WO2020119225A1 - 显示面板的补偿方法和显示面板 - Google Patents

显示面板的补偿方法和显示面板 Download PDF

Info

Publication number
WO2020119225A1
WO2020119225A1 PCT/CN2019/108882 CN2019108882W WO2020119225A1 WO 2020119225 A1 WO2020119225 A1 WO 2020119225A1 CN 2019108882 W CN2019108882 W CN 2019108882W WO 2020119225 A1 WO2020119225 A1 WO 2020119225A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
value
pixel
voltage value
compensation
Prior art date
Application number
PCT/CN2019/108882
Other languages
English (en)
French (fr)
Inventor
孟松
杨飞
曹春
韦晓龙
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/765,846 priority Critical patent/US11335266B2/en
Publication of WO2020119225A1 publication Critical patent/WO2020119225A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present disclosure relates particularly to a method for compensating a display panel and a display panel.
  • Each sub-pixel of an Organic Light-Emitting Diode (OLED) display panel is driven by a thin-film transistor (Thin Film Transistor, TFT) to control the driving current flowing into the OLED, thereby controlling the light-emitting brightness of the OLED.
  • TFT Thin Film Transistor
  • some embodiments of the present disclosure provide a compensation method for a display panel.
  • the display panel includes a plurality of sub-pixels, and at least one of the sub-pixels includes a sensing capacitor.
  • the method includes the following steps:
  • the driving voltage of the sub-pixel is compensated according to the determined value of the compensation parameter.
  • the acquiring the first voltage value of the sensing capacitor includes:
  • the sensing capacitor of the sub-pixel Before displaying the image on the display panel, charge the sensing capacitor of the sub-pixel with a first current value for a preset duration, and calculate the third of the sensing capacitor according to the first current value and the preset duration A voltage value, wherein the first current value is a current value corresponding to the initially compensated driving voltage of the sub-pixel, and the preset duration is a predetermined value.
  • the acquiring the second voltage value of the sensing capacitor includes:
  • the second current value is used to charge the sensing capacitor corresponding to the sub-pixel for the preset duration, and according to the second current value of the sub-pixel and the pre-charge Set a duration to calculate the second voltage value of the sensing capacitance of the sub-pixel, wherein the second current value is the current value corresponding to the current driving voltage of the sub-pixel, and the preset duration is less than the display panel’s Refresh cycle.
  • the compensation parameters include carrier mobility and a threshold voltage driving the thin film transistor TFT;
  • the determining the value of the compensation parameter of the sub-pixel according to the preset correspondence between the temperature variation of the sub-pixel and the temperature variation of the sub-pixel and the compensation parameter includes:
  • the corresponding relationship between the temperature change amount and the threshold voltage of the driving TFT is read, and the compensation amount of the threshold voltage of the driving TFT is determined according to the acquired temperature change amount.
  • compensating the driving voltage of the sub-pixel according to the determined value of the compensation parameter includes:
  • the driving voltage value of the sub-pixel is compensated according to the determined compensation amount of carrier mobility and the compensation amount of the threshold voltage of the driving TFT.
  • the method further includes:
  • the difference between the first voltage value and the second voltage value is not less than a preset threshold, performing the acquisition of the sub-corresponding to the sensing capacitor according to the first voltage value and the second voltage value of the sensing capacitor
  • the first current value is calculated according to the following formula:
  • I 1 is the first current value
  • C ox is the gate oxide capacitance of the driving thin film transistor TFT
  • W / L is the aspect ratio of the driving thin film transistor TFT transistor
  • V gs1 is the sub The drive voltage of the pixel after initial compensation
  • K 1 is the initial value of the carrier mobility driving the thin film transistor TFT
  • V th1 is the initial value of the threshold voltage driving the thin film transistor TFT.
  • the first voltage value can be calculated according to the following formula:
  • V 1 is the first voltage value
  • C is the capacitance value of the sensing capacitor
  • I 1 is the first current value
  • T is the preset duration
  • the second current value is calculated according to the following formula:
  • I 2 is the second current value
  • C ox is the gate oxide capacitance of the driving thin film transistor TFT
  • W / L is the aspect ratio of the driving thin film transistor TFT transistor
  • K 2 is the current carrier mobility driving the thin film transistor TFT
  • V th2 is the current threshold voltage driving the thin film transistor TFT.
  • the second voltage value can be calculated according to the following formula:
  • V 2 is the second voltage value
  • C is the capacitance value of the sensing capacitor
  • I 2 is the second current value
  • T is the preset duration
  • some embodiments of the present disclosure provide a display panel, the display panel includes a plurality of sub-pixels, at least one of the sub-pixels includes a sensing capacitor, and the display panel includes:
  • a first acquiring circuit configured to acquire a first voltage value of the sensing capacitor, the first voltage value being the voltage value of the sensing capacitor before the display panel displays an image
  • a second acquiring circuit configured to acquire a second voltage value of the sensing capacitor, the second voltage value is a voltage value of the sensing capacitor during a blank period when the display panel is in a display state;
  • a temperature change amount obtaining circuit configured to obtain the temperature change amount of the sub-pixel corresponding to the sensing capacitor according to the first voltage value and the second voltage value of the sensing capacitor;
  • the compensation parameter value determination circuit is used to determine the value of the compensation parameter of the sub-pixel according to the preset correspondence between the temperature variation of the sub-pixel and the temperature variation of the sub-pixel and the compensation parameter;
  • the compensation circuit is configured to compensate the driving voltage of the sub-pixel according to the determined value of the compensation parameter.
  • the first acquisition circuit is used to:
  • the sensing capacitor of the sub-pixel Before displaying the image on the display panel, charge the sensing capacitor of the sub-pixel with a first current value for a preset duration, and calculate the third of the sensing capacitor according to the first current value and the preset duration A voltage value, wherein the first current value is a current value corresponding to the initially compensated driving voltage of the sub-pixel, and the preset duration is a predetermined value.
  • the second acquisition circuit is used to:
  • the second current value is used to charge the sensing capacitor corresponding to the sub-pixel for the preset duration, and according to the second current value of the sub-pixel and the pre-charge Set a duration to calculate the second voltage value of the sensing capacitance of the sub-pixel, wherein the second current value is the current value corresponding to the current driving voltage of the sub-pixel, and the preset duration is less than the display panel’s Refresh cycle.
  • the compensation parameter includes a carrier mobility and a threshold voltage driving the thin film transistor TFT;
  • the compensation parameter value determination circuit includes a carrier mobility determination sub-circuit and a threshold voltage determination sub-circuit,
  • the carrier mobility determination sub-circuit is used to read the corresponding relationship between the temperature change amount and the carrier mobility compensation amount, and determine the carrier mobility compensation amount according to the acquired temperature change amount;
  • the threshold voltage determining sub-circuit is used to read the corresponding relationship between the temperature change amount and the threshold voltage of the driving TFT, and determine the compensation amount of the threshold voltage of the driving TFT according to the acquired temperature change amount.
  • the compensation circuit is configured to compensate the driving voltage value of the sub-pixel according to the determined compensation amount of carrier mobility and the compensation amount of the threshold voltage of the driving TFT.
  • the display panel further includes a third acquisition circuit for acquiring the difference between the first voltage value and the second voltage value, if the first voltage value is equal to If the difference between the second voltage values is less than a preset threshold, the second acquiring circuit acquires the second voltage value of the sensing capacitor;
  • the temperature change acquisition circuit acquires the first voltage value and the second voltage value of the sensing capacitor Sensing the temperature change of the sub-pixel corresponding to the capacitance
  • the compensation parameter value determining circuit determines the sub-pixel according to the preset correspondence between the temperature change of the sub-pixel and the temperature change of the sub-pixel and the compensation parameter
  • the second acquisition circuit acquires the second voltage value of the sensing capacitor.
  • Some embodiments of the present disclosure also provide a display device including the display panel as described above.
  • FIG. 1 is a circuit diagram of a sub-pixel in some embodiments of the present disclosure
  • FIG. 2 is a schematic structural diagram of a display device in some embodiments of the present disclosure.
  • FIG. 3 is a flowchart of a compensation method of a display panel in some embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of an algorithm of a compensation process in some embodiments of the present disclosure.
  • FIG. 7 is a comparison diagram of the display effect of the display panel in some embodiments of the present disclosure and the display effect in the related art;
  • FIG. 8 is a structural diagram of a display panel in some embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a timing controller in some embodiments of the present disclosure.
  • the electrical characteristics of the driving TFT of the sub-pixels may not be completely consistent due to factors such as process conditions.
  • the driving voltage of each sub-pixel is the same, the corresponding driving current may be different, which will cause Brightness difference.
  • An external compensation technique in a related art is to detect the driving TFT characteristic parameters of each pixel to generate a corrected driving voltage, thereby solving the brightness inconsistency caused by the inconsistent electrical characteristics of the TFT.
  • the display panel itself will generate heat, which will cause some electrical parameters to change, which will affect the compensation result and affect the display effect.
  • some embodiments of the present disclosure provide a compensation method for a display panel.
  • the display panel includes a plurality of sub-pixels, and each sub-pixel includes a sensing capacitor connected to the sensing line of the sub-pixel.
  • FIG. 1 is a circuit diagram of a 3T1C external compensation pixel, where 3T refers to the number of TFT switches is three, and 1C refers to the number of capacitors is one.
  • the 3T1C external compensation pixel shown in FIG. 1 includes at least one data line DL (Data) line 101, one sensing line SL (Sense) line 102, two gate drive lines Scan (scan) 103 and Sense (sensing) 104 , An organic light emitting diode device OLED105, a storage capacitor Cst106, a switching TFT (Scan TFT) 107, a driving TFT (Driving TFT) 108, a sensing TFT (Sense TFT) 109, a sensing connected to the sensing line
  • the capacitor (Csense) 110 needs to provide a set of EL (electroluminescence) signals, namely an OLED anode voltage ELVDD111 and an OLED cathode voltage ELVSS112.
  • the sub-pixels targeted may also be sub-pixels including but not limited to 4T1C, 5T1C and other structures, which are not further limited here.
  • a display device includes a display panel 201, a timing controller 202, an external memory 203, a source driver 204, and a gate driver 205, wherein the external memory 203 may further include an external flash memory (Flash) 2031 and external memory (such as double rate synchronous dynamic random access memory (Double Data Rate Synchronous Dynamic Random Access Memory, DDRSDRAM)) 2032.
  • flash flash memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • the two arrows pointing to the timing controller 202 from the left side of FIG. 2 represent the externally input video data Video and the timing control signals HS/VS/DE received by the timing controller 202, respectively.
  • Video Data and HS/VS/DE are received, the timing controller 202 synchronously reads the compensation data stored in the external memory 203.
  • the timing controller 202 also receives the pixel internal sensing data (Sensing Data, SData) output by the source driver 204; after conversion, calculation, compensation and other algorithms, the timing controller 202 generates display data Data and
  • the source control signal SCS Source Control Signal
  • GCS Gate Control Signal
  • the timing controller 202 During the blanking phase of the OLED display device, the timing controller 202 generates display data Data and the source control signal SCS and outputs it to the source driver 204; the timing controller 202 generates the gate control signal GCS and outputs it to the gate driver 205.
  • the sensing data SData is obtained in cooperation with the gate driver 205 and the source driver 204.
  • the compensation method of the display panel 201 includes the following steps:
  • Step 301 Obtain the first voltage value of the sensing capacitor 110.
  • the first voltage value is the voltage value of the sensing capacitor 110 before the display panel 201 displays an image.
  • the design brightness of pixels of the same color is the same, so I OLED should also be equal, so theoretically, the same color
  • the first voltage value corresponding to the sensing capacitance of the sub-pixel is also the same. Therefore, before the display panel 201 displays an image, the voltage value of the sensing capacitor 110 of a sub-pixel can be measured, and the measured voltage value can be used as the first voltage value of the color sub-pixel in the display panel 201 of the same type V1.
  • the first voltage value may be stored in a storage device, such as the above-mentioned external memory 203, and the first voltage value may be called when necessary.
  • the first voltage value corresponding to the same type of display panel may also have a certain Therefore, in some embodiments of the present disclosure, the first voltage value is calculated by collecting relevant parameters.
  • the step 301 specifically includes:
  • the sensing capacitor 110 of the sub-pixel Before the display panel 201 displays an image, charge the sensing capacitor 110 of the sub-pixel with a first current value for a preset duration, and calculate the sensing capacitance according to the first current value and the preset duration A first voltage value of 110, wherein the first current value is a current value corresponding to the initially compensated driving voltage of the sub-pixel.
  • the voltage value refers to the initial voltage value of the sensing capacitance of the sub-pixels in the display panel 201.
  • the voltage value is determined by the initial compensation. Generally speaking, most display panels have initial compensation.
  • the initial compensation in this embodiment refers to compensating for the driving voltage of the sub-pixel according to the related art and a compensation method that may occur.
  • An initial compensation method in the related art is that, during the operation of the display panel 201, the preset compensation data is read from the external memory 203 to perform initial compensation on the driving voltage of the sub-pixel.
  • the driving voltage compensation method is not further limited and described here.
  • the initial compensation compensation method is to detect the driving TFT characteristic parameter of each pixel to generate a compensated driving voltage, and the current flowing through the sub-pixel under the driving of the compensated driving voltage
  • the value I OLED is equal, so, theoretically, the brightness value of pixels of the same color after initial compensation is also equal.
  • the initial compensation driving voltage of the sub-pixel may be obtained before the display panel 201 displays an image.
  • the first current value corresponding to the driving voltage is a preset duration T for charging the sensing capacitor 110 of each sub-pixel.
  • I 1 can be calculated from the above formula (1), where Cox is the capacitance of the gate oxide layer driving the thin film transistor TFT, and is a fixed value; W/L is the width-to-length ratio of the transistor driving the thin film transistor TFT, is The fixed value determined by the transistor structure; V gs1 is the initial compensated driving voltage of the sub-pixel; K 1 is the initial value of the carrier mobility driving the thin film transistor TFT, and Vth is the initial value of the threshold voltage driving the TFT The K value and Vth value are the parameters that need to be compensated, and the initial value is determined according to the compensation method in the related art.
  • the first voltage value may be further calculated according to the above charging time T (that is, the preset duration).
  • C is the capacitance value of the sensing capacitor 110
  • V 1 is the first voltage value
  • I 1 is the first current value.
  • the first voltage value of the sensing capacitor 110 can be calculated by substituting the charging time T and the current value I 1 in the above formula (2).
  • the first voltage value calculated through this process is more in line with the actual situation of the display panel 201 than the theoretical value, which is beneficial to improve the compensation accuracy.
  • Step 302 Obtain the second voltage value of the sensing capacitor 110.
  • the second voltage value is the voltage value of the sensing capacitor 110 during the blank period when the display panel 201 is in the display state.
  • the display panel 201 continuously refreshes and displays multiple frames of images while displaying the screen to form a static or dynamic screen observed by the user.
  • the second voltage value V2 is a blank period (or blank) between two adjacent frames of display screen Phase, Blanking, Blank period, between two adjacent Active areas, etc.) the measured voltage value.
  • the second voltage value of the sensing capacitor 110 can be directly measured by a sensor or the like, but this measurement frequency is relatively high, so it is relatively difficult to directly test the second voltage value of the sensing capacitor 110 by sampling the sensor Big.
  • the second voltage value of the sensing capacitor 110 is obtained in the following manner.
  • the second current value is used to charge the sensing capacitor 110 corresponding to the sub-pixel for the preset duration, and according to the second current value of the sub-pixel and the preset
  • the duration calculates the second voltage value of the sensing capacitor 110 of the sub-pixel, wherein the second current value is the current value corresponding to the current driving voltage of the sub-pixel, and the preset duration is less than the refresh of the display panel 201 cycle.
  • the second current value can be calculated according to the following formula:
  • I 2 is the second current value
  • Cox is the capacitance of the gate oxide layer of the driving thin film transistor TFT, and is a fixed value
  • W/L is the width-to-length ratio of the driving thin film transistor TFT, is The fixed value determined by the transistor structure
  • V gs2 is the current driving voltage of the sub-pixel
  • K 2 is the current carrier mobility driving the thin film transistor TFT
  • V th2 is the current threshold voltage driving the thin film transistor TFT.
  • the second voltage value can be calculated according to the following formula:
  • V 2 is the second voltage value
  • C is the capacitance value of the sensing capacitor
  • I 2 is the second current value
  • T is the preset duration
  • the compensation voltage in the compensation method in the related art is generally a fixed value determined according to the compensation data stored in the external memory. It can be understood that, for a certain display image, the compensation data of the sub-pixels is a fixed value. In this embodiment, even for a certain display screen, the compensation data of the sub-pixels may change to some extent, so the driving voltage will also change accordingly, so the current driving voltage here refers to the most recent in this embodiment.
  • the driving voltage after one compensation the current carrier mobility here refers to the most recently compensated carrier mobility in this embodiment, and the current threshold voltage here refers to the last one after compensation in this embodiment Threshold voltage.
  • the charging time T when acquiring the first voltage value and when acquiring the second voltage value, the charging time T should be equal, and in order to avoid interference with normal display, the charging time T should be less than the refresh period of the display panel 201, and the charging process should In the blank period.
  • Step 303 Obtain the temperature variation of the sub-pixel corresponding to the sensing capacitor 110 according to the first voltage value and the second voltage value of the sensing capacitor 110.
  • the first voltage value in this embodiment corresponds to a state in which the display panel 201 has not yet displayed content.
  • the brightness of the display panel 201 is the brightness after initial compensation, which can also be understood as the reference brightness or the standard brightness, so when the sensing capacitor 110 When the voltage value of is the first voltage value, the brightness of the display panel 201 is also the standard brightness.
  • the relationship between the temperature change amount of the sensing capacitor 110 and the voltage value change amount may be tested in advance and stored, for example, stored in the external memory 203 described above.
  • the amount of change in the voltage value can be obtained according to the difference between the first voltage value and the second voltage value, and then by calling the above-mentioned sensing capacitor 110
  • the relationship between the amount of temperature change and the amount of change in voltage value can determine a temperature change amount corresponding to the difference between the first voltage value and the second voltage value, and use the temperature change amount as the temperature change of the display panel 201 the amount.
  • the correspondence relationship may be a preset correspondence table, and then the temperature change amount is determined by retrieving the data in the correspondence table.
  • the correspondence relationship may also be realized by a preset algorithm, and by measuring the measured second voltage value Substitute the relevant calculation formula to calculate or estimate the temperature change.
  • Step 304 Determine the value of the compensation parameter of the sub-pixel according to the preset correspondence between the temperature variation of the sub-pixel and the temperature variation of the sub-pixel and the compensation parameter.
  • the value of the compensation parameter corresponding to the temperature change amount may be determined according to the temperature change amount.
  • FIG. 4 is a graph showing the relationship between the carrier mobility K and the temperature of a display panel, where the horizontal axis represents temperature in degrees Celsius (°C), and the vertical axis represents carrier mobility K, the unit is square centimeters per volt second (cm 2 /Vs), and the carrier mobility K of blue pixels (B), green pixels (G), and red pixels (R) in order from top to bottom in Figure 4 Relationship curve with temperature.
  • FIG. 5 is a graph showing the relationship between the threshold voltage Vth and temperature of a driving TFT of a display panel, wherein the horizontal axis represents temperature in degrees Celsius (°C), and the vertical axis represents the threshold voltage Vth of driving TFTs in millivolts (mV) ), from top to bottom in FIG. 5 are the relationship curve between the threshold voltage Vth of the driving TFT of the blue pixel (B), the green pixel (G) and the red pixel (R) and the temperature.
  • the horizontal axis represents temperature in degrees Celsius (°C)
  • mV millivolts
  • the compensation parameters targeted include the carrier mobility K and the threshold voltage Vth of the driving TFT.
  • This step 304 specifically includes reading the correspondence between the temperature change amount and the carrier mobility compensation amount, and determining the carrier mobility compensation amount according to the acquired temperature change amount; and reading the temperature change amount and the driving TFT The corresponding relationship of the threshold voltage, and the compensation amount of the threshold voltage of the driving TFT is determined according to the acquired temperature change amount.
  • the correspondence relationship between the temperature change amount and the carrier mobility compensation amount and the temperature change amount and the threshold voltage of the driving TFT can be measured in advance through experiments and stored, for example, in the external memory 203.
  • the compensation amount of the carrier mobility K corresponding to the corresponding temperature change and the compensation amount of the threshold voltage of the driving TFT can be obtained by calling the corresponding correspondence.
  • the carrier mobility is K(n)
  • the threshold voltage of the driving TFT is Vth(n)
  • the compensation amount of the carrier mobility determined according to the temperature change is LUT ( ⁇ T, ⁇ V, ⁇ K)
  • the compensation amount of the threshold voltage of the driving TFT is LUT ( ⁇ T, ⁇ V, ⁇ Vth).
  • ⁇ T refers to the temperature change
  • ⁇ V refers to the difference between the first voltage value and the second voltage value
  • LUT ( ⁇ T, ⁇ V, ⁇ K) refers to according to ⁇ T and ⁇ V
  • the carrier mobility compensation amount ⁇ K determined by the preset correspondence relationship, similarly, LUT ( ⁇ T, ⁇ V, ⁇ Vth) refers to the compensation amount ⁇ Vth of the threshold voltage of the driving TFT.
  • Vth(n+1) Vth(n)+LUT( ⁇ T, ⁇ V, ⁇ Vth)
  • the carrier mobility K(n+1) in the n+1th compensation and the threshold voltage Vth(n+1) of the driving TFT can be calculated.
  • Step 305 Compensate the driving voltage of the sub-pixel according to the determined value of the compensation parameter.
  • the driving voltage After determining the compensation amount of the carrier mobility K and the compensation amount of the threshold voltage of the driving TFT, the driving voltage may be compensated.
  • Some embodiments of the present disclosure can determine the value of the compensation parameter of the display panel through the temperature change by measuring the first voltage value and the second voltage value, and determining the temperature change of the display panel according to the first voltage value and the second voltage value
  • the value of the compensation parameter used is more in line with the actual state of the display panel, which can make the compensation result more accurate and help to improve the display effect.
  • GL refers to the gray scale of the sub-pixel
  • Data1 (K(n), Vth(n), GL) refers to Data1 is a value determined by K(n), Vth(n) and GL.
  • the driving voltage can be adjusted to the target value by one adjustment.
  • the drive voltage can also be adjusted to the target value through multiple adjustments. For example, if the difference between the current drive voltage and the target drive voltage is 100 mV, you can adjust 10 mV each time, and pass Ten adjustments make the driving voltage reach the target driving voltage, so that the display brightness change of the display panel 201 is smoother, and the user experience will not be affected due to the rapid change of the brightness.
  • the acquired second voltage value when the acquired second voltage value is equal to the first voltage value, it means that the brightness of the display panel 201 is equal to the standard brightness. In this case, no additional compensation is required for the driving voltage.
  • step 302 the difference between the first voltage value and the second voltage value is obtained. If the difference between the first voltage value and the second voltage value is less than a preset threshold, The amount of temperature change of the pixel is small, and it can be considered that the brightness of the display panel 201 is substantially equal to the standard brightness. In this case, the sub-pixel can be compensated for the next time using the drive voltage of the sub-pixel compensation.
  • the preset threshold can be set to various values such as 1 mV, 2 mV, 10 mV, etc. Obviously, the smaller the preset threshold is, the better the compensation effect is.
  • the preset threshold is set The larger the value, the less the system load will be. During implementation, you can choose a value that balances the display effect with the system load according to the actual situation, such as 1 mV.
  • step 302 After the compensation, it returns to step 302 and acquires a new second driving voltage again.
  • step 302 if the difference between the first voltage value and the second voltage value is not less than a preset threshold, it means that the temperature variation of the sub-pixel is large, and the driving voltage of the sub-pixel needs to be updated.
  • step 303 to step 305 may be performed to update the driving voltage of the sub-pixel. After the driving voltage of the sub-pixel is updated, return to step 302 to obtain the second voltage value again.
  • the driving voltage of the sub-pixel can be achieved Dynamic compensation to achieve continuous adjustment of the brightness of the display panel 201 according to temperature changes, so that the compensation result is more accurate, and the display effect of the display panel 201 is improved.
  • the first voltage V1 may be used as the target value.
  • voltage Data K(n), Vth(n), GL
  • T the charging time
  • V2 the second voltage V2 can be obtained from the sensing capacitor Csense after the charging is completed.
  • the difference between the first voltage V1 and the second voltage V2 is not less than the preset threshold, it means that at this time, due to the influence of the temperature of the display panel, the carrier mobility K(n) of the driving TFT and the threshold voltage Vth( n) There is a deviation, at this time, the temperature change amount ⁇ T can be calculated according to the first voltage V1 and the second voltage V2, and the compensation amount of the carrier mobility is determined as LUT ( ⁇ T , ⁇ V, ⁇ K), and the compensation amount of the threshold voltage of the driving TFT is LUT ( ⁇ T, ⁇ V, ⁇ Vth). Then update K(n+1) and Vth(n+1).
  • FIG. 7 is a comparison diagram of display effects when using the compensation method in the embodiment of the present disclosure and the compensation method in the related art when the afterimages are the same. Among them, when the display device displays the same screen for a long time, and then switches the screen to the next screen, the original screen will remain in the next screen. This phenomenon is called afterimage.
  • FIG. 7(a) is a display effect diagram of the display panel after using the compensation method in the related art
  • FIG. 7(b) is a display effect diagram of the display panel after adopting the method described in the embodiment of the present disclosure. It can be seen that the compensation methods in some embodiments of the present disclosure can make the compensation result more accurate and display better.
  • Some embodiments of the present disclosure also provide a display panel 700.
  • the display panel 201 includes a plurality of sub-pixels, and at least one of the sub-pixels includes a sensing capacitor 110. As shown in FIG. 8, the display panel 700 includes:
  • the first acquiring circuit 701 is configured to acquire a first voltage value of the sensing capacitor 110, and the first voltage value is a voltage value of the sensing capacitor 110 before the display panel 201 displays an image;
  • the second obtaining circuit 702 is configured to obtain a second voltage value of the sensing capacitor 110, and the second voltage value is a voltage value of the sensing capacitor 110 when the display panel 201 is in a display state;
  • the temperature change acquisition circuit 703 is configured to acquire the temperature change of the sub-pixel corresponding to the sensing capacitor 110 according to the first voltage value and the second voltage value of the sensing capacitor 110;
  • the compensation parameter value determination circuit 704 is configured to determine the value of the compensation parameter of the sub-pixel according to the preset correspondence between the temperature change amount of the sub-pixel and the temperature change amount of the sub-pixel and the compensation parameter;
  • the compensation circuit 705 is configured to compensate the driving voltage of the sub-pixel according to the determined value of the compensation parameter.
  • Some embodiments of the present disclosure can determine the compensation parameter of the display panel 201 by measuring the first voltage value and the second voltage value, and determining the temperature variation of the display panel 201 according to the first voltage value and the second voltage value
  • the value of the compensation parameter used is more in line with the actual state of the display panel, which can make the compensation result more accurate and help to improve the display effect.
  • the first acquisition circuit 701 is used to:
  • the sensing capacitor 110 of the sub-pixel Before the display panel 201 displays an image, charge the sensing capacitor 110 of the sub-pixel with a first current value for a preset duration, and calculate the sensing capacitance according to the first current value and the preset duration A first voltage value of 110, wherein the first current value is a current value corresponding to the initially compensated driving voltage of the sub-pixel.
  • the second acquisition circuit 702 is used to:
  • the second current value is used to charge the sensing capacitor 110 corresponding to the sub-pixel for the preset duration, and according to the second current value of the sub-pixel and the preset
  • the duration calculates the second voltage value of the sensing capacitor 110 of the sub-pixel, wherein the second current value is the current value corresponding to the current driving voltage of the sub-pixel, and the preset duration is less than the refresh of the display panel 201 cycle.
  • the compensation parameter includes a carrier mobility and a threshold voltage driving the thin film transistor TFT;
  • the compensation parameter value determination circuit 704 includes a carrier mobility determination sub-circuit and a threshold voltage determination sub-circuit,
  • the carrier mobility determination sub-circuit is used to read the corresponding relationship between the temperature change amount and the carrier mobility compensation amount, and determine the carrier mobility compensation amount according to the acquired temperature change amount;
  • the threshold voltage determining sub-circuit is used to read the corresponding relationship between the temperature change amount and the threshold voltage of the driving TFT, and determine the compensation amount of the threshold voltage of the driving TFT according to the acquired temperature change amount.
  • the compensation circuit 705 is configured to compensate the driving voltage value of the sub-pixel according to the determined compensation amount of the carrier mobility and the compensation amount of the threshold voltage of the driving TFT.
  • the display panel further includes a third acquisition circuit 706 for acquiring the difference between the first voltage value and the second voltage value, if the first voltage If the difference between the value and the second voltage value is less than a preset threshold, the second acquiring circuit 702 acquires the second voltage value of the sensing capacitor 110;
  • the temperature change acquisition circuit 703 acquires according to the first voltage value and the second voltage value of the sensing capacitor 110 The temperature change amount of the sub-pixel corresponding to the sensing capacitor 110, the compensation parameter value determining circuit 704 according to the preset change relationship between the temperature change amount of the sub-pixel and the temperature change amount of the sub-pixel and the compensation parameter, Determining the value of the compensation parameter of the sub-pixel, after the compensation circuit 705 compensates the driving voltage of the sub-pixel according to the determined value of the compensation parameter, the second acquisition circuit 702 acquires the sensing capacitance 110 second voltage value.
  • the timing controller 202 in the display panel shown in FIG. 2 may further include a timing conversion sub-circuit 901, a brightness calculation sub-circuit 902, a sampling conversion sub-circuit 903, a temperature estimation sub-circuit 904, and parameters
  • the correction sub-circuit 905 and the data compensation sub-circuit 906 are composed as shown in FIG. 9.
  • the timing conversion sub-circuit 901 receives an externally input timing control signal HS/VS/DE, and outputs an SCS signal for controlling the source driver and a GCS signal for controlling the gate driver.
  • the brightness calculation sub-circuit 902 converts the input RGB video data into a brightness signal for subsequent brightness domain compensation.
  • the sampling conversion sub-circuit 903 converts the sampled sensing data Sdata into a voltage V2
  • the temperature estimation sub-circuit 904 estimates the change of the sub-pixel temperature ⁇ T according to the voltages V1 and V2, and the parameter correction sub-circuit 905 according to the temperature change ⁇ T
  • the data compensation sub-circuit 906 updates K and Vth according to ⁇ K and ⁇ Vth, and generates corrected output video data Data according to the luminance signal.
  • Some embodiments of the present disclosure can determine the compensation parameter of the display panel 201 by measuring the first voltage value and the second voltage value, and determining the temperature variation of the display panel 201 according to the first voltage value and the second voltage value
  • the value of the compensation parameter used is more in line with the actual state of the display panel, which can make the compensation result more accurate and help to improve the display effect.
  • the display device may be any product or component with a display function such as a TV, a display, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device further includes a flexible circuit board, a printed circuit board, and a backplane.

Abstract

一种显示面板的补偿方法和装置,显示面板包括多个子像素,至少一个子像素包括感测电容(110),补偿方法包括获取感测电容(110)的第一电压值和第二电压值;根据感测电容(110)的第一电压值和第二电压值获取感测电容(110)对应的子像素的温度变化量;根据子像素的温度变化量以及子像素的温度变化量与补偿参数的预设对应关系,确定子像素的补偿参数的值;根据所确定的补偿参数的值对子像素的驱动电压进行补偿。

Description

显示面板的补偿方法和显示面板
相关申请的交叉引用
本申请主张在2018年12月12日在中国提交的中国专利申请号No.201811517896.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板的补偿方法和 显示面
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板的每个子像素都由驱动薄膜晶体管(Thin Film Transistor,TFT)来控制流入OLED中的驱动电流,进而控制OLED的发光亮度。
发明内容
第一方面,本公开的一些实施例提供了一种显示面板的补偿方法,所述显示面板包括多个子像素,至少一个所述子像素包括感测电容,所述方法包括以下步骤:
获取所述感测电容的第一电压值,所述第一电压值为所述感测电容在所述显示面板显示图像之前的电压值;
获取所述感测电容的第二电压值,所述第二电压值为所述感测电容在所述显示面板处于显示状态的空白期的电压值;
根据所述感测电容的第一电压值和第二电压值获取所述感测电容对应的子像素的温度变化量;
根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值;
根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿。
可选的,所述获取所述感测电容的第一电压值包括:
在所述显示面板显示图像之前,以第一电流值为所述子像素的感测电容充电预设时长,并根据所述第一电流值和所述预设时长计算所述感测电容的第一电压值,其中,所述第一电流值为所述子像素经初始补偿的驱动电压对应的电流值,所述预设时长为预定值。
可选的,所述获取所述感测电容的第二电压值,包括:
在相邻两帧显示画面之间的空白期,以第二电流值为所述子像素对应的感测电容充电所述预设时长,并根据所述子像素的第二电流值和所述预设时长计算所述子像素的感测电容的第二电压值,其中,所述第二电流值为所述子像素的当前驱动电压对应的电流值,所述预设时长小于所述显示面板的刷新周期。
可选的,所述补偿参数包括载流子迁移率和驱动薄膜晶体管TFT的阈值电压;
可选的,所述根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值,包括:
读取温度变化量与载流子迁移率补偿量的对应关系,并根据所获取的温度变化量确定载流子迁移率的补偿量;以及
读取温度变化量与驱动TFT的阈值电压的对应关系,并根据所获取的温度变化量确定驱动TFT的阈值电压的补偿量。
可选的,根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿,包括:
根据所确定的载流子迁移率的补偿量和驱动TFT的阈值电压的补偿量对所述子像素的驱动电压值进行补偿。
可选的,所述在获取所述感测电容第二电压值之后,所述方法还包括:
获取所述第一电压值和所述第二电压值的差值,
若所述第一电压值和所述第二电压值的差值小于预设阈值,则返回获取所述感测电容的第二电压值的步骤;
若所述第一电压值和所述第二电压值的差值不小于预设阈值,则执行根据所述感测电容的第一电压值和第二电压值获取所述感测电容对应的子像素的温度变化量,及根据所述子像素的温度变化量以及所述子像素的温度变化 量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值的步骤,并在根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿之后,返回获取所述感测电容的第二电压值的步骤。
可选的,所述第一电流值根据如下公式计算得到:
Figure PCTCN2019108882-appb-000001
式中,I 1为所述第一电流值,C ox为所述驱动薄膜晶体管TFT的栅氧化层电容;W/L为所述驱动薄膜晶体管TFT的晶体管宽长比;V gs1为所述子像素经初始补偿的驱动电压;K 1为驱动薄膜晶体管TFT的载流子迁移率的初始值,V th1为驱动薄膜晶体管TFT的阈值电压的初始值。
可选的,所述第一电压值可以根据如下公式进行计算得到:
Figure PCTCN2019108882-appb-000002
式中,V 1为所述第一电压值,C为感测电容的电容值,I 1为所述第一电流值,T为所述预设时长。
可选的,所述第二电流值根据如下公式计算得到:
Figure PCTCN2019108882-appb-000003
式中,I 2为所述第二电流值,C ox为所述驱动薄膜晶体管TFT的栅氧化层电容;W/L为所述驱动薄膜晶体管TFT的晶体管宽长比;V gs2为所述子像素的当前驱动电压;K 2为驱动薄膜晶体管TFT的当前载流子迁移率,V th2为驱动薄膜晶体管TFT的当前阈值电压。
可选的,所述第二电压值可以根据如下公式进行计算得到:
Figure PCTCN2019108882-appb-000004
式中,V 2为所述第二电压值,C为感测电容的电容值,I 2为所述第二电流值,T为所述预设时长。
第二方面,本公开的一些实施例提供了一种显示面板,所述显示面板包括多个子像素,至少一个所述子像素包括感测电容,所述显示面板包括:
第一获取电路,用于获取所述感测电容的第一电压值,所述第一电压值为所述感测电容在所述显示面板显示图像之前的电压值;
第二获取电路,用于获取所述感测电容的第二电压值,所述第二电压值为所述感测电容在所述显示面板处于显示状态的空白期的电压值;
温度变化量获取电路,用于根据所述感测电容的第一电压值和第二电压值获取所述感测电容对应的子像素的温度变化量;
补偿参数值确定电路,用于根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值;
补偿电路,用于根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿。
可选的,所述第一获取电路用于:
在所述显示面板显示图像之前,以第一电流值为所述子像素的感测电容充电预设时长,并根据所述第一电流值和所述预设时长计算所述感测电容的第一电压值,其中,所述第一电流值为所述子像素经初始补偿的驱动电压对应的电流值,所述预设时长为预定值。
可选的,所述第二获取电路用于:
在相邻两帧显示画面之间的空白期,以第二电流值为所述子像素对应的感测电容充电所述预设时长,并根据所述子像素的第二电流值和所述预设时长计算所述子像素的感测电容的第二电压值,其中,所述第二电流值为所述子像素的当前驱动电压对应的电流值,所述预设时长小于所述显示面板的刷新周期。
可选的,所述补偿参数包括载流子迁移率和驱动薄膜晶体管TFT的阈值电压;所述补偿参数值确定电路包括载流子迁移率确定子电路和阈值电压确定子电路,
所述载流子迁移率确定子电路,用于读取温度变化量与载流子迁移率补偿量的对应关系,并根据所获取的温度变化量确定载流子迁移率的补偿量;
所述阈值电压确定子电路,用于读取温度变化量与驱动TFT的阈值电压的对应关系,并根据所获取的温度变化量确定驱动TFT的阈值电压的补偿量。
可选的,所述补偿电路,用于根据所确定的载流子迁移率的补偿量和驱动TFT的阈值电压的补偿量对所述子像素的驱动电压值进行补偿。
可选的,所述显示面板还包括第三获取电路,所述第三获取电路,用于获取所述第一电压值和所述第二电压值的差值,若所述第一电压值和所述第 二电压值的差值小于预设阈值,则所述第二获取电路获取所述感测电容的第二电压值;
若所述第一电压值和所述第二电压值的差值不小于预设阈值,则所述温度变化量获取电路根据所述感测电容的第一电压值和第二电压值获取所述感测电容对应的子像素的温度变化量,所述补偿参数值确定电路根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值,在所述补偿电路根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿之后,所述第二获取电路获取所述感测电容第二电压值。
本公开的一些实施例还提供了一种显示装置,包括如上所述的显示面板。
附图说明
为了更清楚地说明本公开的一些实施例的技术方案,下面将对本公开的一些实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1是本公开的一些实施例中子像素的电路图;
图2是本公开的一些实施例中显示装置的结构示意图;
图3是本公开的一些实施例中显示面板的补偿方法的流程图;
图4是本公开的一些实施例中载流子迁移率与温度的关系图;
图5是本公开的一些实施例中驱动TFT的阈值电压与温度的关系图;
图6是本公开的一些实施例中补偿过程的算法示意图;
图7是本公开的一些实施例中显示面板的显示效果与相关技术中显示效果的对比图;
图8是本公开的一些实施例中显示面板的结构图;
图9是本公开的一些实施例中时序控制器的结构示意图。
具体实施方式
下面将结合本公开的一些实施例中的附图,对本公开的一些实施例中的 技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本公开保护的范围。
OLED发光时,子像素的驱动TFT电特性由于工艺条件等因素可能无法保证完全一致,各子像素的驱动电压一致时,其对应的驱动电流可能是不同的,这会导致各子像素之间存在亮度差异。
一种相关技术中的外部补偿技术是通过侦测每个像素的驱动TFT特性参数,产生校正后的驱动电压,从而解决因TFT电特性不一致造成的亮度不一致性。然而使用过程中,显示面板本身会发热会导致某些电学参数发生变化,导致补偿结果受到影响,影响显示效果。
针对上述技术问题,本公开的一些实施例提供了一种显示面板的补偿方法。
显示面板包括多个子像素,每一子像素包括一个与该子像素的感测线相连的感测电容。
如图1所示,图1为一种3T1C外部补偿像素的电路图,其中3T指的是TFT开关的数量为3个,1C指的是电容的数量为1个。
如图1所示的3T1C外部补偿像素至少包含一条数据线DL(Data line)101,一条感测线SL(Sense line)102,两条Gate驱动线Scan(扫描)103和Sense(感测)104,一个有机发光二极管器件OLED105,一个存储电容Cst106,一个开关TFT(Scan TFT)107,一个驱动TFT(Driving TFT)108,一个感测TFT(Sense TFT)109,一个与感测线相连的感测电容(Csense)110,需要提供一组EL(电致发光)信号,即一个OLED阳极电压ELVDD111和一个OLED阴极电压ELVSS112。
显然,实施时,所针对的子像素还可能是包括但不限于4T1C、5T1C等其他结构的子像素,此处不作进一步限定。
如图2所示,一种显示装置包括显示面板201、时序控制器202、外置存储器203、源极驱动器204、栅极驱动器205,其中,外置存储器203还可以包括外置闪存(Flash)2031和外置内存(如双倍速率同步动态随机存储器 (Double Data Rate Synchronous Dynamic Random Access Memory,DDRSDRAM))2032。
由图2左侧指向时序控制器202的两个箭头分别代表时序控制器202接收到的外部输入的视频数据Video Data和时序控制信号HS/VS/DE。当接受到Video Data和HS/VS/DE时,时序控制器202同步读取存储在外部存储器203中的补偿数据。时序控制器202还同时接收源极驱动器204输出的像素内部感测数据(Sensing Data,SData);经过转换、计算、补偿等算法,在OLED显示装置运行阶段,时序控制器202产生显示数据Data和源极控制信号SCS(Source Control Signal)输出给源极驱动器204;时序控制器202还产生栅极控制信号GCS(Gate Control Signal)输出给栅极驱动器205,最终控制画面的正常输出。
在OLED显示装置的空白阶段(Blanking),时序控制器202产生显示数据Data和源极控制信号SCS输出给源极驱动器204;时序控制器202产生栅极控制信号GCS输出给栅极驱动器205,在栅极驱动器205和源极驱动器204的配合下获得感测数据SData。
如图3所示,在一个实施例中,该显示面板201的补偿方法包括以下步骤:
步骤301:获取所述感测电容110的第一电压值。其中,第一电压值为感测电容110在显示面板201显示图像之前的电压值。
在本公开的一些实施例中,对于同一型号的显示面板201来说,同种颜色像素的设计亮度是相同的,所以I OLED也均应该是相等的,所以从理论上来说,同种颜色的子像素的感测电容对应的第一电压值也是相同的。所以,可以在显示面板201显示图像之前,测量一个子像素的感测电容110的电压值,并将该测得的电压值作为同种型号的显示面板201中该颜色子像素的第一电压值V1。实施时,可以将该第一电压值存储于存储装置中,例如上述的外部存储器203中,并在需要时,调用该第一电压值即可。
然而,应当理解的是,由于制作工艺、制程等因素的影响,可能使得显示面板201的各种电学参数存在一定的差异,所以同种型号显示面板所对应的第一电压值也可能存在一定的差异,因此,本公开的一些实施例中,通过 采集相关参数来计算该第一电压值。
具体的,在一个可选的具体实施方式中,该步骤301具体包括:
在所述显示面板201显示图像之前,以第一电流值为所述子像素的感测电容110充电预设时长,并根据所述第一电流值和所述预设时长计算所述感测电容110的第一电压值,其中,所述第一电流值为所述子像素经初始补偿的驱动电压对应的电流值。
对于不存在初始补偿的显示面板201来说,该电压值指的是显示面板201中子像素的感测电容的初始电压值。对于存在初始补偿的显示面板来说,该电压值则是经过初始补偿所确定的电压值。一般来说,大部分显示面板都是存在初始补偿的。
本实施例中的初始补偿指的是根据相关技术中的及可能出现的补偿方式对子像素的驱动电压进行补偿。一种相关技术中的初始补偿方式为,在显示面板201工作过程中,由外部存储器203中读取预设的补偿数据,对子像素的驱动电压进行初始补偿,其具体可参考相关技术中的驱动电压补偿方式,此处不作进一步限定和描述。
在本公开的一些实施例中,初始补偿的补偿方式是侦测每个像素的驱动TFT特性参数,产生补偿后的驱动电压,在该补偿后的驱动电压的驱动下,流经子像素的电流值I OLED是相等的,所以,理论上来说,同种颜色的像素经初始补偿后亮度值也是相等的。
具体的,在显示面板201显示图像之前,可以获取子像素经初始补偿的驱动电压。以该驱动电压对应的第一电流值为各子像素的感测电容110充电预设时长T。
Figure PCTCN2019108882-appb-000005
进一步的,由上述式(1)可以计算获得I 1,其中,C ox为驱动薄膜晶体管TFT的栅氧化层电容,且为定值;W/L为驱动薄膜晶体管TFT的晶体管宽长比,为由晶体管结构确定的定值;V gs1为所述子像素经初始补偿的驱动电压电压;K 1为驱动薄膜晶体管TFT的载流子迁移率的初始值,Vth为驱动TFT的阈值电压的初始值,该K值和Vth值为需要进行补偿的参数,其初始值为根据相关技术中补偿方式确定。
在计算获得I OLED之后,进一步根据上述的充电时间T(即为所述预设时长)可以计算出第一电压值。
Figure PCTCN2019108882-appb-000006
上述式(2)中,C为感测电容110的电容值,V 1为所述第一电压值,I 1为所述第一电流值。在上述式(2)中代入充电时间T和电流值I 1可以计算出感测电容110的第一电压值。
通过该过程计算出的第一电压值相对于理论值更符合显示面板201的实际情况,有利于提高补偿准确度。
步骤302:获取所述感测电容110的第二电压值。
第二电压值为感测电容110在显示面板201处于显示状态的空白期的电压值。
显示面板201在显示画面时,不断刷新显示多帧图像而组成用户所观察到的静态或动态画面,该第二电压值V2则是在相邻两帧显示画面之间的空白期(或称空白阶段、Blanking、Blank期间、两个相邻Active区之间等)测得的电压值。
在一个具体实施方式中,可以直接通过传感器等测量感测电容110的第二电压值,但是这种测量频率较高,所以直接通过传感器采样测试感测电容110的第二电压值的难度相对较大。
在一个可选的具体实施方式中,是通过如下方式获取感测电容110的第二电压值的。
在相邻两帧显示画面之间的空白期,以第二电流值为子像素对应的感测电容110充电所述预设时长,并根据所述子像素的第二电流值和所述预设时长计算子像素的感测电容110的第二电压值,其中,所述第二电流值为所述子像素的当前驱动电压对应的电流值,所述预设时长小于所述显示面板201的刷新周期。
具体的,所述第二电流值可以根据如下公式计算得到:
Figure PCTCN2019108882-appb-000007
式中,I 2为所述第二电流值,C ox为所述驱动薄膜晶体管TFT的栅氧化层 电容,且为定值;W/L为所述驱动薄膜晶体管TFT的晶体管宽长比,为由晶体管结构确定的定值;V gs2为所述子像素的当前驱动电压;K 2为驱动薄膜晶体管TFT的当前载流子迁移率,V th2为驱动薄膜晶体管TFT的当前阈值电压。
具体的,所述第二电压值可以根据如下公式进行计算得到:
Figure PCTCN2019108882-appb-000008
式中,V 2为所述第二电压值,C为感测电容的电容值,I 2为所述第二电流值,T为所述预设时长。
相关技术中的补偿方式中补偿电压一般为根据存储于外部存储器中的补偿数据确定的固定值。可以理解为,对于一个确定的显示画面来说,子像素的补偿数据为定值。而本实施例中,即使对于一个确定的显示画面,子像素的补偿数据也可能发生一定的改变,所以驱动电压也会随之发生变化,所以这里的当前驱动电压指的是本实施例中最近一次补偿后的驱动电压,这里的当前载流子迁移率指的是本实施例中最近一次补偿后的载流子迁移率,这里的当前阈值电压指的是本实施例中最近一次补偿后的阈值电压。
其中,获取第一电压值时和获取第二电压值时,充电时间T应当是相等的,且为了避免对正常显示造成干扰,该充电时间T应当小于显示面板201的刷新周期,且充电过程应当在空白期进行。
步骤303:根据所述感测电容110的第一电压值和第二电压值获取所述感测电容110对应的子像素的温度变化量。
本实施例中的第一电压值对应显示面板201尚未显示内容的状态,此时,显示面板201的亮度为经过初始补偿的亮度,也可以理解为基准亮度或标准亮度,所以当感测电容110的电压值为第一电压值时,显示面板201的亮度也为该标准亮度。
当显示面板201的温度发生变化时,相关的电学参数也会发生变化,这会导致感测电容110的实际电压值(即所获取的第二电压值)与第一电压值发生一定的偏差。
实施时,可以预先测试感测电容110的温度变化量与电压值变化量之间的关系,并储存起来,例如存储于上述外部存储器203中。在显示面板201 工作过程中,当测得第一电压值和第二电压值之后,根据第一电压值和第二电压值的差值可以获得电压值变化量,然后通过调用上述感测电容110的温度变化量与电压值变化量之间的关系,可以确定一个与第一电压值和第二电压值的差值相对应的温度变化量,并将该温度变化量作为显示面板201的温度变化量。
该对应关系可以是一个预设的对应表,然后通过检索该对应表中的数据来确定温度变化量,该对应关系也可以是通过预设算法来实现,并通过将测得的第二电压值代入相关计算公式来计算或估算温度变化量。
步骤304:根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值。
在确定了子像素的温度变化量之后,则可以根据温度变化量来确定与该温度变化量相对应的补偿参数的值。
请参阅图4和图5,图4为一种显示面板的载流子迁移率K与温度的关系图,其中,横轴代表温度,单位为摄氏度(℃),纵轴代表载流子迁移率K,单位为平方厘米每伏特秒(cm 2/Vs),图4中由上到下依次为蓝色像素(B)、绿色像素(G)和红色像素(R)的载流子迁移率K与温度的关系曲线。
图5为一种显示面板的驱动TFT的阈值电压Vth与温度的关系图,其中,横轴代表温度,单位为摄氏度(℃),纵轴代表驱动TFT的阈值电压Vth,单位为毫伏(mV),图5中由上到下依次为蓝色像素(B)、绿色像素(G)和红色像素(R)的驱动TFT的阈值电压Vth与温度的关系曲线。
由图4和图5可知,载流子迁移率K和驱动TFT的阈值电压Vth随温度变化较大。且由上述式(1)可知,流子迁移率K和驱动TFT的阈值电压Vth对流经子像素的电流影响也较大。所以,在一个具体实施方式中,所针对的补偿参数包括载流子迁移率K和驱动TFT的阈值电压Vth。
该步骤304具体包括读取温度变化量与载流子迁移率补偿量的对应关系,并根据所获取的温度变化量确定载流子迁移率的补偿量;以及读取温度变化量与驱动TFT的阈值电压的对应关系,并根据所获取的温度变化量确定驱动TFT的阈值电压的补偿量。
其中,温度变化量与载流子迁移率补偿量的对应关系和温度变化量与驱 动TFT的阈值电压的对应关系均可以预先通过实验测得并存储起来,例如存储于上述外部存储器203中。在使用时,通过调用相应的对应关系则可以获得相应的温度变化量对应的载流子迁移率K的补偿量以及驱动TFT的阈值电压的补偿量。
例如,在第n次补偿时,载流子迁移率的为K(n),驱动TFT的阈值电压为Vth(n),根据温度变化量所确定的载流子迁移率的补偿量为LUT(△T,△V,△K),驱动TFT的阈值电压的补偿量为LUT(△T,△V,△Vth)。
其中,△T指的是温度变化量,△V指的是第一电压值和第二电压值的差值,LUT(△T,△V,△K)指的则是根据△T和△V由预设对应关系所确定的载流子迁移率补偿量△K,类似的,LUT(△T,△V,△Vth)指的是驱动TFT的阈值电压的补偿量△Vth。
K(n+1)=K(n)+LUT(△T,△V,△K)……(3)
Vth(n+1)=Vth(n)+LUT(△T,△V,△Vth)……(4)
由上述式(3)和式(4)可以计算获得第n+1次补偿中的载流子迁移率K(n+1)和驱动TFT的阈值电压Vth(n+1)。
步骤305:根据所确定的补偿参数的值对子像素的驱动电压进行补偿。
在确定了载流子迁移率K的补偿量以及驱动TFT的阈值电压的补偿量的值之后,则对驱动电压进行补偿即可。
本公开的一些实施例通过测量第一电压值和第二电压值,并根据第一电压值和第二电压值确定显示面板的温度变化量,能够通过温度变化量确定显示面板的补偿参数的值,在对显示面板的驱动电压补偿时,所使用的补偿参数的值更符合显示面板的实际状态,能够使补偿结果更加准确,有助于提高显示效果。
在进行补偿时,将子像素的数据电压由Data1(K(n),Vth(n),GL)调整为Data2(K(n+1),Vth(n+1),GL)即可实现对子像素的驱动电压的补偿。其中,GL指的是子像素的灰阶;Data1(K(n),Vth(n),GL)指Data1为一个由K(n)、Vth(n)和GL所确定的值。
在对子像素的驱动电压进行补偿时,可以在通过一次调整使驱动电压达到目标值。
在一个可选的具体实施方式中,还可以通过多次调整使驱动电压达到目标值,例如,当前驱动电压与目标驱动电压的差为100毫伏,则可以每次调节10毫伏,并通过10次调节使驱动电压达到目标驱动电压,这样,显示面板201的显示亮度变化更加平滑,不会由于亮度变化速度过快而影响用户体验。
进一步的,本实施例中,当所获取的第二电压值与第一电压值相等时,则说明显示面板201的亮度等于标准亮度,此时,不需要对驱动电压进行额外的补偿。
应当理解的是,实际实施时,第二电压值可能很难做到与第一电压值完全相等。
因此,在步骤302之后,获取所述第一电压值和所述第二电压值的差值,若所述第一电压值和所述第二电压值的差值小于预设阈值,则说明子像素的温度变化量较小,可以认为显示面板201的亮度基本等于标准亮度,此时,采用子像素该次补偿的驱动电压对子像素进行下一次补偿即可。
该预设阈值可以根据情况设定为1毫伏、2毫伏、10毫伏等各种数值,显然,该预设阈值设定的越小,则补偿效果越好,该预设阈值设定的越大,则系统负载会越小。实施时,可以根据实际情况选择一个权衡显示效果和系统负载的值,例如1毫伏。
在补偿之后,则返回该302步骤并重新获取新的第二驱动电压。
在步骤302之后,若所述第一电压值和所述第二电压值的差值不小于预设阈值,则说明子像素的温度变化量较大,需要对子像素的驱动电压进行更新。
具体的,可以通过执行后续的步骤303至步骤305实现对子像素的驱动电压进行更新,在对子像素的驱动电压更新之后,返回上述步骤302重新获取第二电压值即可。
如图6所示,这样,通过不断获取第二电压值V2,并与第一电压值V1相对比,然后估算温度变化量,并进一步确定补偿参数的值,能够实现对子像素的驱动电压的动态补偿,以实现根据温度变化对显示面板201亮度进行不断调整,使补偿结果更加精确,提高了显示面板201的显示效果。
例如,可以将第一电压V1作为目标值。在实时显示的帧与帧之间的balnk期间(两个相邻Active区之间),对子像素数据线DL施加电压Data(K(n),Vth(n),GL),n表示进行第n次补偿,充电时间为T,充电结束则可以从感测电容Csense上采样得到第二电压V2。
如果第一电压V1和第二电压V2之间的差值小于预设阈值,例如V2=V1,则说明此时驱动TFT的载流子迁移率K(n)和阈值电压Vth(n)没有受显示面板的温度影响。
如果第一电压V1和第二电压V2之间的差值不小于预设阈值,则说明此时由于显示面板的温度的影响,驱动TFT的载流子迁移率K(n)和阈值电压Vth(n)存在偏差,此时,可以根据第一电压V1和第二电压V2计算得到温度变化量△T,并根据所述温度变化量△T确定载流子迁移率的补偿量为LUT(△T,△V,△K),及驱动TFT的阈值电压的补偿量为LUT(△T,△V,△Vth)。然后更新K(n+1)和Vth(n+1)。待下次补偿时则使用更新过的K(n+1)和Vth(n+1)产生新的第二电压V2,直至V2=V1则补偿完成。从而实现根据温度变化对显示面板201亮度进行不断调整,使补偿结果更加精确,提高了显示面板201的显示效果。
图7为残像相同时,使用本公开实施例中的补偿方法与相关技术中的补偿方法的显示效果对比图。其中,当显示装置长时间显示同一个画面,再把画面切换到下一个画面时,原先的画面会残留在下一个画面中,这种现象就叫做残像。
图7(a)为使用相关技术中的补偿方法后,显示面板的显示效果图;图7(b)为采用本公开实施例中所描述的方法后,显示面板的显示效果图。可以看出,本公开的一些实施例中的补偿方法,能够使得补偿结果更加精确,显示效果更好。
本公开的一些实施例还提供了一种显示面板700。
所述显示面板201包括多个子像素,至少一个所述子像素包括感测电容110,如图8所示,所述显示面板700包括:
第一获取电路701,用于获取所述感测电容110的第一电压值,所述第一电压值为所述感测电容110在所述显示面板201显示图像之前的电压值;
第二获取电路702,用于获取所述感测电容110的第二电压值,所述第二电压值为所述感测电容110在所述显示面板201处于显示状态时的电压值;
温度变化量获取电路703,用于根据所述感测电容110的第一电压值和第二电压值获取所述感测电容110对应的子像素的温度变化量;
补偿参数值确定电路704,用于根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值;
补偿电路705,用于根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿。
本公开的一些实施例通过测量第一电压值和第二电压值,并根据第一电压值和第二电压值确定显示面板201的温度变化量,能够通过温度变化量确定显示面板201的补偿参数的值,在对显示面板201的驱动电压补偿时,所使用的补偿参数的值更符合显示面板的实际状态,能够使补偿结果更加准确,有助于提高显示效果。
可选的,所述第一获取电路701用于:
在所述显示面板201显示图像之前,以第一电流值为所述子像素的感测电容110充电预设时长,并根据所述第一电流值和所述预设时长计算所述感测电容110的第一电压值,其中,所述第一电流值为所述子像素经初始补偿的驱动电压对应的电流值。
可选的,所述第二获取电路702用于:
在相邻两帧显示画面之间的空白期,以第二电流值为子像素对应的感测电容110充电所述预设时长,并根据所述子像素的第二电流值和所述预设时长计算子像素的感测电容110的第二电压值,其中,所述第二电流值为所述子像素的当前驱动电压对应的电流值,所述预设时长小于所述显示面板201的刷新周期。
可选的,所述补偿参数包括载流子迁移率和驱动薄膜晶体管TFT的阈值电压;所述补偿参数值确定电路704包括载流子迁移率确定子电路和阈值电压确定子电路,
所述载流子迁移率确定子电路,用于读取温度变化量与载流子迁移率补 偿量的对应关系,并根据所获取的温度变化量确定载流子迁移率的补偿量;
所述阈值电压确定子电路,用于读取温度变化量与驱动TFT的阈值电压的对应关系,并根据所获取的温度变化量确定驱动TFT的阈值电压的补偿量。
可选的,所述补偿电路705,用于根据所确定的载流子迁移率的补偿量和驱动TFT的阈值电压的补偿量对所述子像素的驱动电压值进行补偿。
可选的,所述显示面板还包括第三获取电路706,所述第三获取电路706,用于获取所述第一电压值和所述第二电压值的差值,若所述第一电压值和所述第二电压值的差值小于预设阈值,则所述第二获取电路702获取所述感测电容110的第二电压值;
若所述第一电压值和所述第二电压值的差值不小于预设阈值,则所述温度变化量获取电路703根据所述感测电容110的第一电压值和第二电压值获取所述感测电容110对应的子像素的温度变化量,所述补偿参数值确定电路704根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值,在所述补偿电路705根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿之后,所述第二获取电路702获取所述感测电容110第二电压值。
在本公开的一些实施例中,图2所示的显示面板中的时序控制器202还可以包括时序转换子电路901、亮度计算子电路902、采样转换子电路903、温度估计子电路904、参数校正子电路905和数据补偿子电路906组成,如图9所示。
时序转换子电路901接收外部输入的时序控制信号HS/VS/DE,输出用于控制源极驱动器的SCS信号和用于控制栅极驱动器的GCS信号。
亮度计算子电路902把输入的RGB视频数据转换为亮度信号,用于后续的亮度域补偿。
采样转换子电路903把采样到的感测数据Sdata转换为电压V2,温度估计子电路904根据电压V1与V2估计出子像素温度的变化△T,参数校正子电路905根据温度的变化量△T计算,或是在外部存储器203中查找预先存储的温度变化量与载流子迁移率补偿量的对应关系和温度变化量与驱动TFT的阈值电压的对应关系,从而计算或查找出电子迁移率变化量△K与阈值电 压变化量△Vth;数据补偿子电路906根据△K与△Vth更新K与Vth,根据亮度信号产生校正后的输出视频数据Data。
本公开的一些实施例通过测量第一电压值和第二电压值,并根据第一电压值和第二电压值确定显示面板201的温度变化量,能够通过温度变化量确定显示面板201的补偿参数的值,在对显示面板201的驱动电压补偿时,所使用的补偿参数的值更符合显示面板的实际状态,能够使补偿结果更加准确,有助于提高显示效果。
本公开的一些实施例还提供了一种显示装置,包括如上所述的显示面板。所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种显示面板的补偿方法,所述显示面板包括多个子像素,至少一个所述子像素包括感测电容,所述方法包括以下步骤:
    获取所述感测电容的第一电压值,所述第一电压值为所述感测电容在所述显示面板显示图像之前的电压值;
    获取所述感测电容的第二电压值,所述第二电压值为所述感测电容在所述显示面板处于显示状态的空白期的电压值;
    根据所述感测电容的第一电压值和第二电压值获取所述感测电容对应的子像素的温度变化量;
    根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值;
    根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿。
  2. 如权利要求1所述的显示面板的补偿方法,其中,所述获取所述感测电容的第一电压值包括:
    在所述显示面板显示图像之前,以第一电流值为各所述子像素的感测电容充电预设时长,并根据所述第一电流值和所述预设时长计算所述感测电容的第一电压值,其中,所述第一电流值为所述子像素经初始补偿的驱动电压对应的电流值,所述预设时长为预定值。
  3. 如权利要求1或2所述的显示面板的补偿方法,其中,所述获取所述感测电容的第二电压值,包括:
    在相邻两帧显示画面之间的空白期,以第二电流值为各所述子像素对应的感测电容充电所述预设时长,并根据所述子像素的第二电流值和所述预设时长计算所述子像素的感测电容的第二电压值,其中,所述第二电流值为所述子像素的当前驱动电压对应的电流值,所述预设时长小于所述显示面板的刷新周期。
  4. 如权利要求1所述的显示面板的补偿方法,其中,所述补偿参数包括载流子迁移率和驱动薄膜晶体管TFT的阈值电压。
  5. 如权利要求4所述的显示面板的补偿方法,其中,所述根据所述子像 素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值,包括:
    读取温度变化量与载流子迁移率补偿量的对应关系,并根据所获取的温度变化量确定载流子迁移率的补偿量;以及
    读取温度变化量与驱动TFT的阈值电压的对应关系,并根据所获取的温度变化量确定驱动TFT的阈值电压的补偿量。
  6. 如权利要求5所述的显示面板的补偿方法,其中,根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿,包括:
    根据所确定的载流子迁移率的补偿量和驱动TFT的阈值电压的补偿量对所述子像素的驱动电压值进行补偿。
  7. 如权利要求1至6中任一项所述的显示面板的补偿方法,其中,所述在获取所述感测电容第二电压值之后,所述方法还包括:
    获取所述第一电压值和所述第二电压值的差值,
    若所述第一电压值和所述第二电压值的差值小于预设阈值,则返回获取所述感测电容的第二电压值的步骤;
    若所述第一电压值和所述第二电压值的差值不小于预设阈值,则执行根据所述感测电容的第一电压值和第二电压值获取所述感测电容对应的子像素的温度变化量,及根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值的步骤,并在根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿之后,返回获取所述感测电容的第二电压值的步骤。
  8. 如权利要求2所述的显示面板的补偿方法,其中,所述第一电流值根据如下公式计算得到:
    Figure PCTCN2019108882-appb-100001
    式中,I 1为所述第一电流值,C ox为所述驱动薄膜晶体管TFT的栅氧化层电容;W/L为所述驱动薄膜晶体管TFT的晶体管宽长比;V gs1为所述子像素经初始补偿的驱动电压;K 1为驱动薄膜晶体管TFT的载流子迁移率的初始值,V th1为驱动薄膜晶体管TFT的阈值电压的初始值。
  9. 如权利要求8所述的显示面板的补偿方法,其中,所述第一电压值可以根据如下公式进行计算得到:
    Figure PCTCN2019108882-appb-100002
    式中,V 1为所述第一电压值,C为感测电容的电容值,I 1为所述第一电流值,T为所述预设时长。
  10. 如权利要求3所述的显示面板的补偿方法,其中,所述第二电流值根据如下公式计算得到:
    Figure PCTCN2019108882-appb-100003
    式中,I 2为所述第二电流值,C ox为所述驱动薄膜晶体管TFT的栅氧化层电容;W/L为所述驱动薄膜晶体管TFT的晶体管宽长比;V gs2为所述子像素的当前驱动电压;K 2为驱动薄膜晶体管TFT的当前载流子迁移率,V th2为驱动薄膜晶体管TFT的当前阈值电压。
  11. 如权利要求10所述的显示面板的补偿方法,其中,所述第二电压值可以根据如下公式进行计算得到:
    Figure PCTCN2019108882-appb-100004
    式中,V 2为所述第二电压值,C为感测电容的电容值,I 2为所述第二电流值,T为所述预设时长。
  12. 一种显示面板,所述显示面板包括多个子像素,至少一个所述子像素包括感测电容,所述显示面板包括:
    第一获取电路,用于获取所述感测电容的第一电压值,所述第一电压值为所述感测电容在所述显示面板显示图像之前的电压值;
    第二获取电路,用于获取所述感测电容的第二电压值,所述第二电压值为所述感测电容在所述显示面板处于显示状态的空白期的电压值;
    温度变化量获取电路,用于根据所述感测电容的第一电压值和第二电压值获取所述感测电容对应的子像素的温度变化量;
    补偿参数值确定电路,用于根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的 值;
    补偿电路,用于根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿。
  13. 如权利要求12所述的显示面板,其中,所述第一获取电路用于:
    在所述显示面板显示图像之前,以第一电流值为所述子像素的感测电容充电预设时长,并根据所述第一电流值和所述预设时长计算所述感测电容的第一电压值,其中,所述第一电流值为所述子像素经初始补偿的驱动电压对应的电流值,所述预设时长为预定值。
  14. 如权利要求12或13所述的显示面板,其中,所述第二获取电路用于:
    在相邻两帧显示画面之间的空白期,以第二电流值为所述子像素对应的感测电容充电所述预设时长,并根据所述子像素的第二电流值和所述预设时长计算所述子像素的感测电容的第二电压值,其中,所述预设时长小于所述显示面板的刷新周期。
  15. 如权利要求12所述的显示面板,其中,所述补偿参数包括载流子迁移率和驱动薄膜晶体管TFT的阈值电压;所述补偿参数值确定电路包括载流子迁移率确定子电路和阈值电压确定子电路,
    所述载流子迁移率确定子电路,用于读取温度变化量与载流子迁移率补偿量的对应关系,并根据所获取的温度变化量确定载流子迁移率的补偿量;
    所述阈值电压确定子电路,用于读取温度变化量与驱动TFT的阈值电压的对应关系,并根据所获取的温度变化量确定驱动TFT的阈值电压的补偿量。
  16. 如权利要求15所述的显示面板,其中,所述补偿电路,用于根据所确定的载流子迁移率的补偿量和驱动TFT的阈值电压的补偿量对所述子像素的驱动电压值进行补偿。
  17. 如权利要求12至16中任一项所述的显示面板,还包括第三获取电路,
    所述第三获取电路,用于获取所述第一电压值和所述第二电压值的差值,
    若所述第一电压值和所述第二电压值的差值小于预设阈值,则所述第二获取电路获取所述感测电容的第二电压值;
    若所述第一电压值和所述第二电压值的差值不小于预设阈值,所述温度变化量获取电路根据所述感测电容的第一电压值和第二电压值获取所述感测电容对应的子像素的温度变化量,所述补偿参数值确定电路根据所述子像素的温度变化量以及所述子像素的温度变化量与补偿参数的预设对应关系,确定所述子像素的补偿参数的值,在所述补偿电路根据所确定的补偿参数的值对所述子像素的驱动电压进行补偿之后,所述第二获取电路获取所述感测电容第二电压值。
  18. 一种显示装置,包括如权利要求12-17中任一项所述的显示面板。
PCT/CN2019/108882 2018-12-12 2019-09-29 显示面板的补偿方法和显示面板 WO2020119225A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/765,846 US11335266B2 (en) 2018-12-12 2019-09-29 Compensation method for display panel and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811517896.5 2018-12-12
CN201811517896.5A CN109493805B (zh) 2018-12-12 2018-12-12 一种显示面板的补偿方法和装置

Publications (1)

Publication Number Publication Date
WO2020119225A1 true WO2020119225A1 (zh) 2020-06-18

Family

ID=65698470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108882 WO2020119225A1 (zh) 2018-12-12 2019-09-29 显示面板的补偿方法和显示面板

Country Status (3)

Country Link
US (1) US11335266B2 (zh)
CN (1) CN109493805B (zh)
WO (1) WO2020119225A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325981A (zh) * 2020-11-03 2021-02-05 常州市鼎兴电子有限公司 一种电感式液位传感器最佳匹配参数设计方法
CN114882842A (zh) * 2022-05-05 2022-08-09 云谷(固安)科技有限公司 显示驱动方法、装置、设备及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493805B (zh) * 2018-12-12 2021-04-27 合肥鑫晟光电科技有限公司 一种显示面板的补偿方法和装置
CN109949748B (zh) * 2019-04-22 2020-12-08 京东方科技集团股份有限公司 显示数据补偿方法、显示数据补偿器件及显示装置
CN110264957B (zh) 2019-06-24 2021-01-26 京东方科技集团股份有限公司 一种像素电路的补偿方法、装置、显示设备
CN110264949B (zh) * 2019-06-26 2023-01-10 京东方科技集团股份有限公司 一种像素单元及其补偿方法和显示装置
CN110660358B (zh) * 2019-09-17 2021-09-14 昆山龙腾光电股份有限公司 显示装置及其驱动补偿方法
CN111486979B (zh) * 2020-04-23 2022-02-01 京东方科技集团股份有限公司 一种温度检测电路及其驱动方法、显示装置及其驱动方法
KR20220050591A (ko) * 2020-10-16 2022-04-25 엘지디스플레이 주식회사 표시장치, 구동회로 및 구동방법
CN114495849A (zh) * 2020-10-23 2022-05-13 华硕电脑股份有限公司 电子装置及其显示影像补偿方法
CN113380151B (zh) * 2021-06-09 2023-08-08 京东方科技集团股份有限公司 画面补偿方法、装置、显示面板及存储介质
TWI790643B (zh) * 2021-06-11 2023-01-21 宏碁股份有限公司 像素結構、使用其的顯示裝置以及用於感測其溫度的溫度感測方法
CN117475852A (zh) * 2022-07-27 2024-01-30 荣耀终端有限公司 电压的控制方法、电子设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115795A1 (en) * 2007-11-06 2009-05-07 Samsung Electronics Co., Ltd. Incremental brightness compensation systems, devices and methods for organic light emitting display (oled)
CN102257555A (zh) * 2008-11-17 2011-11-23 全球Oled科技有限责任公司 用于电致发光显示器的补偿后的驱动信号
US20150154910A1 (en) * 2013-11-29 2015-06-04 Samsung Display Co., Ltd. Display device, method of calculating compensation data thereof, and driving method thereof
CN106409231A (zh) * 2016-10-31 2017-02-15 昆山国显光电有限公司 一种亮度补偿方法、装置及显示设备
CN107633810A (zh) * 2017-10-27 2018-01-26 京东方科技集团股份有限公司 像素电路补偿方法及装置、显示面板和显示装置
CN109493805A (zh) * 2018-12-12 2019-03-19 合肥鑫晟光电科技有限公司 一种显示面板的补偿方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102077A (ja) * 2002-09-11 2004-04-02 Fuji Electric Holdings Co Ltd 表示装置およびその駆動方法
CN101661713A (zh) * 2008-08-29 2010-03-03 深圳Tcl新技术有限公司 Lcd显示装置及其驱动电压调整的方法
CN102005195A (zh) * 2010-11-01 2011-04-06 深圳市华星光电技术有限公司 液晶显示器过压驱动电压的调节方法及其装置
US8907991B2 (en) * 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
KR101991384B1 (ko) * 2012-07-17 2019-06-20 엘지디스플레이 주식회사 액정표시장치
TWI563489B (en) * 2015-02-24 2016-12-21 Au Optronics Corp Display and operation method thereof
CN106097969B (zh) * 2016-06-17 2018-11-13 京东方科技集团股份有限公司 子像素电路的校准装置、源极驱动器及数据电压补偿方法
CN106991969B (zh) * 2017-06-09 2019-06-14 京东方科技集团股份有限公司 显示面板、像素的补偿电路和补偿方法
CN107731160B (zh) * 2017-10-11 2019-08-30 深圳市华星光电半导体显示技术有限公司 一种应用于显示面板的温度补偿电路、方法及显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115795A1 (en) * 2007-11-06 2009-05-07 Samsung Electronics Co., Ltd. Incremental brightness compensation systems, devices and methods for organic light emitting display (oled)
CN102257555A (zh) * 2008-11-17 2011-11-23 全球Oled科技有限责任公司 用于电致发光显示器的补偿后的驱动信号
US20150154910A1 (en) * 2013-11-29 2015-06-04 Samsung Display Co., Ltd. Display device, method of calculating compensation data thereof, and driving method thereof
CN106409231A (zh) * 2016-10-31 2017-02-15 昆山国显光电有限公司 一种亮度补偿方法、装置及显示设备
CN107633810A (zh) * 2017-10-27 2018-01-26 京东方科技集团股份有限公司 像素电路补偿方法及装置、显示面板和显示装置
CN109493805A (zh) * 2018-12-12 2019-03-19 合肥鑫晟光电科技有限公司 一种显示面板的补偿方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325981A (zh) * 2020-11-03 2021-02-05 常州市鼎兴电子有限公司 一种电感式液位传感器最佳匹配参数设计方法
CN112325981B (zh) * 2020-11-03 2023-12-26 常州市鼎兴电子有限公司 一种电感式液位传感器最佳匹配参数设计方法
CN114882842A (zh) * 2022-05-05 2022-08-09 云谷(固安)科技有限公司 显示驱动方法、装置、设备及存储介质
CN114882842B (zh) * 2022-05-05 2024-01-19 云谷(固安)科技有限公司 显示驱动方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN109493805B (zh) 2021-04-27
US11335266B2 (en) 2022-05-17
CN109493805A (zh) 2019-03-19
US20210225287A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2020119225A1 (zh) 显示面板的补偿方法和显示面板
US10134334B2 (en) Luminance uniformity correction for display panels
KR101661016B1 (ko) 유기발광 표시장치와 그의 화질 보상방법
WO2020119712A1 (zh) 显示装置的补偿方法、装置和显示设备
JP5552117B2 (ja) 有機el表示装置の表示方法および有機el表示装置
US10460639B2 (en) Luminance compensation system and luminance compensation method thereof
KR102373691B1 (ko) 유기발광다이오드 표시장치 및 그의 화질 보상방법
US11341914B2 (en) Method for driving organic light emitting display device, driving controller and display device
KR102034062B1 (ko) 유기 발광 다이오드 표시장치 및 그 구동방법
CN109961728B (zh) 检测方法、驱动方法、显示装置和补偿查找表的构建方法
EP3622504A1 (en) A data voltage compensation method, a display driving method, and a display apparatus
KR20200134584A (ko) 디스플레이 구동 회로 및 이를 포함하는 디스플레이 장치
WO2020220308A1 (zh) 像素电路及其驱动方法、显示装置及其驱动方法
WO2019000970A1 (zh) 显示面板的补偿方法、补偿装置及显示设备
US11610548B2 (en) Method, a device, a display device and a medium for improving OLED residual images
US11238793B2 (en) Pixel compensation method and system, display device
US11455966B2 (en) Correction method for display panel and display device
CN109949748B (zh) 显示数据补偿方法、显示数据补偿器件及显示装置
US11200843B2 (en) Compensation circuit and method for controlling the same, display panel and display device
KR102052751B1 (ko) 유기발광다이오드 표시장치의 구동트랜지스터 특성 검출방법
US20210225277A1 (en) Compensation Method and Compensation Apparatus for Organic Light-Emitting Display and Display Device
KR20180003790A (ko) Oled 표시 장치의 화질 보상 장치 및 보상 방법
KR102536347B1 (ko) 표시장치 및 이의 구동방법
US20240054950A1 (en) Display compensating method, display compensating device, and display device
WO2020200205A1 (zh) 像素电路的补偿方法及驱动方法、补偿装置及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895160

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19895160

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19895160

Country of ref document: EP

Kind code of ref document: A1