WO2020200279A1 - 像素电路的驱动方法、补偿装置及显示设备 - Google Patents

像素电路的驱动方法、补偿装置及显示设备 Download PDF

Info

Publication number
WO2020200279A1
WO2020200279A1 PCT/CN2020/082988 CN2020082988W WO2020200279A1 WO 2020200279 A1 WO2020200279 A1 WO 2020200279A1 CN 2020082988 W CN2020082988 W CN 2020082988W WO 2020200279 A1 WO2020200279 A1 WO 2020200279A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
sensing
driving
phase
Prior art date
Application number
PCT/CN2020/082988
Other languages
English (en)
French (fr)
Inventor
孟松
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020200279A1 publication Critical patent/WO2020200279A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements

Definitions

  • the embodiments of the present disclosure relate to a driving method of a pixel circuit, a compensation device, and a display device.
  • OLED Organic Light-Emitting Diode
  • the pixel circuit in the OLED display panel generally adopts a matrix driving method. According to whether switching components are introduced in each pixel unit, the driving method of the pixel circuit is divided into active matrix (AM) driving and passive matrix (Passive Matrix, PM) drive.
  • AM active matrix
  • PM passive matrix
  • AMOLED integrates a set of thin film transistors and storage capacitors in the pixel circuit of each pixel unit. Through the drive control of a set of thin film transistors and storage capacitors, the current flowing through the OLED is controlled, so that OLED emits light as needed.
  • AMOLED Compared with PMOLED, AMOLED requires small driving current, low power consumption, and longer life span, which can meet the needs of large-scale display with high resolution and multiple grayscale. At the same time, AMOLED has obvious advantages in terms of viewing angle, color restoration, power consumption, and response time, and is suitable for display devices with high information content and high resolution.
  • At least one embodiment of the present disclosure provides a method for driving a pixel circuit, wherein the pixel circuit includes a driving circuit, and the driving circuit includes a control terminal, a first terminal, and a second terminal.
  • the first terminal of the driving circuit It is configured to be electrically connected to the sensing signal line and the light emitting element, and the second end of the driving circuit is configured to receive the power supply voltage.
  • the driving method includes a blanking phase and a display phase.
  • the driving method includes: in the blanking phase, writing a first detection data voltage to the control terminal of the driving circuit to turn on the driving circuit, and passing the After the driving circuit charges the sensing signal line for a first time, it detects the first sensing voltage on the sensing signal line, and writes a second detected data voltage to the control terminal of the driving circuit to enable the driving The circuit is turned on. After the sensing signal line is charged for a second time by the driving circuit, the second sensing voltage on the sensing signal line is detected.
  • the first detected data voltage and the second detected The data voltage is different, according to the first detection data voltage, the second detection data voltage, the first sensing voltage, the second sensing voltage, the first time and the second time, calculate The characteristic parameter of the driving circuit; and in the display stage, the display data voltage applied to the driving circuit is compensated based on the characteristic parameter.
  • the pixel circuit further includes a data writing circuit, the data writing circuit is electrically connected to the control terminal of the driving circuit, and the blanking circuit
  • the phases include a first detection data writing sub-phase, a first charging sub-phase, a first detection sub-phase, a second detection data writing sub-phase, a second charging sub-phase, and a second detection sub-phase.
  • the driving method further includes: in the first detection data writing sub-phase, controlling the data writing circuit to be turned on, and writing the first data to the control terminal of the driving circuit through the data writing circuit.
  • Detect the data voltage in the first charging sub-phase, control the data writing circuit to turn off, and under the control of the first detected data voltage, charge the sensing signal line through the drive circuit The first time; in the first detection sub-phase, the data writing circuit is controlled to be turned off, and after the sensing signal line is charged for the first time, the sensing signal line is detected The first sensing voltage; in the second detection data writing sub-phase, the data writing circuit is controlled to be turned on, and the first sensing voltage is written to the control terminal of the driving circuit through the data writing circuit 2.
  • the pixel circuit further includes a sensing circuit, the first end of the sensing circuit is electrically connected to the sensing signal line, and the sensing The second end of the test circuit is electrically connected to the first end of the driving circuit and the light emitting element.
  • the driving method further includes: in the first detection data writing sub-phase, controlling the sensing circuit to be turned on, and writing a first reference voltage to the first terminal of the driving circuit through the sensing circuit;
  • the sensing circuit In the first charging sub-phase, the sensing circuit is controlled to be turned on to charge the sensing signal line for the first time; in the first detecting sub-phase, the sensing signal line is charged After charging for the first time, control the sensing circuit to turn off, and detect the first sensing voltage on the sensing signal line;
  • in the second detection data writing sub-phase control the sensing The circuit is turned on, and a second reference voltage is written to the first terminal of the drive circuit through the sensing circuit;
  • the sensing circuit in the second charging sub-phase, the sensing circuit is controlled to be turned on to perform the sensing The signal line is charged for the second time; and in the second detection sub-phase, after the sensing signal line is charged for the second time, the sensing circuit is controlled to turn off, and the sensing signal line is detected On the second
  • the pixel circuit further includes a storage circuit, and the first terminal and the second terminal of the storage circuit are respectively connected to the control terminal and the second terminal of the driving circuit. One end is electrically connected, and the storage circuit is configured to store the first detection data voltage and the second detection data voltage written by the data writing circuit.
  • the potential difference between the control terminal and the first terminal of the driving circuit remains unchanged;
  • the potential difference between the control terminal and the first terminal of the driving circuit remains unchanged.
  • the first time is the same as the second time.
  • the driving circuit includes a driving transistor
  • the characteristic parameters include the process constant and the threshold voltage of the driving transistor
  • the threshold voltage is calculated by the following formula obtain:
  • Vth is the threshold voltage of the driving transistor
  • Vt1 is the first detection data voltage
  • Vt2 is the second detection data voltage
  • V1 is the first sensing voltage
  • V2 is the second sensing voltage
  • Voltage Vref1 is the first reference voltage
  • Vref2 is the second reference voltage
  • S1 is the first time
  • S2 is the second time
  • the process constant is obtained by the following calculation formula:
  • K is the process constant of the driving transistor
  • C is the capacitance value of the capacitor connected to the sensing signal line.
  • the first detected data voltage, the first reference voltage, and the threshold voltage of the driving transistor satisfy the following relationship: Vt1-Vref1 ⁇ Vth
  • the second detection data voltage, the second reference voltage, and the threshold voltage of the driving transistor satisfy the following relationship: Vt2-Vref2 ⁇ Vth.
  • compensating the display data voltage applied to the driving circuit based on the characteristic parameter includes: obtaining a display brightness value according to a display gray scale; And according to the characteristic parameter and the display brightness value, the compensated data voltage corresponding to the display gray scale is obtained, wherein the compensated data voltage is used as the display data voltage for the driving circuit for display operating.
  • At least one embodiment of the present disclosure provides a compensation device, which includes a data drive circuit, a voltage detection circuit, a calculation circuit, and a compensation circuit, wherein the compensation device is electrically connected to a pixel circuit, the pixel circuit includes a drive circuit, and the
  • the driving circuit includes a control terminal, a first terminal, and a second terminal.
  • the first terminal of the driving circuit is configured to be electrically connected to the sensing signal line and the light emitting element, and the second terminal of the driving circuit is configured to receive a power supply voltage.
  • the frame time includes blanking stage and display stage.
  • the data driving circuit is configured to sequentially write a first detection data voltage and a second detection data voltage to the control terminal of the driving circuit during the blanking phase;
  • the voltage detection circuit is configured to: Under the control of the first detected data voltage, after the driving circuit is used to charge the sensing signal line for a first time, the first sensing voltage on the sensing signal line is detected, and the 2. Under the control of detecting the data voltage, after the driving circuit is used to charge the sensing signal line for a second time, the second sensing voltage on the sensing signal line is detected;
  • the calculation circuit is configured to The blanking phase calculates all the data according to the first detection data voltage, the second detection data voltage, the first sensing voltage, the second sensing voltage, the first time and the second time.
  • the characteristic parameter of the driving circuit is configured to compensate the display data voltage applied to the driving circuit based on the characteristic parameter in the display stage.
  • At least one embodiment of the present disclosure provides a display device, including the compensation device according to any embodiment of the present disclosure.
  • the display device provided by at least one embodiment of the present disclosure further includes a display panel, wherein the display panel includes a plurality of pixel units, each of the pixel units includes the pixel circuit, and the compensation device is configured to Multiple driving circuits of the display panel perform compensation.
  • the pixel circuit further includes a data writing circuit, a storage circuit, and a sensing circuit
  • the data writing circuit includes a data writing transistor
  • the storage circuit includes A storage capacitor
  • the sensing circuit includes a sensing transistor
  • the driving circuit includes a driving transistor
  • a first electrode of the data writing transistor is electrically connected to a data line
  • a control electrode of the data writing transistor is electrically connected to a gate line.
  • the second electrode of the data writing transistor is electrically connected to the first electrode of the storage capacitor and the control electrode of the driving transistor
  • the second electrode of the storage capacitor is electrically connected to the first electrode of the driving transistor.
  • the second electrode of the driving transistor is electrically connected to the power supply voltage terminal to receive the power supply voltage, and the first electrode of the driving transistor is also electrically connected to the light emitting element and the first electrode of the sensing transistor.
  • the second electrode of the sensing transistor is electrically connected to the sensing signal line, and the control electrode of the sensing transistor is electrically connected to the sensing control line.
  • FIG. 1 is a flowchart of a driving method of a pixel circuit provided by some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a pixel circuit provided by some embodiments of the present disclosure.
  • FIG. 3 is a signal timing diagram of the pixel circuit shown in FIG. 2;
  • Fig. 4 is a schematic block diagram of a compensation device provided by some embodiments of the present disclosure.
  • the basic pixel circuit used in the AMOLED display device is usually a 2T1C pixel circuit, which uses two thin film transistors (TFT) and a storage capacitor to realize the basic function of driving the OLED to emit light. Due to factors such as manufacturing process and temperature changes, the threshold voltages of the driving transistors in different pixel circuits may be different and drift phenomenon may occur, resulting in uneven brightness of the display screen. Therefore, in order to achieve a good display effect, it is necessary to detect and compensate the threshold voltage of each driving transistor.
  • TFT thin film transistors
  • the driving transistor In the process of detecting the threshold voltage of the driving transistor, the driving transistor is usually charged, for example, to the detection circuit until the driving transistor is turned off, and the threshold voltage of the driving transistor is calculated based on the voltage value obtained by the detection circuit for compensation.
  • the voltage of one electrode such as the source
  • the detection circuit will increase accordingly. Since the gate voltage of the driving transistor remains unchanged, The current output by the driving transistor will continue to decrease, and the charging speed of the detection circuit will be relatively reduced, resulting in a longer charging time.
  • the threshold voltages of the driving transistors in different pixel circuits of the display device are quite different, in order to ensure that the driving transistors of each pixel circuit of the display device can be turned on during the detection process, it is necessary to apply uniformly during detection. Data voltage with larger amplitude.
  • the voltage amplitude of one pole electrically connected to the detection circuit will also be larger, which will further increase the time required for the drive transistor to turn off.
  • the threshold voltage detection of the driving transistor can usually only be performed during the shutdown process, and cannot be achieved during the startup period. That is, the threshold voltage of the driving transistor cannot be detected and compensated in real time during the display process. The brightness compensation effect of the device is reduced, resulting in uneven brightness of the display screen.
  • the detection of the threshold voltage of the driving transistor during the shutdown process may also cause the display device to fail to be powered off normally after shutdown, resulting in a poor user experience.
  • when performing brightness compensation on a display device usually only focus on detecting the threshold voltage of the driving transistor and performing brightness compensation calculation based only on the threshold voltage of the driving transistor, which often limits the brightness compensation effect of the display device.
  • At least one embodiment of the present disclosure provides a driving method of a pixel circuit.
  • the pixel circuit includes a driving circuit, and the driving circuit includes a control terminal, a first terminal, and a second terminal.
  • the first terminal of the driving circuit is configured to be electrically connected to the sensing signal line and the light emitting element, and the second terminal of the driving circuit is configured to receive voltage.
  • the driving method includes a blanking phase and a display phase.
  • the driving method includes: writing a first detection data voltage to the control terminal of the driving circuit to turn on the driving circuit, and after charging the sensing signal line through the driving circuit for a first time, detecting the signal on the sensing signal line The first sensing voltage; write a second detection data voltage to the control terminal of the drive circuit to turn on the drive circuit, charge the sensing signal line through the drive circuit for a second time, then detect the second sensing on the sensing signal line Voltage, the first detection data voltage is different from the second detection data voltage; and based on the first detection data voltage, the second detection data voltage, the first sensing voltage, the second sensing voltage, the first time and the second time, calculating Characteristic parameters of the drive circuit.
  • the driving method includes: compensating the display data voltage applied to the driving circuit based on the characteristic parameter.
  • the driving method can reduce the time required to detect the threshold voltage of the driving circuit, thereby realizing real-time detection and real-time compensation of the driving circuit during the startup period, and can also obtain multiple characteristic parameters of the driving circuit including the threshold voltage, and then A better display compensation effect can be achieved based on the multiple characteristic parameters, and the brightness uniformity of the display device including the pixel circuit can be further improved.
  • At least one embodiment of the present disclosure also provides a compensation device and a display device including the compensation device to better compensate the display data voltage applied to the pixel circuit, so that the display device achieves a better display effect.
  • FIG. 1 is a flowchart of a method for driving a pixel circuit according to some embodiments of the present disclosure.
  • the driving method can be used for real-time detection and calculation of the characteristic parameters of the driving transistor of the pixel circuit in the display process (that is, the process of displaying a picture, such as displaying a static image or a dynamic video), without the need to pause or stop the display process (i.e. display The picture pauses or stops), so as to realize real-time compensation of the drive transistor.
  • the characteristic parameter may include the threshold voltage and process constant of the driving transistor, and the driving method may compensate the display data voltage applied to the pixel circuit in real time based on the characteristic parameter, so as to achieve a better brightness compensation effect.
  • FIG. 2 is a schematic diagram of a pixel circuit 20 provided by some embodiments of the disclosure.
  • the driving method of the pixel circuit provided in the embodiment of the present disclosure will be exemplarily described below in conjunction with the pixel circuit 20 shown in FIG. 2, but the embodiment of the present disclosure is not limited thereto.
  • the pixel circuit 20 includes a driving circuit 100, and the driving circuit 100 includes a driving transistor T1.
  • the gate of the driving transistor T1 serves as the control terminal of the driving circuit 100 and is configured to receive a data voltage;
  • the first electrode (for example, the source) of the driving transistor T1 serves as the first terminal of the driving circuit 100 and is connected to the sensing signal line SEN And the light emitting element EL is electrically connected;
  • the second electrode (for example, the drain) of the driving transistor T1 serves as the second end of the driving circuit 100, and is connected to the first power supply voltage terminal to receive the first power supply voltage Vdd.
  • the data voltage Vdata may be applied to the gate of the driving transistor T1 through the data line DAT
  • the reference voltage Vref may be applied to the first electrode of the driving transistor T1 through the sensing signal line SEN, thereby controlling the gate of the driving transistor T1.
  • Vth is the threshold voltage of the driving transistor T1
  • the driving transistor T1 is turned on, so that the current Ids output by the driving transistor T1 can affect the sensing signal line SEN (that is, the capacitance or parasitic connected to it).
  • Capacitor for charging. After charging for a period of time, the required sensing voltage value can be obtained by detecting the magnitude of the voltage on the sensing signal line SEN, and the characteristic parameters of the driving transistor T1 are calculated based on the obtained value, and then applied to The display data voltage of the driving transistor T1 is compensated.
  • one frame time includes a display phase and a blanking phase arranged between adjacent display phases.
  • Each display stage is used to display a frame of image, and its duration is equal to the time required to display the first pixel of the frame of image to the last pixel of the frame of image.
  • the driving method of the pixel circuit 20 may include a blanking stage and a display stage.
  • the driving method includes the following steps S10-S30.
  • Step S10 Write the first detection data voltage to the gate of the driving transistor to turn on the driving transistor, and after the driving transistor charges the sensing signal line for a first period of time, the first sensing voltage on the sensing signal line is detected.
  • Step S20 Write a second detection data voltage to the gate of the driving transistor to turn on the driving transistor, and after the driving transistor charges the sensing signal line for a second period of time, the second sensing voltage on the sensing signal line is detected.
  • Step S30 Calculate the characteristic parameters of the driving circuit according to the first detection data voltage, the second detection data voltage, the first sensing voltage, the second sensing voltage, the first time and the second time.
  • the driving method includes the following step S40.
  • Step S40 Compensate the display data voltage applied to the driving transistor based on the characteristic parameter.
  • the first detection data voltage Vt1 and the second detection data voltage Vt2 are different, for example, the value of the first detection data voltage Vt1 and the value of the second detection data voltage Vt2 are different.
  • the value of the first sensing voltage V1 and the value of the second sensing voltage V2 are not the same.
  • the first time S1 and the second time S2 can be set as required, for example, the first time S1 and the second time S2 can be the same or different.
  • step S10 and step S20 can be performed continuously in the same blanking period, and the first time S1 and the second time S2 can be set between 300 ⁇ s and 350 ⁇ s, for example, thereby greatly shortening the charging time for the sensing signal line SEN , So that the process of detecting the characteristic parameters of the driving circuit 100 can be completed in the blanking stage during the booting period, thereby achieving the technical effect of real-time detection.
  • step S10 and step S20 can also be performed in different blanking stages.
  • the first time S1 and the second time S2 can be set between 300 ⁇ s and 500 ⁇ s, for example, and the process of detecting characteristic parameters of the driving circuit 100 can also be performed.
  • the blanking phase during the booting period is completed, which is not limited in the embodiment of the present disclosure.
  • the driving method provided by some embodiments of the present disclosure is described by taking steps S10 and S20 continuously in the same blanking stage as an example, which can avoid errors caused by factors such as changes in electron mobility, thereby further improving The accuracy of the test results.
  • the sensing voltage V2 is in the range of 1 to 2V, so that the calculated characteristic parameters of the driving circuit 100 are more accurate, and the display device including the pixel circuit 20 achieves a better compensation effect.
  • the calculated characteristic parameters of the driving circuit 100 include the threshold voltage Vth of the driving transistor T1 and the process constant K of the driving transistor T1, etc., and the pixel circuit 20 may be performed based on multiple characteristic parameters of the driving transistor T1.
  • the brightness compensation enables the display device including the pixel circuit 20 to achieve a better compensation effect, and further improves the brightness uniformity of the display screen.
  • the pixel circuit 20 may further include a data writing circuit 200, a sensing circuit 300 and a storage circuit 400.
  • the data writing circuit 200 includes a data writing transistor T2, the gate of the data writing transistor T2 is connected to the scan line to receive the scan signal G1, the first electrode of the data writing transistor T2 is connected to the gate of the driving transistor T1, The second pole of the data writing transistor T2 is connected to the data line DAT.
  • the data voltage provided by the data line DAT for example, the first detection data voltage Vt1 and the second detection data voltage Vt1 provided in the blanking phase
  • the detected data voltage Vt2; and the display data voltage provided during the display phase are written into the gate of the driving transistor T1 through the data writing transistor T2, and the data voltage is stored by the storage circuit 400 as described below.
  • subsequent steps such as charging the sensing signal line SEN and detecting the voltage on the sensing signal line SEN can be performed.
  • the sensing circuit 300 includes a sensing transistor T3, the gate of the sensing transistor T3 is connected to the sensing signal control line to receive the sensing control signal G2, the first pole of the sensing transistor T3 is connected to the sensing signal line SEN, The second electrode of the sensing transistor T3 is connected to the first electrode of the driving transistor T1 and the light emitting element EL.
  • the sensing signal line SEN may be electrically connected to the reference voltage terminal through the first switching element SW1 and electrically connected to the detection circuit 500 through the second switching element SW2.
  • the sensing transistor T3 when the sensing transistor T3 is turned on, when the first switching element SW1 is turned on and the second switching element SW2 is turned off, the reference voltage Vref provided by the reference voltage terminal sequentially passes through the sensing signal line SEN and the sensing transistor T3 is written into the first pole of the driving transistor T1.
  • the sensing transistor T3 when the sensing transistor T3 is turned on, when the first switching element SW1 is turned off and the second switching element SW2 is turned on, the current Ids output by the driving transistor T1 may be transmitted to the sensing signal via the sensing transistor T3 Line SEN, thereby charging the sensing signal line SEN.
  • the sensing transistor T3 when the sensing transistor T3 is turned off, when the first switching element SW1 is turned off and the second switching element SW2 is turned on, the voltage on the sensing signal line SEN can be detected by the detection circuit 500, such as the first sensing The voltage V1 and the second sensing voltage V2.
  • the first switching element SW1 and the second switching element SW2 can be transistors, or other types of switching elements, as long as the first switching element SW1 and the second switching element SW2 can achieve two states of off and on.
  • the detection circuit 500 can be implemented in various suitable forms. For example, it can include an amplifier sub-circuit, an analog-to-digital conversion (ACD) circuit, etc.
  • the amplifying sub-circuit amplifies the voltage detected from the sensing signal line SEN to obtain an amplified voltage signal,
  • the amplified voltage signal is converted into a digital signal by an analog-to-digital conversion circuit, and the digital signal can be used for subsequent analysis, calculation, etc.
  • the storage circuit 400 includes a storage capacitor C1.
  • the first end of the storage capacitor C1 is electrically connected to the first electrode of the driving transistor T1 and the light emitting element EL, and the second end of the storage capacitor C1 is electrically connected to the gate of the driving transistor T1 and the first electrode of the data writing transistor T2 to store
  • the capacitor C1 is configured to store the data voltage written by the data writing transistor T2, such as the first detection data voltage Vt1 and the second detection data voltage Vt2.
  • the driving transistor T1 when the data writing transistor T2 is turned off, when the driving transistor T1 is turned on under the control of the data voltage (for example, the first detected data voltage Vt1 and the second detected data voltage Vt2) stored in the storage capacitor C1, and then When the sensing signal line SEN is charged, due to the capacitive coupling effect of the storage capacitor C1, as the voltage of the first pole of the driving transistor T1 rises, the voltage of the gate of the driving transistor T1 also rises, so that the driving transistor The voltage difference Vgs between the gate of T1 and the first pole remains unchanged.
  • the data voltage for example, the first detected data voltage Vt1 and the second detected data voltage Vt2 stored in the storage capacitor C1
  • the sensing signal line SEN When the sensing signal line SEN is charged, due to the capacitive coupling effect of the storage capacitor C1, as the voltage of the first pole of the driving transistor T1 rises, the voltage of the gate of the driving transistor T1 also rises, so that the driving transistor The voltage difference Vgs between the
  • the magnitude of the current Ids output by the driving transistor T1 remains unchanged, and the voltage on the sensing signal line SEN rises linearly, which facilitates the calculation of the driving circuit 100 in the subsequent steps
  • the characteristic parameters also increase the charging speed of the sensing signal line SEN and shorten the charging time.
  • FIG. 3 is a signal timing diagram of the pixel circuit 20 shown in FIG. 2.
  • one or more rows (for example, two or three rows) of light-emitting elements can be detected in real time by the pixel circuit 20, so that the detection results can be used for real-time compensation.
  • each blanking phase may include a first detection data writing sub-phase t1, a first charging sub-phase t2, a first detection sub-phase t3, a second detection data writing sub-phase t4, a second charging sub-phase t5, and The second detection sub-phase t6.
  • Step S10 can be implemented in the first detection data writing sub-phase t1, the first charging sub-phase t2 and the first detection sub-phase t3, and step S20 can be implemented in the second detection data writing sub-phase t4, the second charging sub-phase t5 and The second detection sub-phase t6 is implemented.
  • the driving transistor T1, the data writing transistor T2, and the sensing transistor T3 will be described by taking the driving transistor T1, the data writing transistor T2, and the sensing transistor T3 as an example.
  • the embodiments of the present disclosure are not limited thereto, and any one of the driving transistor T1, the data writing transistor T2, and the sensing transistor T3 may also be a P-type transistor.
  • step S10 may include the following step S110.
  • Step S110 In the first detection data writing sub-phase t1, the data writing circuit 200 and the sensing circuit 300 are controlled to be turned on, and the first detection data voltage Vt1 is written to the control terminal of the driving circuit 100 through the data writing circuit 200, The first reference voltage Vref1 is written to the first terminal of the driving circuit 100 through the sensing circuit 300.
  • the first detected data voltage Vt1, the first reference voltage Vref1, and the threshold voltage Vth of the driving transistor T1 need to satisfy: Vt1-Vref1 ⁇ Vth.
  • the first reference voltage Vref1 may be set to 0V.
  • step S10 may include the following step S120.
  • Step S120 In the first charging sub-phase t2, the control data writing circuit 200 is turned off, the sensing circuit 300 is turned on, and under the control of the first detected data voltage Vt1, the driving circuit 100 and the sensing circuit 300 pair The sensing signal line SEN is charged for the first time S1.
  • step S120 the data writing transistor T2 is turned off in response to the low-level scan signal G1, the sensing transistor T3 is turned on in response to the high-level sensing control signal G2, and the first switching element SW1 is turned off.
  • the two switching elements SW2 are turned on, the driving transistor T1 is turned on, and a first charging current Ids1 is generated and output.
  • the first charging current Ids1 charges the sensing signal line SEN via the sensing transistor T3, for example, for the first time S1.
  • the duration of the first charging sub-phase t2 may be the same as the duration of the first time S1, but the embodiment of the present disclosure is not limited thereto, and the duration of the first charging sub-phase t2 may also be greater than the duration of the first time S1.
  • the driving transistor T1 is turned on and in a saturated state.
  • the first charging current Ids1 can be obtained, and the first charging current Ids1 is expressed as:
  • Ids1 K(Vt1-Vref1-Vth) 2 (1)
  • K is the process constant of the driving transistor T1.
  • step S10 may include the following step S130.
  • Step S130 In the first detection sub-phase t3, the control data writing circuit 200 is turned off, and after the sensing signal line SEN is charged for the first time S1, the sensing circuit 300 is controlled to turn off, and the detection signal on the sensing signal line SEN The first sensing voltage V1.
  • step S130 the data writing transistor T2 is turned off in response to the low-level scan signal G1
  • the sensing transistor T3 is turned off in response to the low-level sensing control signal G2
  • the first switching element SW1 is turned off
  • the second The switching element SW2 is turned on, so that the first sensing voltage V1 on the sensing signal line SEN can be detected by the detection circuit 500.
  • the first sensing voltage V1 satisfies the following relationship:
  • C is the capacitance value of the capacitor connected to the sensing signal line SEN, and the capacitance value C may be a constant.
  • the capacitance may be a parasitic capacitance between the sensing signal line SEN and the remaining signal lines and/or electrodes in the display device, or may be a capacitance separately provided at the sensing signal line SEN.
  • step S20 may include the following step S210.
  • Step S210 In the second detection data writing sub-phase t4, the control data writing circuit 200 and the sensing circuit 300 are turned on, and the second detection data voltage Vt2 is written to the control terminal of the driving circuit 100 through the data writing circuit 200, The second reference voltage Vref2 is written to the first terminal of the driving circuit 100 through the sensing circuit 300.
  • step S210 is similar to that of step S110, and will not be repeated here. It should be noted that, in order to turn on the driving transistor T1, the second detected data voltage Vt2, the second reference voltage Vref2 and the threshold voltage Vth of the driving transistor T1 need to satisfy: Vt2-Vref2 ⁇ Vth.
  • the first reference voltage Vref1 and the second reference voltage Vref2 may be the same or different.
  • the second reference voltage Vref2 may also be set to 0V.
  • step S20 may include the following step S220.
  • Step S220 In the second charging sub-phase t5, the control data writing circuit 200 is turned off, the sensing circuit 300 is controlled to be turned on, and under the control of the second detected data voltage Vt2, the driving circuit 100 and the sensing circuit 300 pair The sensing signal line SEN is charged for the second time S2.
  • Step S220 is similar to the method of step S120, and will not be repeated here. Similarly, in step S220, in the second charging sub-phase t5, the driving transistor T1 is turned on and in a saturated state, and the second charging current Ids2 can be obtained according to the current formula of the driving transistor T1 in the saturated state, and the second charging current Ids2 is expressed as:
  • Ids2 K(Vt2-Vref2-Vth) 2 (3)
  • K is the process constant of the driving transistor T1.
  • the second charging current Ids2 also remains unchanged, so as shown in FIG. 3, in the second charging sub-phase t5, the voltage value on the sensing signal line SEN also linearly increases with time. Big.
  • the duration of the second charging sub-phase t5 may be the same as the duration of the second time S2, but the embodiment of the present disclosure is not limited thereto, and the duration of the second charging sub-phase t5 may also be greater than the duration of the second time S2.
  • step S20 may include the following step S230.
  • Step S230 In the second detection sub-phase t6, the control data writing circuit 200 is turned off, and after the sensing signal line SEN is charged for a second time S2, the sensing circuit 300 is controlled to turn off, and the detection signal on the sensing signal line SEN The second sensing voltage V2.
  • step S230 the second sensing voltage V2 satisfies the following relationship:
  • Ids2 ⁇ S2 V2 ⁇ C (4)
  • C is the capacitance value of the capacitor connected to the sensing signal line SEN.
  • the first detection sub-phase t3 and the second detection data writing sub-phase t4 are directly adjacent in time, that is to say, the second detection data writing starts immediately after the first detection sub-phase t3 ends. Enter the sub-phase t4; but the embodiment of the present disclosure is not limited to this, and a certain time interval may also be provided between the first detection sub-phase t3 and the second detection data writing sub-phase t4.
  • the duration of the first detection data writing substage t1 and the duration of the second detection data writing substage t4 may be the same, and the duration of the first detection substage t3 and the duration of the second detection substage t6 may also be the same.
  • step S30 the value of the process constant K of the driving transistor T1 can be derived:
  • the value of the threshold voltage Vth of the driving transistor T1 can also be derived:
  • step S40 the display data voltage applied to the driving transistor T1 may be compensated based on the above-mentioned characteristic parameters (ie, the threshold voltage Vth of the driving transistor T1 and the process constant K of the driving transistor T1).
  • step S40 may include: obtaining the display brightness value L according to the display gray scale; and obtaining the compensated data voltage Vdata1 corresponding to the display gray scale according to the characteristic parameter and the display brightness value L.
  • the compensated data voltage Vdata1 can be used as the display data voltage for the driving circuit 100 for display operation.
  • the display brightness value of the OLED is proportional to the driving current flowing into the OLED, and the relationship between the display brightness value and the driving current is expressed as:
  • Ids is the drive current
  • L is the display brightness value
  • a is a constant.
  • the compensated data voltage Vdata1 can be obtained through the following calculation formula, namely:
  • K is the process constant of the driving transistor T1
  • Vth is the threshold voltage of the driving transistor T1.
  • the compensated data voltage Vdata1 represents the display data voltage for which the threshold voltage Vth and the process constant K of the driving transistor T1 have been compensated. Therefore, driving the display device for display according to the compensated data voltage can improve the brightness uniformity of the display device, and significantly improve the display effect of the picture. Therefore, based on the above multiple characteristic parameters, the pixel circuit 20 can achieve a better display compensation effect, and further improve the brightness uniformity of the display device including the pixel circuit 20.
  • the driving method provided in some embodiments of the present disclosure may be performed in the blanking stage of each frame; or, the driving method provided in other embodiments of the present disclosure may also be performed in the blanking stage of odd or even frames; or It is disclosed that the driving method provided by some other embodiments can also be performed in the blanking phase of every multiple frames, for example, performed in the blanking phase of the (3N+1)th frame, where N is an integer greater than or equal to 0.
  • the pixel circuit 20 in the embodiment of the present disclosure is not limited to a 3T1C circuit.
  • the pixel circuit 20 may also be 4T1C, 4T2C, 6T1C, and other pixel circuits with functions such as electrical compensation, which will not be repeated here.
  • the light-emitting element EL can be, for example, various types of organic light-emitting diodes (OLEDs), for example, including top-emission, bottom-emission, and double-side emission.
  • OLEDs organic light-emitting diodes
  • the anode of the exemplary OLED is electrically connected to the first electrode of the driving transistor T1, and the cathode receives the second power supply voltage Vss, which is lower than the first power supply voltage Vdd.
  • the light emitting element EL may also be a quantum dot light emitting diode (QLED), etc., which is not limited in the embodiment of the present disclosure.
  • the light emitting element EL can emit red light, green light, blue light, or white light.
  • the corresponding first time S1 and second time S2 can be the same or different. The disclosed embodiment does not limit this.
  • the driving circuit 100, the data writing circuit 200, the sensing circuit 300, and the storage circuit 400 may also be circuits composed of other components.
  • the driving transistor T1, the data writing transistor T2 and the sensing transistor T3 may all be N-type transistors or all P-type transistors, or part of the above-mentioned transistors may be N-type transistors and another part of the transistors may be P-type transistors.
  • the transistors used in the embodiments of the present disclosure may be thin film transistors, field effect transistors, or other switching devices with the same characteristics.
  • the source and drain of the transistor used here may be symmetrical in structure, so the source and drain may be indistinguishable in physical structure. In the embodiment of the present disclosure, in order to distinguish the other two poles of the transistor except the gate as the control terminal, one pole is directly described as the first pole and the other pole is the second pole.
  • the first electrode of the transistor may be a source and the second electrode may be a drain; or, the first electrode of the transistor may be a drain and the second electrode may be a source.
  • FIG. 4 is a schematic block diagram of a compensation device 50 provided by some embodiments of the present disclosure.
  • the compensation device 50 includes a data driving circuit 510, a voltage detection circuit 520, a calculation circuit 530, and a compensation circuit 540.
  • the compensation device 50 is electrically connected to the pixel circuit 60
  • the pixel circuit 60 includes a driving circuit 600
  • the driving circuit 600 includes a control terminal 630, a first terminal 610, and a second terminal 620.
  • the first terminal 610 of the driving circuit 600 is configured to
  • the sensing signal line SEN and the light emitting element EL are electrically connected
  • the second terminal 620 of the driving circuit 600 is configured to receive the first power supply voltage Vdd.
  • Each frame time includes blanking stage and display stage.
  • the data driving circuit 510 is configured to sequentially write the first detected data voltage and the second detected data voltage to the control terminal 630 of the driving circuit 600 during the blanking phase.
  • the first detection data voltage and the second detection data voltage may be preset by the user, or may be automatically generated by the compensation device 50.
  • the data driving circuit 510 may be implemented as a semiconductor chip or the like.
  • the voltage detection circuit 520 is configured to detect the first sensing signal on the sensing signal line SEN after charging the sensing signal line SEN for a first time under the control of the first sensing data voltage.
  • the second sensing voltage on the sensing signal line SEN is detected after the driving circuit 600 charges the sensing signal line SEN for a second time under the control of the second sensing data voltage.
  • the voltage detection circuit 520 includes the detection circuit 500 shown in FIG. 2.
  • the voltage detection circuit 520 may be implemented in various suitable forms, for example, may include an amplifying sub-circuit, an analog-to-digital conversion (ACD) circuit, etc.
  • the amplifying sub-circuit amplifies the voltage detected from the sensing signal line SEN to obtain an amplified voltage signal .
  • the amplified voltage signal is converted into a digital signal by an analog-to-digital conversion circuit, and the digital signal can be used for subsequent analysis, calculation, etc.
  • the calculation circuit 530 is configured to calculate the characteristics of the driving circuit 600 according to the first detection data voltage, the second detection data voltage, the first sensing voltage, the second sensing voltage, the first time, and the second time during the blanking phase. parameter.
  • the calculation circuit 530 may be composed of elements such as transistors, resistors, capacitors, and amplifiers.
  • the calculation circuit 530 may also be implemented by a signal processor such as FPGA, DSP, MCU, etc.
  • the calculation circuit 530 may also include, for example, a processor and a memory, and the processor executes a software program stored in the memory to implement the first detection data voltage, the second detection data voltage, the first sensing voltage, the second sensing voltage, the first The time and the second time are functions of calculating the characteristic parameters of the driving circuit 600.
  • the compensation circuit 540 is configured to compensate the display data voltage applied to the driving circuit 600 based on the characteristic parameter in the display phase.
  • the compensation circuit 540 may include a processor and a memory, and the processor executes a software program stored in the memory to realize the function of compensating the display data voltage applied to the driving circuit 600 based on characteristic parameters during the display phase, for example, including And the display brightness value obtained from the display gray scale, calculate the compensated data voltage corresponding to the display gray scale, and the compensated data voltage can be used as the display data voltage for the driving circuit 600 for display operation.
  • At least one embodiment of the present disclosure further provides a display device, which includes the compensation device according to any embodiment of the present disclosure.
  • the display device provided by at least one embodiment of the present disclosure further includes a display panel, the display panel includes a plurality of pixel units, each pixel unit includes a pixel circuit, and the compensation device is configured to compensate the plurality of driving circuits of the display panel.
  • the pixel circuit further includes a data writing circuit, a storage circuit, and a sensing circuit.
  • the data writing circuit includes a data writing transistor
  • the storage circuit includes a storage capacitor
  • a sensing circuit is included
  • the driving circuit includes the driving transistor.
  • the first electrode of the data writing transistor is electrically connected to the data line
  • the control electrode of the data writing transistor is electrically connected to the gate line
  • the second electrode of the data writing transistor is electrically connected to the first electrode of the storage capacitor and the control electrode of the driving transistor
  • the second electrode of the storage capacitor is electrically connected to the first electrode of the driving transistor
  • the second electrode of the driving transistor is electrically connected to the power supply voltage terminal to receive the power supply voltage
  • the first electrode of the driving transistor is also connected to the light emitting element and the sensing transistor.
  • the first electrode is electrically connected
  • the second electrode of the sensing transistor is electrically connected to the sensing signal line
  • the control electrode of the sensing transistor is electrically connected to the sensing control line.
  • the display device can be any product or component with display function such as liquid crystal panel, electronic paper, OLED panel, QLED panel, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, navigator, etc.
  • display function such as liquid crystal panel, electronic paper, OLED panel, QLED panel, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, navigator, etc.
  • the embodiment does not limit this.
  • the characteristic parameters of the pixel circuits can be obtained row by row. Then, after the characteristic parameters of all the pixel circuits of the display device are obtained, the compensation amount can be established for each pixel circuit; finally, based on The established compensation amount performs brightness compensation on the display device; thus, a cycle of display brightness compensation can be completed. For example, these compensation amounts can be saved in the form of a lookup table for easy recall or update.
  • the pixel circuit driving method provided in any embodiment of the present disclosure can be executed on the pixel circuit located in the first row, and the pixel circuit information of the pixel circuit located in the first row can be obtained.
  • Characteristic parameters; then the driving method of the pixel circuit provided by any embodiment of the present disclosure can be executed on the pixel circuit located in the second row, and the characteristic parameters of the pixel circuit located in the second row can be obtained; then, the display device located in other
  • the pixel circuits of the rows are inspected row by row until the characteristic parameters of all the pixel circuits of the display device are obtained; finally, the compensation amount is established for each pixel circuit, and the display device is compensated for the display brightness.
  • a compensation amount can be established for each pixel circuit in the row, and then a compensation amount is established for each pixel circuit in the row.
  • the pixel circuit performs display brightness compensation. For example, you can first calculate the current feature parameters, establish the compensation amount, and display brightness compensation for the pixel circuit in the first row, and then perform the current feature parameter calculation, establish the compensation amount, and display brightness compensation for the pixel circuit in the fifth row, etc.
  • the pixel circuit in the second row can perform the current characteristic parameter calculation, establish the compensation amount and display brightness compensation, etc., until the characteristic parameter calculation, establish the compensation amount and display brightness for all the pixel circuits included in the display device Compensation, which can realize a cycle of display brightness compensation for the display device.

Abstract

一种像素电路的驱动方法、补偿装置及显示设备,该驱动方法包括消隐阶段和显示阶段,其中在消隐阶段,该驱动方法包括:向驱动电路的控制端写入第一检测数据电压使驱动电路导通,通过驱动电路对感测信号线充电第一时间后,检测感测信号线上的第一感测电压(S10);向驱动电路的控制端写入第二检测数据电压使驱动电路导通,通过驱动电路对感测信号线充电第二时间后,检测感测信号线上的第二感测电压,第一检测数据电压与第二检测数据电压不同(S20);以及根据第一检测数据电压、第二检测数据电压、第一感测电压、第二感测电压、第一时间和第二时间,计算驱动电路的特征参数(S30);在显示阶段,该驱动方法包括:基于特征参数对施加至驱动电路的显示数据电压进行补偿(S40)。

Description

像素电路的驱动方法、补偿装置及显示设备
本申请要求于2019年4月4日递交的中国专利申请第201910273161.0号的优先权,该中国专利申请的全文以引入的方式并入以作为本申请的一部分。
技术领域
本公开的实施例涉及一种像素电路的驱动方法、补偿装置及显示设备。
背景技术
相比于传统的液晶显示面板,有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板具有反应速度更快、对比度更高、视角更广且功耗更低等优点,并且已越来越多地被应用于高性能显示中。
OLED显示面板中的像素电路一般采用矩阵驱动方式,根据每个像素单元中是否引入开关元器件,像素电路的驱动方式分为有源矩阵(Active Matrix,AM)驱动和无源矩阵(Passive Matrix,PM)驱动。PMOLED虽然工艺简单、成本较低,但因存在交叉串扰、高功耗、低寿命等缺点,不能满足高分辨率大尺寸显示的需求。相比之下,AMOLED在每一个像素单元的像素电路中都集成了一组薄膜晶体管和存储电容,通过对一组薄膜晶体管和存储电容的驱动控制,实现对流经OLED的电流的控制,从而使OLED根据需要发光。相比PMOLED,AMOLED所需驱动电流小、功耗低、寿命更长,可以满足高分辨率多灰度的大尺寸显示需求。同时,AMOLED在可视角度、色彩的还原、功耗以及响应时间等方面具有明显的优势,适用于高信息含量、高分辨率的显示装置。
发明内容
本公开至少一个实施例提供一种像素电路的驱动方法,其中,所述像素电路包括驱动电路,且所述驱动电路包括控制端、第一端和第二端,所述驱动电路的第一端配置为与感测信号线以及发光元件电连接,所述驱动电路的第二端配置为接收电源电压。所述驱动方法包括消隐阶段和显示阶段,所述驱动方 法包括:在所述消隐阶段,向所述驱动电路的控制端写入第一检测数据电压使所述驱动电路导通,通过所述驱动电路对所述感测信号线充电第一时间后,检测所述感测信号线上的第一感测电压,向所述驱动电路的控制端写入第二检测数据电压使所述驱动电路导通,通过所述驱动电路对所述感测信号线充电第二时间后,检测所述感测信号线上的第二感测电压,所述第一检测数据电压与所述第二检测数据电压不同,根据所述第一检测数据电压、所述第二检测数据电压、所述第一感测电压、所述第二感测电压、所述第一时间和所述第二时间,计算所述驱动电路的特征参数;以及在所述显示阶段,基于所述特征参数对施加至所述驱动电路的显示数据电压进行补偿。
例如,在本公开至少一个实施例提供的像素电路的驱动方法中,所述像素电路还包括数据写入电路,所述数据写入电路与所述驱动电路的控制端电连接,所述消隐阶段包括第一检测数据写入子阶段、第一充电子阶段、第一检测子阶段、第二检测数据写入子阶段、第二充电子阶段和第二检测子阶段。所述驱动方法还包括:在所述第一检测数据写入子阶段,控制所述数据写入电路导通,通过所述数据写入电路向所述驱动电路的控制端写入所述第一检测数据电压;在所述第一充电子阶段,控制所述数据写入电路断开,并在所述第一检测数据电压的控制下,通过所述驱动电路对所述感测信号线充电所述第一时间;在所述第一检测子阶段,控制所述数据写入电路断开,并在对所述感测信号线充电所述第一时间后,检测所述感测信号线上的所述第一感测电压;在所述第二检测数据写入子阶段,控制所述数据写入电路导通,通过所述数据写入电路向所述驱动电路的控制端写入所述第二检测数据电压;在所述第二充电子阶段,控制所述数据写入电路断开,并在所述第二检测数据电压的控制下,通过所述驱动电路对所述感测信号线充电所述第二时间;以及在所述第二检测子阶段,控制所述数据写入电路断开,并在对所述感测信号线充电所述第二时间后,检测所述感测信号线上的所述第二感测电压。
例如,在本公开至少一个实施例提供的像素电路的驱动方法中,所述像素电路还包括感测电路,所述感测电路的第一端与所述感测信号线电连接,所述感测电路的第二端与所述驱动电路的第一端以及所述发光元件电连接。所述驱动方法还包括:在所述第一检测数据写入子阶段,控制所述感测电路导通,通过所述感测电路向所述驱动电路的第一端写入第一参考电压;在所述第一 充电子阶段,控制所述感测电路导通,以对所述感测信号线充电所述第一时间;在所述第一检测子阶段,在对所述感测信号线充电所述第一时间后,控制所述感测电路关闭,检测所述感测信号线上的所述第一感测电压;在所述第二检测数据写入子阶段,控制所述感测电路导通,通过所述感测电路向所述驱动电路的第一端写入第二参考电压;在所述第二充电子阶段,控制所述感测电路导通,以对所述感测信号线充电所述第二时间;以及在所述第二检测子阶段,在对所述感测信号线充电所述第二时间后,控制所述感测电路关闭,检测所述感测信号线上的所述第二感测电压。
例如,在本公开至少一个实施例提供的像素电路的驱动方法中,所述像素电路还包括存储电路,所述存储电路的第一端和第二端分别与所述驱动电路的控制端和第一端电连接,所述存储电路配置为存储所述数据写入电路写入的所述第一检测数据电压和所述第二检测数据电压。
例如,在本公开至少一个实施例提供的像素电路的驱动方法中,在所述第一充电子阶段,所述驱动电路的控制端和第一端之间的电位差值保持不变;在所述第二充电子阶段,所述驱动电路的控制端和第一端之间的电位差值保持不变。
例如,在本公开至少一个实施例提供的像素电路的驱动方法中,所述第一时间与所述第二时间相同。
例如,在本公开至少一个实施例提供的像素电路的驱动方法中,所述驱动电路包括驱动晶体管,所述特征参数包括所述驱动晶体管的工艺常数和阈值电压,所述阈值电压通过如下计算式获得:
Figure PCTCN2020082988-appb-000001
其中,Vth为所述驱动晶体管的阈值电压,Vt1为所述第一检测数据电压,Vt2为所述第二检测数据电压,V1为所述第一感测电压,V2为所述第二感测电压,Vref1为所述第一参考电压,Vref2为所述第二参考电压,S1为所述第一时间,S2为所述第二时间;所述工艺常数通过如下计算式获得:
Figure PCTCN2020082988-appb-000002
其中,K为所述驱动晶体管的工艺常数,C为所述感测信号线相连的电容的电容值。
例如,在本公开至少一个实施例提供的像素电路的驱动方法中,所述第一检测数据电压、所述第一参考电压和所述驱动晶体管的阈值电压满足如下关系式:Vt1-Vref1≥Vth,所述第二检测数据电压、所述第二参考电压和所述驱动晶体管的阈值电压满足如下关系式:Vt2-Vref2≥Vth。
例如,在本公开至少一个实施例提供的像素电路的驱动方法中,基于所述特征参数对施加至所述驱动电路的所述显示数据电压进行补偿包括:根据显示灰阶,得到显示亮度值;以及根据所述特征参数和所述显示亮度值,得到与所述显示灰阶对应的补偿后数据电压,其中,所述补偿后数据电压作为所述显示数据电压用于所述驱动电路以进行显示操作。
本公开至少一个实施例提供一种补偿装置,包括数据驱动电路、电压检测电路、计算电路和补偿电路,其中,所述补偿装置与像素电路电连接,所述像素电路包括驱动电路,且所述驱动电路包括控制端、第一端和第二端,所述驱动电路的第一端配置为与感测信号线以及发光元件电连接,所述驱动电路的第二端配置为接收电源电压,每帧时间包括消隐阶段和显示阶段。所述数据驱动电路配置为在所述消隐阶段依次向所述驱动电路的控制端写入第一检测数据电压和第二检测数据电压;所述电压检测电路配置为在所述消隐阶段:在所述第一检测数据电压的控制下,通过所述驱动电路对所述感测信号线充电第一时间后,检测所述感测信号线上的第一感测电压,以及在所述第二检测数据电压的控制下,通过所述驱动电路对所述感测信号线充电第二时间后,检测所述感测信号线上的第二感测电压;所述计算电路配置为在所述消隐阶段根据所述第一检测数据电压、所述第二检测数据电压、所述第一感测电压、所述第二感测电压、所述第一时间和所述第二时间,计算所述驱动电路的特征参数;所述补偿电路配置为在所述显示阶段基于所述特征参数对施加至所述驱动电路的显示数据电压进行补偿。
本公开至少一个实施例提供一种显示设备,包括本公开任一实施例所述 的补偿装置。
例如,本公开至少一个实施例提供的显示设备还包括显示面板,其中,所述显示面板包括多个像素单元,每个所述像素单元包括所述像素电路,所述补偿装置配置为对所述显示面板的多个驱动电路进行补偿。
例如,在本公开至少一个实施例提供的显示设备中,所述像素电路还包括数据写入电路、存储电路和感测电路,所述数据写入电路包括数据写入晶体管,所述存储电路包括存储电容,所述感测电路包括感测晶体管,所述驱动电路包括驱动晶体管,所述数据写入晶体管的第一极与数据线电连接,所述数据写入晶体管的控制极与栅线电连接,所述数据写入晶体管的第二极与所述存储电容的第一极和所述驱动晶体管的控制极电连接,所述存储电容的第二极与所述驱动晶体管的第一极电连接,所述驱动晶体管的第二极与电源电压端电连接以接收电源电压,且所述驱动晶体管的第一极还与发光元件和所述感测晶体管的第一极电连接,所述感测晶体管的第二极与所述感测信号线电连接,所述感测晶体管的控制极与感测控制线电连接。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一些实施例提供的一种像素电路的驱动方法的流程图;
图2为本公开一些实施例提供的一种像素电路的示意图;
图3为图2所示的像素电路的信号时序图;以及
图4为本公开一些实施例提供的一种补偿装置的示意框图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了部分已知功能和已知部件的详细说明。
在AMOLED显示装置中使用的基础像素电路通常为2T1C像素电路,即利用两个薄膜晶体管(Thin Film Transistor,TFT)和一个存储电容来实现驱动OLED发光的基本功能。由于例如制备工艺以及温度变化等因素的影响,不同像素电路中的驱动晶体管的阈值电压可能会存在差异并且会产生漂移现象,从而导致显示画面的亮度不均匀。因此,为了达到良好的显示效果,需要对各驱动晶体管的阈值电压进行检测及补偿。
在对驱动晶体管的阈值电压进行检测的过程中,通常使驱动晶体管对例如检测电路充电直至驱动晶体管截止,并根据检测电路获取的电压值计算出驱动晶体管的阈值电压以进行补偿。但是在对检测电路充电的过程中,随着时间的增加,驱动晶体管与检测电路电连接的一极(例如源极)的电压会随之增加,由于驱动晶体管的栅极电压保持不变,因而驱动晶体管输出的电流会随之不断降低,进而使检测电路的充电速度也会相对降低,导致所需充电时间较长。
此外,由于显示装置中不同像素电路中的驱动晶体管的阈值电压的差异较大,因此为了保证在检测过程中,显示装置的各像素电路的驱动晶体管均能被导通,在检测时需要统一施加幅值较大的数据电压。对应地,驱动晶体管截止后与检测电路电连接的一极的电压幅值也会较大,因此将进一步增加驱动晶体管截止所需的时间。
基于上述原因,驱动晶体管的阈值电压检测通常只能在关机过程中进行, 而无法在开机期间实现,也即,无法实现在显示过程中对驱动晶体管的阈值电压进行实时检测及补偿,因而使显示装置的亮度补偿效果降低,导致显示画面的亮度不均匀。并且,驱动晶体管的阈值电压检测在关机过程中进行也会导致关机后显示装置不能正常断电,使用户体验较差。此外,由于在对显示装置进行亮度补偿时,通常只关注于对驱动晶体管的阈值电压进行检测并且仅基于驱动晶体管的阈值电压进行亮度补偿计算,因此往往使显示装置的亮度补偿效果受到限制。
本公开至少一个实施例提供一种像素电路的驱动方法。该像素电路包括驱动电路,且驱动电路包括控制端、第一端和第二端,驱动电路的第一端配置为与感测信号线以及发光元件电连接,驱动电路的第二端配置为接收电源电压。该驱动方法包括消隐阶段和显示阶段。在消隐阶段,该驱动方法包括:向驱动电路的控制端写入第一检测数据电压使驱动电路导通,通过驱动电路对感测信号线充电第一时间后,检测感测信号线上的第一感测电压;向驱动电路的控制端写入第二检测数据电压使驱动电路导通,通过驱动电路对感测信号线充电第二时间后,检测感测信号线上的第二感测电压,第一检测数据电压与第二检测数据电压不同;以及根据第一检测数据电压、第二检测数据电压、第一感测电压、第二感测电压、第一时间和第二时间,计算驱动电路的特征参数。在显示阶段,该驱动方法包括:基于特征参数对施加至驱动电路的显示数据电压进行补偿。
该驱动方法可以降低检测驱动电路的阈值电压所需的时间,从而实现在开机期间对驱动电路进行实时检测和实时补偿,并且还可以获取驱动电路的包括阈值电压在内的多个特征参数,进而可以基于该多个特征参数达到更好的显示补偿效果,进一步提升包括该像素电路的显示设备的亮度均匀性。
本公开至少一个实施例还提供一种补偿装置以及包括该补偿装置的显示设备,以更好地对施加至像素电路的显示数据电压进行补偿,从而使显示设备达到更优质的显示效果。
下面,将参考附图详细地说明本公开的一些实施例。应当注意的是,不同的附图中相同的附图标记将用于指代已描述的相同的元件。
图1为本公开一些实施例提供的一种像素电路的驱动方法的流程图。该驱动方法可以用于在显示过程(即显示画面的过程,例如显示静态图像或动态 视频)中对像素电路的驱动晶体管的特征参数进行实时检测和计算,而无需暂停或停止显示过程(即将显示画面暂停或停止),从而实现对驱动晶体管进行实时补偿。例如该特征参数可以包括驱动晶体管的阈值电压及工艺常数等,该驱动方法可以基于该特征参数对施加至像素电路的显示数据电压进行实时补偿,从而达到更好的亮度补偿效果。
图2为本公开一些实施例提供的一种像素电路20的示意图。下面将结合图2所示的像素电路20对本公开实施例提供的像素电路的驱动方法进行示例性说明,但本公开的实施例不限于此。
例如,如图2所示,像素电路20包括驱动电路100,该驱动电路100包括驱动晶体管T1。驱动晶体管T1的栅极作为驱动电路100的控制端,且被配置为接收数据电压;驱动晶体管T1的第一极(例如源极)作为驱动电路100的第一端,且与感测信号线SEN以及发光元件EL电连接;驱动晶体管T1的第二极(例如漏极)作为驱动电路100的第二端,且与第一电源电压端连接以接收第一电源电压Vdd。
例如,可以通过数据线DAT向驱动晶体管T1的栅极施加例如数据电压Vdata,且通过感测信号线SEN向驱动晶体管T1的第一极施加例如参考电压Vref,以此来控制驱动晶体管T1的栅极和第一极之间的电压差Vgs,即Vgs=Vdata-Vref,从而控制驱动晶体管T1的导通状态以及流经驱动晶体管T1的电流大小。
例如,当Vgs>Vth(Vth为驱动晶体管T1的阈值电压)时,驱动晶体管T1处于导通状态,从而可以通过驱动晶体管T1输出的电流Ids对感测信号线SEN(即与其相连的电容或寄生电容)进行充电。在充电一段时间后,可以通过检测感测信号线SEN上的电压大小来获取所需的感测电压的数值,并基于获取的数值对驱动晶体管T1的各项特征参数进行计算,进而对施加至驱动晶体管T1的显示数据电压进行补偿。
例如,在显示过程中,一帧时间包括显示阶段和设置在相邻的显示阶段之间的消隐阶段。每个显示阶段用于显示一帧图像,其时间长度等于显示该帧图像的第一个像素点至显示该帧图像的最后一个像素点所需的时间。
例如,结合图1和图2所示,像素电路20的驱动方法可以包括消隐阶段和显示阶段。
在消隐阶段,该驱动方法包括以下步骤S10-S30。
步骤S10:向驱动晶体管的栅极写入第一检测数据电压使驱动晶体管导通,通过驱动晶体管对感测信号线充电第一时间后,检测感测信号线上的第一感测电压。
步骤S20:向驱动晶体管的栅极写入第二检测数据电压使驱动晶体管导通,通过驱动晶体管对感测信号线充电第二时间后,检测感测信号线上的第二感测电压。
步骤S30:根据第一检测数据电压、第二检测数据电压、第一感测电压、第二感测电压、第一时间和第二时间,计算驱动电路的特征参数。
并且,在显示阶段,该驱动方法包括以下步骤S40。
步骤S40:基于特征参数对施加至驱动晶体管的显示数据电压进行补偿。
例如,第一检测数据电压Vt1和第二检测数据电压Vt2不相同,例如第一检测数据电压Vt1的值和第二检测数据电压Vt2的值不相同。
例如,第一感测电压V1的值和第二感测电压V2的值不相同。
例如,第一时间S1和第二时间S2可以根据需要进行设置,例如第一时间S1和第二时间S2可以相同也可以不同。例如,步骤S10和步骤S20可以在同一个消隐阶段内连续进行,第一时间S1和第二时间S2例如可以设置在300μs~350μs之间,从而大大缩短了对感测信号线SEN的充电时间,使对驱动电路100的特征参数的检测过程可以在开机期间的消隐阶段完成,从而实现实时检测的技术效果。例如,步骤S10和步骤S20还可以在不同的消隐阶段内分别进行,第一时间S1和第二时间S2例如可以设置在300μs~500μs之间,对驱动电路100的特征参数的检测过程同样可以在开机期间的消隐阶段完成,本公开实施例对此不作限制。
例如,本公开一些实施例提供的驱动方法以步骤S10和步骤S20在同一个消隐阶段内连续进行为例进行说明,由此可以避免例如电子迁移率变化等因素导致的误差,从而可以进一步提升检测结果的准确性。
例如,当检测得到的第一感测电压V1和第二感测电压V2的数值在1~2V之间时,获得的检测结果可以更加准确。因而,在步骤S10和步骤S20中,可以通过调整第一检测数据电压Vt1、第二检测数据电压Vt2、第一时间S1和第二时间S2的大小,使获取的第一感测电压V1和第二感测电压V2在 1~2V的范围内,进而使计算得到的驱动电路100的特征参数更加准确,使包括像素电路20的显示设备达到更好的补偿效果。
例如,在步骤S30中,计算得到的驱动电路100的特征参数包括驱动晶体管T1的阈值电压Vth和驱动晶体管T1的工艺常数K等,进而可以基于驱动晶体管T1的多个特征参数对像素电路20进行亮度补偿,使包括像素电路20的显示设备达到更好的补偿效果,进一步提升显示画面的亮度均匀性。
下面将对驱动电路100的特征参数的检测过程以及结合该特征参数的补偿方法进行详细说明。
例如,如图2所示,像素电路20还可以包括数据写入电路200、感测电路300和存储电路400。
例如,数据写入电路200包括数据写入晶体管T2,数据写入晶体管T2的栅极与扫描线连接以接收扫描信号G1,数据写入晶体管T2的第一极与驱动晶体管T1的栅极连接,数据写入晶体管T2的第二极与数据线DAT连接。例如,在扫描信号G1的控制下,在数据写入晶体管T2导通的情况下,可以使由数据线DAT提供的数据电压(例如,在消隐阶段提供的第一检测数据电压Vt1和第二检测数据电压Vt2;以及在显示阶段提供的显示数据电压)通过数据写入晶体管T2写入驱动晶体管T1的栅极,数据电压由如下所述的存储电路400存储。例如,在数据写入晶体管T2截止的情况下,可以进行后续例如对感测信号线SEN充电以及检测感测信号线SEN上的电压等步骤。
例如,感测电路300包括感测晶体管T3,感测晶体管T3的栅极与感测信号控制线连接以接收感测控制信号G2,感测晶体管T3的第一极与感测信号线SEN连接,感测晶体管T3的第二极与驱动晶体管T1的第一极以及发光元件EL连接。
例如,如图2所示,感测信号线SEN可以通过第一开关元件SW1与参考电压端电连接,且通过第二开关元件SW2与检测电路500电连接。
例如,在感测晶体管T3导通的情况下,当第一开关元件SW1导通且第二开关元件SW2断开时,参考电压端提供的参考电压Vref依次经由感测信号线SEN和感测晶体管T3而被写入驱动晶体管T1的第一极。
例如,在感测晶体管T3导通的情况下,当第一开关元件SW1断开且第二开关元件SW2导通时,驱动晶体管T1输出的电流Ids可以经由感测晶体 管T3被传输至感测信号线SEN,从而对感测信号线SEN充电。
例如,在感测晶体管T3截止的情况下,当第一开关元件SW1断开且第二开关元件SW2导通时,可以通过检测电路500检测感测信号线SEN上的电压,例如第一感测电压V1和第二感测电压V2。
例如,第一开关元件SW1和第二开关元件SW2可以为晶体管,也可以为其他类型的开关元件,只要第一开关元件SW1和第二开关元件SW2能实现断开和导通两种状态即可。检测电路500可以以各种适当形式实现,例如,可以包括放大子电路、模数转换(ACD)电路等,放大子电路将从感测信号线SEN检测的电压放大以得到放大后的电压信号,该放大后的电压信号由模数转换电路转换为数字信号,该数字信号可以用于后续分析、计算等。
例如,如图2所示,存储电路400包括存储电容C1。存储电容C1的第一端与驱动晶体管T1的第一极以及发光元件EL电连接,存储电容C1的第二端与驱动晶体管T1的栅极以及数据写入晶体管T2的第一极电连接,存储电容C1配置为存储通过数据写入晶体管T2写入的数据电压,例如第一检测数据电压Vt1和第二检测数据电压Vt2。例如,在数据写入晶体管T2截止的情况下,当驱动晶体管T1在存储在存储电容C1中的数据电压(例如第一检测数据电压Vt1和第二检测数据电压Vt2)的控制下导通,进而实现对感测信号线SEN充电时,由于存储电容C1的电容耦合效应,随着驱动晶体管T1的第一极的电压上升,驱动晶体管T1的栅极的电压也会随之上升,从而使驱动晶体管T1的栅极和第一极之间的电压差Vgs保持不变。因此,在对感测信号线SEN充电的过程中,驱动晶体管T1输出的电流Ids的大小保持不变,感测信号线SEN上的电压线性上升,从而便于在后续步骤中计算得到驱动电路100的特征参数,同时也提高了对感测信号线SEN的充电速度,缩短了充电时间。
图3为图2所示的像素电路20的信号时序图。例如,在每个消隐阶段可以通过像素电路20对一行或多行(例如两行或三行)发光元件进行实时检测,由此可以将检测结果用于实时补偿。
例如,每个消隐阶段可以包括第一检测数据写入子阶段t1、第一充电子阶段t2、第一检测子阶段t3、第二检测数据写入子阶段t4、第二充电子阶段t5和第二检测子阶段t6。步骤S10可以在第一检测数据写入子阶段t1、第一充电子阶段t2和第一检测子阶段t3实现,步骤S20可以在第二检测数据写入 子阶段t4、第二充电子阶段t5和第二检测子阶段t6实现。下面将结合图3所示的信号时序图,以驱动晶体管T1、数据写入晶体管T2和感测晶体管T3均为N型晶体管为例说明本公开的一些实施例。但是本公开的实施例不限于此,驱动晶体管T1、数据写入晶体管T2和感测晶体管T3中的任一个还可以为P型晶体管。
例如,结合图3所示,步骤S10可以包括以下步骤S110。
步骤S110:在第一检测数据写入子阶段t1,控制数据写入电路200以及感测电路300导通,通过数据写入电路200向驱动电路100的控制端写入第一检测数据电压Vt1,通过感测电路300向驱动电路100的第一端写入第一参考电压Vref1。
例如,在步骤S110中,数据写入晶体管T2响应高电平的扫描信号G1而导通,感测晶体管T3响应高电平的感测控制信号G2而导通,第一开关元件SW1导通,第二开关元件SW2断开,第一检测数据电压Vt1通过数据写入晶体管T2写入驱动晶体管T1的栅极,参考电压端提供的第一参考电压Vref1经由感测晶体管T3被写入驱动晶体管T1的源极,从而使驱动晶体管T1的栅极和源极之间的电压差Vgs为:Vgs=Vt1-Vref1。
例如,为了使驱动晶体管T1导通,第一检测数据电压Vt1、第一参考电压Vref1和驱动晶体管T1的阈值电压Vth需满足:Vt1-Vref1≥Vth。例如,为了便于后续计算,第一参考电压Vref1可以设置为0V。
例如,结合图3所示,步骤S10可以包括以下步骤S120。
步骤S120:在第一充电子阶段t2,控制数据写入电路200断开,控制感测电路300导通,并在第一检测数据电压Vt1的控制下,通过驱动电路100以及感测电路300对感测信号线SEN充电第一时间S1。
例如,在步骤S120中,数据写入晶体管T2响应低电平的扫描信号G1而截止,感测晶体管T3响应高电平的感测控制信号G2而导通,第一开关元件SW1断开,第二开关元件SW2导通,驱动晶体管T1导通,产生并输出第一充电电流Ids1,该第一充电电流Ids1经由感测晶体管T3对感测信号线SEN充电例如第一时间S1。
例如,第一充电子阶段t2的时长可以与第一时间S1的时长相同,但本公开的实施例不限于此,第一充电子阶段t2的时长也可以大于第一时间S1的 时长。
例如,由于存储电容C1的电容耦合效应,在第一充电子阶段t2,驱动晶体管T1的栅极和源极之间的电压差Vgs保持不变,即Vgs=Vt1-Vref1,从而使第一充电电流Ids1可以保持不变。因而如图3所示,在第一充电子阶段t2,感测信号线SEN上的电压值随时间线性增大。
例如,在第一充电子阶段t2,驱动晶体管T1导通且处于饱和状态,根据驱动晶体管T1处于饱和状态下的电流公式可以得到第一充电电流Ids1,且第一充电电流Ids1表示为:
Ids1=K(Vt1-Vref1-Vth) 2   (1)
其中,K为驱动晶体管T1的工艺常数。
例如,结合图3所示,步骤S10可以包括以下步骤S130。
步骤S130:在第一检测子阶段t3,控制数据写入电路200断开,并在对感测信号线SEN充电第一时间S1后,控制感测电路300关闭,检测感测信号线SEN上的第一感测电压V1。
例如,在步骤S130中,数据写入晶体管T2响应低电平的扫描信号G1而截止,感测晶体管T3响应低电平的感测控制信号G2而截止,第一开关元件SW1断开,第二开关元件SW2导通,从而可以通过检测电路500检测感测信号线SEN上的第一感测电压V1。
例如,第一感测电压V1满足如下关系式:
Ids1·S1=V1·C   (2)
其中,C为与感测信号线SEN相连的电容的电容值,该电容值C可以为常数。该电容可以为感测信号线SEN与显示设备中的其余信号线和/或电极之间的寄生电容,也可以为在感测信号线SEN处单独设置的电容。
例如,结合图3所示,步骤S20可以包括以下步骤S210。
步骤S210:在第二检测数据写入子阶段t4,控制数据写入电路200以及感测电路300导通,通过数据写入电路200向驱动电路100的控制端写入第二检测数据电压Vt2,通过感测电路300向驱动电路100的第一端写入第二参考电压Vref2。
步骤S210与步骤S110的方法类似,在此不再赘述。需要说明的是,为了使驱动晶体管T1导通,第二检测数据电压Vt2、第二参考电压Vref2和驱 动晶体管T1的阈值电压Vth需满足:Vt2-Vref2≥Vth。例如,第一参考电压Vref1与第二参考电压Vref2可以相同也可以不同。例如,为了便于后续计算,第二参考电压Vref2也可以设置为0V。
例如,结合图3所示,步骤S20可以包括以下步骤S220。
步骤S220:在第二充电子阶段t5,控制数据写入电路200断开,控制感测电路300导通,并在第二检测数据电压Vt2的控制下,通过驱动电路100以及感测电路300对感测信号线SEN充电第二时间S2。
步骤S220与步骤S120的方法类似,在此不再赘述。类似地,在步骤S220中,在第二充电子阶段t5,驱动晶体管T1导通且处于饱和状态,根据驱动晶体管T1处于饱和状态下的电流公式可以得到第二充电电流Ids2,且第二充电电流Ids2表示为:
Ids2=K(Vt2-Vref2-Vth) 2   (3)
其中,K为驱动晶体管T1的工艺常数。
例如,在第二充电子阶段t5中,第二充电电流Ids2也保持不变,从而如图3所示,在第二充电子阶段t5,感测信号线SEN上的电压值也随时间线性增大。
例如,第二充电子阶段t5的时长可以与第二时间S2的时长相同,但本公开的实施例不限于此,第二充电子阶段t5的时长也可以大于第二时间S2的时长。
例如,结合图3所示,步骤S20可以包括以下步骤S230。
步骤S230:在第二检测子阶段t6,控制数据写入电路200断开,并在对感测信号线SEN充电第二时间S2后,控制感测电路300关闭,检测感测信号线SEN上的第二感测电压V2。
步骤S230与步骤S130的方法类似,在此不再赘述。在步骤S230中,第二感测电压V2满足如下关系式:
Ids2·S2=V2·C   (4)
其中,C为与感测信号线SEN相连的电容的电容值。
例如,如图3所示,第一检测子阶段t3和第二检测数据写入子阶段t4在时间上直接相邻,也就是说,第一检测子阶段t3结束之后立即进入第二检测数据写入子阶段t4;但本公开的实施例不限于此,第一检测子阶段t3和第二 检测数据写入子阶段t4之间也可以间隔一定时间。
例如,第一检测数据写入子阶段t1的时长和第二检测数据写入子阶段t4的时长可以相同,第一检测子阶段t3的时长和第二检测子阶段t6的时长也可以相同。
由此,在步骤S30中,根据上述关系式(1)-(4),可以推导出驱动晶体管T1的工艺常数K的值为:
Figure PCTCN2020082988-appb-000003
工艺常数K的大小与驱动晶体管T1的电子迁移率有关,即:K=W/L×Cs×μ,其中,W/L为驱动晶体管T1的沟道的宽长比(即宽度与长度的比值),μ为电子迁移率,Cs为单位面积的电容。因此,本公开的实施例提供的驱动方法可以对工艺常数K进行补偿,从而可以对驱动晶体管T1因电子迁移率产生的差异进行补偿,进而提升显示亮度的均匀性。
同时,根据上述关系式(1)-(4)还可以推导出驱动晶体管T1的阈值电压Vth的值为:
Figure PCTCN2020082988-appb-000004
在步骤S40中,可以基于上述特征参数(即驱动晶体管T1的阈值电压Vth和驱动晶体管T1的工艺常数K)对施加至驱动晶体管T1的显示数据电压进行补偿。例如,步骤S40可以包括:根据显示灰阶,得到显示亮度值L;以及根据特征参数和显示亮度值L,得到与显示灰阶对应的补偿后数据电压Vdata1。该补偿后的数据电压Vdata1可以作为显示数据电压用于驱动电路100以进行显示操作。
例如,在OLED点亮过程中,OLED的显示亮度值与流入OLED的驱动电流成正比,显示亮度值与驱动电流之间的关系式表示为:
Ids=a·L,
其中,Ids为驱动电流,L为显示亮度值,a为常数。L可以为归一化的亮度 值,即0≤L≤1,当L=1时,OLED显示与255灰阶对应的亮度,当L=0时,OLED显示与0灰阶对应的亮度。
例如,可以根据在OLED点亮过程中显示亮度值L与驱动电流Ids之间的对应关系,通过如下计算公式得到补偿后的数据电压Vdata1,即:
Figure PCTCN2020082988-appb-000005
其中,K为驱动晶体管T1的工艺常数,Vth为驱动晶体管T1的阈值电压。补偿后的数据电压Vdata1表示已经对驱动晶体管T1的阈值电压Vth和工艺常数K进行补偿的显示数据电压。因此,根据补偿后的数据电压驱动显示设备进行显示可以提升显示设备的亮度均匀性,使画面的显示效果显著提升。因而,基于上述多个特征参数可以使像素电路20达到更好的显示补偿效果,进一步提升包括像素电路20的显示设备的亮度均匀性。
例如,本公开一些实施例提供的驱动方法可以在每帧的消隐阶段进行;或者,本公开另一些实施例提供的驱动方法也可以在奇数帧或者偶数帧的消隐阶段进行;或者,本公开再一些实施例提供的驱动方法也可以在每相隔多帧的消隐阶段进行,例如,在第(3N+1)帧的消隐阶段进行,其中,N为大于等于0的整数。
需要说明的是,尽管本公开上述实施例仅以像素电路20为3T1C电路为例对本公开实施例提供的像素电路的驱动方法进行说明,但是本公开实施例中的像素电路20不限于3T1C电路。例如,根据具体应用需求,像素电路20例如还可以为4T1C、4T2C、6T1C以及其它具有电学补偿等功能的像素电路,在此不再赘述。
需要说明的是,在如图2所示的像素电路20中,发光元件EL例如可以为各种类型的有机发光二极管(OLED),例如包括顶发射、底发射、双侧发射等类型,本公开实施例对此不作限制。如图2所示,示例性的OLED的阳极与驱动晶体管T1的第一极电连接,而阴极接收第二电源电压Vss,该第二 电源电压Vss低于第一电源电压Vdd。发光元件EL例如还可以为量子点发光二极管(QLED)等,本公开实施例对此不作限制。
例如,发光元件EL可以发红光、绿光、蓝光或白光等,在发光元件EL显示不同颜色的光的情形下,对应的第一时间S1以及第二时间S2可以相同,也可以不同,本公开实施例对此不作限制。
例如,在如图2所示的像素电路20中,驱动电路100、数据写入电路200、感测电路300和存储电路400也可以是由其他的组件组成的电路。
例如,驱动晶体管T1、数据写入晶体管T2、感测晶体管T3可以均采用N型晶体管或均采用P型晶体管,也可以一部分上述晶体管采用N型晶体管且另一部分晶体管采用P型晶体管。需要说明的是,本公开实施例中采用的晶体管可以为薄膜晶体管、场效应晶体管或其他特性相同的开关器件。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在物理结构上可以是没有区别的。在本公开实施例中,为了区分晶体管的除作为控制端的栅极之外的其它两个极,直接描述了其中一极为第一极,另一极为第二极,所以本公开实施例中全部或部分晶体管的第一极和第二极根据需要是可以互换的。例如,本公开实施例中的晶体管的第一极可以为源极,第二极可以为漏极;或者,晶体管的第一极为漏极,第二极为源极。
需要说明的是,对于该像素电路的驱动方法的其它必不可少的步骤可以参见常规的像素电路的驱动方法,在此不作赘述。
本公开至少一个实施例还提供一种补偿装置,图4为本公开一些实施例提供的一种补偿装置50的示意框图。
如图4所示,补偿装置50包括数据驱动电路510、电压检测电路520、计算电路530和补偿电路540。
例如,补偿装置50与像素电路60电连接,像素电路60包括驱动电路600,且驱动电路600包括控制端630、第一端610和第二端620,驱动电路600的第一端610配置为与感测信号线SEN以及发光元件EL电连接,驱动电路600的第二端620配置为接收第一电源电压Vdd。每帧时间包括消隐阶段和显示阶段。
例如,数据驱动电路510配置为在消隐阶段依次向驱动电路600的控制端630写入第一检测数据电压和第二检测数据电压。
例如,第一检测数据电压和第二检测数据电压可以由用户预先设定,也可以由补偿装置50自动生成。
例如,数据驱动电路510可以实现为半导体芯片等。
例如,电压检测电路520配置为在消隐阶段:在第一检测数据电压的控制下,通过驱动电路600对感测信号线SEN充电第一时间后,检测感测信号线SEN上的第一感测电压,以及在第二检测数据电压的控制下,通过驱动电路600对感测信号线SEN充电第二时间后,检测感测信号线SEN上的第二感测电压。
例如,该电压检测电路520包括图2中所示的检测电路500。电压检测电路520可以以各种适当形式实现,例如,可以包括放大子电路、模数转换(ACD)电路等,放大子电路将从感测信号线SEN检测的电压放大以得到放大后的电压信号,该放大后的电压信号由模数转换电路转换为数字信号,该数字信号可以用于后续分析、计算等。
例如,计算电路530配置为在消隐阶段根据第一检测数据电压、第二检测数据电压、第一感测电压、第二感测电压、第一时间和第二时间,计算驱动电路600的特征参数。
例如,计算电路530例如可以采用晶体管、电阻、电容和放大器等元件构成。又例如,计算电路530也可以通过FPGA、DSP、MCU等信号处理器实现。计算电路530也例如可以包括处理器和存储器,处理器执行存储器中存储的软件程序以实现根据第一检测数据电压、第二检测数据电压、第一感测电压、第二感测电压、第一时间和第二时间,计算驱动电路600的特征参数的功能。
例如,补偿电路540配置为在显示阶段基于特征参数对施加至驱动电路600的显示数据电压进行补偿。
例如,补偿电路540例如可以包括处理器和存储器,处理器执行存储器中存储的软件程序以实现在显示阶段基于特征参数对施加至驱动电路600的显示数据电压进行补偿的功能,例如包括根据特征参数和由显示灰阶得到的显示亮度值,计算与显示灰阶对应的补偿后数据电压,该补偿后的数据电压可以作为显示数据电压用于驱动电路600以进行显示操作。
需要说明的是,关于补偿电路540执行的操作可以参考上述例如关于图 1中所示的驱动方法的步骤S40的相关说明,在此不再赘述。
本公开至少一个实施例还提供一种显示设备,该显示设备包括本公开任一实施例所述的补偿装置。
例如,本公开至少一个实施例提供的显示设备还包括显示面板,显示面板包括多个像素单元,每个像素单元包括像素电路,补偿装置配置为对显示面板的多个驱动电路进行补偿。
例如,在本公开至少一个实施例提供的显示设备中,像素电路还包括数据写入电路、存储电路和感测电路,数据写入电路包括数据写入晶体管,存储电路包括存储电容,感测电路包括感测晶体管,驱动电路包括驱动晶体管。数据写入晶体管的第一极与数据线电连接,数据写入晶体管的控制极与栅线电连接,数据写入晶体管的第二极与存储电容的第一极和驱动晶体管的控制极电连接,存储电容的第二极与驱动晶体管的第一极电连接,驱动晶体管的第二极与电源电压端电连接以接收电源电压,且驱动晶体管的第一极还与发光元件和感测晶体管的第一极电连接,感测晶体管的第二极与感测信号线电连接,感测晶体管的控制极与感测控制线电连接。
例如,该显示设备可以为液晶面板、电子纸、OLED面板、QLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开的实施例对此不作限制。
例如,对上述显示设备进行亮度补偿时,首先可以逐行获取像素电路的特征参数,然后,在获取显示设备的所有像素电路的特征参数之后,可以针对每一个像素电路建立补偿量;最后,基于所建立的补偿量,对显示设备执行亮度补偿;由此可以完成一个周期的显示亮度补偿。例如,这些补偿量可以通过查询表的形式保存,以便于调用或更新。
例如,在获取显示设备的所有像素电路的特征参数时,首先可以对位于第一行的像素电路执行本公开任一实施例提供的像素电路的驱动方法,并获取位于第一行的像素电路的特征参数;然后可以对位于第二行的像素电路执行本公开任一实施例提供的像素电路的驱动方法,并获取位于第二行的像素电路的特征参数;接着,可以对显示设备的位于其它行的像素电路进行逐行检测,直至获取显示设备的所有像素电路的特征参数;最后,针对每一个像素电路建立补偿量,并对显示设备进行显示亮度补偿。
例如,在获取显示设备的所有像素电路的特征参数时,根据实际应用需求,还可以在检测获取一行像素电路的特征参数之后,针对该行的每一个像素电路建立补偿量,然后对位于该行的像素电路进行显示亮度补偿。例如,首先可以针对第一行的像素电路进行当前特征参数计算、建立补偿量以及显示亮度补偿等操作,然后可以针对例如第五行的像素电路进行当前特征参数计算、建立补偿量以及显示亮度补偿等操作,接着,可以针对例如第二行的像素电路进行当前特征参数计算、建立补偿量以及显示亮度补偿等操作,直至对显示设备所包括的所有像素电路完成特征参数计算、建立补偿量以及显示亮度补偿,由此可以对显示设备实现一个周期的显示亮度补偿。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或结构的厚度和尺寸被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种像素电路的驱动方法,其中,所述像素电路包括驱动电路,且所述驱动电路包括控制端、第一端和第二端,所述驱动电路的第一端配置为与感测信号线以及发光元件电连接,所述驱动电路的第二端配置为接收电源电压,所述驱动方法包括消隐阶段和显示阶段,所述驱动方法包括:
    在所述消隐阶段,
    向所述驱动电路的控制端写入第一检测数据电压使所述驱动电路导通,通过所述驱动电路对所述感测信号线充电第一时间后,检测所述感测信号线上的第一感测电压,
    向所述驱动电路的控制端写入第二检测数据电压使所述驱动电路导通,通过所述驱动电路对所述感测信号线充电第二时间后,检测所述感测信号线上的第二感测电压,所述第一检测数据电压与所述第二检测数据电压不同,
    根据所述第一检测数据电压、所述第二检测数据电压、所述第一感测电压、所述第二感测电压、所述第一时间和所述第二时间,计算所述驱动电路的特征参数;以及
    在所述显示阶段,基于所述特征参数对施加至所述驱动电路的显示数据电压进行补偿。
  2. 根据权利要求1所述的驱动方法,其中,所述像素电路还包括数据写入电路,所述数据写入电路与所述驱动电路的控制端电连接,所述消隐阶段包括第一检测数据写入子阶段、第一充电子阶段、第一检测子阶段、第二检测数据写入子阶段、第二充电子阶段和第二检测子阶段,
    所述驱动方法还包括:
    在所述第一检测数据写入子阶段,控制所述数据写入电路导通,通过所述数据写入电路向所述驱动电路的控制端写入所述第一检测数据电压;
    在所述第一充电子阶段,控制所述数据写入电路断开,并在所述第一检测数据电压的控制下,通过所述驱动电路对所述感测信号线充电所述第一时间;
    在所述第一检测子阶段,控制所述数据写入电路断开,并在对所述感测信号线充电所述第一时间后,检测所述感测信号线上的所述第一感测电压;
    在所述第二检测数据写入子阶段,控制所述数据写入电路导通,通过所述数据写入电路向所述驱动电路的控制端写入所述第二检测数据电压;
    在所述第二充电子阶段,控制所述数据写入电路断开,并在所述第二检测数据电压的控制下,通过所述驱动电路对所述感测信号线充电所述第二时间;以及
    在所述第二检测子阶段,控制所述数据写入电路断开,并在对所述感测信号线充电所述第二时间后,检测所述感测信号线上的所述第二感测电压。
  3. 根据权利要求2所述的驱动方法,其中,所述像素电路还包括感测电路,所述感测电路的第一端与所述感测信号线电连接,所述感测电路的第二端与所述驱动电路的第一端以及所述发光元件电连接,
    所述驱动方法还包括:
    在所述第一检测数据写入子阶段,控制所述感测电路导通,通过所述感测电路向所述驱动电路的第一端写入第一参考电压;
    在所述第一充电子阶段,控制所述感测电路导通,以对所述感测信号线充电所述第一时间;
    在所述第一检测子阶段,在对所述感测信号线充电所述第一时间后,控制所述感测电路关闭,检测所述感测信号线上的所述第一感测电压;
    在所述第二检测数据写入子阶段,控制所述感测电路导通,通过所述感测电路向所述驱动电路的第一端写入第二参考电压;
    在所述第二充电子阶段,控制所述感测电路导通,以对所述感测信号线充电所述第二时间;以及
    在所述第二检测子阶段,在对所述感测信号线充电所述第二时间后,控制所述感测电路关闭,检测所述感测信号线上的所述第二感测电压。
  4. 根据权利要求3所述的驱动方法,其中,所述像素电路还包括存储电路,所述存储电路的第一端和第二端分别与所述驱动电路的控制端和第一端电连接,
    所述存储电路配置为存储所述数据写入电路写入的所述第一检测数据电压和所述第二检测数据电压。
  5. 根据权利要求3或4所述的驱动方法,其中,在所述第一充电子阶段,所述驱动电路的控制端和第一端之间的电位差值保持不变;
    在所述第二充电子阶段,所述驱动电路的控制端和第一端之间的电位差值保持不变。
  6. 根据权利要求1-5任一所述的驱动方法,其中,所述第一时间与所述第二时间相同。
  7. 根据权利要求3-6任一所述的驱动方法,其中,所述驱动电路包括驱动晶体管,所述特征参数包括所述驱动晶体管的工艺常数和阈值电压,
    所述阈值电压通过如下计算式获得:
    Figure PCTCN2020082988-appb-100001
    其中,Vth为所述驱动晶体管的阈值电压,Vt1为所述第一检测数据电压,Vt2为所述第二检测数据电压,V1为所述第一感测电压,V2为所述第二感测电压,Vref1为所述第一参考电压,Vref2为所述第二参考电压,S1为所述第一时间,S2为所述第二时间;
    所述工艺常数通过如下计算式获得:
    Figure PCTCN2020082988-appb-100002
    其中,K为所述驱动晶体管的工艺常数,C为所述感测信号线相连的电容的电容值。
  8. 根据权利要求7所述的驱动方法,其中,所述第一检测数据电压、所述第一参考电压和所述驱动晶体管的阈值电压满足如下关系式:
    Vt1-Vref1≥Vth,
    所述第二检测数据电压、所述第二参考电压和所述驱动晶体管的阈值电压满足如下关系式:
    Vt2-Vref2≥Vth。
  9. 根据权利要求1-8任一所述的驱动方法,其中,基于所述特征参数对施加至所述驱动电路的所述显示数据电压进行补偿包括:
    根据显示灰阶,得到显示亮度值;以及
    根据所述特征参数和所述显示亮度值,得到与所述显示灰阶对应的补偿后数据电压,其中,所述补偿后数据电压作为所述显示数据电压用于所述驱动电路以进行显示操作。
  10. 一种补偿装置,包括数据驱动电路、电压检测电路、计算电路和补偿电路,
    其中,所述补偿装置与像素电路电连接,所述像素电路包括驱动电路,且所述驱动电路包括控制端、第一端和第二端,所述驱动电路的第一端配置为与感测信号线以及发光元件电连接,所述驱动电路的第二端配置为接收电源电压,每帧时间包括消隐阶段和显示阶段;
    所述数据驱动电路配置为在所述消隐阶段依次向所述驱动电路的控制端写入第一检测数据电压和第二检测数据电压;
    所述电压检测电路配置为在所述消隐阶段:
    在所述第一检测数据电压的控制下,通过所述驱动电路对所述感测信号线充电第一时间后,检测所述感测信号线上的第一感测电压,以及
    在所述第二检测数据电压的控制下,通过所述驱动电路对所述感测信号线充电第二时间后,检测所述感测信号线上的第二感测电压;
    所述计算电路配置为在所述消隐阶段根据所述第一检测数据电压、所述第二检测数据电压、所述第一感测电压、所述第二感测电压、所述第一时间和所述第二时间,计算所述驱动电路的特征参数;
    所述补偿电路配置为在所述显示阶段基于所述特征参数对施加至所述驱动电路的显示数据电压进行补偿。
  11. 一种显示设备,包括如权利要求10所述的补偿装置。
  12. 根据权利要求11所述的显示设备,还包括显示面板,
    其中,所述显示面板包括多个像素单元,每个所述像素单元包括所述像素电路,所述补偿装置配置为对所述显示面板的多个驱动电路进行补偿。
  13. 根据权利要求11或12所述的显示设备,其中,所述像素电路还包括数据写入电路、存储电路和感测电路,
    所述数据写入电路包括数据写入晶体管,所述存储电路包括存储电容,所述感测电路包括感测晶体管,所述驱动电路包括驱动晶体管,
    所述数据写入晶体管的第一极与数据线电连接,所述数据写入晶体管的 控制极与栅线电连接,所述数据写入晶体管的第二极与所述存储电容的第一极和所述驱动晶体管的控制极电连接,
    所述存储电容的第二极与所述驱动晶体管的第一极电连接,
    所述驱动晶体管的第二极与电源电压端电连接以接收电源电压,且所述驱动晶体管的第一极还与发光元件和所述感测晶体管的第一极电连接,
    所述感测晶体管的第二极与所述感测信号线电连接,所述感测晶体管的控制极与感测控制线电连接。
PCT/CN2020/082988 2019-04-04 2020-04-02 像素电路的驱动方法、补偿装置及显示设备 WO2020200279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910273161.0A CN111785195A (zh) 2019-04-04 2019-04-04 像素电路的驱动方法、补偿装置及显示设备
CN201910273161.0 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020200279A1 true WO2020200279A1 (zh) 2020-10-08

Family

ID=72664646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082988 WO2020200279A1 (zh) 2019-04-04 2020-04-02 像素电路的驱动方法、补偿装置及显示设备

Country Status (2)

Country Link
CN (1) CN111785195A (zh)
WO (1) WO2020200279A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066412B (zh) * 2021-03-29 2022-09-27 合肥鑫晟光电科技有限公司 阵列基板的电路控制方法、检测方法、制备方法
CN114822417B (zh) * 2022-05-07 2023-10-27 昆山国显光电有限公司 显示装置及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140285462A1 (en) * 2011-10-30 2014-09-25 Yong Man Lee Display and touch panels with drive and sense techniques
CN104751788A (zh) * 2013-12-30 2015-07-01 乐金显示有限公司 有机发光显示器
CN105243985A (zh) * 2014-07-10 2016-01-13 乐金显示有限公司 有机发光显示器及其驱动方法
US20160117963A1 (en) * 2014-10-28 2016-04-28 Samsung Display Co., Ltd. Scan sense driver and display device including the same
CN105609029A (zh) * 2016-03-24 2016-05-25 深圳市华星光电技术有限公司 感测amoled像素驱动特性的系统及amoled显示装置
CN106328062A (zh) * 2015-06-30 2017-01-11 乐金显示有限公司 感测驱动tft的阈值电压的装置和方法
US20170061877A1 (en) * 2015-08-24 2017-03-02 Samsung Display Co., Ltd. Pixel circuit and organic light emitting display device having the same
CN107909965A (zh) * 2017-12-07 2018-04-13 京东方科技集团股份有限公司 用于显示面板的补偿方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108877686B (zh) * 2017-05-12 2020-12-08 京东方科技集团股份有限公司 数据补偿方法及装置、显示驱动方法及装置、显示装置
CN109215581B (zh) * 2017-06-30 2020-05-29 京东方科技集团股份有限公司 一种显示面板的补偿方法、补偿装置及显示装置
CN107093403B (zh) * 2017-06-30 2019-03-15 深圳市华星光电技术有限公司 用于oled显示面板的像素驱动电路的补偿方法
CN108417169B (zh) * 2018-03-27 2021-11-26 京东方科技集团股份有限公司 像素电路的检测方法、显示面板的驱动方法和显示面板
CN108597449B (zh) * 2018-04-26 2020-04-21 京东方科技集团股份有限公司 像素电路的检测方法、显示面板的驱动方法和显示面板
CN109166527B (zh) * 2018-10-24 2020-07-24 合肥京东方卓印科技有限公司 显示面板、显示装置及驱动方法
CN109192141B (zh) * 2018-10-30 2021-01-22 京东方科技集团股份有限公司 显示面板及其检测方法、显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140285462A1 (en) * 2011-10-30 2014-09-25 Yong Man Lee Display and touch panels with drive and sense techniques
CN104751788A (zh) * 2013-12-30 2015-07-01 乐金显示有限公司 有机发光显示器
CN105243985A (zh) * 2014-07-10 2016-01-13 乐金显示有限公司 有机发光显示器及其驱动方法
US20160117963A1 (en) * 2014-10-28 2016-04-28 Samsung Display Co., Ltd. Scan sense driver and display device including the same
CN106328062A (zh) * 2015-06-30 2017-01-11 乐金显示有限公司 感测驱动tft的阈值电压的装置和方法
US20170061877A1 (en) * 2015-08-24 2017-03-02 Samsung Display Co., Ltd. Pixel circuit and organic light emitting display device having the same
CN105609029A (zh) * 2016-03-24 2016-05-25 深圳市华星光电技术有限公司 感测amoled像素驱动特性的系统及amoled显示装置
CN107909965A (zh) * 2017-12-07 2018-04-13 京东方科技集团股份有限公司 用于显示面板的补偿方法和装置

Also Published As

Publication number Publication date
CN111785195A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
US11308875B2 (en) Detection method of pixel circuit, driving method of display panel and display panel
US10593260B1 (en) Pixel driving circuit for OLED display device and OLED display device
KR101530500B1 (ko) 픽셀 유닛 회로, 그 보상 방법, 및 디스플레이 디바이스
CN110235193B (zh) 像素电路及其驱动方法、显示装置及其驱动方法
CN108847186B (zh) 像素电路及其驱动方法、显示面板及显示装置
US10249239B2 (en) Driving circuit of pixel unit and driving method thereof, and display device
KR102243726B1 (ko) Oled 구동 박막 트랜지스터의 임계 전압 센싱 방법
WO2019205898A1 (zh) 像素电路及其驱动方法、显示面板
US9589505B2 (en) OLED pixel circuit, driving method of the same, and display device
WO2020119712A1 (zh) 显示装置的补偿方法、装置和显示设备
US20180005571A1 (en) Oled pixel circuit and display device thereof
WO2020192734A1 (zh) 显示驱动电路及其驱动方法、显示面板及显示装置
WO2018120368A1 (zh) Oled驱动薄膜晶体管的k值侦测方法
WO2019000970A1 (zh) 显示面板的补偿方法、补偿装置及显示设备
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
US20200335035A1 (en) Pixel circuit and driving method thereof, and display panel
KR20140080728A (ko) Oled 표시 장치 및 그의 구동 방법
US11393394B2 (en) Compensation method and compensation apparatus for organic light-emitting display and display device
WO2021203479A1 (zh) 像素驱动电路和显示面板
WO2022156318A1 (zh) 显示亮度补偿方法、补偿电路、显示装置
WO2016141680A1 (zh) 一种像素补偿电路、显示装置和驱动方法
WO2020200279A1 (zh) 像素电路的驱动方法、补偿装置及显示设备
WO2019114573A1 (zh) 电路驱动补偿方法、电路驱动方法及装置、显示装置
JP2008191611A (ja) 有機el表示装置、有機el表示装置の制御方法および電子機器
WO2020200205A1 (zh) 像素电路的补偿方法及驱动方法、补偿装置及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785218

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20785218

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20785218

Country of ref document: EP

Kind code of ref document: A1