WO2020200205A1 - 像素电路的补偿方法及驱动方法、补偿装置及显示装置 - Google Patents

像素电路的补偿方法及驱动方法、补偿装置及显示装置 Download PDF

Info

Publication number
WO2020200205A1
WO2020200205A1 PCT/CN2020/082471 CN2020082471W WO2020200205A1 WO 2020200205 A1 WO2020200205 A1 WO 2020200205A1 CN 2020082471 W CN2020082471 W CN 2020082471W WO 2020200205 A1 WO2020200205 A1 WO 2020200205A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
compensation
sensing
circuit
data voltage
Prior art date
Application number
PCT/CN2020/082471
Other languages
English (en)
French (fr)
Inventor
孟松
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020200205A1 publication Critical patent/WO2020200205A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]

Definitions

  • the embodiments of the present disclosure relate to a compensation method and a driving method of a pixel circuit, a compensation device, and a display device.
  • OLED Organic Light-Emitting Diode
  • the pixel circuit in the OLED display panel generally adopts a matrix driving method. According to whether switching components are introduced in each pixel unit, the driving method of the pixel circuit is divided into active matrix (AM) driving and passive matrix (Passive Matrix, PM) drive.
  • AM active matrix
  • PM passive matrix
  • AMOLED integrates a set of thin film transistors and storage capacitors in the pixel circuit of each pixel unit. Through the drive control of a set of thin film transistors and storage capacitors, the current flowing through the OLED is controlled, so that OLED emits light as needed.
  • AMOLED Compared with PMOLED, AMOLED requires small driving current, low power consumption, and longer life span, which can meet the needs of large-scale display with high resolution and multiple grayscale. At the same time, AMOLED has obvious advantages in terms of viewing angle, color restoration, power consumption, and response time, and is suitable for display devices with high information content and high resolution.
  • At least one embodiment of the present disclosure provides a compensation method for a pixel circuit, wherein the pixel circuit includes a driving circuit, the driving circuit includes a control terminal and a first terminal, and the first terminal of the driving circuit is configured to The signal line and the light-emitting element are electrically connected, and the compensation method includes: controlling the driving circuit to conduct to charge the sensing signal line, and making the first sensing voltage on the sensing signal line equal to the first preset In the case of sensing voltage, acquiring the voltage of the control terminal of the driving circuit as the first compensation data voltage; and controlling the driving circuit to turn on to charge the sensing signal line, and making the sensing signal line In the case where the second sensing voltage is equal to the second pre-stored sensing voltage, the voltage of the control terminal of the driving circuit is acquired as the second compensation data voltage; wherein, the first compensation data voltage and the second compensation data voltage For the display compensation operation of the pixel circuit, the first pre-stored sensing voltage corresponds to the first initial optical compensation parameter written into the control terminal of the driving
  • the compensation method for a pixel circuit further includes: updating a compensation data voltage look-up table, wherein the compensation data voltage look-up table includes a first optical compensation parameter and a second optical compensation parameter, and the first The initial value of an optical compensation parameter is the first initial optical compensation parameter, and the initial value of the second optical compensation parameter is the second initial optical compensation parameter; updating the compensation data voltage look-up table includes: using the The first compensation data voltage updates the value of the first optical compensation parameter, and the second compensation data voltage is used to update the value of the second optical compensation parameter.
  • the compensation method for the pixel circuit provided by at least one embodiment of the present disclosure further includes: calculating the multiplicity of the light-emitting element when the light-emitting element displays multiple brightnesses according to the first optical compensation parameter and the second optical compensation parameter.
  • a display compensation data voltage calculating the multiplicity of the light-emitting element when the light-emitting element displays multiple brightnesses according to the first optical compensation parameter and the second optical compensation parameter.
  • the M-th display compensation data voltage among the plurality of display compensation data voltages is obtained by the following calculation formula:
  • V m is the M-th display compensation data voltage
  • V1 is the first optical compensation parameter
  • V2 is the second optical compensation parameter
  • L1 is the first brightness
  • L2 is the second brightness
  • Lm is the brightness parameter corresponding to the M-th display compensation data voltage
  • M is a positive integer.
  • the compensation method is performed in a blanking period of one frame time.
  • obtaining the voltage of the control terminal of the driving circuit as the first compensation data voltage includes: adjusting the first detection written in the control terminal of the driving circuit The value of the data voltage, so that the first sensing voltage on the sensing signal line approaches the first pre-stored sensing voltage after the sensing signal line is charged for the first time by the driving circuit, And when the first sensing voltage on the sensing signal line is equal to the first pre-stored sensing voltage, obtaining the adjusted first detection data voltage as the first compensation data voltage;
  • Using the voltage of the control terminal of the driving circuit as the second compensation data voltage includes: adjusting the value of the second detection data voltage written into the control terminal of the driving circuit so that the sensing signal line is charged by the driving circuit After the second time, the second sensing voltage on the sensing signal line approaches the second pre-stored sensing voltage, and the second sensing voltage on the sensing signal line is equal to the In the case of the second pre-stored sensing voltage, the adjusted second
  • the duration of the first time is the same as the duration of the second time.
  • the first compensation data voltage obtained in the Nth frame is used as the first detection data voltage in the N+1th frame, and in the Nth frame
  • the obtained second compensation data voltage is used as the second detection data voltage in the N+1th frame, and N is an integer greater than 0;
  • the first initial optical compensation parameter is used as the first detection data in the first frame Voltage, the second initial optical compensation parameter is used as the second detected data voltage in the first frame.
  • the first pre-stored sensing voltage and the second pre-stored sensing voltage are obtained by the following steps: writing to the control terminal of the drive circuit The first initial optical compensation parameter turns on the driving circuit, and after the sensing signal line is charged by the driving circuit for the first time, the voltage on the sensing signal line is acquired as the second A pre-stored sensing voltage; and writing the second initial optical compensation parameter to the control terminal of the driving circuit to turn on the driving circuit, and charging the second sensing signal line through the driving circuit After time, the voltage on the sensing signal line is acquired as the second pre-stored sensing voltage.
  • the first initial optical compensation parameter and the second initial optical compensation parameter are obtained by the following steps: displaying the first optical compensation parameter on the light-emitting element In the case of brightness, obtain the voltage written in the control terminal of the drive circuit as the first initial optical compensation parameter; and in the case where the light-emitting element displays the second brightness, obtain the voltage written in the control terminal of the drive circuit Voltage is used as the second initial optical compensation parameter.
  • the first brightness is the maximum brightness of the light-emitting element
  • the second brightness is 1/4 of the maximum brightness of the light-emitting element
  • At least one embodiment of the present disclosure provides a method for driving a pixel circuit, including: determining the display brightness of a light-emitting element electrically connected to the pixel circuit; and obtaining the first compensation according to the compensation method according to any embodiment of the present disclosure Data voltage and the second compensation data voltage, and calculating a display compensation data voltage corresponding to the display brightness based on the first compensation data voltage and the second compensation data voltage; and applying the display compensation data voltage To the pixel circuit to drive the light emitting element to emit light.
  • At least one embodiment of the present disclosure provides a compensation device, including: a control circuit, a sensing voltage detection circuit, and a compensation voltage acquisition circuit; wherein the compensation device is configured to compensate a pixel circuit, and the pixel circuit includes a driving circuit ,
  • the driving circuit includes a control terminal and a first terminal, the first terminal of the driving circuit is configured to be electrically connected to the sensing signal line and the light emitting element;
  • the control circuit is configured to control the driving circuit to conduct The sensing signal line is charged;
  • the sensing voltage detection circuit is configured to detect the first sensing voltage and the second sensing voltage on the sensing signal line respectively;
  • the compensation voltage acquisition circuit is configured to In the case that the first sensing voltage is equal to the first pre-stored sensing voltage, obtain the voltage of the control terminal of the driving circuit as the first compensation data voltage; and when the second sensing voltage is equal to the second pre-stored sensing voltage In the case of obtaining the voltage of the control terminal of the driving circuit as the second compensation data voltage, the first
  • the compensation device provided by at least one embodiment of the present disclosure further includes a compensation parameter update circuit, wherein the compensation parameter update circuit is configured to use the first compensation data voltage to update the first optical compensation in the compensation data voltage look-up table The value of the parameter, and the value of the second optical compensation parameter in the compensation data voltage look-up table using the second compensation data voltage, wherein the initial value of the first optical compensation parameter is the first initial optical Compensation parameter, the initial value of the second optical compensation parameter is the second initial optical compensation parameter.
  • At least one embodiment of the present disclosure provides a display device, including the compensation device according to any embodiment of the present disclosure, the pixel circuit, and the sensing signal line, wherein the compensation device is connected to the pixel circuit and The sensing signal line is electrically connected.
  • the pixel circuit further includes a data writing circuit, and the data writing circuit is electrically connected to the control terminal of the driving circuit and is configured to During the process, it is turned on to write a data voltage to the control terminal of the driving circuit.
  • the pixel circuit further includes a sensing circuit, the first end of the sensing circuit is electrically connected to the sensing signal line, and the sensing circuit
  • the second terminal is electrically connected to the first terminal of the driving circuit and the light emitting element, and the sensing circuit is configured to be turned on during data writing to write a reference voltage to the first terminal of the driving circuit, And it is turned on during the detection process to charge the sensing signal line.
  • the pixel circuit further includes a storage circuit
  • the driving circuit further includes a second terminal configured to receive a power supply voltage
  • the storage circuit The first end and the second end of the drive circuit are respectively electrically connected to the control end and the first end of the drive circuit.
  • FIG. 1 is a flowchart of a compensation method for a pixel circuit provided by some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a pixel circuit provided by some embodiments of the present disclosure.
  • 3A and 3B are signal timing diagrams of the pixel circuit shown in FIG. 2;
  • FIG. 4 is a flowchart of a driving method of a pixel circuit provided by some embodiments of the present disclosure
  • FIG. 5 is a schematic block diagram of a compensation device provided by some embodiments of the disclosure.
  • FIG. 6 is a schematic diagram of a display device provided by some embodiments of the present disclosure.
  • the threshold voltages of the driving transistors of different pixel circuits in the organic light emitting diode (OLED) display device may be different and drift phenomenon may occur, thereby making the display screen brightness of the OLED display device Uneven, it is difficult to achieve a good display effect.
  • the method of optical compensation is used to compensate the threshold voltage of the driving transistor of each pixel circuit in the OLED display device
  • the method of electrical compensation is used to compensate the OLED.
  • the threshold voltage of the driving transistor of each pixel circuit in the display device is compensated.
  • the threshold voltage of the driving transistor of each pixel circuit in the OLED display device is compensated. Therefore, it is difficult to combine optical compensation and electrical compensation, thereby limiting the brightness compensation effect of the OLED display device. For example, after the OLED display device leaves the factory, it can only be electrically compensated for the difference between the threshold voltages of the driving transistors, and the OLED display device cannot achieve the brightness display effect after optical compensation before the factory leaves.
  • At least one embodiment of the present disclosure provides a compensation method and a driving method for a pixel circuit.
  • the compensation method can combine optical compensation and electrical compensation, so that the display device can achieve the common compensation effect of electrical compensation and optical compensation, so that the display screen The quality is greatly improved.
  • the compensation method can also realize real-time compensation for the display device during the display process.
  • At least one embodiment of the present disclosure also provides a compensation device and a display device including the compensation device, so as to enable the display device to achieve a better picture display effect after performing brightness compensation on each pixel circuit of the display device through the compensation device.
  • FIG. 1 is a compensation method of a pixel circuit provided by some embodiments of the disclosure. As shown in Figure 1, the compensation method includes the following steps S10 and S20.
  • Step S10 Control the driving transistor to be turned on to charge the sensing signal line. Under the condition that the first sensing voltage on the sensing signal line is equal to the first pre-stored sensing voltage, the voltage of the gate of the driving transistor is obtained as the first One compensation data voltage.
  • Step S20 Control the driving transistor to be turned on to charge the sensing signal line. Under the condition that the second sensing voltage on the sensing signal line is equal to the second pre-stored sensing voltage, the voltage of the gate of the driving transistor is obtained as the first 2. Compensate the data voltage.
  • the display device may include a plurality of sub-pixels (ie, pixel units) arranged in an array, and each sub-pixel includes a pixel circuit as described below.
  • FIG. 2 is a schematic diagram of a pixel circuit 10 provided by some embodiments of the present disclosure.
  • the pixel circuit 10 includes a driving circuit 100, a data writing circuit 200, a sensing circuit 300, and a storage circuit 400.
  • the driving circuit 100 includes a driving transistor T1, and the control terminal of the driving circuit 100 includes a gate of the driving transistor T1 and is configured to receive a data voltage; the first terminal of the driving circuit 100 includes a first electrode (such as a source of the driving transistor T1). The second terminal of the driving circuit 100 includes the second terminal (such as the drain) of the driving transistor T1, and is connected to the first power supply voltage terminal to receive the first terminal Power supply voltage Vdd.
  • the data writing circuit 200 includes a data writing transistor T2, and the control terminal of the data writing circuit 200 includes the gate of the data writing transistor T2, and is configured to be connected to a scanning line to receive the scanning signal G1;
  • the data writing circuit The first terminal of 200 includes the first pole of the data writing transistor T2, and is configured to be electrically connected to the gate of the driving transistor T1 (that is, the control terminal of the driving circuit 100);
  • the second terminal of the data writing circuit 200 includes the data
  • the second pole of the writing transistor T2 is configured to be connected to the data line DAT.
  • the data writing transistor T2 is turned on in response to the scan signal G1 to write the data voltage provided by the data line DAT to the gate of the driving transistor T1, and the data voltage is stored by the storage circuit described below.
  • the storage circuit 400 includes a storage capacitor C1.
  • the first terminal of the storage circuit 400 includes the first pole of the storage capacitor C1, and is configured to be electrically connected to the gate of the driving transistor T1 and the first pole of the data writing transistor T2, and the second terminal of the storage circuit 400 includes the storage capacitor
  • the second pole of C1 is configured to be electrically connected to the first pole of the driving transistor T1 and the light emitting element EL.
  • the storage capacitor C1 is configured to store the data voltage written by the data writing transistor T2. For example, in a case where the data writing transistor T2 is turned off, the driving transistor T1 is turned on by the data voltage stored in the storage capacitor C1 and outputs a current to charge the sensing signal line SEN.
  • the sensing circuit 300 includes a sensing transistor T3, and the control terminal of the sensing circuit 300 includes the gate of the sensing transistor T3, and is configured to be electrically connected to the sensing signal control line to receive the sensing control signal G2;
  • the first terminal of the circuit 300 includes the first pole of the sensing transistor T3 and is configured to be electrically connected to the sensing signal line SEN;
  • the second terminal of the sensing circuit 300 includes the second pole of the sensing transistor T3 and is configured It is electrically connected to the first electrode of the driving transistor T1 and the light emitting element EL.
  • the sensing transistor T3 is turned on in response to the sensing control signal G2, and the reference voltage is written into the first pole of the driving transistor T1 via the sensing transistor T3.
  • the sensing transistor T3 is turned on in response to the sensing control signal G2, and the current flowing through the driving transistor T1 is transmitted to the sensing signal line SEN via the sensing transistor T3 to contact the sensing signal line SEN (that is, with The connected capacitance or parasitic capacitance) is charged.
  • the first pole of the sensing transistor T3 may also be electrically connected to the reference voltage terminal through the first switching element SW1 to receive the reference voltage Vref, and electrically connected to the detection circuit 500 through the second switching element SW2.
  • the sensing transistor T3 when the sensing transistor T3 is turned on, when the first switching element SW1 is turned on and the second switching element SW2 is turned off, the reference voltage provided by the reference voltage terminal is passed through the sensing signal line SEN and the sensing transistor T3. Write the first pole of the drive transistor T1.
  • the sensing transistor T3 when the sensing transistor T3 is turned on, when the first switching element SW1 is turned off and the second switching element SW2 is turned on, the current output by the driving transistor T1 may be transmitted to the sensing signal line via the sensing transistor T3 SEN to charge the sensing signal line SEN.
  • the sensing transistor T3 when the sensing transistor T3 is turned off, when the first switching element SW1 is turned off and the second switching element SW2 is turned on, the voltage on the sensing signal line SEN can be obtained by the detection circuit 500.
  • the detection circuit 500 may be implemented in various suitable forms.
  • it may include an amplifying sub-circuit, an analog-to-digital conversion (ACD) circuit, etc.
  • the amplifying sub-circuit amplifies the voltage detected by the sensing signal line SEN to obtain an amplified voltage signal, and the amplified voltage signal is generated by the analog-to-digital conversion circuit Converted into a digital signal, the digital signal can be used for subsequent analysis, calculations, etc.
  • ACD analog-to-digital conversion
  • first switching element SW1 and the second switching element SW2 can achieve both off and on states.
  • first switching element SW1 and the second switching element SW2 can be transistors or other Types of switching elements, etc., are not limited in the embodiments of the present disclosure.
  • the light-emitting element EL can be, for example, various types of organic light-emitting diodes (OLED), including top-emission, bottom-emission, double-side emission, etc., for example.
  • OLED organic light-emitting diodes
  • the anode of the exemplary OLED is electrically connected to the first electrode of the driving transistor T1, and the cathode receives the second power supply voltage Vss, which is lower than the first power supply voltage Vdd.
  • the light emitting element EL may also be a quantum dot light emitting diode (QLED), etc., which is not limited in the embodiment of the present disclosure.
  • the light-emitting element EL may emit red light, green light, blue light, or white light.
  • the first luminance L1 and the second luminance L2 of the light-emitting element EL can be determined first, and an optical compensation device can be used to adjust the data voltage written to the gate of the driving transistor T1.
  • the light-emitting element EL is compensated uniformly at the first brightness L1 and the second brightness L2, that is, the display device is made to achieve uniform display at the first brightness L1 and the second brightness L2.
  • the first brightness L1 is different from the second brightness L2.
  • the first brightness L1 may be the maximum brightness of the light emitting element EL, and the second brightness L2 may be 1/4 of the maximum brightness of the light emitting element EL; or, the first brightness L1 may be It is the maximum brightness of the light emitting element EL, and the second brightness L2 may be 1/9 of the maximum brightness of the light emitting element EL, which is not limited in the embodiment of the present disclosure.
  • acquiring the brightness of the light-emitting element EL can detect the brightness of the light-emitting element EL by using, for example, a brightness detection device.
  • the first initial optical compensation parameter and the second initial optical compensation parameter may be obtained before the display device including the pixel circuit 10 is shipped.
  • obtaining the first initial optical compensation parameter and the second initial optical compensation parameter includes: when the light-emitting element displays the first brightness, obtaining the voltage written in the control terminal of the driving circuit as the first initial optical compensation parameter; and displaying on the light-emitting element In the case of the second brightness, the voltage written into the control terminal of the driving circuit is acquired as the second initial optical compensation parameter.
  • the first initial optical compensation parameter VP1 can be obtained by the following steps: obtain the brightness of the light-emitting element EL, When EL displays the first brightness L1, the data voltage written into the gate of the driving transistor T1 is obtained as the first initial optical compensation parameter VP1; the second initial optical compensation parameter VP2 can be obtained by the following steps: obtaining the brightness of the light emitting element EL, In the case where the light emitting element EL displays the second brightness L2, the data voltage written into the gate of the driving transistor T1 is acquired as the second initial optical compensation parameter VP2. After that, the obtained first initial optical compensation parameter VP1 and the second initial optical compensation parameter VP2 are stored in a memory (such as a flash memory).
  • a memory such as a flash memory
  • the first initial optical compensation parameter VP1 and the second initial optical compensation parameter VP2 are both data voltages after optical compensation, and the first initial optical compensation parameter VP1 corresponds to the first brightness L1, and the second initial optical compensation parameter VP2 corresponds to the first brightness L1. Two brightness L2 corresponds.
  • the first pre-stored sensing voltage and the second pre-stored sensing voltage may be obtained before the display device including the pixel circuit 10 is shipped.
  • the first pre-stored sensing voltage may be determined based on the first initial optical compensation parameter VP1
  • the second pre-stored sensing voltage may be determined based on the second initial optical compensation parameter VP2.
  • the first pre-stored sensing voltage and the second pre-stored sensing voltage can be obtained by the following steps: writing the first initial optical compensation parameter to the control terminal of the drive circuit to turn on the drive circuit, After the driving circuit charges the sensing signal line for a first time, acquiring the voltage on the sensing signal line as the first pre-stored sensing voltage; and writing the second initial optical compensation parameter to the control terminal of the driving circuit to turn on the driving circuit, After the driving circuit charges the sensing signal line for a second period of time, the voltage on the sensing signal line is acquired as the second pre-stored sensing voltage.
  • the first pre-stored sensing voltage VT1 can be obtained by the following steps: Write the first initial optical compensation parameter VP1 to the gate of the driving transistor T1 to The driving transistor T1 is turned on, and the sensing signal line SEN is charged for the first time S1 through the driving transistor T1, and the first pre-stored sensing voltage VT1 is obtained by detecting the corresponding voltage value on the sensing signal line SEN;
  • the measured voltage VT2 can be obtained by the following steps: write the second initial optical compensation parameter VP2 to the gate of the drive transistor T1 to turn on the drive transistor T1, and charge the sensing signal line SEN through the drive transistor T1 for a second time S2,
  • the second pre-stored sensing voltage VT2 is obtained by detecting the corresponding voltage value on the sensing signal line SEN.
  • the driving transistor T1, the data writing transistor T2, and the sensing transistor T3 in the pixel circuit 10 shown in FIG. 2 are all N-type transistors, and the first switching element SW1 and the second switching element SW2 are both at low level signals. Turning on under the control of, and turning off under the control of a high-level signal as an example, combined with the signal timing diagrams of the pixel circuit 10 shown in FIGS. 3A and 3B, the first pre-stored sensing voltage VT1 and the second pre-stored sensing The process of obtaining the voltage VT2 will be described in detail.
  • the data writing transistor T2 is turned on in response to the high-level scan signal G1, and the sensing transistor T3 is turned on in response to the high-level sensing control signal G2.
  • the first switching element SW1 is turned on, and the second switching element SW2 is turned off.
  • the first initial optical compensation parameter VP1 is written into the gate of the driving transistor T1 through the data writing transistor T2, and the reference voltage Vref (such as a low-level voltage or ground voltage) provided by the reference voltage terminal is written and driven through the sensing transistor T3
  • the first electrode (ie source) of the transistor T1 thereby turning on the driving transistor T1.
  • the difference between the first initial optical compensation parameter VP1 and the reference voltage Vref cannot be lower than the threshold voltage Vth of the driving transistor T1, that is, VP1-Vref ⁇ Vth.
  • the data writing transistor T2 is turned off in response to the low-level scan signal G1
  • the sensing transistor T3 is turned on in response to the high-level sensing control signal G2
  • the first switching element SW1 is turned off
  • the second switching element SW2 is turned on.
  • the driving transistor T1 is turned on under the control of the voltage stored in the storage capacitor C1 (ie, the first initial optical compensation parameter VP1), and outputs a current Is1 to charge the sensing signal line SEN for a first time S1.
  • the data writing transistor T2 is turned off in response to the low-level scan signal G1
  • the sensing transistor T3 is turned off in response to the low-level sensing control signal G2
  • the first switching element SW1 is turned off
  • the second switching element SW2 Conduction After the sensing signal line SEN is charged for the first time S1, the voltage on the sensing signal line SEN can be obtained by the detection circuit 500, which is the first pre-stored sensing voltage VT1.
  • the data writing transistor T2 is turned on in response to the high-level scan signal G1, and the sensing transistor T3 is turned on in response to the high-level sensing control signal G2.
  • the switching element SW1 is turned on, and the second switching element SW2 is turned off.
  • the second initial optical compensation parameter VP2 is written into the gate of the driving transistor T1 through the data writing transistor T2, and the reference voltage Vref (such as a low-level voltage or ground voltage) provided by the reference voltage terminal is written and driven through the sensing transistor T3
  • the first electrode (ie source) of the transistor T1 thereby turning on the driving transistor T1.
  • the difference between the second initial optical compensation parameter VP2 and the reference voltage Vref cannot be lower than the threshold voltage Vth of the driving transistor T1, that is, VP2-Vref ⁇ Vth.
  • the data writing transistor T2 is turned off in response to the low-level scan signal G1
  • the sensing transistor T3 is turned on in response to the high-level sensing control signal G2
  • the first switching element SW1 is turned off
  • the second switching element SW2 is turned on.
  • the driving transistor T1 is turned on under the control of the voltage stored in the storage capacitor C1 (ie, the second initial optical compensation parameter VP2), and outputs a current Is2 to charge the sensing signal line SEN for a second time S2.
  • the current Is2 output by the driving transistor T1 remains unchanged, so that the voltage value on the sensing signal line SEN is linear with time Increase.
  • the second time S2 may be the same as the first time S1 or different from the first time S1, that is, the duration of the second time S2 may be the same as the duration of the first time S1, or it may be the same as the first time S1.
  • the duration is different, and the embodiment of the present disclosure does not limit this.
  • the duration of the second time S2 is the same as the duration of the first time S1 as an example for description.
  • the data writing transistor T2 is turned off in response to the low-level scan signal G1
  • the sensing transistor T3 is turned off in response to the low-level sensing control signal G2
  • the first switching element SW1 is turned off
  • the second switching element SW2 Conduction After the sensing signal line SEN is charged for the second time S2, the voltage on the sensing signal line SEN can be obtained by the detection circuit 500, and the voltage is the second pre-stored sensing voltage VT2.
  • the threshold voltage Vth and the process parameter K of the driving transistor T1 in the pixel circuit 10 are electrically compensated.
  • the driving transistor can be derived based on the first pre-stored sensing voltage VT1, the second pre-stored sensing voltage VT2, the first initial optical compensation parameter VP1, and the second initial optical compensation parameter VP2 obtained above.
  • the initial threshold voltage of T1 the first initial optical compensation parameter VP1 and the second initial optical compensation parameter VP2
  • multiple initial optical compensation voltages in the case where the light-emitting element EL displays multiple brightnesses can be calculated.
  • the multiple initial optical compensation voltages include a first initial optical compensation parameter VP1 and a second initial optical compensation parameter VP2.
  • the gray scale levels of the display device may include 256 gray scale levels (0-255 gray scales), that is, each pixel is represented by 8-bit data, and the multiple brightnesses displayed by the light-emitting element EL can correspond to all gray scale levels one-to-one .
  • the current Is1 can be obtained according to the current formula when the driving transistor T1 is in a saturated state, namely:
  • K is the process constant of the driving transistor T1.
  • the current Is2 can be obtained according to the current formula when the driving transistor T1 is in a saturated state, namely:
  • K is the process constant of the driving transistor T1.
  • the luminance value L of the light-emitting element EL is proportional to the current Is flowing through the light-emitting element EL during the lighting process of the light-emitting element EL
  • the relationship between the luminance value L of the light-emitting element EL and the current Is can be expressed as :
  • a is a constant.
  • the luminance value L can be a normalized luminance value, that is, 0 ⁇ L ⁇ 1.
  • Imax is the output current of the driving transistor T1 corresponding to the 255 gray scale of the light-emitting element EL, that is, the output current corresponding to the maximum brightness of the light-emitting element EL;
  • L1 is the first brightness
  • L2 is the second brightness
  • the first brightness and the second brightness The brightness is normalized brightness, so 0 ⁇ L1 ⁇ 1, 0 ⁇ L2 ⁇ 1.
  • the value of the threshold voltage Vth of the driving transistor T1 can be derived:
  • Vdata is the data voltage provided through the data line DAT.
  • the data voltage corresponding to any normalized brightness value L of the light-emitting element EL can also be derived, namely:
  • the first pre-stored sensing voltage VT1 obtained after charging the sensing signal line SEN for the first time S1 and the second pre-stored sensing voltage VT2 obtained after charging the sensing signal line SEN for the second time S2 satisfy the following relationship formula:
  • C is the capacitance value of the capacitor connected to the sensing signal line SEN.
  • the value of the process parameter K of the driving transistor T1 can also be derived:
  • Vth the specific value of Vth can be obtained by the above-mentioned relational formula (6).
  • a plurality of initial optical compensations corresponding to the plurality of luminance values L of the light-emitting element EL can be calculated according to the first initial optical compensation parameter VP1 and the second initial optical compensation parameter VP2 Therefore, the data voltage Vdata written into the gate of the driving transistor T1 under the respective brightness values L of the light-emitting element EL can be compensated.
  • the threshold voltage Vth of the driving transistor T1 in the pixel circuit 10 can be determined based on the stored first pre-stored sensing voltage VT1 and second pre-stored sensing voltage VT2. And the process parameter K, etc. for electrical compensation.
  • obtaining the voltage of the gate of the driving transistor T1 as the first compensation data voltage VC1 includes: adjusting the value of the first detected data voltage VE1 written in the driving transistor T1 so that the driving After the transistor T1 charges the sensing signal line SEN for a first time S1, the first sensing voltage Vsen1 on the sensing signal line SEN approaches the first pre-stored sensing voltage VT1; and the first sensing on the sensing signal line SEN When the voltage Vsen1 is equal to the first pre-stored sensing voltage VT1, the adjusted first detection data voltage VE1 is obtained as the first compensation data voltage VC1.
  • one frame time includes a display phase and a blanking phase arranged between adjacent display phases.
  • Each display stage is used to display a frame of image, and its duration is equal to the time required to display the first pixel of the frame of image to the last pixel of the frame of image.
  • the first initial optical compensation parameter VP1 can be used as the first detected data voltage in the first frame in the display process; for example, the first compensated data voltage obtained in the Nth frame can be used as the first detected data voltage in the N+1th frame. Detect the data voltage (N is an integer greater than 0).
  • obtaining the voltage of the gate of the driving transistor T1 as the second compensation data voltage VC2 includes: adjusting the value of the second detected data voltage VE2 written in the driving transistor T1 so that the driving After the transistor T1 charges the sensing signal line SEN for a second time S2, the second sensing voltage Vsen2 on the sensing signal line SEN approaches the second pre-stored sensing voltage VT2; and the second sensing on the sensing signal line SEN When the voltage Vsen2 is equal to the second pre-stored sensing voltage VT2, the adjusted second detection data voltage VE2 is obtained as the second compensation data voltage VC2.
  • the second initial optical compensation parameter VP2 can be used as the second detected data voltage of the first frame in the display process; for example, the second compensation data voltage obtained in the Nth frame can be used as the second detected data voltage in the N+1th frame. Detect the data voltage (N is an integer greater than 0).
  • the first sensing voltage Vsen1 on the sensing signal line SEN is less than the value of the first prestored sensing voltage VT1, then the value of the first detection data voltage VE1 is increased; if the value of the sensing signal line is acquired
  • the value of the first sensing voltage Vsen1 on the SEN is greater than the value of the first pre-stored sensing voltage VT1, then the value of the first detection data voltage VE1 is reduced, so that the value of the first sensing voltage Vsen1 continuously approaches the first pre-stored sensing Measure the value of the voltage VT1 until the sensing signal line SEN is charged for the first time S1 by writing the first detection data voltage VE1, the first sensing voltage Vsen1 on the
  • the first detection data voltage VE1 written to the gate of the driving transistor T1 is The initial value and the initial value of the second detection data voltage VE2 may also be fixed values.
  • the initial value of the written first detection data voltage VE1 is the first initial optical compensation parameter VP1
  • the initial value of the written second detection data voltage VE2 is the second initial optical compensation parameter VP2.
  • step S10 when the pixel circuit 10 is compensated by the compensation method, in step S10, since the first sensing voltage Vsen1 on the sensing signal line SEN is equal to the first pre-stored sensing voltage VT1, it can be ensured that the driving transistor is When T1 writes the first compensated data voltage VC1, the current flowing through the light-emitting element EL is the same as the current Is1 after optical compensation before leaving the factory, so that the light-emitting element EL can reach the same level as the optical The same first brightness L1 after compensation.
  • the compensation principle of step S20 is the same as that of step S10, and will not be repeated here.
  • the compensation method shown in FIG. 1 can be performed in a blanking stage of one frame time, so that the pixel circuit 10 can be compensated in real time.
  • the threshold voltage of the driving transistor T1 may be calculated based on the first compensation data voltage VC1 and the second compensation data voltage VC2 Vth and the data voltage applied to the driving transistor T1 in the case of multiple brightness values L corresponding to the light-emitting element EL, thereby combining optical compensation and electrical compensation, so that the light-emitting element EL can still achieve the brightness display effect of optical compensation after leaving the factory .
  • the compensation method of the pixel circuit 10 may further include the following step S30.
  • Step S30 Update the compensation data voltage look-up table.
  • the compensation data voltage search of the pixel circuit 10 can be established table.
  • the compensation data voltage look-up table includes a first optical compensation parameter V1 and a second optical compensation parameter V2.
  • the initial value of the first optical compensation parameter V1 may be set as the first initial optical compensation parameter VP1
  • the initial value of the second optical compensation parameter V2 may be set as the second initial optical compensation parameter VP2.
  • the compensation data voltage look-up table is, for example, a relational data table, etc., which can be stored in the memory (for example, flash memory) of the display device, so that the display device can retrieve it during the display process.
  • the state of the compensation data voltage look-up table can be set to be changeable, so the data items in the display device can be modified as needed during the working process.
  • step S30 may include updating the value of the first optical compensation parameter V1 using the first compensation data voltage VC1, and The second compensation data voltage VC2 is used to update the value of the second optical compensation parameter V2.
  • the first optical compensation parameter V1 is the display compensation data voltage corresponding to the first brightness L1 of the light emitting element EL
  • the second optical compensation parameter V2 is the display compensation data voltage corresponding to the second brightness L2 of the light emitting element EL
  • the first optical compensation The parameter V1 and the second optical compensation parameter V2 can be updated in real time.
  • the compensation method of the pixel circuit 10 may further include the following step S40.
  • Step S40 According to the first optical compensation parameter and the second optical compensation parameter, calculate multiple display compensation data voltages when the light-emitting element displays multiple brightnesses.
  • a plurality of display compensation data voltages in a case where the light emitting element EL displays a plurality of brightness values L can be calculated.
  • the calculation method for the multiple display compensation data voltages is the same as the above formulas (1)-(9), which will not be repeated here.
  • the Mth display compensation data voltage V m is:
  • Vm is the M-th display compensation data voltage among the multiple display compensation data voltages
  • V1 is the first optical compensation parameter
  • V2 is the second optical compensation parameter
  • L1 is the first brightness
  • L2 is the second brightness
  • Lm is The brightness parameter corresponding to the M-th display compensation data voltage, where M is a positive integer.
  • the M-th display compensation data voltage V m is:
  • the compensation method can be performed in the process of real-time display, and while achieving the effect of optical compensation and electrical compensation, there is no need to increase the data bandwidth of the corresponding memory, that is, only the data bandwidth required for electrical compensation is used to achieve optical Compensate the effect of electrical compensation, which greatly improves the brightness uniformity of the display screen.
  • the compensation method can be performed in the blanking stage of each frame, so that the pixel circuit 10 can be compensated in each frame, and the brightness uniformity of the displayed image is improved.
  • the compensation method can also be carried out in the blanking stage of two or more frames every interval, so as to meet the display brightness uniformity, reduce the calculation amount of the display device including the pixel circuit 10, thereby reducing the display The power consumption of the device.
  • FIG. 4 is a flowchart of a method for driving the pixel circuit 10 provided by some embodiments of the present disclosure. As shown in FIG. 4, the driving method includes the following steps S100-S300.
  • Step S100 Determine the display brightness of the light-emitting element electrically connected to the pixel circuit.
  • Step S200 Obtain the first compensation data voltage and the second compensation data voltage, and calculate the display compensation data voltage corresponding to the display brightness according to the first compensation data voltage and the second compensation data voltage.
  • Step 300 Apply the display compensation data voltage to the pixel circuit to drive the light-emitting element to emit light.
  • the display brightness Lm that the light-emitting element in the pixel circuit of each sub-pixel needs to display may be determined according to the content of one frame of display screen.
  • the first compensation data voltage VC1 and the second compensation data voltage VC2 may be obtained according to the compensation method of the pixel circuit described in any embodiment of the present disclosure, for example, according to the pixel circuit 10 shown in FIG.
  • the compensation method obtains the first compensation data voltage VC1 and the second compensation data voltage VC2, which will not be repeated here.
  • step S300 the brightness displayed by the light-emitting element EL is the display brightness Lm.
  • FIG. 5 is a schematic block diagram of a compensation device 50 provided by some embodiments of the present disclosure.
  • the compensation device 50 includes a control circuit 510, a sensing voltage detection circuit 520, and a compensation voltage acquisition circuit 530.
  • the compensation device 50 is configured to compensate the pixel circuit 60 of the sub-pixel of the display device.
  • the pixel circuit 60 includes a driving circuit 600.
  • the driving circuit 600 includes a control terminal 610 and a first terminal 620.
  • the first terminal 620 of the driving circuit 600 is configured to It is electrically connected to the sensing signal line SEN and the light emitting element EL.
  • a specific example of the pixel circuit 60 may be the pixel circuit 10 shown in FIG. 2.
  • control circuit 510 is configured to control the driving circuit 600 to be turned on to charge the sensing signal line SEN.
  • the control circuit 510 includes a data driving circuit 511 and a gate driving circuit 512
  • the pixel circuit 60 may also include a data writing circuit.
  • the data driving circuit 511 applies a data voltage (for example, the above-mentioned first detection data voltage and the second detection data voltage) to the data writing circuit
  • the gate driving circuit 512 applies a scan signal to the data writing circuit to control the data writing circuit Conduction.
  • the applied data voltage can be transmitted to the control terminal 610 of the driving circuit 600 to control the driving circuit 600 to be turned on or off, and the current flowing through the driving circuit 600 can also be controlled.
  • the data driving circuit 511 and the gate driving circuit 512 may be implemented as, for example, a semiconductor chip or the like.
  • the sensing voltage detection circuit 520 is configured to detect the first sensing voltage and the second sensing voltage on the sensing signal line SEN, respectively.
  • the sensing voltage detection circuit 520 includes the detection circuit 500 shown in FIG. 2.
  • the sensing voltage detection circuit 520 may be implemented in various appropriate forms, for example, may include an amplifier sub-circuit, an analog-to-digital conversion (ACD) circuit, etc., and the amplifier sub-circuit amplifies the voltage detected from the sensing signal line SEN to obtain an amplified A voltage signal, the amplified voltage signal is converted into a digital signal by an analog-to-digital conversion circuit, and the digital signal can be used for subsequent analysis, calculation, etc.
  • ACD analog-to-digital conversion
  • the compensation voltage acquisition circuit 530 is configured to acquire the voltage of the control terminal 610 of the driving circuit 600 as the first compensation data voltage when the first sensing voltage is equal to the first prestored sensing voltage; When the voltage is equal to the second pre-stored sensing voltage, the voltage of the control terminal 610 of the driving circuit 600 is acquired as the second compensation data voltage.
  • the first compensation data voltage and the second compensation data voltage are used for the display compensation operation of the pixel circuit 60.
  • the first pre-stored sensing voltage corresponds to the first value written into the control terminal 610 of the driving circuit 600 when the light emitting element EL displays the first brightness.
  • the second pre-stored sensing voltage corresponds to the second initial optical compensation parameter written to the control terminal 610 of the driving circuit 600 when the light emitting element EL displays the second brightness.
  • the first brightness is different from the second brightness.
  • the compensation voltage acquisition circuit 530 is electrically connected to the control terminal 610 of the driving circuit 600.
  • the compensation device 50 further includes a compensation parameter update circuit 540.
  • the compensation parameter update circuit 540 is configured to use the first compensation data voltage to update the value of the first optical compensation parameter in the compensation data voltage look-up table, and use the second compensation data voltage to update the second optical compensation parameter in the compensation data voltage look-up table The numerical value.
  • the initial value of the first optical compensation parameter is the first initial optical compensation parameter
  • the initial value of the second optical compensation parameter is the second initial optical compensation parameter.
  • the compensation parameter update circuit 540 is also configured to calculate a plurality of display compensation data voltages in a case where the light emitting element EL displays a plurality of brightnesses based on the first optical compensation parameter and the second optical compensation parameter.
  • the compensation parameter update circuit 540 may include a calculation sub-circuit for calculating a plurality of display compensation data voltages in a case where the light emitting element EL displays a plurality of brightnesses.
  • the calculation sub-circuit can be realized by a hardware circuit.
  • the calculation sub-circuit can be composed of components such as resistors, capacitors, and amplifiers.
  • the calculation sub-circuit can also be implemented by signal processors such as FPGA, DSP, and MCU.
  • the calculation sub-circuit may include, for example, a processor and a memory, and the processor executes a software program stored in the memory to realize the function of calculating multiple display compensation data voltages.
  • At least one embodiment of the present disclosure further provides a display device.
  • the display device includes the compensation device, the pixel circuit, and the sensing signal line described in any embodiment of the present disclosure.
  • the display device may include the compensation device 50 as shown in FIG.
  • the compensation device 50 is electrically connected to the pixel circuit 60 and the sensing signal line SEN, respectively.
  • FIG. 6 is a schematic diagram of a display device 70 provided by some embodiments of the present disclosure.
  • the display device 70 includes a plurality of sub-pixels P (ie, pixel units) arranged in an array, and each sub-pixel P includes a pixel circuit 60.
  • the data driving circuit 511 applies a data voltage (for example, the above-mentioned first detection data voltage and second detection data voltage) to the pixel circuit 60 in each sub-pixel P, and the gate driving circuit 512 applies a data voltage to each sub-pixel P.
  • the pixel circuit 60 in the pixel P applies a scan signal.
  • the display device 70 may further include a timing controller 710.
  • the timing controller 710 is used to process the image data RGB input from the outside of the display device 70, provide the processed image data RGB to the data drive circuit 511, and output the scan control signal GCS and data control to the gate drive circuit 512 and the data drive circuit 511, respectively
  • the signal DCS is used to control the gate driving circuit 512 and the data driving circuit 511.
  • the gate driving circuit 512 provides a plurality of gate signals (ie, scan signals) according to a plurality of scan control signals GCS from the timing controller 710.
  • the data driving circuit 511 uses the reference gamma voltage to convert digital image data RGB input from the timing controller 710 into data voltages according to a plurality of data control signals DCS from the timing controller 710.
  • the timing controller 710 processes externally input image data RGB to match the size and resolution of the display device 70, and then provides the processed image data RGB to the data driving circuit 511.
  • the timing controller 710 uses a synchronization signal SYNC (such as a dot clock signal DCLK, a data enable signal DE, a horizontal synchronization signal Hsync, and a vertical synchronization signal Vsync) input from the outside of the display device 70 to generate a plurality of scan control signals GCS and a plurality of data controls Signal DCS.
  • the timing controller 710 provides the generated scan control signal GCS and data control signal DCS to the gate driving circuit 512 and the data driving circuit 511, respectively, for controlling the gate driving circuit 512 and the data driving circuit 511.
  • the display device 70 may also include other components, such as a signal decoding circuit, a voltage conversion circuit, etc. These components may, for example, adopt existing conventional components, which will not be described in detail here.
  • the display device 70 can be any product or component with a display function, such as a liquid crystal panel, electronic paper, OLED panel, QLED panel, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc.
  • a display function such as a liquid crystal panel, electronic paper, OLED panel, QLED panel, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc. The embodiment does not limit this.
  • the pixel circuit further includes a data writing circuit, and the data writing circuit is electrically connected to the control terminal of the driving circuit and is configured to be turned on during the data writing process.
  • the control terminal of the drive circuit writes the data voltage.
  • the pixel circuit further includes a sensing circuit, the first end of the sensing circuit is electrically connected to the sensing signal line, and the second end of the sensing circuit is connected to the first end of the driving circuit. One end is electrically connected to the light-emitting element.
  • the sensing circuit is configured to be turned on during the data writing process to write the reference voltage to the first terminal of the driving circuit, and to be turned on during the detection process to charge the sensing signal line.
  • the pixel circuit further includes a storage circuit
  • the driving circuit further includes a second terminal configured to receive a power supply voltage
  • the first terminal and the second terminal of the storage circuit The terminals are respectively electrically connected with the control terminal and the first terminal of the driving circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素电路的补偿方法及驱动方法、补偿装置及显示装置,该补偿方法包括:控制驱动电路导通以对感测信号线充电,在使感测信号线上的第一感测电压等于第一预存感测电压的情形下,获取驱动电路的控制端的电压作为第一补偿数据电压;以及控制驱动电路导通以对感测信号线充电,在使感测信号线上的第二感测电压等于第二预存感测电压的情形下,获取驱动电路的控制端的电压作为第二补偿数据电压。第一预存感测电压与在发光元件显示第一亮度的情形下写入驱动电路的控制端的第一初始光学补偿参数对应,第二预存感测电压与在发光元件显示第二亮度的情形下写入驱动电路的控制端的第二初始光学补偿参数对应。

Description

像素电路的补偿方法及驱动方法、补偿装置及显示装置
本申请要求于2019年4月4日递交的中国专利申请第201910272485.2号的优先权,该中国专利申请的全文以引入的方式并入以作为本申请的一部分。
技术领域
本公开的实施例涉及一种像素电路的补偿方法及驱动方法、补偿装置及显示装置。
背景技术
相比于传统的液晶显示面板,有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板具有反应速度更快、对比度更高、视角更广且功耗更低等优点,并且已越来越多地被应用于高性能显示中。
OLED显示面板中的像素电路一般采用矩阵驱动方式,根据每个像素单元中是否引入开关元器件,像素电路的驱动方式分为有源矩阵(Active Matrix,AM)驱动和无源矩阵(Passive Matrix,PM)驱动。PMOLED虽然工艺简单、成本较低,但因存在交叉串扰、高功耗、低寿命等缺点,不能满足高分辨率大尺寸显示的需求。相比之下,AMOLED在每一个像素单元的像素电路中都集成了一组薄膜晶体管和存储电容,通过对一组薄膜晶体管和存储电容的驱动控制,实现对流经OLED的电流的控制,从而使OLED根据需要发光。相比PMOLED,AMOLED所需驱动电流小、功耗低、寿命更长,可以满足高分辨率多灰度的大尺寸显示需求。同时,AMOLED在可视角度、色彩的还原、功耗以及响应时间等方面具有明显的优势,适用于高信息含量、高分辨率的显示装置。
发明内容
本公开至少一个实施例提供一种像素电路的补偿方法,其中,所述像素电路包括驱动电路,所述驱动电路包括控制端和第一端,所述驱动电路的第 一端配置为与感测信号线及发光元件电连接,所述补偿方法包括:控制所述驱动电路导通以对所述感测信号线充电,在使所述感测信号线上的第一感测电压等于第一预存感测电压的情形下,获取所述驱动电路的控制端的电压作为第一补偿数据电压;以及控制所述驱动电路导通以对所述感测信号线充电,在使所述感测信号线上的第二感测电压等于第二预存感测电压的情形下,获取所述驱动电路的控制端的电压作为第二补偿数据电压;其中,所述第一补偿数据电压和所述第二补偿数据电压用于所述像素电路的显示补偿操作,所述第一预存感测电压与在所述发光元件显示第一亮度的情形下写入所述驱动电路的控制端的第一初始光学补偿参数对应,所述第二预存感测电压与在所述发光元件显示第二亮度的情形下写入所述驱动电路的控制端的第二初始光学补偿参数对应,所述第一亮度与所述第二亮度不同。
例如,本公开至少一个实施例提供的像素电路的补偿方法还包括:更新补偿数据电压查找表,其中,所述补偿数据电压查找表包括第一光学补偿参数和第二光学补偿参数,所述第一光学补偿参数的初始值为所述第一初始光学补偿参数,所述第二光学补偿参数的初始值为所述第二初始光学补偿参数;更新所述补偿数据电压查找表包括:使用所述第一补偿数据电压更新所述第一光学补偿参数的数值,以及使用所述第二补偿数据电压更新所述第二光学补偿参数的数值。
例如,本公开至少一个实施例提供的像素电路的补偿方法还包括:根据所述第一光学补偿参数和所述第二光学补偿参数,计算在所述发光元件显示多个亮度的情形下的多个显示补偿数据电压。
例如,在本公开至少一个实施例提供的像素电路的补偿方法中,所述多个显示补偿数据电压中的第M个显示补偿数据电压通过如下计算公式得到:
Figure PCTCN2020082471-appb-000001
Figure PCTCN2020082471-appb-000002
其中,V m为所述第M个显示补偿数据电压,V1为所述第一光学补偿参数,V2为所述第二光学补偿参数,L1为所述第一亮度,L2为所述第二亮度,Lm为与所述第M个显示补偿数据电压对应的亮度参数,M为正整数。
例如,在本公开至少一个实施例提供的像素电路的补偿方法中,所述补偿方法在一帧时间的消隐时段进行。
例如,在本公开至少一个实施例提供的像素电路的补偿方法中,获取所述驱动电路的控制端的电压作为所述第一补偿数据电压包括:调整写入所述驱动电路的控制端的第一检测数据电压的数值,以使通过所述驱动电路对所述感测信号线充电第一时间后,所述感测信号线上的所述第一感测电压逼近所述第一预存感测电压,以及在所述感测信号线上的所述第一感测电压等于所述第一预存感测电压的情形下,获取调整后的第一检测数据电压作为所述第一补偿数据电压;获取所述驱动电路的控制端的电压作为所述第二补偿数据电压包括:调整写入所述驱动电路的控制端的第二检测数据电压的数值,以使通过所述驱动电路对所述感测信号线充电第二时间后,所述感测信号线上的所述第二感测电压逼近所述第二预存感测电压,以及在所述感测信号线上的所述第二感测电压等于所述第二预存感测电压的情形下,获取调整后的第二检测数据电压作为所述第二补偿数据电压。
例如,在本公开至少一个实施例提供的像素电路的补偿方法中,所述第一时间的时长与所述第二时间的时长相同。
例如,在本公开至少一个实施例提供的像素电路的补偿方法中,在第N帧获得的第一补偿数据电压作为在第N+1帧中的第一检测数据电压,在所述第N帧获得的第二补偿数据电压作为在所述第N+1帧中的第二检测数据电压,N为大于0的整数;所述第一初始光学补偿参数作为在第一帧中的第一检测数据电压,所述第二初始光学补偿参数作为在所述第一帧中的第二检测数据电压。
例如,在本公开至少一个实施例提供的像素电路的补偿方法中,所述第一预存感测电压和所述第二预存感测电压通过如下步骤获得:向所述驱动电路的控制端写入所述第一初始光学补偿参数使所述驱动电路导通,通过所述驱动电路对所述感测信号线充电所述第一时间后,获取所述感测信号线上的电压作为所述第一预存感测电压;以及向所述驱动电路的控制端写入所述第二初始光学补偿参数使所述驱动电路导通,通过所述驱动电路对所述感测信号线充电所述第二时间后,获取所述感测信号线上的电压作为所述第二预存感测电压。
例如,在本公开至少一个实施例提供的像素电路的补偿方法中,所述第一初始光学补偿参数和所述第二初始光学补偿参数通过如下步骤获得:在所述发光元件显示所述第一亮度的情形,获取写入所述驱动电路的控制端的电压作为所述第一初始光学补偿参数;以及在所述发光元件显示所述第二亮度的情形,获取写入所述驱动电路的控制端的电压作为所述第二初始光学补偿参数。
例如,在本公开至少一个实施例提供的像素电路的补偿方法中,所述第一亮度为所述发光元件的最大亮度,所述第二亮度为所述发光元件的最大亮度的1/4。
本公开至少一个实施例提供一种像素电路的驱动方法,包括:确定与所述像素电路电连接的发光元件的显示亮度;根据本公开任一实施例所述的补偿方法获得所述第一补偿数据电压和所述第二补偿数据电压,并根据所述第一补偿数据电压和所述第二补偿数据电压计算与所述显示亮度对应的显示补偿数据电压;以及将所述显示补偿数据电压施加至所述像素电路以驱动所述发光元件发光。
本公开至少一个实施例提供一种补偿装置,包括:控制电路、感测电压检测电路和补偿电压获取电路;其中,所述补偿装置被配置为对像素电路进行补偿,所述像素电路包括驱动电路,所述驱动电路包括控制端和第一端,所述驱动电路的第一端配置为与感测信号线及发光元件电连接;所述控制电路被配置为控制所述驱动电路导通以对所述感测信号线充电;所述感测电压检测电路被配置为分别检测所述感测信号线上的第一感测电压和第二感测电压;所述补偿电压获取电路被配置为在所述第一感测电压等于第一预存感测电压的情形下,获取所述驱动电路的控制端的电压作为第一补偿数据电压;以及在所述第二感测电压等于第二预存感测电压的情形下,获取所述驱动电路的控制端的电压作为第二补偿数据电压,其中,所述第一补偿数据电压和所述第二补偿数据电压用于所述像素电路的显示补偿操作,所述第一预存感测电压与在所述发光元件显示第一亮度的情形下写入所述驱动电路的控制端的第一初始光学补偿参数对应,所述第二预存感测电压与在所述发光元件显示第二亮度的情形下写入所述驱动电路的控制端的第二初始光学补偿参数对应,所述第一亮度与所述第二亮度不同。
例如,本公开至少一个实施例提供的补偿装置还包括补偿参数更新电路,其中,所述补偿参数更新电路被配置为使用所述第一补偿数据电压更新补偿数据电压查找表中的第一光学补偿参数的数值,以及使用所述第二补偿数据电压更新所述补偿数据电压查找表中的第二光学补偿参数的数值,其中,所述第一光学补偿参数的初始值为所述第一初始光学补偿参数,所述第二光学补偿参数的初始值为所述第二初始光学补偿参数。
本公开至少一个实施例提供一种显示装置,包括本公开任一实施例所述的补偿装置、所述像素电路和所述感测信号线,其中,所述补偿装置分别与所述像素电路和所述感测信号线电连接。
例如,在本公开至少一个实施例提供的显示装置中,所述像素电路还包括数据写入电路,所述数据写入电路与所述驱动电路的控制端电连接,且配置为在数据写入过程中导通以向所述驱动电路的控制端写入数据电压。
例如,在本公开至少一个实施例提供的显示装置中,所述像素电路还包括感测电路,所述感测电路的第一端与所述感测信号线电连接,所述感测电路的第二端与所述驱动电路的第一端以及所述发光元件电连接,所述感测电路配置为在数据写入过程中导通以向所述驱动电路的第一端写入参考电压,以及在检测过程中导通以对所述感测信号线充电。
例如,在本公开至少一个实施例提供的显示装置中,所述像素电路还包括存储电路,所述驱动电路还包括第二端,所述第二端被配置为接收电源电压,所述存储电路的第一端和第二端分别与所述驱动电路的控制端和第一端电连接。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一些实施例提供的一种像素电路的补偿方法的流程图;
图2为本公开一些实施例提供的一种像素电路的示意图;
图3A和图3B为图2所示的像素电路的信号时序图;
图4为本公开一些实施例提供的一种像素电路的驱动方法的流程图;
图5为本公开一些实施例提供的一种补偿装置的示意框图;以及
图6为本公开一些实施例提供的一种显示装置的示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了部分已知功能和已知部件的详细说明。
由于例如制备工艺以及温度变化等因素的影响,有机发光二极管(OLED)显示装置中的不同像素电路的驱动晶体管的阈值电压可能会存在差异并会产生漂移现象,从而使OLED显示装置的显示画面亮度不均匀,难以达到良好的显示效果。
针对上述问题,通常在OLED显示装置出厂前,采用光学补偿的方法对OLED显示装置中的各像素电路的驱动晶体管的阈值电压进行补偿,并且在OLED显示装置出厂后,采用电学补偿的方法对OLED显示装置中的各像素电路的驱动晶体管的阈值电压进行补偿。
但是,由于上述光学补偿方法和电学补偿方法是在OLED显示装置出厂前和出厂后的两个阶段分别进行,因而在对OLED显示装置中的各像素电路 的驱动晶体管的阈值电压进行补偿的过程中,难以将光学补偿和电学补偿相结合,由此使OLED显示装置的亮度补偿效果受到限制。例如,在OLED显示装置出厂后,只能对各驱动晶体管的阈值电压之间存在的差异进行电学补偿,无法使OLED显示装置达到出厂前进行光学补偿后的亮度显示效果。
本公开至少一个实施例提供一种像素电路的补偿方法及驱动方法,该补偿方法可以将光学补偿和电学补偿相结合,使显示装置实现电学补偿和光学补偿的共同补偿效果,从而使显示画面的质量大大提升。同时,该补偿方法还可以实现在显示过程中对显示装置进行实时补偿。
本公开至少一个实施例还提供一种补偿装置以及包括该补偿装置的显示装置,以通过该补偿装置对显示装置的各像素电路进行亮度补偿后,使显示装置达到更优质的画面显示效果。
下面,将参考附图详细地说明本公开的一些实施例。应当注意的是,不同的附图中相同的附图标记将用于指代已描述的相同的元件。
图1为本公开一些实施例提供的像素电路的补偿方法。如图1所示,该补偿方法包括以下步骤S10和S20。
步骤S10:控制驱动晶体管导通以对感测信号线充电,在使感测信号线上的第一感测电压等于第一预存感测电压的情形下,获取驱动晶体管的栅极的电压作为第一补偿数据电压。
步骤S20:控制驱动晶体管导通以对感测信号线充电,在使感测信号线上的第二感测电压等于第二预存感测电压的情形下,获取驱动晶体管的栅极的电压作为第二补偿数据电压。
下面将结合具体的像素电路对该补偿方法进行说明。例如,显示装置可以包括呈阵列排布的多个子像素(即像素单元),每个子像素包括如下所述的像素电路。
图2为本公开一些实施例提供的一种像素电路10的示意图。如图2所示,像素电路10包括驱动电路100、数据写入电路200、感测电路300和存储电路400。
例如,驱动电路100包括驱动晶体管T1,驱动电路100的控制端包括驱动晶体管T1的栅极,且被配置为接收数据电压;驱动电路100的第一端包括驱动晶体T1的第一极(例如源极),且与感测信号线SEN以及发光元件 EL电连接;驱动电路100的第二端包括驱动晶体管T1的第二极(例如漏极),且与第一电源电压端连接以接收第一电源电压Vdd。
例如,数据写入电路200包括数据写入晶体管T2,数据写入电路200的控制端包括数据写入晶体管T2的栅极,且被配置为与扫描线连接以接收扫描信号G1;数据写入电路200的第一端包括数据写入晶体管T2的第一极,且被配置为与驱动晶体管T1的栅极(即驱动电路100的控制端)电连接;数据写入电路200的第二端包括数据写入晶体管T2的第二极,且被配置为与数据线DAT连接。例如,在数据写入过程中,数据写入晶体管T2响应扫描信号G1导通,以将数据线DAT提供的数据电压写入驱动晶体管T1的栅极,数据电压由如下所述的存储电路存储。
例如,存储电路400包括存储电容C1。存储电路400的第一端包括存储电容C1的第一极,且被配置为与驱动晶体管T1的栅极以及数据写入晶体管T2的第一极电连接,存储电路400的第二端包括存储电容C1的第二极,且被配置为与驱动晶体管T1的第一极以及发光元件EL电连接。存储电容C1配置为存储通过数据写入晶体管T2写入的数据电压。例如,在数据写入晶体管T2截止的情形下,驱动晶体管T1通过存储在存储电容C1中的数据电压导通,并输出电流以对感测信号线SEN充电。并且,由于存储电容C1的电容耦合效应,当驱动晶体管T1的第一极的电压上升时,驱动晶体管T1的栅极的电压也会上升,使驱动晶体管T1的栅极和第一极之间的电压差保持不变,从而使驱动晶体管T1输出的电流的大小保持不变。
例如,感测电路300包括感测晶体管T3,感测电路300的控制端包括感测晶体管T3的栅极,且被配置为与感测信号控制线电连接以接收感测控制信号G2;感测电路300的第一端包括感测晶体管T3的第一极,且被配置为与感测信号线SEN电连接;感测电路300的第二端包括感测晶体管T3的第二极,且被配置为与驱动晶体管T1的第一极以及发光元件EL电连接。例如,在数据写入过程中,感测晶体管T3响应感测控制信号G2导通,参考电压经由感测晶体管T3被写入驱动晶体管T1的第一极。例如,在检测过程中,感测晶体管T3响应感测控制信号G2导通,流经驱动晶体管T1的电流经由感测晶体管T3被传输至感测信号线SEN以对感测信号线SEN(即与其相连的电容或寄生电容)充电。
例如,如图2所示,感测晶体管T3的第一极还可以通过第一开关元件SW1与参考电压端电连接以接收参考电压Vref,且通过第二开关元件SW2与检测电路500电连接。例如,在感测晶体管T3导通的情况下,当第一开关元件SW1导通且第二开关元件SW2断开时,参考电压端提供的参考电压经由感测信号线SEN和感测晶体管T3被写入驱动晶体管T1的第一极。例如,在感测晶体管T3导通的情况下,当第一开关元件SW1断开且第二开关元件SW2导通时,驱动晶体管T1输出的电流可以经由感测晶体管T3被传输至感测信号线SEN,以对感测信号线SEN充电。例如,在感测晶体管T3截止的情况下,当第一开关元件SW1断开且第二开关元件SW2导通时,可以通过检测电路500获取感测信号线SEN上的电压。
例如,检测电路500可以以各种适当形式实现。例如,可以包括放大子电路、模数转换(ACD)电路等,放大子电路将从感测信号线SEN检测的电压放大以得到放大后的电压信号,该放大后的电压信号由模数转换电路转换为数字信号,该数字信号可以用于后续分析、计算等。
需要说明的是,第一开关元件SW1和第二开关元件SW2能实现断开和导通两种状态即可,例如,第一开关元件SW1和第二开关元件SW2可以为晶体管,也可以为其他类型的开关元件等,本公开的实施例对此不作限制。
需要说明的是,在如图2所示的像素电路10中,发光元件EL例如可以为各种类型的有机发光二极管(OLED),例如包括顶发射、底发射、双侧发射等类型,本公开实施例对此不作限制。如图2所示,示例性的OLED的阳极与驱动晶体管T1的第一极电连接,而阴极接收第二电源电压Vss,该第二电源电压Vss低于第一电源电压Vdd。发光元件EL例如还可以为量子点发光二极管(QLED)等,本公开实施例对此不作限制。例如,发光元件EL可以发红光、绿光、蓝光或白光等。
例如,在包括该像素电路10的显示装置出厂前,可以首先确定发光元件EL的第一亮度L1和第二亮度L2,并利用光学补偿设备,通过调整写入驱动晶体管T1的栅极的数据电压使发光元件EL在第一亮度L1和第二亮度L2下被补偿均匀,也就是说,使显示装置在第一亮度L1和第二亮度L2下均实现均匀显示。第一亮度L1和第二亮度L2不同,例如,第一亮度L1可以为发光元件EL的最大亮度,第二亮度L2可以为发光元件EL的最大亮度的1/4; 或者,第一亮度L1可以为发光元件EL的最大亮度,第二亮度L2可以为发光元件EL的最大亮度的1/9,本公开实施例对此不作限制。
例如,获取发光元件EL的亮度可以通过采用例如亮度检测装置检测发光元件EL的亮度。
例如,第一初始光学补偿参数和第二初始光学补偿参数可以在包括该像素电路10的显示装置出厂前获得。例如,获取第一初始光学补偿参数和第二初始光学补偿参数包括:在发光元件显示第一亮度的情形,获取写入驱动电路的控制端的电压作为第一初始光学补偿参数;以及在发光元件显示第二亮度的情形,获取写入驱动电路的控制端的电压作为第二初始光学补偿参数。
例如,结合图2所示,在一些实施例中,在确定第一亮度L1和第二亮度L2后,第一初始光学补偿参数VP1可以通过如下步骤获得:获取发光元件EL的亮度,在发光元件EL显示第一亮度L1的情形,获取写入驱动晶体管T1的栅极的数据电压作为第一初始光学补偿参数VP1;第二初始光学补偿参数VP2可以通过如下步骤获得:获取发光元件EL的亮度,在发光元件EL显示第二亮度L2的情形,获取写入驱动晶体管T1的栅极的数据电压作为第二初始光学补偿参数VP2。之后,将获得的第一初始光学补偿参数VP1和第二初始光学补偿参数VP2存储在存储器(例如闪存)中。
例如,第一初始光学补偿参数VP1和第二初始光学补偿参数VP2均为光学补偿后的数据电压,且第一初始光学补偿参数VP1与第一亮度L1对应,第二初始光学补偿参数VP2与第二亮度L2对应。
例如,第一预存感测电压和第二预存感测电压可以在包括该像素电路10的显示装置出厂前获得。第一预存感测电压可以基于第一初始光学补偿参数VP1而确定,第二预存感测电压可以基于第二初始光学补偿参数VP2而确定。例如,在步骤S10和步骤S20中,第一预存感测电压和第二预存感测电压可以通过如下步骤获得:向驱动电路的控制端写入第一初始光学补偿参数使驱动电路导通,通过驱动电路对感测信号线充电第一时间后,获取感测信号线上的电压作为第一预存感测电压;以及向驱动电路的控制端写入第二初始光学补偿参数使驱动电路导通,通过驱动电路对感测信号线充电第二时间后,获取感测信号线上的电压作为第二预存感测电压。
例如,结合图2所示,在包括该像素电路10的显示装置出厂前,第一预 存感测电压VT1可以通过如下步骤获得:向驱动晶体管T1的栅极写入第一初始光学补偿参数VP1以使驱动晶体管T1导通,通过驱动晶体管T1对感测信号线SEN充电第一时间S1后,通过检测感测信号线SEN上对应的电压值以获取第一预存感测电压VT1;第二预存感测电压VT2可以通过如下步骤获得:向驱动晶体管T1的栅极写入第二初始光学补偿参数VP2以使驱动晶体管T1导通,通过驱动晶体管T1对感测信号线SEN充电第二时间S2后,通过检测感测信号线SEN上对应的电压值以获取第二预存感测电压VT2。
下面以图2所示的像素电路10中的驱动晶体管T1、数据写入晶体管T2和感测晶体管T3均为N型晶体管,且第一开关元件SW1和第二开关元件SW2均在低电平信号的控制下导通、在高电平信号的控制下断开为例,结合图3A和图3B所示的像素电路10的信号时序图,对第一预存感测电压VT1和第二预存感测电压VT2的获取过程进行具体说明。
例如,如图2和图3A所示,在t1阶段,数据写入晶体管T2响应高电平的扫描信号G1而导通,感测晶体管T3响应高电平的感测控制信号G2而导通,第一开关元件SW1导通,第二开关元件SW2断开。第一初始光学补偿参数VP1通过数据写入晶体管T2写入驱动晶体管T1的栅极,且参考电压端提供的参考电压Vref(例如低电平电压或接地电压)经由感测晶体管T3被写入驱动晶体管T1的第一极(即源极),从而使驱动晶体管T1导通。
例如,为了使驱动晶体管T1导通,第一初始光学补偿参数VP1和参考电压Vref的差值不能低于驱动晶体管T1的阈值电压Vth,即VP1-Vref≥Vth。
在t2阶段,数据写入晶体管T2响应低电平的扫描信号G1而截止,感测晶体管T3响应高电平的感测控制信号G2而导通,第一开关元件SW1断开,第二开关元件SW2导通。驱动晶体管T1在存储在存储电容C1中的电压(即第一初始光学补偿参数VP1)的控制下导通,并输出电流Is1对感测信号线SEN充电第一时间S1。由于存储电容C1的电容耦合效应,在对感测信号线SEN充电第一时间S1的过程中,驱动晶体管T1输出的电流Is1保持不变,从而使感测信号线SEN上的电压值随时间线性增大。
在t3阶段,数据写入晶体管T2响应低电平的扫描信号G1而截止,感测晶体管T3响应低电平的感测控制信号G2而截止,第一开关元件SW1断开,第二开关元件SW2导通。在对感测信号线SEN充电第一时间S1后,可 以通过检测电路500获取感测信号线SEN上的电压,该电压即为第一预存感测电压VT1。
如图2和图3B所示,在t4阶段,数据写入晶体管T2响应高电平的扫描信号G1而导通,感测晶体管T3响应高电平的感测控制信号G2而导通,第一开关元件SW1导通,第二开关元件SW2断开。第二初始光学补偿参数VP2通过数据写入晶体管T2写入驱动晶体管T1的栅极,且参考电压端提供的参考电压Vref(例如低电平电压或接地电压)经由感测晶体管T3被写入驱动晶体管T1的第一极(即源极),从而使驱动晶体管T1导通。
例如,为了使驱动晶体管T1导通,第二初始光学补偿参数VP2和参考电压Vref的差值不能低于驱动晶体管T1的阈值电压Vth,即VP2-Vref≥Vth。
在t5阶段,数据写入晶体管T2响应低电平的扫描信号G1而截止,感测晶体管T3响应高电平的感测控制信号G2而导通,第一开关元件SW1断开,第二开关元件SW2导通。驱动晶体管T1在存储在存储电容C1中的电压(即第二初始光学补偿参数VP2)的控制下导通,并输出电流Is2对感测信号线SEN充电第二时间S2。由于存储电容C1的电容耦合效应,在对感测信号线SEN充电第二时间S2的过程中,驱动晶体管T1输出的电流Is2保持不变,从而使感测信号线SEN上的电压值随时间线性增大。
例如,第二时间S2可以与第一时间S1相同,也可以与第一时间S1不同,也即,第二时间S2的时长可以与第一时间S1的时长相同,也可以与第一时间S1的时长不同,本公开实施例对此不作限制。该实施例以第二时间S2的时长与第一时间S1的时长相同为例进行说明。
在t6阶段,数据写入晶体管T2响应低电平的扫描信号G1而截止,感测晶体管T3响应低电平的感测控制信号G2而截止,第一开关元件SW1断开,第二开关元件SW2导通。在对感测信号线SEN充电第二时间S2后,可以通过检测电路500获取感测信号线SEN上的电压,该电压即为第二预存感测电压VT2。
将获取的第一预存感测电压VT1和第二预存感测电压VT2,以及对应的第一时间S1和第二时间S2进行存储,并存储在存储器(例如闪存)中,以用于在包括该像素电路10的显示装置出厂后对像素电路10中的驱动晶体管T1的阈值电压Vth以及工艺参数K等进行电学补偿。
同时,在显示装置出厂前,还可以根据上述获得的第一预存感测电压VT1、第二预存感测电压VT2、第一初始光学补偿参数VP1和第二初始光学补偿参数VP2,推导出驱动晶体管T1的初始阈值电压。并且,还可以根据第一初始光学补偿参数VP1和第二初始光学补偿参数VP2,计算发光元件EL显示多个亮度的情形下的多个初始光学补偿电压。该多个初始光学补偿电压包括第一初始光学补偿参数VP1和第二初始光学补偿参数VP2。
例如,显示装置的灰阶等级可以包括256个灰阶等级(0-255灰阶),即每个像素采用8位数据表示,发光元件EL显示的多个亮度可以与所有灰阶等级一一对应。
例如,在t2阶段,由于驱动晶体管T1导通且处于饱和状态,因此根据驱动晶体管T1处于饱和状态下的电流公式可以得到电流Is1,即:
Is1=K(VP1-Vref-Vth) 2   (1)
其中,K为驱动晶体管T1的工艺常数。
例如,在t5阶段,由于驱动晶体管T1导通且处于饱和状态,因此根据驱动晶体管T1处于饱和状态下的电流公式可以得到电流Is2,即:
Is2=K(VP2-Vref-Vth) 2   (2)
其中,K为驱动晶体管T1的工艺常数。
由于在发光元件EL点亮的过程中,发光元件EL的亮度值L与流经发光元件EL的电流Is成正比,因此可以将发光元件EL的亮度值L与电流Is之间的关系式表示为:
Is=a·L   (3)
其中,a为常数。
例如,亮度值L可以为归一化的亮度值,即0≤L≤1,当L=1时,发光元件EL显示与255灰阶对应的亮度,当L=0时,发光元件EL显示与0灰阶对应的亮度。因此,在t2阶段驱动晶体管T1输出的电流Is1和在t5阶段驱动晶体管T1输出的电流Is2可以分别表示为:
Is1=Imax·L1   (4)
Is2=Imax·L2   (5)
其中,Imax为驱动晶体管T1对应发光元件EL显示255灰阶的输出电流,即对应发光元件EL的最大亮度的输出电流;L1为第一亮度,L2为第二亮度, 且第一亮度和第二亮度均为归一化亮度,因而0≤L1≤1,0≤L2≤1。例如,在一些实施例中,若第一亮度为发光元件EL的最大亮度,第二亮度为发光元件EL的最大亮度的1/4,则L1=1,L2=1/4。
因此,根据上述关系式(1)-(5),可以推导出驱动晶体管T1的阈值电压Vth的值为:
Figure PCTCN2020082471-appb-000003
同时,根据电流电压公式可知:
Figure PCTCN2020082471-appb-000004
其中,Vdata为通过数据线DAT提供的数据电压。
根据上述关系式(1)-(7),还可以推导出对应发光元件EL的任意归一化亮度值L的数据电压,即:
Figure PCTCN2020082471-appb-000005
Figure PCTCN2020082471-appb-000006
此外,在对感测信号线SEN充电第一时间S1后获取的第一预存感测电压VT1和在对感测信号线SEN充电第二时间S2后获取的第二预存感测电压VT2满足以下关系式:
Is1·S1=VT1·C   (10)
Is2·S2=VT2·C   (11)
其中,C为与感测信号线SEN相连的电容的电容值。
进而,根据上述关系式(1)-(11)还可以推导出驱动晶体管T1的工艺参数K的值为:
Figure PCTCN2020082471-appb-000007
Figure PCTCN2020082471-appb-000008
其中,Vth的具体数值可以通过上述关系式(6)获得。
因此,在包括该像素电路10的显示装置出厂前,可以根据第一初始光学补偿参数VP1和第二初始光学补偿参数VP2,计算与发光元件EL的多个亮度值L对应的多个初始光学补偿电压,从而使对应发光元件EL的各个亮度值L下写入驱动晶体管T1的栅极的数据电压Vdata均可以得到补偿。
在包括该像素电路10的显示装置出厂后,如图1所示,可以基于存储的第一预存感测电压VT1和第二预存感测电压VT2对像素电路10中的驱动晶体管T1的阈值电压Vth以及工艺参数K等进行电学补偿。
例如,在图1所示的步骤S10中,获取驱动晶体管T1的栅极的电压作为第一补偿数据电压VC1包括:调整写入驱动晶体管T1的第一检测数据电压VE1的数值,以使通过驱动晶体管T1对感测信号线SEN充电第一时间S1后,感测信号线SEN上的第一感测电压Vsen1逼近第一预存感测电压VT1;以及在感测信号线SEN上的第一感测电压Vsen1等于第一预存感测电压VT1的情形下,获取调整后的第一检测数据电压VE1作为第一补偿数据电压VC1。
例如,在显示过程中,一帧时间包括显示阶段和设置在相邻的显示阶段之间的消隐阶段。每个显示阶段用于显示一帧图像,其时间长度等于显示该帧图像的第一个像素点至显示该帧图像的最后一个像素点所需的时间。
例如,第一初始光学补偿参数VP1可以作为在显示过程中第一帧的第一检测数据电压;例如,在第N帧获得的第一补偿数据电压可以作为在第N+1帧中的第一检测数据电压(N为大于0的整数)。
例如,在图1所示的步骤S20中,获取驱动晶体管T1的栅极的电压作为第二补偿数据电压VC2包括:调整写入驱动晶体管T1的第二检测数据电压VE2的数值,以使通过驱动晶体管T1对感测信号线SEN充电第二时间S2后,感测信号线SEN上的第二感测电压Vsen2逼近第二预存感测电压VT2;以及在感测信号线SEN上的第二感测电压Vsen2等于第二预存感测电压VT2的情形下,获取调整后的第二检测数据电压VE2作为第二补偿数据电压VC2。
例如,第二初始光学补偿参数VP2可以作为在显示过程中第一帧的第二检测数据电压;例如,在第N帧获得的第二补偿数据电压可以作为在第N+1帧中的第二检测数据电压(N为大于0的整数)。
例如,以步骤S10中获取第一补偿数据电压VC1的过程为例,当向驱动晶体管T1的栅极写入第一检测数据电压VE1并通过驱动晶体管T1对感测信号线SEN充电第一时间S1后,如果获取的感测信号线SEN上的第一感测电压Vsen1的数值小于第一预存感测电压VT1的数值,则调大第一检测数据电压VE1的数值;如果获取的感测信号线SEN上的第一感测电压Vsen1的数值大于第一预存感测电压VT1的数值,则调小第一检测数据电压VE1的数值,以使第一感测电压Vsen1的数值不断逼近第一预存感测电压VT1的数值,直到使通过写入第一检测数据电压VE1对感测信号线SEN充电第一时间S1后,感测信号线SEN上的第一感测电压Vsen1等于第一预存感测电压VT1。
例如,在本公开的一些实施例中,在每一帧获取第一补偿数据电压VC1和第二补偿数据电压VC2的过程中,向驱动晶体管T1的栅极写入的第一检测数据电压VE1的初始值和第二检测数据电压VE2的初始值还可以为固定数值。例如,在每一帧中,写入的第一检测数据电压VE1的初始值均为第一初始光学补偿参数VP1,写入的第二检测数据电压VE2的初始值均为第二初始光学补偿参数VP2。
例如,在通过该补偿方法对像素电路10进行补偿时,在步骤S10中,由于感测信号线SEN上的第一感测电压Vsen1等于第一预存感测电压VT1,因此可以保证当向驱动晶体管T1写入第一补偿数据电压VC1时,流过发光元件EL的电流与在出厂前进行光学补偿后的电流Is1相同,从而可以使发光元件EL在第一补偿数据电压VC1的作用下达到与光学补偿后相同的第一亮度L1。步骤S20的补偿原理与步骤S10相同,在此不再赘述。
例如,在通过像素电路10驱动发光元件EL发光以执行显示操作时,图1所示的补偿方法可以在一帧时间的消隐阶段进行,从而可以实现对像素电路10进行实时补偿。
例如,在通过步骤S10和步骤S20获取第一补偿数据电压VC1和第二补偿数据电压VC2后,还可以基于第一补偿数据电压VC1和第二补偿数据电压VC2,计算获得驱动晶体管T1的阈值电压Vth以及对应发光元件EL的多个亮度值L的情形下施加至驱动晶体管T1的数据电压,从而将光学补偿和电学补偿相结合,使发光元件EL在出厂后仍然可以达到光学补偿的亮 度显示效果。
例如,如图1所示,该像素电路10的补偿方法还可以包括以下步骤S30。
步骤S30:更新补偿数据电压查找表。
例如,为了在每一帧驱动发光元件EL发光时,都可以对驱动晶体管T1的阈值电压Vth进行补偿并对像素电路10施加补偿后的显示数据电压,则可以建立像素电路10的补偿数据电压查找表。例如,该补偿数据电压查找表包括第一光学补偿参数V1和第二光学补偿参数V2。例如,第一光学补偿参数V1的初始值可以设置为第一初始光学补偿参数VP1,第二光学补偿参数V2的初始值可以设置为第二初始光学补偿参数VP2。
该补偿数据电压查找表例如为关系型数据表等,可存储在显示装置的存储器(例如闪存)中,以便于显示装置在显示过程中调取。并且,该补偿数据电压查找表的状态可设置为可更改,因此显示装置在工作过程中可以根据需要修改其中的数据项。
例如,在消隐阶段通过步骤S10和步骤S20获取第一补偿数据电压VC1和第二补偿数据电压VC2后,步骤S30可以包括使用第一补偿数据电压VC1更新第一光学补偿参数V1的数值,并使用第二补偿数据电压VC2更新第二光学补偿参数V2的数值。进而,第一光学补偿参数V1为对应发光元件EL的第一亮度L1的显示补偿数据电压,第二光学补偿参数V2为对应发光元件EL的第二亮度L2的显示补偿数据电压,第一光学补偿参数V1和第二光学补偿参数V2可以实时更新。
例如,如图1所示,该像素电路10的补偿方法还可以包括以下步骤S40。
步骤S40:根据第一光学补偿参数和第二光学补偿参数,计算在发光元件显示多个亮度的情形下的多个显示补偿数据电压。
例如,可以基于第一光学补偿参数V1和第二光学补偿参数V2,计算在发光元件EL显示多个亮度值L的情形下的多个显示补偿数据电压。该多个显示补偿数据电压的计算方法与上述公式(1)-(9)相同,在此不再赘述,例如,第M个显示补偿数据电压V m为:
Figure PCTCN2020082471-appb-000009
Figure PCTCN2020082471-appb-000010
其中,Vm为多个显示补偿数据电压中的第M个显示补偿数据电压,V1为第一光学补偿参数,V2为第二光学补偿参数,L1为第一亮度,L2为第二亮度,Lm为与第M个显示补偿数据电压对应的亮度参数,M为正整数。
例如,在参考电压Vref为接地电压的情形下,即Vref=0时,第M个显示补偿数据电压V m为:
Figure PCTCN2020082471-appb-000011
Figure PCTCN2020082471-appb-000012
因此,该补偿方法可以在实时显示的过程中进行,进而在达到光学补偿加电学补偿的效果的同时,不需要增加相应存储器的数据带宽,即,仅利用电学补偿所需的数据带宽实现了光学补偿加电学补偿的效果,使显示画面的亮度均一性大大提升。
例如,在显示过程中,该补偿方法可以在每帧的消隐阶段进行,从而使像素电路10在每帧均可以得到补偿,提升显示画面的亮度均匀性。例如,该补偿方法也可以在每间隔两帧或更多帧的消隐阶段进行,从而在满足显示亮度均匀性的情形下,降低包括该像素电路10的显示装置的运算量,进而减小显示装置的功耗。
本公开的一些实施例还提供一种像素电路10的驱动方法,图4为本公开一些实施例提供的一种像素电路10的驱动方法的流程图。如图4所示,该驱动方法包括以下步骤S100-S300。
步骤S100:确定与像素电路电连接的发光元件的显示亮度。
步骤S200:获得第一补偿数据电压和第二补偿数据电压,并根据第一补偿数据电压和第二补偿数据电压计算与显示亮度对应的显示补偿数据电压。
步骤300:将显示补偿数据电压施加至像素电路以驱动发光元件发光。
例如,在步骤S100中,可以根据一帧显示画面的内容确定每个子像素的像素电路中的发光元件需要显示的显示亮度Lm。
例如,在步骤S200中,可以根据本公开任一实施例所述的像素电路的 补偿方法获得第一补偿数据电压VC1和第二补偿数据电压VC2,例如可以根据图1所示的像素电路10的补偿方法获得第一补偿数据电压VC1和第二补偿数据电压VC2,在此不再赘述。
例如,在步骤S300中,发光元件EL显示的亮度为显示亮度Lm。
本公开的一些实施例还提供了一种补偿装置,图5为本公开一些实施例提供的一种补偿装置50的示意框图。
如图5所示,该补偿装置50包括:控制电路510、感测电压检测电路520和补偿电压获取电路530。补偿装置50被配置为对显示装置的子像素的像素电路60进行补偿,像素电路60包括驱动电路600,驱动电路600包括控制端610和第一端620,驱动电路600的第一端620配置为与感测信号线SEN及发光元件EL电连接。
例如,像素电路60的具体示例可以为如图2所示的像素电路10。
例如,控制电路510被配置为控制驱动电路600导通以对感测信号线SEN充电。
例如,控制电路510包括数据驱动电路511和栅极驱动电路512,像素电路60还可以包括数据写入电路。数据驱动电路511向该数据写入电路施加数据电压(例如,上述第一检测数据电压和第二检测数据电压),栅极驱动电路512向该数据写入电路施加扫描信号以控制数据写入电路导通。当数据写入电路导通时,施加的数据电压可以被传输至驱动电路600的控制端610以控制驱动电路600导通或截止,同时还可以控制流经驱动电路600的电流的大小。
例如,数据驱动电路511和栅极驱动电路512可以实现为例如半导体芯片等。
感测电压检测电路520被配置为分别检测感测信号线SEN上的第一感测电压和第二感测电压。
例如,该感测电压检测电路520包括图2中所示的检测电路500。感测电压检测电路520可以以各种适当形式实现,例如,可以包括放大子电路、模数转换(ACD)电路等,放大子电路将从感测信号线SEN检测的电压放大以得到放大后的电压信号,该放大后的电压信号由模数转换电路转换为数字信号,该数字信号可以用于后续分析、计算等。
例如,补偿电压获取电路530被配置为在第一感测电压等于第一预存感测电压的情形下,获取驱动电路600的控制端610的电压作为第一补偿数据电压;以及在第二感测电压等于第二预存感测电压的情形下,获取驱动电路600的控制端610的电压作为第二补偿数据电压。第一补偿数据电压和第二补偿数据电压用于像素电路60的显示补偿操作,第一预存感测电压对应在发光元件EL显示第一亮度的情形下写入驱动电路600的控制端610的第一初始光学补偿参数,第二预存感测电压对应在发光元件EL显示第二亮度的情形下写入驱动电路600的控制端610的第二初始光学补偿参数,第一亮度与第二亮度不同。
例如,如图5所示,补偿电压获取电路530与驱动电路600的控制端610电连接。
例如,如图5所示,补偿装置50还包括补偿参数更新电路540。补偿参数更新电路540被配置为使用第一补偿数据电压更新补偿数据电压查找表中的第一光学补偿参数的数值,以及使用第二补偿数据电压更新补偿数据电压查找表中的第二光学补偿参数的数值。第一光学补偿参数的初始值为第一初始光学补偿参数,第二光学补偿参数的初始值为第二初始光学补偿参数。
例如,补偿参数更新电路540还被配置为根据第一光学补偿参数和第二光学补偿参数,计算在发光元件EL显示多个亮度的情形下的多个显示补偿数据电压。
例如,补偿参数更新电路540可以包括计算子电路,该计算子电路用于计算在发光元件EL显示多个亮度的情形下的多个显示补偿数据电压。计算子电路可以利用硬件电路实现。计算子电路例如可以采用电阻、电容和放大器等元件构成。计算子电路也可以通过FPGA、DSP、MCU等信号处理器实现。计算子电路例如可以包括处理器和存储器,处理器执行存储器中存储的软件程序以实现计算多个显示补偿数据电压的功能。
需要说明的是,关于补偿参数更新电路540执行的具体操作可以参考上述例如关于图1中所示的补偿方法的步骤S30和步骤S40的相关说明,在此不再赘述。
本公开至少一个实施例还提供一种显示装置,该显示装置包括本公开任一实施例所述的补偿装置、像素电路和感测信号线,例如可以包括如图5所 示的补偿装置50、像素电路60和感测信号线SEN。例如,补偿装置50分别与像素电路60和感测信号线SEN电连接。
图6为本公开一些实施例提供的一种显示装置70的示意图。如图6所示,显示装置70包括呈阵列排布的多个子像素P(即像素单元),每个子像素P包括像素电路60。
例如,如图6所示,数据驱动电路511向各子像素P中的像素电路60施加数据电压(例如,上述第一检测数据电压和第二检测数据电压),栅极驱动电路512向各子像素P中的像素电路60施加扫描信号。
例如,如图6所示,显示装置70还可以包括定时控制器710。定时控制器710用于处理从显示装置70外部输入的图像数据RGB、向数据驱动电路511提供处理的图像数据RGB以及分别向栅极驱动电路512和数据驱动电路511输出扫描控制信号GCS和数据控制信号DCS,以对栅极驱动电路512和数据驱动电路511进行控制。
例如,栅极驱动电路512根据源自定时控制器710的多个扫描控制信号GCS提供多个选通信号(即扫描信号)。
例如,数据驱动电路511使用参考伽玛电压根据源自定时控制器710的多个数据控制信号DCS将从定时控制器710输入的数字图像数据RGB转换成数据电压。
例如,定时控制器710对外部输入的图像数据RGB进行处理以匹配显示装置70的大小和分辨率,然后向数据驱动电路511提供处理的图像数据RGB。定时控制器710使用从显示装置70外部输入的同步信号SYNC(例如点时钟信号DCLK、数据使能信号DE、水平同步信号Hsync以及垂直同步信号Vsync)产生多个扫描控制信号GCS和多个数据控制信号DCS。定时控制器710分别向栅极驱动电路512和数据驱动电路511提供产生的扫描控制信号GCS和数据控制信号DCS,以用于对栅极驱动电路512和数据驱动电路511的控制。
例如,显示装置70还可以包括其他部件,例如信号解码电路、电压转换电路等,这些部件例如可以采用已有的常规部件,这里不再详述。
例如,显示装置70可以为液晶面板、电子纸、OLED面板、QLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等 任何具有显示功能的产品或部件,本公开的实施例对此不作限制。
例如,在本公开至少一个实施例提供的显示装置中,像素电路还包括数据写入电路,数据写入电路与驱动电路的控制端电连接,且配置为在数据写入过程中导通以向驱动电路的控制端写入数据电压。
例如,在本公开至少一个实施例提供的显示装置中,像素电路还包括感测电路,感测电路的第一端与感测信号线电连接,感测电路的第二端与驱动电路的第一端以及发光元件电连接。感测电路配置为在数据写入过程中导通以向驱动电路的第一端写入参考电压,以及在检测过程中导通以对感测信号线充电。
例如,在本公开至少一个实施例提供的显示装置中,像素电路还包括存储电路,驱动电路还包括第二端,该第二端被配置为接收电源电压,存储电路的第一端和第二端分别与驱动电路的控制端和第一端电连接。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或结构的厚度和尺寸被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种像素电路的补偿方法,其中,所述像素电路包括驱动电路,所述驱动电路包括控制端和第一端,所述驱动电路的第一端配置为与感测信号线及发光元件电连接,
    所述补偿方法包括:
    控制所述驱动电路导通以对所述感测信号线充电,在使所述感测信号线上的第一感测电压等于第一预存感测电压的情形下,获取所述驱动电路的控制端的电压作为第一补偿数据电压;以及
    控制所述驱动电路导通以对所述感测信号线充电,在使所述感测信号线上的第二感测电压等于第二预存感测电压的情形下,获取所述驱动电路的控制端的电压作为第二补偿数据电压;
    其中,所述第一补偿数据电压和所述第二补偿数据电压用于所述像素电路的显示补偿操作,所述第一预存感测电压与在所述发光元件显示第一亮度的情形下写入所述驱动电路的控制端的第一初始光学补偿参数对应,所述第二预存感测电压与在所述发光元件显示第二亮度的情形下写入所述驱动电路的控制端的第二初始光学补偿参数对应,所述第一亮度与所述第二亮度不同。
  2. 根据权利要求1所述的补偿方法,还包括:
    更新补偿数据电压查找表,
    其中,所述补偿数据电压查找表包括第一光学补偿参数和第二光学补偿参数,所述第一光学补偿参数的初始值为所述第一初始光学补偿参数,所述第二光学补偿参数的初始值为所述第二初始光学补偿参数;
    更新所述补偿数据电压查找表包括:
    使用所述第一补偿数据电压更新所述第一光学补偿参数的数值,以及
    使用所述第二补偿数据电压更新所述第二光学补偿参数的数值。
  3. 根据权利要求2所述的补偿方法,还包括:
    根据所述第一光学补偿参数和所述第二光学补偿参数,计算在所述发光元件显示多个亮度的情形下的多个显示补偿数据电压。
  4. 根据权利要求3所述的补偿方法,其中,所述多个显示补偿数据电压 中的第M个显示补偿数据电压通过如下计算公式得到:
    Figure PCTCN2020082471-appb-100001
    Figure PCTCN2020082471-appb-100002
    其中,V m为所述第M个显示补偿数据电压,V1为所述第一光学补偿参数,V2为所述第二光学补偿参数,L1为所述第一亮度,L2为所述第二亮度,Lm为与所述第M个显示补偿数据电压对应的亮度参数,M为正整数。
  5. 根据权利要求1-4任一项所述的补偿方法,其中,所述补偿方法在一帧时间的消隐时段进行。
  6. 根据权利要求1-5任一项所述的补偿方法,其中,获取所述驱动电路的控制端的电压作为所述第一补偿数据电压包括:
    调整写入所述驱动电路的控制端的第一检测数据电压的数值,以使通过所述驱动电路对所述感测信号线充电第一时间后,所述感测信号线上的所述第一感测电压逼近所述第一预存感测电压,以及
    在所述感测信号线上的所述第一感测电压等于所述第一预存感测电压的情形下,获取调整后的第一检测数据电压作为所述第一补偿数据电压;
    获取所述驱动电路的控制端的电压作为所述第二补偿数据电压包括:
    调整写入所述驱动电路的控制端的第二检测数据电压的数值,以使通过所述驱动电路对所述感测信号线充电第二时间后,所述感测信号线上的所述第二感测电压逼近所述第二预存感测电压,以及
    在所述感测信号线上的所述第二感测电压等于所述第二预存感测电压的情形下,获取调整后的第二检测数据电压作为所述第二补偿数据电压。
  7. 根据权利要求6所述的补偿方法,其中,所述第一时间的时长与所述第二时间的时长相同。
  8. 根据权利要求6或7所述的补偿方法,其中,在第N帧获得的第一补偿数据电压作为在第N+1帧中的第一检测数据电压,
    在所述第N帧获得的第二补偿数据电压作为在所述第N+1帧中的第二 检测数据电压,N为大于0的整数;
    所述第一初始光学补偿参数作为在第一帧中的第一检测数据电压,所述第二初始光学补偿参数作为在所述第一帧中的第二检测数据电压。
  9. 根据权利要求6-8任一项所述的补偿方法,其中,所述第一预存感测电压和所述第二预存感测电压通过如下步骤获得:
    向所述驱动电路的控制端写入所述第一初始光学补偿参数使所述驱动电路导通,通过所述驱动电路对所述感测信号线充电所述第一时间后,获取所述感测信号线上的电压作为所述第一预存感测电压;以及
    向所述驱动电路的控制端写入所述第二初始光学补偿参数使所述驱动电路导通,通过所述驱动电路对所述感测信号线充电所述第二时间后,获取所述感测信号线上的电压作为所述第二预存感测电压。
  10. 根据权利要求1-9任一项所述的补偿方法,其中,所述第一初始光学补偿参数和所述第二初始光学补偿参数通过如下步骤获得:
    在所述发光元件显示所述第一亮度的情形,获取写入所述驱动电路的控制端的电压作为所述第一初始光学补偿参数;以及
    在所述发光元件显示所述第二亮度的情形,获取写入所述驱动电路的控制端的电压作为所述第二初始光学补偿参数。
  11. 根据权利要求1-10任一项所述的补偿方法,其中,所述第一亮度为所述发光元件的最大亮度,所述第二亮度为所述发光元件的最大亮度的1/4。
  12. 一种像素电路的驱动方法,包括:
    确定与所述像素电路电连接的发光元件的显示亮度;
    根据权利要求1-11任一项所述的补偿方法获得所述第一补偿数据电压和所述第二补偿数据电压,并根据所述第一补偿数据电压和所述第二补偿数据电压计算与所述显示亮度对应的显示补偿数据电压;以及
    将所述显示补偿数据电压施加至所述像素电路以驱动所述发光元件发光。
  13. 一种补偿装置,包括:控制电路、感测电压检测电路和补偿电压获取电路;
    其中,所述补偿装置被配置为对像素电路进行补偿,所述像素电路包括驱动电路,所述驱动电路包括控制端和第一端,所述驱动电路的第一端配置 为与感测信号线及发光元件电连接;
    所述控制电路被配置为控制所述驱动电路导通以对所述感测信号线充电;
    所述感测电压检测电路被配置为分别检测所述感测信号线上的第一感测电压和第二感测电压;
    所述补偿电压获取电路被配置为在所述第一感测电压等于第一预存感测电压的情形下,获取所述驱动电路的控制端的电压作为第一补偿数据电压;以及在所述第二感测电压等于第二预存感测电压的情形下,获取所述驱动电路的控制端的电压作为第二补偿数据电压,
    其中,所述第一补偿数据电压和所述第二补偿数据电压用于所述像素电路的显示补偿操作,所述第一预存感测电压与在所述发光元件显示第一亮度的情形下写入所述驱动电路的控制端的第一初始光学补偿参数对应,所述第二预存感测电压与在所述发光元件显示第二亮度的情形下写入所述驱动电路的控制端的第二初始光学补偿参数对应,所述第一亮度与所述第二亮度不同。
  14. 根据权利要求13所述的补偿装置,还包括补偿参数更新电路,
    其中,所述补偿参数更新电路被配置为使用所述第一补偿数据电压更新补偿数据电压查找表中的第一光学补偿参数的数值,以及使用所述第二补偿数据电压更新所述补偿数据电压查找表中的第二光学补偿参数的数值,
    其中,所述第一光学补偿参数的初始值为所述第一初始光学补偿参数,所述第二光学补偿参数的初始值为所述第二初始光学补偿参数。
  15. 一种显示装置,包括如权利要求13或14所述的补偿装置、所述像素电路和所述感测信号线,
    其中,所述补偿装置分别与所述像素电路和所述感测信号线电连接。
  16. 根据权利要求15所述的显示装置,其中,所述像素电路还包括数据写入电路,
    所述数据写入电路与所述驱动电路的控制端电连接,且配置为在数据写入过程中导通以向所述驱动电路的控制端写入数据电压。
  17. 根据权利要求15或16所述的显示装置,其中,所述像素电路还包括感测电路,
    所述感测电路的第一端与所述感测信号线电连接,所述感测电路的第二 端与所述驱动电路的第一端以及所述发光元件电连接,
    所述感测电路配置为在数据写入过程中导通以向所述驱动电路的第一端写入参考电压,以及在检测过程中导通以对所述感测信号线充电。
  18. 根据权利要求15-17任一项所述的显示装置,其中,所述像素电路还包括存储电路,
    所述驱动电路还包括第二端,所述第二端被配置为接收电源电压,
    所述存储电路的第一端和第二端分别与所述驱动电路的控制端和第一端电连接。
PCT/CN2020/082471 2019-04-04 2020-03-31 像素电路的补偿方法及驱动方法、补偿装置及显示装置 WO2020200205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910272485.2A CN111785215B (zh) 2019-04-04 2019-04-04 像素电路的补偿方法及驱动方法、补偿装置及显示装置
CN201910272485.2 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020200205A1 true WO2020200205A1 (zh) 2020-10-08

Family

ID=72665009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082471 WO2020200205A1 (zh) 2019-04-04 2020-03-31 像素电路的补偿方法及驱动方法、补偿装置及显示装置

Country Status (2)

Country Link
CN (1) CN111785215B (zh)
WO (1) WO2020200205A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114399974A (zh) * 2021-09-28 2022-04-26 友达光电股份有限公司 显示面板及其操作方法
CN115527496A (zh) * 2022-10-08 2022-12-27 厦门天马显示科技有限公司 一种显示面板的驱动补偿方法、补偿系统和显示设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115331613A (zh) * 2022-08-15 2022-11-11 惠科股份有限公司 驱动电路、驱动方法及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214467A1 (en) * 2002-05-15 2003-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US20050269957A1 (en) * 2004-06-02 2005-12-08 Hong-Ru Guo Driving circuits, compensation circuits and signal compensation method for pixel of active organic electro-luminescence device
CN103854603A (zh) * 2012-12-03 2014-06-11 乐金显示有限公司 有机发光显示装置及其操作方法
CN105096834A (zh) * 2015-08-26 2015-11-25 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管显示装置及其亮度补偿方法
CN106847175A (zh) * 2017-03-01 2017-06-13 京东方科技集团股份有限公司 电致发光显示屏及其亮度均匀性补偿方法、系统
CN107799066A (zh) * 2017-11-15 2018-03-13 京东方科技集团股份有限公司 显示面板的补偿方法、驱动装置、显示设备及存储介质
CN109036268A (zh) * 2018-07-17 2018-12-18 深圳市华星光电半导体显示技术有限公司 Oled显示装置的补偿系统及补偿方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5227502B2 (ja) * 2006-09-15 2013-07-03 株式会社半導体エネルギー研究所 液晶表示装置の駆動方法、液晶表示装置及び電子機器
CN101995292B (zh) * 2009-08-21 2012-05-30 中国科学院理化技术研究所 反射法测量有机聚合物薄膜材料的电光系数的方法及装置
KR101859474B1 (ko) * 2011-09-05 2018-05-23 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치의 화소 회로
KR101450949B1 (ko) * 2011-10-04 2014-10-16 엘지디스플레이 주식회사 유기발광 표시장치
CN104751773B (zh) * 2013-12-27 2017-06-20 昆山工研院新型平板显示技术中心有限公司 一种柔性显示器及其制造方法
CN108492765A (zh) * 2018-04-11 2018-09-04 京东方科技集团股份有限公司 像素补偿电路及像素驱动电路补偿方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214467A1 (en) * 2002-05-15 2003-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US20050269957A1 (en) * 2004-06-02 2005-12-08 Hong-Ru Guo Driving circuits, compensation circuits and signal compensation method for pixel of active organic electro-luminescence device
CN103854603A (zh) * 2012-12-03 2014-06-11 乐金显示有限公司 有机发光显示装置及其操作方法
CN105096834A (zh) * 2015-08-26 2015-11-25 京东方科技集团股份有限公司 一种有源矩阵有机发光二极管显示装置及其亮度补偿方法
CN106847175A (zh) * 2017-03-01 2017-06-13 京东方科技集团股份有限公司 电致发光显示屏及其亮度均匀性补偿方法、系统
CN107799066A (zh) * 2017-11-15 2018-03-13 京东方科技集团股份有限公司 显示面板的补偿方法、驱动装置、显示设备及存储介质
CN109036268A (zh) * 2018-07-17 2018-12-18 深圳市华星光电半导体显示技术有限公司 Oled显示装置的补偿系统及补偿方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114399974A (zh) * 2021-09-28 2022-04-26 友达光电股份有限公司 显示面板及其操作方法
CN114399974B (zh) * 2021-09-28 2023-12-12 友达光电股份有限公司 显示面板及其操作方法
CN115527496A (zh) * 2022-10-08 2022-12-27 厦门天马显示科技有限公司 一种显示面板的驱动补偿方法、补偿系统和显示设备

Also Published As

Publication number Publication date
CN111785215A (zh) 2020-10-16
CN111785215B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN110235193B (zh) 像素电路及其驱动方法、显示装置及其驱动方法
US10699644B2 (en) Organic light-emitting diode display device and method of driving the same
WO2020143666A1 (zh) 像素补偿方法、像素补偿装置及显示装置
TWI635476B (zh) 有機發光顯示器及其驅動方法
WO2020168849A1 (zh) 显示面板及其驱动方法、显示装置
WO2019205898A1 (zh) 像素电路及其驱动方法、显示面板
CN108847186B (zh) 像素电路及其驱动方法、显示面板及显示装置
WO2020200205A1 (zh) 像素电路的补偿方法及驱动方法、补偿装置及显示装置
WO2019134459A1 (zh) 像素电路及其驱动方法、显示装置
WO2019029070A1 (zh) 一种amoled显示面板亮度补偿方法及装置
WO2022048442A1 (zh) 显示面板的显示方法及显示装置
US20150187278A1 (en) Organic light emitting diode display and method for sensing driving characteristics thereof
WO2020119225A1 (zh) 显示面板的补偿方法和显示面板
CN109859692B (zh) 显示驱动电路及其驱动方法、显示面板及显示装置
WO2019000970A1 (zh) 显示面板的补偿方法、补偿装置及显示设备
WO2017177702A1 (zh) 防止关机时显示面板的画面残影的驱动方法及显示装置
WO2019071724A1 (zh) Amoled显示装置及其驱动方法
TWI625714B (zh) 有機發光顯示器
KR20140080728A (ko) Oled 표시 장치 및 그의 구동 방법
KR20160052877A (ko) 유기 발광 표시 장치 및 이의 구동 방법
US11322060B2 (en) Display device
WO2021196015A1 (zh) 像素电路及其驱动方法、显示装置及其驱动方法
WO2022156318A1 (zh) 显示亮度补偿方法、补偿电路、显示装置
WO2018205717A1 (zh) 有机电致发光显示器的补偿方法和补偿装置、显示设备
JP2008191611A (ja) 有機el表示装置、有機el表示装置の制御方法および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782377

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20782377

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20782377

Country of ref document: EP

Kind code of ref document: A1