根据权利要求6所述的方法,其中,计算所述驱动薄膜晶体管的电流电压转换系数,包括:通过下式计算所述电流电压转换系数:
    k0/k=(Vs01-VCM)/(Vs-VCM)
    其中,k0表示所述驱动薄膜晶体管的预定目标电流电压转换系数,k表示所 述驱动薄膜晶体管的实际电流电压转换系数,Vs表示所述驱动薄膜晶体管的实际电流电压转换系数对应的漏极的电位,Vs01表示所述驱动薄膜晶体管的预定目标电流电压转换系数对应的漏极的电位。
  10. 根据权利要求7所述的方法,其中,计算所述驱动薄膜晶体管的电流电压转换系数,包括:通过下式计算所述电流电压转换系数:
    k0/k=(Vs01-VCM)/(Vs-VCM)
    其中,k0表示所述驱动薄膜晶体管的预定目标电流电压转换系数,k表示所述驱动薄膜晶体管的实际电流电压转换系数,Vs表示所述驱动薄膜晶体管的实际电流电压转换系数对应的漏极的电位,Vs01表示所述驱动薄膜晶体管的预定目标电流电压转换系数对应的漏极的电位。
  11. 根据权利要求8所述的方法,其中,获得所述有机发光二极管的发光效率,包括:
    分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第三数据信号,以使得所述驱动薄膜晶体管的栅极达到第三预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位,其中,通过所述驱动薄膜晶体管的第一预置初始电位和实际阈值电压、预定目标阈值电压、预定初始电位计算所述第三预置初始电位;
    同时停止向所述开关薄膜晶体管的栅极施加扫描信号和向所述控制薄膜晶体管的源极施加使能信号,使得所述第一驱动电压经由所述驱动薄膜晶体管流过所述有机发光二极管的电流恒定;
    对所述有机发光二极管充电至其两端跨压稳定后,采集所述驱动薄膜晶体管的漏极的电位值;
    基于有机发光二极管发光效率与跨压的反比例关系,根据有机发光二极管的预定目标发光效率及对应的驱动薄膜晶体管的漏极的电位值、所述第二驱动电压,计算所述有机发光二极管的实际发光效率。
  12. 根据权利要求9所述的方法,其中,获得所述有机发光二极管的发光效率,包括:
    分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第三数据信号,以使得所述驱动薄膜晶体管的栅极达到第三预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体 管的漏极达到预定初始电位,其中,通过所述驱动薄膜晶体管的第一预置初始电位和实际阈值电压、预定目标阈值电压、预定初始电位计算所述第三预置初始电位;
    同时停止向所述开关薄膜晶体管的栅极施加扫描信号和向所述控制薄膜晶体管的源极施加使能信号,使得所述第一驱动电压经由所述驱动薄膜晶体管流过所述有机发光二极管的电流恒定;
    对所述有机发光二极管充电至其两端跨压稳定后,采集所述驱动薄膜晶体管的漏极的电位值;
    基于有机发光二极管发光效率与跨压的反比例关系,根据有机发光二极管的预定目标发光效率及对应的驱动薄膜晶体管的漏极的电位值、所述第二驱动电压,计算所述有机发光二极管的实际发光效率。
  13. 根据权利要求10所述的方法,其中,获得所述有机发光二极管的发光效率,包括:
    分别向所述开关薄膜晶体管的栅极施加扫描信号、源极施加第三数据信号,以使得所述驱动薄膜晶体管的栅极达到第三预置初始电位,同时分别向所述控制薄膜晶体管的栅极施加控制信号、源极施加使能信号,以使得所述驱动薄膜晶体管的漏极达到预定初始电位,其中,通过所述驱动薄膜晶体管的第一预置初始电位和实际阈值电压、预定目标阈值电压、预定初始电位计算所述第三预置初始电位;
    同时停止向所述开关薄膜晶体管的栅极施加扫描信号和向所述控制薄膜晶体管的源极施加使能信号,使得所述第一驱动电压经由所述驱动薄膜晶体管流过所述有机发光二极管的电流恒定;
    对所述有机发光二极管充电至其两端跨压稳定后,采集所述驱动薄膜晶体管的漏极的电位值;
    基于有机发光二极管发光效率与跨压的反比例关系,根据有机发光二极管的预定目标发光效率及对应的驱动薄膜晶体管的漏极的电位值、所述第二驱动电压,计算所述有机发光二极管的实际发光效率。
  14. 根据权利要求11所述的方法,其中,计算所述第三预置初始电位,包括:通过下式计算所述第三预置初始电位:
    Figure PCTCN2017097038-appb-100001
    其中,Vg″表示所述第三预置初始电位,ΔVth表示所述驱动薄膜晶体管的预定 目标阈值电压与实际阈值电压的差值。
  15. 根据权利要求12所述的方法,其中,计算所述第三预置初始电位,包括:通过下式计算所述第三预置初始电位:
    Figure PCTCN2017097038-appb-100002
    其中,Vg″表示所述第三预置初始电位,ΔVth表示所述驱动薄膜晶体管的预定目标阈值电压与实际阈值电压的差值。
  16. 根据权利要求13所述的方法,其中,计算所述第三预置初始电位,包括:通过下式计算所述第三预置初始电位:
    Figure PCTCN2017097038-appb-100003
    其中,Vg″表示所述第三预置初始电位,ΔVth表示所述驱动薄膜晶体管的预定目标阈值电压与实际阈值电压的差值。
  17. 根据权利要求14所述的方法,其中,计算所述有机发光二极管的发光效率,包括:通过下式计算所述有机发光二极管的实际发光效率:
    η0/η=(Vs-OVSS)/(Vs02-OVSS)
    其中,η0表示所述有机发光二极管的预定目标发光效率,η表示所述有机发光二极管的实际发光效率,Vs02表示所述有机发光二极管的预定目标发光效率对应的驱动薄膜晶体管的漏极的电位,OVSS表示所述第二驱动电压,Vs表示所述有机发光二极管的实际发光效率对应驱动薄膜晶体管的漏极的电位。
  18. 根据权利要求15所述的方法,其中,计算所述有机发光二极管的发光效率,包括:通过下式计算所述有机发光二极管的实际发光效率:
    η0/η=(Vs-OVSS)/(Vs02-OVSS)
    其中,η0表示所述有机发光二极管的预定目标发光效率,η表示所述有机发光二极管的实际发光效率,Vs02表示所述有机发光二极管的预定目标发光效率对应的驱动薄膜晶体管的漏极的电位,OVSS表示所述第二驱动电压,Vs表示所述有机发光二极管的实际发光效率对应驱动薄膜晶体管的漏极的电位。
  19. 根据权利要求16所述的方法,其中,计算所述有机发光二极管的发光效率,包括:通过下式计算所述有机发光二极管的实际发光效率:
    η0/η=(Vs-OVSS)/(Vs02-OVSS)
    其中,η0表示所述有机发光二极管的预定目标发光效率,η表示所述有机发光二极管的实际发光效率,Vs02表示所述有机发光二极管的预定目标发光效率对 应的驱动薄膜晶体管的漏极的电位,OVSS表示所述第二驱动电压,Vs表示所述有机发光二极管的实际发光效率对应驱动薄膜晶体管的漏极的电位。
  20. 根据权利要求19所述的方法,其中,根据获得的所述驱动薄膜晶体管的实际阈值电压和电流电压转换系数、所述有机发光二极管的发光效率,计算输入至所述开关薄膜晶体管的源极的数据信号,包括:
    利用下式对所述驱动薄膜晶体管的实际电流电压转换系数、所述有机发光二极管的实际发光效率进行补偿:
    Figure PCTCN2017097038-appb-100004
    其中,Vg'表示对所述驱动薄膜晶体管的实际电流电压转换系数、所述有机发光二极管的实际发光效率进行补偿后的栅极的电位;
    利用下式对所述驱动薄膜晶体管的实际阈值电压进行补偿;
    Vg″=Vg′+ΔVth
    其中,Vg″表示对所述驱动薄膜晶体管的实际阈值电压进行补偿后的栅极的电位值,ΔVth表示所述驱动薄膜晶体管的预定目标阈值电压与实际阈值电压的差值;
    根据所述驱动薄膜晶体管的实际阈值电压进行补偿后的栅极的电位,确定输入至所述开关薄膜晶体管的源极的补偿数据信号。
PCT/CN2017/097038 2017-07-06 2017-08-11 一种用于驱动像素电路的方法 WO2019006820A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/565,461 US10650743B2 (en) 2017-07-06 2017-08-11 Method for driving pixel circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710545849.0 2017-07-06
CN201710545849.0A CN107146576B (zh) 2017-07-06 2017-07-06 一种用于驱动像素电路的方法

Publications (1)

Publication Number Publication Date
WO2019006820A1 true WO2019006820A1 (zh) 2019-01-10

Family

ID=59786158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097038 WO2019006820A1 (zh) 2017-07-06 2017-08-11 一种用于驱动像素电路的方法

Country Status (3)

Country Link
US (1) US10650743B2 (zh)
CN (1) CN107146576B (zh)
WO (1) WO2019006820A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610648B (zh) * 2017-09-28 2019-08-02 深圳市华星光电半导体显示技术有限公司 一种补偿amoled像素差异的方法
US11108323B2 (en) * 2017-11-06 2021-08-31 Sony Semiconductor Solutions Corporation Voltage conversion circuit, solid-state imaging element, and method of controlling voltage conversion circuit
KR102584631B1 (ko) * 2019-05-15 2023-10-06 삼성디스플레이 주식회사 휘도 제어 장치, 이를 포함하는 표시 장치 및 이의 구동 방법
CN113223450B (zh) * 2021-05-14 2022-11-04 北京京东方光电科技有限公司 基于微型发光二极管单元的背光模组及显示面板
CN113506538B (zh) * 2021-07-16 2022-10-04 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029171A1 (en) * 2013-07-24 2015-01-29 Samsung Display Co., Ltd. Organic light emitting display device and driving method thereof
CN105374320A (zh) * 2014-08-06 2016-03-02 乐金显示有限公司 有机发光显示装置
CN105427794A (zh) * 2014-09-05 2016-03-23 乐金显示有限公司 用于感测有机发光显示器的退化的方法
CN105741760A (zh) * 2014-12-29 2016-07-06 乐金显示有限公司 有机发光二极管显示装置及其驱动方法
CN106097943A (zh) * 2016-08-08 2016-11-09 深圳市华星光电技术有限公司 Oled驱动薄膜晶体管的阈值电压侦测方法
CN106531078A (zh) * 2016-10-20 2017-03-22 友达光电(昆山)有限公司 一种像素单元的补偿方法
CN106560883A (zh) * 2015-10-02 2017-04-12 乐金显示有限公司 有机发光显示器及其驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029171A1 (en) * 2013-07-24 2015-01-29 Samsung Display Co., Ltd. Organic light emitting display device and driving method thereof
CN105374320A (zh) * 2014-08-06 2016-03-02 乐金显示有限公司 有机发光显示装置
CN105427794A (zh) * 2014-09-05 2016-03-23 乐金显示有限公司 用于感测有机发光显示器的退化的方法
CN105741760A (zh) * 2014-12-29 2016-07-06 乐金显示有限公司 有机发光二极管显示装置及其驱动方法
CN106560883A (zh) * 2015-10-02 2017-04-12 乐金显示有限公司 有机发光显示器及其驱动方法
CN106097943A (zh) * 2016-08-08 2016-11-09 深圳市华星光电技术有限公司 Oled驱动薄膜晶体管的阈值电压侦测方法
CN106531078A (zh) * 2016-10-20 2017-03-22 友达光电(昆山)有限公司 一种像素单元的补偿方法

Also Published As

Publication number Publication date
US10650743B2 (en) 2020-05-12
CN107146576A (zh) 2017-09-08
CN107146576B (zh) 2018-11-30
US20190385514A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019006820A1 (zh) 一种用于驱动像素电路的方法
US10262593B2 (en) Light emitting drive circuit and organic light emitting display
US10297197B2 (en) Organic light emitting diode display device with shared transistors among pixels
US9390652B2 (en) Organic light emitting display device and driving method thereof
CN104050916B (zh) 一种有机发光显示器的像素补偿电路及方法
CN108847186B (zh) 像素电路及其驱动方法、显示面板及显示装置
KR101329964B1 (ko) 유기 발광 다이오드 표시 장치
WO2020143234A1 (zh) 像素驱动电路、像素驱动方法和显示装置
WO2017020360A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2015180352A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
JP2012242838A (ja) 画素ユニット回路及びoled表示装置
WO2016086627A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
WO2019095441A1 (zh) Oled驱动电路及amoled显示面板
JP2015505980A (ja) 画素ユニット駆動回路と方法、画素ユニット及び表示装置
US10748480B2 (en) Method of compensating AMOLED pixel difference
WO2019041823A1 (zh) 像素电路及其驱动方法、显示基板和显示装置
KR101756661B1 (ko) 액티브 매트릭스 유기 발광 다이오드 표시 장치의 전압 보상 화소 회로
WO2020113790A1 (zh) 像素补偿电路及像素补偿方法
CN110853582B (zh) 像素及其控制方法、有机发光二极管显示器
WO2018223799A1 (zh) 像素电路及其驱动方法、显示装置
WO2016180110A1 (zh) 驱动电路及其驱动方法、显示基板及其驱动方法、显示装置
WO2020200279A1 (zh) 像素电路的驱动方法、补偿装置及显示设备
WO2018032537A1 (zh) Amoled显示屏驱动方法、驱动电路及显示装置
CN109410835B (zh) 一种新型oled驱动电路
US10242615B2 (en) Organic light-emitting diode (OLED) display devices and compensation circuits of OLEDs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916622

Country of ref document: EP

Kind code of ref document: A1