WO2019004220A1 - マグネシウム二次電池及びマグネシウム二次電池用の正極材料 - Google Patents

マグネシウム二次電池及びマグネシウム二次電池用の正極材料 Download PDF

Info

Publication number
WO2019004220A1
WO2019004220A1 PCT/JP2018/024222 JP2018024222W WO2019004220A1 WO 2019004220 A1 WO2019004220 A1 WO 2019004220A1 JP 2018024222 W JP2018024222 W JP 2018024222W WO 2019004220 A1 WO2019004220 A1 WO 2019004220A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
magnesium
group
magnesium secondary
Prior art date
Application number
PCT/JP2018/024222
Other languages
English (en)
French (fr)
Inventor
善文 水野
秀樹 川▲崎▼
潔 熊谷
有理 中山
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019526941A priority Critical patent/JP7052794B2/ja
Publication of WO2019004220A1 publication Critical patent/WO2019004220A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a magnesium secondary battery and a positive electrode material for a magnesium secondary battery.
  • Non-Patent Document 1 In lithium-sulfur secondary batteries, C. Bucur, et. Al., "A layer-by-layer suprastructure for a sulfur cathode", Energy is used as a technique for preventing the elution of sulfur constituting the positive electrode member.
  • the technology disclosed in Environ. Sci., 2016, 9, 992-998 (Non-Patent Document 1) is known.
  • an object of the present disclosure is to provide a positive electrode material for a magnesium secondary battery capable of effectively preventing or suppressing the elution of sulfur constituting a positive electrode member of a magnesium secondary battery, and a magnesium secondary using such a positive electrode material. It is about providing the following battery.
  • a positive electrode material for a magnesium secondary battery of the present disclosure to achieve the above object is Porous carbon material, and composite material composed of sulfur or sulfur compound, and Coating material layer comprising an anionic polymer material and a cationic polymer material Have.
  • the magnesium secondary battery of the present disclosure for achieving the above object is A positive electrode member provided with at least a positive electrode active material layer; A separator disposed opposite to the positive electrode member, A negative electrode member containing magnesium or a magnesium compound disposed to face the separator, Electrolyte containing magnesium salt, Equipped with The positive electrode active material layer is Porous carbon material, and composite material composed of sulfur or sulfur compound, and It comprises a positive electrode material composed of a coating material layer containing an anionic polymer material and a cationic polymer material.
  • the positive electrode material for magnesium secondary battery of the present disclosure, and the positive electrode material constituting the positive electrode member of the magnesium secondary battery of the present disclosure (hereinafter, these positive electrode materials are collectively referred to as “positive electrode material etc. of the present disclosure” May be referred to as a porous carbon material, a composite material composed of sulfur or a sulfur compound, and a coating material layer containing an anionic polymer material and a cationic polymer material.
  • the coating material layer can easily pass the magnesium ion (Mg +2 ), it can prevent or suppress the elution of sulfur as a polysulfide anion, resulting in high energy density and cycle characteristics. It is possible to realize an excellent magnesium secondary battery.
  • the effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. 1 is a schematic (conceptual) cross-sectional view of a positive electrode material for a magnesium secondary battery of Example 1.
  • FIG. 2 is a graph showing the measurement results of zeta potential in the manufacturing steps of the positive electrode material of Example 1 and Comparative Example 1.
  • FIG. 3 is a SEM photograph of the positive electrode material of Example 1.
  • FIG. 4 is a photograph showing measurement results of carbon (C) atoms in EDS measurement of the positive electrode material of Example 1.
  • FIG. 5 is a photograph showing measurement results of magnesium (Mg) atoms in EDS measurement of the positive electrode material of Example 1.
  • FIG. 6 is a photograph showing the measurement results of sulfur (S) atoms in EDS measurement of the positive electrode material of Example 1.
  • FIG. 1 is a schematic (conceptual) cross-sectional view of a positive electrode material for a magnesium secondary battery of Example 1.
  • FIG. 2 is a graph showing the measurement results of zeta potential in the manufacturing steps of the positive electrode material of Example 1 and Comparative Example
  • FIG. 7 is a graph showing IR measurement results of the positive electrode material of Example 1.
  • FIG. 8 is a schematic exploded view of the magnesium secondary battery of Example 1.
  • FIG. 9 is a graph showing charge and discharge curves of the magnesium secondary battery of Example 1.
  • FIG. 10 is a schematic cross-sectional view of the electrochemical device (capacitor) of Example 2.
  • FIG. 11 is a conceptual view of an electrochemical device (air battery) of Example 2.
  • FIG. 12 is a conceptual view of an electrochemical device (fuel cell) of Example 2.
  • FIG. 13 is a schematic cross-sectional view of a magnesium secondary battery (cylindrical magnesium secondary battery) in Example 3.
  • FIG. 14 is a schematic cross-sectional view of a magnesium secondary battery (flat plate type laminate film type magnesium secondary battery) in Example 3.
  • FIG. 15 is a block diagram showing a circuit configuration example in the third embodiment in which the magnesium secondary battery of the present disclosure described in the first embodiment is applied to a battery pack.
  • 16A, 16B, and 16C are block diagrams showing the configuration of an application example (electric vehicle) of the present disclosure in the third embodiment, and represent the configuration of an application example (power storage system) of the present disclosure in the third embodiment.
  • FIG. 18 is a block diagram and a block diagram illustrating a configuration of an application (power tool) of the present disclosure in the third embodiment.
  • FIG. 17 is a conceptual view of the electrochemical device (battery) of the present disclosure.
  • FIG. 18 is a diagram showing a production scheme of positive electrode materials of Example 1 and Comparative Example 1.
  • FIG. 19 is a diagram showing a production scheme of positive electrode materials of Example 1 and Comparative Example 1 following FIG. 18.
  • FIG. 20 is a diagram showing a production scheme of positive electrode materials of Example 1 and Comparative Example 1 following FIG. 19.
  • FIG. 21 is a diagram showing a production scheme of positive electrode materials of Example 1 and Comparative Example 1 subsequently to FIG. 20.
  • Example 1 a magnesium secondary battery of the present disclosure and a positive electrode material for a magnesium secondary battery
  • Example 2 Modification of Example 1
  • Example 3 Application Example of Magnesium Secondary Battery of Example 1 5.
  • the porous carbon material in the composite material, can be dispersed in the inside of the particles of the sulfur or the sulfur compound.
  • the particles of the sulfur or the sulfur compound in the composite material, can be in a form in which they penetrate into the pores of the porous carbon material.
  • the porous carbon material in the composite material, may be dispersed inside the layered sulfur or sulfur compound particles.
  • the cationic polymer material can be in a form having at least one of the following cationic functional groups.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently hydrogen, halogen, alkyl group, amino group, nitro group, cyano group, hydrosyl group, sulfate group, sulfonate group And a carbonyl group selected from the group consisting of
  • the cationic polymer material can be in a form consisting of polydiallyldimethylammonium chloride (PD).
  • the anionic polymer material can be in a form having the following anionic functional group.
  • R is selected from the group consisting of a perfluoroalkyl group, an alkyl group, a phenyl group and an ether.
  • the anionic polymer material can be in the form of a perfluorocarbon material.
  • the anionic polymer material can be in the form of a copolymer of tetrafluoroethylene and perfluoro (2-fluorosulfonylethoxy) propyl vinyl ester. This material is commercially available as Nafion (registered trademark).
  • the anionic polymer material is preferably an anionic polymer material capable of selectively passing magnesium ions (Mg +2 ).
  • the anionic polymer material is preferably an anionic polymer material having magnesium ion (Mg +2 ) conductivity.
  • a material having a functional group having a high degree of dissociation that is, easy to dissociate magnesium is preferable.
  • a sulfonic acid or the like may be doped.
  • the cationic polymer material is preferably a cationic polymer material capable of electrically adsorbing polysulfide ions (S n ⁇ ).
  • the cationic polymer material is desirably a material having a high cation density and a small number of negatively polarized atoms such as oxygen.
  • carbon particles may be attached to the surface of the coating material layer.
  • the porous carbon material and / or the carbon particles may be composed of any porous carbon material.
  • a porous carbon material and carbon particles for example, a porous carbon material obtained from a plant-derived material such as activated carbon and rice husk with coconut shell or petroleum pitch as a raw material (see JP 2008-273816 A) Carbon materials such as graphite, carbon black or ketjen black, non-graphitizable carbon materials (hard carbon), graphitizable carbon (soft carbon), and / or graphitized carbon materials can be mentioned.
  • the porous carbon material imparts conductivity to the composite material, and the carbon particles attached to the surface of the coating material layer impart conductivity to the positive electrode material.
  • sulfur which coats a porous carbon material S 8 sulfur, insoluble sulfur, colloidal sulfur or polysulfide can be mentioned, and organic sulfur compounds (disulfide compound, trisulfide compound etc.) can be mentioned as a sulfur compound Can.
  • the sulfur or sulfur compound not only contacts the surface of the porous carbon material, but also penetrates into the pores of the porous carbon material. That is, particles of the porous carbon material are dispersed inside the particles of sulfur or sulfur compound, and the sulfur or sulfur compound also penetrates into the pores of the porous carbon material.
  • the sulfur or sulfur compound is in the form of a layer
  • the particles of the porous carbon material are dispersed in the layer of sulfur or the sulfur compound
  • the sulfur or the sulfur compound is in the pores of the porous carbon material It also invades the inside.
  • the positive electrode active material layer is composed of an assembly of particles of sulfur or sulfur compound, or alternatively, is composed of layered sulfur or sulfur compound.
  • the positive electrode member may be composed of a positive electrode active material layer, or alternatively, a positive electrode current collector and a positive electrode active formed on the positive electrode current collector (on one side or both sides of the positive electrode current collector). It may be composed of a material layer.
  • the electrolyte can be in the form of a solvent and a magnesium salt dissolved in the solvent.
  • a sulfone can be mentioned as a solvent which comprises electrolyte solution.
  • a solvent which comprises electrolyte solution ether, and a non-proton solvent can also be mentioned broadly.
  • the electrolytic solution in the magnesium secondary battery of the present disclosure can be, for example, a form containing sulfone and a magnesium salt dissolved in the sulfone.
  • a form is called "the electrolyte solution which concerns on the 1st form of this indication" for convenience.
  • the magnesium salt can be in the form of MgX n (wherein n is 1 or 2 and X is a monovalent or divalent anion).
  • X can be in the form of a molecule containing halogen, -SO 4 , -NO 3 or a hexaalkyl disiazide group.
  • the magnesium salt is a mixture of MgCl 2 and Mg (TFSI) 2 [magnesium bistrifluoromethanesulfonyl imide], magnesium perchlorate (Mg (ClO 4 ) 2 ), magnesium nitrate (Mg (NO 3 ) 2 )
  • MgSO 4 magnesium sulfate
  • MgSO 4 magnesium acetate (Mg (CH 3 COO) 2 ), magnesium trifluoroacetate (Mg (CF 3 COO) 2 ), magnesium tetrafluoroborate (Mg (BF 4 ) 2 ), tetraphenyl
  • Mg (B (C 6 H 5 ) 4 ) 2 magnesium hexafluorophosphate
  • Mg (AsF 6 ) 2 magnesium hexafluoroarsenate
  • perfluoroalkyl sulfone magnesium acid ((Mg (R f1 SO 3 ) 2)
  • magnesium salt-A The magnesium salt mentioned above from magnesium fluoride to (Mg (HRDS) 2 ) is referred to as “magnesium salt-A” for convenience.
  • the molar ratio of sulfone to magnesium salt is, for example, preferably 4 or more and 35 or less, more preferably 6 or more and 16 or less, and still more preferably 7 or more and 9 or less. Although preferred, it is not limited thereto.
  • magnesium borohydride (Mg (BH 4 ) 2 ) can be mentioned as a magnesium salt in the electrolyte according to the first embodiment of the present disclosure.
  • the magnesium salt to be used consists of magnesium borohydride (Mg (BH 4 ) 2 ) and does not contain a halogen atom, it is necessary to prepare various members constituting the magnesium secondary battery from materials having high corrosion resistance. Will disappear.
  • Such an electrolytic solution can be produced by dissolving magnesium borohydride in sulfone.
  • a magnesium salt consisting of magnesium borohydride (Mg (BH 4 ) 2 ) is conveniently referred to as “magnesium salt-B”.
  • the electrolytic solution in the present disclosure is a magnesium ion-containing non-aqueous electrolytic solution in which a magnesium salt -B is dissolved in a solvent comprising sulfone.
  • the molar ratio of sulfone to magnesium salt-B in the electrolytic solution is, for example, 50 or more and 150 or less, typically 60 or more and 120 or less, and preferably 65 or more and 75 or less. It is not limited to this.
  • the sulfone in the electrolyte according to the first aspect of the present disclosure is typically represented by R 1 R 2 SO 2 (wherein R 1 and R 2 each independently represent an alkyl group). Alkyl sulfones or alkyl sulfone derivatives.
  • the type (carbon number and combination) of R 1 and R 2 is not particularly limited, and is selected as necessary.
  • the carbon number of each of R 1 and R 2 is preferably 4 or less.
  • the sum of the carbon number of R 1 and the carbon number of R 2 is preferably 4 or more and 7 or less, but is not limited thereto.
  • R 1 and R 2 are each independently, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, an s-butyl group, and / or t -Butyl and the like.
  • alkyl sulfone specifically, dimethyl sulfone (DMS), methyl ethyl sulfone (MES), methyl n-propyl sulfone (MnPS), methyl i-propyl sulfone (MiPS), methyl n-butyl sulfone (MnBS) ), Methyl-i-butyl sulfone (MiBS), methyl-s-butyl sulfone (MsBS), methyl-t-butyl sulfone (MtBS), ethyl methyl sulfone (EMS), diethyl sulfone (DES), ethyl-n-propyl Sulfone (EnPS), Ethyl-i-propyl sulfone (EiPS), Ethyl-n-butyl sulfone (EnBS), Ethyl-i-butyl sulfone (EiBS), E
  • alkyl sulfone derivative ethyl phenyl sulfone (EPhS) can be mentioned. And, among these sulfones, at least one selected from the group consisting of EnPS, EiPS, EsBS and DnPS is preferable.
  • the electrolyte in the present disclosure can be in the form of containing an ether (generally an aprotic solvent) and a magnesium salt dissolved in an ether (aprotic solvent).
  • an ether generally an aprotic solvent
  • a magnesium salt dissolved in an ether (aprotic solvent)
  • electrolyte solution which concerns on the 2nd form of this indication
  • the ether can be in the form of cyclic ether and / or linear ether.
  • the cyclic ether can include at least one cyclic ether selected from the group consisting of tetrahydrofuran (THF), dioxolane, dioxane, epoxides and furans.
  • THF tetrahydrofuran
  • dioxolane dioxane
  • epoxides epoxides
  • furans epoxides
  • linear ethers mention may be made of dialkyl glycol ethers.
  • dialkyl glycol ether from the group consisting of ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, pentaethylene glycol dimethyl ether, hexaethylene glycol dimethyl ether, polyethylene glycol dimethyl ether and triethylene glycol butyl methyl ether Mention may be made, without limitation, of at least one selected dialkyl glycol ether.
  • the magnesium salt is Mg (AlCl 3 R 1 ) 2 or Mg (AlCl 2 R 2 R 3 ) 2 (However, R 1 , R 2 and R 3 are each independently an alkyl group.
  • R 1 , R 2 and R 3 are each independently an alkyl group.
  • the type (carbon number and combination) of R 1 , R 2 and R 3 is not particularly limited, and is selected as necessary.
  • the carbon number of each of R 1 , R 2 and R 3 is preferably 4 or less, but is not limited thereto.
  • the sum of the carbon number of R 2 and the carbon number of R 3 is preferably 4 or more and 7 or less, but is not limited thereto.
  • R 1 , R 2 and R 3 for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group and / or t-butyl group Groups can be mentioned.
  • the electrolyte in the present disclosure has a solvent consisting of a sulfone and a nonpolar solvent, and a magnesium salt-A dissolved in the solvent.
  • the nonpolar solvent is selected as necessary, but is preferably a non-aqueous solvent having a relative dielectric constant and a number of donors of 20 or less.
  • the nonpolar solvent more specifically, for example, at least one nonpolar solvent selected from the group consisting of aromatic hydrocarbons, ethers, ketones, esters and chain carbonates can be mentioned.
  • the aromatic hydrocarbon include toluene, benzene, o-xylene, m-xylene, p-xylene and / or 1-methylnaphthalene.
  • the ether for example, diethyl ether and / or tetrahydrofuran can be mentioned.
  • the ketone for example, 4-methyl-2-pentanone and the like can be mentioned.
  • ester methyl acetate and / or ethyl acetate etc. can be mentioned, for example.
  • chain carbonate for example, dimethyl carbonate, diethyl carbonate and / or ethyl methyl carbonate can be mentioned.
  • the sulfone and magnesium salt-A are as described above. Moreover, you may add the additive mentioned above to electrolyte solution as needed. And the molar ratio of sulfone to magnesium salt-A is, for example, more preferably 4 or more and 20 or less, more preferably 6 or more and 16 or less, and still more preferably 7 or more and 9 or less However, it is not limited to these.
  • solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, ⁇ -butyrolactone and / or tetrahydrofuran may also be used as a solvent.
  • solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, ⁇ -butyrolactone and / or tetrahydrofuran may also be used as a solvent.
  • one of them may be used alone, or two or more of them may be mixed and used.
  • the solvent is preferably composed of linear ether.
  • linear ethers include ethylene glycol dimethyl ether (dimethoxyethane), diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, pentaethylene glycol dimethyl ether, hexaethylene glycol dimethyl ether, polyethylene glycol dimethyl ether and / or triethylene glycol butyl methyl Among these, it is preferable to use ethylene glycol dimethyl ether (dimethoxyethane, DME).
  • the electrolyte layer can also be composed of an electrolytic solution in the present disclosure and a polymer compound composed of a holder that holds the electrolytic solution.
  • the polymer compound may be swollen by an electrolytic solution.
  • the polymer compound swollen by the electrolytic solution may be in the form of gel.
  • polyacrylonitrile for example, polyacrylonitrile, polyvinylidene fluoride, copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane
  • the electrolyte layer can also be a solid electrolyte layer.
  • the magnesium salt be made of magnesium chloride and that the electrolyte include ethyl-n-propylsulfone (EnPS).
  • the positive electrode current collector is, for example, metal foil or alloy foil such as nickel, stainless steel, copper and / or molybdenum, metal plate, alloy plate, metal mesh, alloy mesh or carbon fiber And carbon materials such as carbon sheets.
  • the positive electrode member may have a structure including only the positive electrode active material layer (layered positive electrode active material) without the positive electrode current collector.
  • the positive electrode active material layer may optionally contain at least one of a conductive additive and a binder.
  • the negative electrode member contains magnesium or a magnesium compound.
  • the negative electrode member is made of magnesium (magnesium metal alone), a magnesium alloy or a magnesium compound.
  • the negative electrode active material layer may be formed on the surface of the negative electrode current collector constituting the negative electrode member, and in this case, the negative electrode active material layer is composed of a layer having magnesium ion conductivity, Specifically, a magnesium (Mg) based material can be mentioned as a material constituting the negative electrode active material layer, and further, at least carbon (C), oxygen (O), sulfur (S) and halogen are contained. It may be It is preferable that such a negative electrode active material layer have a single peak derived from magnesium in the range of 40 eV or more and 60 eV or less.
  • halogen for example, at least one selected from the group consisting of fluorine (F), chlorine (Cl), bromine (Br) and iodine (I) can be mentioned.
  • F fluorine
  • Cl chlorine
  • Br bromine
  • I iodine
  • the oxidation state of magnesium is substantially constant from the surface of the negative electrode active material layer in the depth direction to 2 ⁇ 10 ⁇ 7 m.
  • the back surface of the negative electrode active material layer means the surface on the side constituting the interface between the negative electrode current collector and the negative electrode active material layer, of the both surfaces of the negative electrode active material layer, and the surface of the negative electrode active material layer And means the surface opposite to the back surface of the negative electrode active material layer.
  • the negative electrode active material layer contains the above-described elements can be confirmed based on XPS (X-ray Photoelectron Spectroscopy). Moreover, it can confirm similarly that the negative electrode active material layer has the said peak, and the oxidation state of magnesium based on a XPS method.
  • the negative electrode active material layer may optionally contain at least one of a conductive additive and a binder.
  • the negative electrode member is made of, for example, a plate-like material or a foil-like material, but is not limited thereto, and may be formed (shaped) using powder. As described above, the negative electrode member may include the negative electrode current collector. As a material which comprises a negative electrode collector, metal foil or alloy foils, such as copper, nickel, stainless steel, molybdenum, magnesium and / or a magnesium compound, a metal plate, and an alloy plate can be mentioned.
  • carbon materials such as graphite, carbon fiber, carbon black, a carbon nanotube
  • VGCF vapor growth carbon fiber
  • carbon black for example, acetylene black and / or ketjen black
  • MWCNT multi-wall carbon nanotube
  • SWCNT single wall carbon nanotube
  • DWCNT double wall carbon nanotube
  • materials other than carbon materials can be used, and for example, metal materials such as Ni powder, conductive polymer materials, and the like can be used.
  • a binder contained in the positive electrode active material layer or the negative electrode active material layer for example, a fluorine resin such as polyvinylidene fluoride (PVdF) and / or polytetrafluoroethylene (PTFE), a polyvinyl alcohol (PVA) resin, and And / or polymer resins such as styrene-butadiene copolymer rubber (SBR) resins can be used.
  • a conductive polymer may be used as a binder.
  • the conductive polymer for example, substituted or unsubstituted polyaniline, polypyrrole, polythiophene, and / or (co) polymer consisting of one or two or more selected from these can be used.
  • the positive electrode member and the negative electrode member are separated by an inorganic separator or an organic separator which allows magnesium ions to pass while preventing a short circuit due to the contact of both electrodes.
  • an inorganic separator a glass filter and / or glass fiber can be mentioned, for example.
  • the organic separator include porous membranes made of synthetic resin made of polytetrafluoroethylene, polypropylene and / or polyethylene, etc. A structure in which two or more types of porous membranes are laminated can also be used. . Among them, a porous membrane made of polyolefin is preferable because it is excellent in the short circuit preventing effect and can improve the safety of the battery by the shutdown effect.
  • FIG. 17 is a conceptual view of an electrochemical device (battery)
  • magnesium ion (Mg +2 ) is charged from the positive electrode member 16 to the electrolyte 18 during charging.
  • electric energy is converted into chemical energy and stored.
  • magnesium ions return from the negative electrode member 17 through the electrolytic solution 18 to the positive electrode member 16 to generate electric energy.
  • the magnesium secondary battery of the present disclosure is, for example, a laptop personal computer, a PDA (personal digital assistant), a mobile phone, a smartphone, a base unit or a handset of a cordless telephone, a video movie, a digital still camera, an electronic book, an electronic dictionary, Portable music player, radio, headphones, game console, navigation system, memory card, cardiac pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, television receiver, stereo, water heater, microwave, dishwasher, Washing machines, dryers, lighting devices, toys, medical devices, IoT devices and IoT terminals, robots, road conditioners, traffic lights, railway cars, golf carts, electric carts, electric cars (including hybrid cars) Used as an auxiliary power supply Rukoto can.
  • PDA personal digital assistant
  • a converter that converts power into driving force by supplying power is generally a motor.
  • the control device (control unit) that performs information processing related to vehicle control includes a control device that performs battery remaining amount display based on information regarding the remaining amount of the magnesium secondary battery.
  • a magnesium secondary battery can also be used in the electrical storage apparatus in what is called a smart grid.
  • Such a power storage device can not only supply power but also store power by receiving supply of power from another power source.
  • power sources for example, thermal power generation, nuclear power generation, hydroelectric power generation, solar cells, wind power generation, geothermal power generation, fuel cells (including biofuel cells) and the like can be used.
  • a secondary battery a control unit (control unit) that performs control regarding the secondary battery, and a secondary battery in a battery pack having an outer package including the secondary battery, including the above-described various preferable embodiments and configurations of the preferred embodiments
  • a magnesium secondary battery can be applied.
  • the control means controls, for example, charge and discharge, overdischarge, or overcharge related to the secondary battery.
  • the magnesium secondary battery of the present disclosure including the various preferred embodiments and configurations described above can be applied to a secondary battery in an electronic device that receives power supply from the secondary battery.
  • a secondary in an electric vehicle having a conversion device that receives supply of electric power from a secondary battery and converts it into driving force of the vehicle, and a control device (control unit) that performs information processing related to vehicle control based on information on the secondary battery
  • the magnesium secondary battery of the present disclosure including the various preferred embodiments and configurations described above can be applied to the battery.
  • the conversion device typically receives power supplied from a magnesium secondary battery to drive a motor to generate a driving force. Regenerative energy can also be used to drive the motor.
  • the control device (control unit) performs information processing related to vehicle control, for example, based on the battery remaining amount of the magnesium secondary battery.
  • the electric vehicle includes, for example, so-called hybrid vehicles as well as electric vehicles, electric motorcycles, electric bicycles, railway vehicles and the like.
  • the present disclosure including various preferred forms and configurations described above for a secondary battery in a power system configured to receive supply of power from the secondary battery and / or supply power from the power source to the secondary battery.
  • the magnesium secondary battery can be applied.
  • This power system may be any power system as long as it uses approximately power, and also includes a mere power device.
  • the power system includes, for example, a smart grid, a home energy management system (HEMS), a vehicle, and the like, and can also store power.
  • HEMS home energy management system
  • the magnesium secondary battery of the present disclosure including the various preferred embodiments and configurations described above for the secondary battery in a power storage power supply configured to be connected to an electronic device having a secondary battery and to which power is supplied. Can be applied.
  • the power storage power source can be basically used in any power system or power device regardless of the application of the power source, but it can be used, for example, in a smart grid.
  • the positive electrode material for a magnesium secondary battery of the present disclosure can be applied not only to magnesium secondary batteries but also to electrochemical devices such as various sensors.
  • the capacitor includes a positive electrode, a negative electrode, and a separator sandwiched between the positive electrode and the negative electrode and impregnated with an electrolytic solution.
  • Example 1 relates to a positive electrode material for magnesium secondary battery and magnesium secondary battery of the present disclosure (hereinafter, simply referred to as “positive electrode material”).
  • the positive electrode material 10 of Example 1 having a schematic (conceptual) cross-sectional view shown in FIG.
  • Coating material layer 14 comprising an anionic polymer material and a cationic polymer material Have. Further, carbon particles 15 adhere to the surface of the coating material layer 14.
  • the porous carbon material 13 is dispersed inside the particles of sulfur or sulfur compound, and further, in the composite material 11, the particles of sulfur or sulfur compound are included in the porous carbon material 11. It has invaded the inside of the pore.
  • the porous carbon material 13 is dispersed inside the layered sulfur or sulfur compound particle. Alternatively, these states are mixed.
  • the particles of the porous carbon material 13 are dispersed inside the particles of sulfur 12, and the sulfur 12 also penetrates into the pores of the porous carbon material 13.
  • sulfur is in the form of a layer, and particles of the porous carbon material are dispersed inside the layer of sulfur, and sulfur also penetrates into the pores of the porous carbon material (shown in FIG. ).
  • the particles of the porous carbon material 13 are illustrated as being uniformly dispersed in the particles of sulfur 12, but in practice, they may be dispersed randomly.
  • grains of sulfur 12 is illustrated in spherical shape, in fact, various shapes can be taken.
  • the coating material layer 14 uniformly coats the particles of sulfur 12
  • the coating material layer 14 may uniformly coat the particles of sulfur 12
  • the carbon particles 15 are illustrated as being uniformly attached to the surface of the coating material layer 14, in practice, they may be randomly attached.
  • the porous carbon material 13 and the carbon particles 15 are made of ketjen black.
  • the anionic polymer material is composed of a perfluorocarbon material, specifically, a copolymer (Nafion) of tetrafluoroethylene and perfluoro (2-fluorosulfonylethoxy) propyl vinyl ester.
  • the cationic polymeric material consists of polydiallyldimethylammonium chloride (PDADMAC).
  • the cationic polymer material can be configured to have at least one of the following cationic functional groups, and the anionic polymer material can be configured to have the following anionic functional group: it can.
  • the anionic polymeric material is anionic polymeric material capable of selectively passing magnesium ions (Mg +2), 495. In other words, a magnesium ion (Mg +2) anionic high having conductivity It is preferable to use a molecular material, and it is preferable to use a cationic polymer material that can electrically adsorb polysulfide ions (S n ⁇ ).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently hydrogen, halogen, alkyl group, amino group, nitro group, cyano group, hydrosyl group, sulfate group, sulfonate group And a carbonyl group selected from the group consisting of
  • R is selected from the group consisting of a perfluoroalkyl group, an alkyl group, a phenyl group and an ether.
  • the magnesium secondary battery 20 of Example 1 is A positive electrode member 23 provided with at least a positive electrode active material layer 23B (specifically, in Example 1, a positive electrode member 23 provided with a positive electrode current collector 23A and a positive electrode active material layer 23B); A separator 24 disposed opposite to the positive electrode member 23 (more specifically, the positive electrode active material layer 23B); A negative electrode member 25 containing magnesium or a magnesium compound disposed opposite to the separator 24; Electrolyte containing magnesium salt, It is a magnesium secondary battery equipped with The positive electrode active material layer 23A is made of the positive electrode material 10 (specifically, an aggregate of the positive electrode material 10 or layered sulfur) of Example 1 described above.
  • the electrolyte comprises a solvent and a magnesium salt dissolved in the solvent.
  • a sulfone can be mentioned as a solvent which comprises electrolyte solution,
  • an ether a wide a non-proton solvent can also be mentioned.
  • the electrolytic solution contains sulfone and a magnesium salt dissolved in sulfone.
  • the magnesium salt is made of magnesium chloride (MgCl 2 ), and the sulfone constituting the electrolyte contains ethyl-n-propyl sulfone (EnPS).
  • the positive electrode material was manufactured based on the method described below.
  • the positive electrode material of Comparative Example 1 thus obtained is substantially the material disclosed in Non-Patent Document 1 described above.
  • zeta potential measurement was performed on the particles in the manufacturing process.
  • the conditions for measuring the zeta potential are as follows.
  • Measuring device Zetasizer Nano ZS manufactured by MALVERN Measurement conditions: Distilled water is used as a dispersion solvent. (Use parameters: solvent refractive index 1.330, viscosity 0.8872) Measurement temperature: 25 ° C Measuring cell: Disposable sizing cell Measurement procedure: Measurement is carried out three times consecutively, and the average value is calculated. Sample pretreatment: Measure the dispersion after ultrasonic dispersion for 1 minute.
  • the measurement result of the zeta potential in the manufacturing process of the positive electrode material of Example 1 and Comparative Example 1 is shown in FIG.
  • the zeta potentials of the positive electrode materials of Example 1 and Comparative Example 1 are First coating step of the composite material with the cationic polymer material (indicated by "B” in FIG. 2) Third step of coating the composite material with a cationic polymer material (indicated by “D” in FIG. 2) Preparation steps of positive electrode materials of Example 1 and Comparative Example 1 (indicated by "F” and “G” in FIG. 2) While positive values are shown in Preparation process of the composite material (indicated by "A” in FIG. 2) Second coating step of the composite material with an anionic polymer material (indicated by "C” in FIG.
  • the positive electrode material of Example 1 was subjected to SEM-EDS measurement to confirm the presence of carbon (C), magnesium (Mg) and sulfur (S).
  • the SEM-EDS measurement results are shown in FIG. 3, FIG. 4, FIG. 5 and FIG. 3 is a SEM photograph, FIG. 4 is a measurement result of carbon (C) atom in EDS measurement, FIG. 5 is a measurement result of magnesium (Mg) atom in EDS measurement, and FIG. It is a measurement result of a sulfur (S) atom.
  • the presence of carbon (C) atoms, magnesium (Mg) atoms and sulfur (S) atoms was clearly recognized from FIG. 4, FIG. 5 and FIG.
  • the SEM-EDS measurement conditions are as follows. As a pretreatment for observation, a sample was placed on a silicon semiconductor substrate or a carbon tape, a platinum thin film was deposited, and observation, measurement, and analysis were performed.
  • an electrolytic solution (MgCl 2 -EnPS) was prepared as follows.
  • the measurement and mixing of the reagents were carried out in a glove box (argon gas atmosphere / dew point ⁇ 80 ° C. to ⁇ 90 ° C.). While stirring 100 ml of dehydrated methanol using a stirrer, 3.81 grams of anhydrous magnesium (II) chloride (MgCl 2 ) was added. MgCl 2 (anhydrous) from Sigma Aldrich was used. It was confirmed by measuring the temperature outside the reaction vessel with a contact thermometer that there was a slight heat generation when dissolving MgCl 2 in methanol. This heat generation is due to the heat of reaction when methanol is coordinated to Mg, and is considered to have a structure in which methanol is coordinated to Mg in methanol.
  • II anhydrous magnesium
  • the sample after methanol removal had white turbidity when MgCl 2 was dissolved in methanol, so it was filtered (pore diameter: 0.45 ⁇ m: made by Whatman) in a glove box.
  • Example 1 A state in which the magnesium secondary battery (coin battery 20, CR2016 type) of Example 1 is disassembled is shown in a schematic view of FIG. 8, but a gasket 22 is placed on the coin battery can 21 and a positive electrode member 23 (nickel wire mesh (mesh ) And a positive electrode active material layer 23B comprising the positive electrode material of Example 1, a separator 24, an Mg plate of 15 mm in diameter and 0.20 mm in thickness (manufactured by Rikasai Co., Ltd., purity 99.9%)
  • the spacer 26 made of a stainless steel plate having a thickness of 0.5 mm, and the coin battery lid 27 in this order, the coin battery can 21 is crimped and sealed.
  • the spacer 26 was spot-welded to the coin battery cover 27 in advance.
  • the above-described electrolytic solution is contained in the separator (manufactured by Advantec Co., Ltd., glass filter GC50) 24.
  • the voltage range is 0.7 to 2.5 volts
  • the current density is a constant current of 0.1 milliamperes
  • charging is stopped when it reaches 2.5 volts
  • 0.7 is discharged.
  • the discharge was stopped when it reached to the bolt.
  • the charge / discharge curve thus obtained is shown in FIG. 9, where "A" is a charge curve and "B” is a discharge curve.
  • the porous carbon material is coated with sulfur or a sulfur compound
  • the composite material is coated with a coating material layer consisting of an anionic polymer material and a cationic polymer material, and the coating material layer can easily pass magnesium ions (Mg +2 ) Notwithstanding, elution of sulfur as polysulfide anion can be prevented or suppressed.
  • an anionic polymer material (specifically, Nafion) has a function of selectively transmitting magnesium ions (Mg +2 ), and increases the ion conductivity by thinning. be able to.
  • the cationic polymer material (specifically, PDADMAC) has a function of electrically adsorbing polysulfide anion (S n ⁇ ).
  • S n ⁇ electrically adsorbing polysulfide anion
  • Example 2 is a modification of Example 1.
  • the electrochemical device of Example 2 includes a capacitor as shown in a schematic cross-sectional view in FIG. 10, and the positive electrode 31 and the negative electrode 32 are disposed to face each other with the separator 33 interposed therebetween.
  • Reference numerals 35 and 36 indicate current collectors, and reference numeral 37 indicates a gasket.
  • the positive electrode 31 is formed of the positive electrode member of Example 1.
  • the negative electrode 32 contains magnesium or a magnesium compound.
  • the electrochemical device of Example 2 consists of an air battery, as shown in a conceptual diagram of FIG.
  • the air battery includes, for example, an oxygen-selective permeable film 47 which is hard to transmit water vapor and selectively transmits oxygen, an air electrode side current collector 44 made of a conductive porous material, and the air electrode side current collector 44 And a porous diffusion layer 46 made of a conductive material and disposed between the porous positive electrode 41 and the porous positive electrode 41, a porous positive electrode 41 containing a conductive material and a catalyst material, a separator that hardly passes water vapor, and an electrolyte (or an electrolyte (Solid electrolyte included) 43, a negative electrode member 42 for releasing magnesium ions, a negative electrode side current collector 45, and an exterior body 48 in which these layers are accommodated.
  • the porous positive electrode 41 is composed of the positive electrode member of Example 1.
  • the oxygen 52 in the air (atmosphere) 51 is selectively permeated by the oxygen selective permeable film 47, passes through the air electrode side current collector 44 made of a porous material, is diffused by the diffusion layer 46, and the porous positive electrode 41 Supplied to The progress of oxygen transmitted through the oxygen selective permeable film 47 is partially blocked by the air electrode side current collector 44, but the oxygen having passed through the air electrode side current collector 44 is diffused and diffused by the diffusion layer 46.
  • the air can be efficiently distributed to the entire porous positive electrode 41, and the supply of oxygen to the entire surface of the porous positive electrode 41 is not inhibited by the air electrode side current collector 44.
  • the electrochemical device of Example 2 consists of a fuel cell, as shown in a conceptual diagram of FIG.
  • This fuel cell includes, for example, a positive electrode member 61, a positive electrode electrolyte 62, a positive electrode electrolyte transport pump 63, a fuel flow path 64, a positive electrode electrolyte storage container 65, a negative member 71, a negative electrode electrolyte 72, and a negative electrode.
  • An electrolyte solution transport pump 73, a fuel flow path 74, an electrolyte solution storage container 75 for the negative electrode, and an ion exchange membrane 66 are provided.
  • the positive electrode electrolyte 62 continuously or intermittently flows (circulates) through the positive electrode electrolyte storage container 65 and the positive electrode electrolyte transfer pump 63, and the fuel flow In the passage 74, the negative electrode electrolyte 72 continuously or intermittently flows (circulates) through the negative electrode electrolyte storage container 75 and the negative electrode electrolyte transport pump 73. Power generation is performed with the negative electrode member 71.
  • the electrolytic solution 62 for positive electrode one obtained by adding the positive electrode active material to the electrolytic solution of Example 1 can be used, and as the electrolytic solution 72 for negative electrode, one using the negative electrode active material added to the electrolytic solution of Example 1 is used. be able to.
  • the positive electrode member 61 is composed of the positive electrode member of the first embodiment.
  • Example 3 an electrochemical device (specifically, a magnesium secondary battery) of the present disclosure and an application example thereof will be described.
  • the magnesium secondary battery of the present disclosure described in the first embodiment is a machine, an apparatus, an apparatus, a system (a plurality of machines, an apparatus, an apparatus, and The present invention can be applied to a collection of devices and the like without particular limitation.
  • the magnesium secondary battery (specifically, a magnesium-sulfur secondary battery) used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (in place of the main power source) Or, it may be a power supply used by switching from the main power supply).
  • the main power source is not limited to the magnesium secondary battery.
  • Power storage systems such as TV systems, home energy servers (home power storage devices), power supply systems; power storage units and backup power supplies; electric vehicles, electric bikes, electric bicycles, electric vehicles such as Segway (registered trademark); aircraft and ships
  • a power driving force conversion device specifically, for example, a power motor
  • the magnesium secondary battery of the present disclosure is applied to a battery pack, an electric vehicle, an electric power storage system, an electric power supply system, an electric tool, an electronic device, an electric device and the like.
  • the battery pack is a power source using the magnesium secondary battery of the present disclosure, and is a so-called assembled battery or the like.
  • the electric vehicle is a vehicle that operates (travels) using the magnesium secondary battery of the present disclosure as a driving power source, and may be an automobile (hybrid vehicle or the like) that is provided with a driving source other than the secondary battery.
  • the power storage system (power supply system) is a system using the magnesium secondary battery of the present disclosure as a power storage source.
  • the electric power tool is a tool in which a movable portion (for example, a drill or the like) moves using the magnesium secondary battery of the present disclosure as a power supply for driving.
  • the electronic device and the electric device are devices that exhibit various functions as a power supply (power supply source) for operating the magnesium secondary battery of the present disclosure.
  • FIG. 1 A schematic cross-sectional view of a cylindrical magnesium secondary battery 100 is shown in FIG.
  • the electrode structure 121 and the pair of insulating plates 112 and 113 are accommodated in the substantially hollow cylindrical electrode structure accommodating member 111.
  • the electrode structure 121 can be produced, for example, by laminating the positive electrode member 122 and the negative electrode member 124 via the separator 126 to obtain an electrode structure, and then winding the electrode structure.
  • the positive electrode member 122 is composed of the positive electrode member of the first embodiment.
  • the electrode structure storage member (battery can) 111 has a hollow structure in which one end is closed and the other end is opened, and is made of iron (Fe), aluminum (Al) or the like.
  • the surface of the electrode structure storage member 111 may be plated with nickel (Ni) or the like.
  • the pair of insulating plates 112 and 113 sandwich the electrode structure 121 and is arranged to extend perpendicularly to the winding circumferential surface of the electrode structure 121.
  • a battery cover 114, a safety valve mechanism 115 and a thermal resistance element (PTC element, positive temperature coefficient element) 116 are crimped via a gasket 117, whereby the electrode The structure storage member 111 is sealed.
  • the battery cover 114 is made of, for example, the same material as the electrode structure storage member 111.
  • the safety valve mechanism 115 and the thermal resistance element 116 are provided inside the battery cover 114, and the safety valve mechanism 115 is electrically connected to the battery cover 114 via the thermal resistance element 116.
  • the disc plate 115A is reversed when the internal pressure becomes equal to or higher than a predetermined value due to internal short circuit or external heating. Then, the electrical connection between the battery cover 114 and the electrode structure 121 is cut off. In order to prevent abnormal heat generation caused by a large current, the resistance of the heat sensitive resistance element 116 increases with the temperature rise.
  • the gasket 117 is made of, for example, an insulating material. Asphalt etc. may be applied to the surface of the gasket 117.
  • the positive electrode lead portion 123 made of a conductive material such as aluminum is connected to the positive electrode member 122. Specifically, the positive electrode lead portion 123 is attached to the positive electrode current collector.
  • a negative electrode lead portion 125 made of a conductive material such as copper is connected to the negative electrode member 124. Specifically, the negative electrode lead portion 125 is attached to the negative electrode current collector.
  • the negative electrode lead portion 125 is welded to the electrode structure storage member 111 and is electrically connected to the electrode structure storage member 111.
  • the positive electrode lead portion 123 is welded to the safety valve mechanism 115 and electrically connected to the battery lid 114.
  • the negative electrode lead portion 125 is one place (the outermost periphery of the wound electrode assembly), the two places (the outermost periphery and the outermost periphery of the wound electrode assembly) are provided. It may be provided on the inner circumference).
  • the electrode structure 121 includes a positive electrode member 122 having a positive electrode active material layer formed on the positive electrode current collector (specifically, on both sides of the positive electrode current collector), and on the negative electrode current collector (specifically, And the negative electrode member 124 in which the negative electrode active material layer was formed on both surfaces of the negative electrode current collector is laminated via the separator 126.
  • the positive electrode active material layer is not formed in the region of the positive electrode current collector to which the positive electrode lead portion 123 is attached, and the negative electrode active material layer is not formed in the region of the negative electrode current collector to which the negative electrode lead portion 125 is attached.
  • the specifications of the magnesium secondary battery 100 are exemplified in Table 1 below, but are not limited thereto.
  • the magnesium secondary battery 100 can be manufactured, for example, based on the following procedure.
  • a positive electrode active material layer is formed on both sides of the positive electrode current collector, and a negative electrode active material layer is formed on both sides of the negative electrode current collector.
  • the positive electrode lead portion 123 is attached to the positive electrode current collector using a welding method or the like.
  • the negative electrode lead portion 125 is attached to the negative electrode current collector using a welding method or the like.
  • the positive electrode member 122 and the negative electrode member 124 are laminated through a separator 126 made of a microporous polyethylene film with a thickness of 20 ⁇ m and wound (more specifically, the positive electrode member 122 / separator 126 / negative electrode
  • a protective tape (not shown) is attached to the outermost periphery.
  • the center pin 118 is inserted into the center of the electrode structure 121.
  • the electrode structure 121 is housed inside the electrode structure housing member (battery can) 111 while sandwiching the electrode structure 121 between the pair of insulating plates 112 and 113.
  • the front end portion of the positive electrode lead portion 123 is attached to the safety valve mechanism 115 and the front end portion of the negative electrode lead portion 125 is attached to the electrode structure storage member 111 using a welding method or the like.
  • the electrolyte solution of Example 1 is injected based on the pressure reduction method to impregnate the separator 126 with the electrolyte solution.
  • the battery cover 114, the safety valve mechanism 115, and the heat sensitive resistance element 116 are crimped to the open end of the electrode structure storage member 111 via the gasket 117.
  • FIG. 1 A schematic exploded perspective view of a magnesium secondary battery is shown in FIG.
  • the same electrode structure 221 as that described above is basically housed inside the exterior member 200 made of a laminate film.
  • the electrode structure 221 can be manufactured by winding the laminated structure after laminating the positive electrode member and the negative electrode member via the separator and the electrolyte layer.
  • the positive electrode lead portion 223 is attached to the positive electrode member, and the negative electrode lead portion 225 is attached to the negative electrode member.
  • the outermost periphery of the electrode structure 221 is protected by a protective tape.
  • the positive electrode lead portion 223 and the negative electrode lead portion 225 protrude from the inside to the outside of the package member 200 in the same direction.
  • the positive electrode lead portion 223 is formed of a conductive material such as aluminum.
  • the negative electrode lead portion 225 is formed of a conductive material such as copper, nickel, stainless steel or the like.
  • the exterior member 200 is a single sheet of film that can be folded in the direction of the arrow R shown in FIG. 14, and a recess (emboss) for housing the electrode structure 221 is provided in a part of the exterior member 200. There is.
  • the exterior member 200 is, for example, a laminate film in which a fusion bonding layer, a metal layer, and a surface protective layer are laminated in this order. In the manufacturing process of the magnesium secondary battery, after the package member 200 is folded so that the fusion layers face each other via the electrode structure 221, the outer peripheral edge portions of the fusion layers are fusion-bonded.
  • the package member 200 may be a laminate of two laminated films with an adhesive or the like.
  • the fusion layer is made of, for example, a film of polyethylene, polypropylene or the like.
  • the metal layer is made of, for example, an aluminum foil or the like.
  • the surface protective layer is made of, for example, nylon, polyethylene terephthalate or the like.
  • the exterior member 200 is preferably an aluminum laminate film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 200 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • a moisture resistant aluminum laminate film (total thickness) in which a nylon film (thickness 30 ⁇ m), an aluminum foil (thickness 40 ⁇ m), and a non-oriented polypropylene film (thickness 30 ⁇ m) are laminated in this order from the outside 100 ⁇ m).
  • An adhesive film 201 is inserted between the exterior member 200 and the positive electrode lead portion 223 and between the exterior member 200 and the negative electrode lead portion 225 in order to prevent the intrusion of the outside air.
  • the adhesive film 201 is made of a material having adhesiveness to the positive electrode lead portion 223 and the negative electrode lead portion 225, for example, a polyolefin resin or the like, more specifically, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene or modified polypropylene. .
  • the battery pack is a simple battery pack (so-called soft pack) using one of the magnesium secondary batteries of the present disclosure, and is mounted on, for example, an electronic device represented by a smartphone.
  • it comprises a battery assembly composed of six magnesium secondary batteries of the present disclosure connected in two parallel three series.
  • the connection type of the magnesium secondary battery may be in series, in parallel, or a combination of both.
  • the battery pack includes a cell (assembled battery) 1001, an exterior member, a switch unit 1021, a current detection resistor 1014, a temperature detection element 1016, and a control unit 1010.
  • the switch unit 1021 includes a charge control switch 1022 and a discharge control switch 1024.
  • the battery pack includes a positive electrode terminal 1031 and a negative electrode terminal 1032, and during charging, the positive electrode terminal 1031 and the negative electrode terminal 1032 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, to perform charging.
  • the positive electrode terminal 1031 and the negative electrode terminal 1032 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
  • the cell 1001 is configured by connecting a plurality of magnesium secondary batteries 1002 of the present disclosure in series and / or in parallel.
  • FIG. 15 shows the case where six magnesium secondary batteries 1002 are connected in two parallel three series (2P3S), it may be other p parallel q series (where p and q are integers). Any connection method may be used.
  • the switch unit 1021 includes a charge control switch 1022 and a diode 1023, and a discharge control switch 1024 and a diode 1025, and is controlled by the control unit 1010.
  • the diode 1023 has a reverse direction to the charge current flowing from the positive electrode terminal 1031 to the cell 1001 and a forward direction to the discharge current flowing from the negative electrode terminal 1032 to the cell 1001.
  • the diode 1025 has a forward direction with respect to the charge current and a reverse direction with respect to the discharge current.
  • the switch portion is provided on the plus (+) side in the example, it may be provided on the minus ( ⁇ ) side.
  • the charge control switch 1022 is closed when the battery voltage becomes the overcharge detection voltage, and is controlled by the control unit 1010 so that the charge current does not flow in the current path of the cell 1001. After the charge control switch 1022 is closed, only discharge can be performed through the diode 1023.
  • the control unit 1010 is controlled to be closed and to cut off the charging current flowing in the current path of the cell 1001.
  • the discharge control switch 1024 is closed when the battery voltage becomes the overdischarge detection voltage, and is controlled by the control unit 1010 so that the discharge current does not flow in the current path of the cell 1001. After the discharge control switch 1024 is closed, only charging can be performed through the diode 1025.
  • the control unit 1010 is controlled to be closed and to interrupt the discharge current flowing in the current path of the cell 1001.
  • the temperature detection element 1016 is, for example, a thermistor, and is provided in the vicinity of the cell 1001.
  • the temperature measurement unit 1015 measures the temperature of the cell 1001 using the temperature detection element 1016 and sends the measurement result to the control unit 1010.
  • the voltage measuring unit 1012 measures the voltage of the cell 1001 and the voltage of each of the magnesium secondary batteries 1002 that constitute the cell 1001, A / D converts the measurement result, and sends it to the control unit 1010.
  • the current measurement unit 1013 measures the current using the current detection resistor 1014, and sends the measurement result to the control unit 1010.
  • the switch control unit 1020 controls the charge control switch 1022 and the discharge control switch 1024 of the switch unit 1021 based on the voltage and current sent from the voltage measurement unit 1012 and the current measurement unit 1013.
  • the switch control unit 1020 controls the switch unit 1021 when any voltage of the magnesium secondary battery 1002 falls below the overcharge detection voltage or the overdischarge detection voltage, or when a large current rapidly flows. By sending a signal, overcharge and overdischarge, and over current charge and discharge are prevented.
  • the charge control switch 1022 and the discharge control switch 1024 can be composed of, for example, a semiconductor switch such as a MOSFET. In this case, diodes 1023 and 1025 are configured by parasitic diodes of the MOSFETs.
  • the switch control unit 1020 supplies the control signal DO and the control signal CO to the gate portions of the charge control switch 1022 and the discharge control switch 1024.
  • the charge control switch 1022 and the discharge control switch 1024 are turned on by the gate potential which is lower than the source potential by a predetermined value or more. That is, in the normal charge and discharge operation, the control signal CO and the control signal DO are set to the low level, and the charge control switch 1022 and the discharge control switch 1024 are brought into conduction. Then, for example, in the case of overcharge or overdischarge, the control signal CO and the control signal DO are set to the high level, and the charge control switch 1022 and the discharge control switch 1024 are closed.
  • the memory 1011 is formed of, for example, an EPROM (Erasable Programmable Read Only Memory) which is a non-volatile memory.
  • the memory 1011 stores in advance the numerical value calculated by the control unit 1010, the internal resistance value of the magnesium secondary battery in the initial state of each magnesium secondary battery 1002 measured at the stage of the manufacturing process, and the like. And can be rewritten as appropriate. Further, by storing the full charge capacity of the magnesium secondary battery 1002, for example, the remaining capacity can be calculated together with the control unit 1010.
  • EPROM Erasable Programmable Read Only Memory
  • the temperature measurement unit 1015 measures the temperature using the temperature detection element 1016, performs charge / discharge control at the time of abnormal heat generation, and performs correction in calculation of the remaining capacity.
  • FIG. 16A shows a block diagram showing a configuration of an electric-powered vehicle such as a hybrid car which is an example of the electric-powered vehicle.
  • the motor-driven vehicle includes a control unit 2001, various sensors 2002, a power supply 2003, an engine 2010, a generator 2011, inverters 2012 and 2013, a driving motor 2014, a differential gear 2015, and the like inside a metal case 2000.
  • a transmission 2016 and a clutch 2017 are provided.
  • the electric vehicle includes, for example, a front wheel drive shaft 2021, a front wheel 2022, a rear wheel drive shaft 2023, and a rear wheel 2024 connected to the differential device 2015 and the transmission 2016.
  • the electric vehicle can travel, for example, using either the engine 2010 or the motor 2014 as a drive source.
  • the engine 2010 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 2010 is transmitted to the front wheel 2022 or the rear wheel 2024 via, for example, the differential device 2015 as a driving unit, the transmission 2016, and the clutch 2017.
  • the rotational force of the engine 2010 is also transmitted to the generator 2011, and the generator 2011 generates alternating current power using the rotational force, and the alternating current power is converted to direct current power via the inverter 2013 and stored in the power supply 2003 .
  • the motor 2014 which is a conversion unit is used as a motive power source
  • the electric power (DC power) supplied from the power source 2003 is converted into AC power via the inverter 2012, and the motor 2014 is driven using AC power.
  • the driving force (rotational force) converted from the electric power by the motor 2014 is transmitted to the front wheel 2022 or the rear wheel 2024 via, for example, the differential device 2015 as a driving unit, the transmission 2016, and the clutch 2017.
  • the resistance during deceleration is transmitted to the motor 2014 as a rotational force, and the rotational force may be used to cause the motor 2014 to generate AC power.
  • AC power is converted to DC power via inverter 2012, and DC regenerative power is stored in power supply 2003.
  • the control unit 2001 controls the operation of the entire electric vehicle, and includes, for example, a CPU.
  • the power source 2003 includes one or more magnesium secondary batteries (not shown) described in the first embodiment.
  • the power supply 2003 may be connected to an external power supply, and may be configured to store power by receiving power supply from the external power supply.
  • the various sensors 2002 are used, for example, to control the rotational speed of the engine 2010 and to control the opening degree (throttle opening degree) of a throttle valve (not shown).
  • the various sensors 2002 include, for example, a speed sensor, an acceleration sensor, an engine rotational speed sensor, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates only using the power supply 2003 and the motor 2014 without using the engine 2010.
  • the power storage system includes, for example, a control unit 3001, a power supply 3002, a smart meter 3003, and a power hub 3004 inside a house 3000 such as a home or a commercial building.
  • the power supply 3002 is connected to, for example, an electric device (electronic device) 3010 installed inside the house 3000, and can be connected to an electric vehicle 3011 stopped outside the house 3000.
  • the power supply 3002 is connected to, for example, a private generator 3021 installed in a house 3000 via a power hub 3004, and can be connected to an external centralized power system 3022 via a smart meter 3003 and a power hub 3004. is there.
  • the electrical device (electronic device) 3010 includes, for example, one or more home appliances. As a household appliance, a refrigerator, an air-conditioner, a television receiver, a water heater etc. can be mentioned, for example.
  • the private generator 3021 is configured of, for example, a solar power generator, a wind power generator, or the like.
  • Examples of the electric vehicle 3011 include an electric car, a hybrid car, an electric motorcycle, an electric bicycle, Segway (registered trademark), and the like.
  • a centralized power system 3022 a commercial power source, a power generation device, a power transmission network, a smart grid (next generation power transmission network) can be mentioned, and also, for example, a thermal power plant, a nuclear power plant, a hydroelectric power plant, a wind power plant
  • various solar cells, fuel cells, wind power generators, micro-hydro power generators, geothermal power generators, etc. can be exemplified as the power generators provided in the centralized power grid 3022. It is not limited to these.
  • the control unit 3001 controls the operation of the entire power storage system (including the use state of the power supply 3002), and includes, for example, a CPU.
  • the power supply 3002 includes one or more magnesium secondary batteries (not shown) described in the first embodiment.
  • the smart meter 3003 is, for example, a network compatible power meter installed in a house 3000 on the power demand side, and can communicate with the power supply side. The smart meter 3003 can perform efficient and stable energy supply by controlling the balance of supply and demand in the house 3000 while communicating with the outside, for example.
  • the power storage system for example, power is stored in the power supply 3002 from the centralized power system 3022 which is an external power supply via the smart meter 3003 and the power hub 3004, and from an independent generator 3021 to the power hub 3004. Power is then stored in the power supply 3002.
  • the electric power stored in the power supply 3002 is supplied to the electric device (electronic device) 3010 and the electric vehicle 3011 according to the instruction of the control unit 3001, so that the electric device (electronic device) 3010 can be operated and The vehicle 3011 can be charged.
  • the power storage system is a system that enables storage and supply of power in the house 3000 using the power supply 3002.
  • the power stored in the power supply 3002 is arbitrarily available. Therefore, for example, power can be stored in the power supply 3002 from the centralized power system 3022 at midnight, at which the electricity charge is inexpensive, and the power stored in the power supply 3002 can be used during the day when the electricity charge is high.
  • the power storage system described above may be installed for each household (one household), or may be installed for each household (plural households).
  • the power tool is, for example, a power drill, and includes a control unit 4001 and a power supply 4002 inside a tool main body 4000 made of a plastic material or the like.
  • a drill portion 4003 which is a movable portion is rotatably attached to the tool main body 4000.
  • the control unit 4001 controls the operation of the entire electric power tool (including the use state of the power supply 4002), and includes, for example, a CPU.
  • the power supply 4002 includes one or more magnesium secondary batteries (not shown) described in the first embodiment.
  • the control unit 4001 supplies power from the power supply 4002 to the drill unit 4003 according to the operation of the operation switch (not shown).
  • the present disclosure can also be configured as follows.
  • the composite material the positive electrode material for a magnesium secondary battery according to [A01], in which a porous carbon material is dispersed inside a particle of sulfur or a sulfur compound.
  • the positive electrode material for a magnesium secondary battery according to [A02] in which particles of sulfur or a sulfur compound intrude into pores possessed by a porous carbon material.
  • the positive electrode material for a magnesium secondary battery according to [A01] in which the porous carbon material is dispersed inside the particles of layered sulfur or sulfur compound.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently hydrogen, halogen, alkyl group, amino group, nitro group, cyano group, hydrosyl group, sulfate group, sulfonate group And a carbonyl group selected from the group consisting of [A06]
  • PDADMAC polydiallyldimethyl ammonium chloride
  • the cationic polymer material comprises a cationic polymer material capable of electrically adsorbing a polysulfide ion (S n ⁇ ) [M01] or [A04] according to any one of [A01] to [A04] Positive electrode material for secondary batteries.
  • R is selected from the group consisting of a perfluoroalkyl group, an alkyl group, a phenyl group and an ether.
  • the positive electrode material for a magnesium secondary battery according to any one of [A01] to [A07], wherein the anionic polymer material is a perfluorocarbon material.
  • the anionic polymer material is a magnesium dicarbonate according to any one of [A01] to [A07], which comprises a copolymer of tetrafluoroethylene and perfluoro (2-fluorosulfonylethoxy) propyl vinyl ester.
  • the anionic polymer material comprises an anionic polymer material capable of selectively passing magnesium ions [A01] to the positive electrode for a magnesium secondary battery according to any one of "A07" material.
  • a positive electrode member provided with at least a positive electrode active material layer; A separator disposed opposite to the positive electrode member, A negative electrode member containing magnesium or a magnesium compound disposed to face the separator, Electrolyte containing magnesium salt, Equipped with The positive electrode active material layer is Porous carbon material, and composite material composed of sulfur or sulfur compound, and Coating material layer comprising an anionic polymer material and a cationic polymer material
  • the magnesium secondary battery which consists of positive electrode material comprised from.
  • the magnesium secondary battery according to [B01] in which in the composite material, the porous carbon material is dispersed inside the particle of sulfur or sulfur compound.
  • the porous carbon material in which in the composite material, the porous carbon material is dispersed inside the particles of layered sulfur or sulfur compound.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently hydrogen, halogen, alkyl group, amino group, nitro group, cyano group, hydrosyl group, sulfate group, sulfonate group And a carbonyl group selected from the group consisting of [B06]
  • PDADMAC polydiallyldimethylammonium chloride
  • the cationic polymer material is a magnesium secondary compound according to any one of [B01] to [B04], which is made of a cationic polymer material capable of adsorbing polysulfide ion (S n ⁇ ) electrically.
  • Next battery [B08] A magnesium secondary battery according to any one of [B01] to [B07], wherein the anionic polymer material has the following anionic functional group. However, R is selected from the group consisting of a perfluoroalkyl group, an alkyl group, a phenyl group and an ether.
  • R is selected from the group consisting of a perfluoroalkyl group, an alkyl group, a phenyl group and an ether.
  • the anionic polymer material is a magnesium dicarbonate according to any one of [B01] to [B07], which comprises a copolymer of tetrafluoroethylene and perfluoro (2-fluorosulfonylethoxy) propyl vinyl ester.
  • the anionic polymer material is composed of an anionic polymer material having magnesium ion conductivity.
  • [B13] The magnesium secondary battery according to any one of [B01] to [B12], in which carbon particles adhere to the surface of the coating material layer.
  • [B14] The magnesium secondary battery according to [B01], wherein the positive electrode active material layer is composed of an assembly of particles of sulfur or a sulfur compound.
  • [B15] The magnesium secondary battery according to [B01], wherein the positive electrode active material layer is composed of layered sulfur or a sulfur compound.
  • electrode structure 122 ... positive electrode member, 123 ... positive electrode lead part, 124 ... negative electrode member, 125 ... negative electrode lead part, 126 ... separator, 200 ... exterior member 201: adhesion film 221: electrode structure 223: positive electrode lead portion 225: negative electrode lead portion 1001: cell (cell assembly) 1002: magnesium secondary battery , 1010: control unit, 1011: memory, 1012: voltage measurement unit, 1013: current measurement unit, 1014: current detection resistor, 1015: temperature measurement unit, 1016.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

少なくとも正極活物質層を備えた正極部材、正極部材に対向して配設されたセパレータ、セパレータに対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材、及び、マグネシウム塩を含む電解液を備えたマグネシウム二次電池が提供される。正極活物質層は、多孔質炭素材料13、及び、硫黄又は硫黄化合物によって構成された複合材料11、並びに、アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層14から構成された正極材料から成る。

Description

マグネシウム二次電池及びマグネシウム二次電池用の正極材料
 本開示は、マグネシウム二次電池及びマグネシウム二次電池用の正極材料に関する。
 次世代二次電池として、マグネシウム-硫黄二次電池の開発が、鋭意、進められている。ところで、マグネシウム二次電池のサイクル劣化の要因の1つとして、硫黄の溶解および/または溶出、即ち、硫黄(ゼロ価の分子)としての溶出、あるいは、Sn -(アニオン分子又は原子)としての溶出が考えられる。
 リチウム-硫黄二次電池にあっては、正極部材を構成する硫黄の溶出を防止する技術として、C. Bucur, et. al., "A layer-by-layer supramolecular structure for a sulfur cathode", Energy Environ. Sci., 2016,9, 992-998(非特許文献1)に開示された技術が知られている。
C. Bucur, et. al., "A layer-by-layer supramolecular structure for a sulfur cathode", Energy Environ. Sci., 2016,9, 992-998
 しかしながら、マグネシウム二次電池の正極部材を構成する硫黄の溶出を効果的に防止または抑制する技術は、本発明者らが調べた限りでは知られていない。
 従って、本開示の目的は、マグネシウム二次電池の正極部材を構成する硫黄の溶出を効果的に防止または抑制し得るマグネシウム二次電池用の正極材料、及び、斯かる正極材料を用いたマグネシウム二次電池を提供することにある。
 上記の目的を達成するための本開示のマグネシウム二次電池用の正極材料は、
 多孔質炭素材料、及び、硫黄又は硫黄化合物によって構成された複合材料、並びに、
 アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層、
を有する。
 上記の目的を達成するための本開示のマグネシウム二次電池は、
 少なくとも正極活物質層を備えた正極部材、
 正極部材に対向して配設されたセパレータ、
 セパレータに対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材、及び、
 マグネシウム塩を含む電解液、
を備えており、
 正極活物質層は、
 多孔質炭素材料、及び、硫黄又は硫黄化合物によって構成された複合材料、並びに、
 アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層
から構成された正極材料から成る。
 本開示のマグネシウム二次電池用の正極材料、および、本開示のマグネシウム二次電池の正極部材を構成する正極材料(以下、これらの正極材料を総称して、『本開示の正極材料等』と呼ぶ場合がある)は、多孔質炭素材料、及び、硫黄又は硫黄化合物によって構成された複合材料、並びに、アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層から構成されている。そして、被覆材料層は、マグネシウムイオン(Mg+2)を容易に通過させることができるにも拘わらず、ポリスルフィドアニオンとして硫黄の溶出を防止または抑制することができる結果、高いエネルギー密度、サイクル特性に優れたマグネシウム二次電池の実現が可能となる。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。
図1は、実施例1のマグネシウム二次電池用の正極材料の模式的(概念的)な断面図である。 図2は、実施例1及び比較例1の正極材料の製造工程におけるゼータ電位の測定結果を示すグラフである。 図3は、実施例1の正極材料のSEM写真である。 図4は、実施例1の正極材料のEDS測定における炭素(C)原子の測定結果を示す写真である。 図5は、実施例1の正極材料のEDS測定におけるマグネシウム(Mg)原子の測定結果を示す写真である。 図6は、実施例1の正極材料のEDS測定における硫黄(S)原子の測定結果を示す写真である。 図7は、実施例1の正極材料のIR測定結果を示すグラフである。 図8は、実施例1のマグネシウム二次電池の模式的な分解図である。 図9は、実施例1のマグネシウム二次電池の充放電曲線を示すグラフである。 図10は、実施例2の電気化学デバイス(キャパシタ)の模式的な断面図である。 図11は、実施例2の電気化学デバイス(空気電池)の概念図である。 図12は、実施例2の電気化学デバイス(燃料電池)の概念図である。 図13は、実施例3におけるマグネシウム二次電池(円筒型のマグネシウム二次電池)の模式的な断面図である。 図14は、実施例3におけるマグネシウム二次電池(平板型のラミネートフィルム型マグネシウム二次電池)の模式的な断面図である。 図15は、実施例1において説明した本開示のマグネシウム二次電池を電池パックに適用した場合の実施例3における回路構成例を示すブロック図である。 図16A、図16B及び図16Cは、それぞれ、実施例3における本開示の適用例(電動車両)の構成を表すブロック図、実施例3における本開示の適用例(電力貯蔵システム)の構成を表すブロック図、及び、実施例3における本開示の適用例(電動工具)の構成を表すブロック図である。 図17は、本開示の電気化学デバイス(電池)の概念図である。 図18は、実施例1及び比較例1の正極材料の製造スキームを示す図である。 図19は、図18に引き続き、実施例1及び比較例1の正極材料の製造スキームを示す図である。 図20は、図19に引き続き、実施例1及び比較例1の正極材料の製造スキームを示す図である。 図21は、図20に引き続き、実施例1及び比較例1の正極材料の製造スキームを示す図である。
 以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示のマグネシウム二次電池及びマグネシウム二次電池用の正極材料、ならびに全般に関する説明
2.実施例1(本開示のマグネシウム二次電池及びマグネシウム二次電池用の正極材料)
3.実施例2(実施例1の変形)
4.実施例3(実施例1のマグネシウム二次電池の応用例)
5.その他
〈本開示のマグネシウム二次電池及びマグネシウム二次電池用の正極材料、ならびに全般に関する説明〉
 本開示の正極材料等において、複合材料においては、硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料が分散している形態とすることができる。この場合、複合材料においては、硫黄又は硫黄化合物の粒子が、多孔質炭素材料の有する細孔の内部に侵入している形態とすることができる。あるいは又、本開示の正極材料等にあっては、複合材料においては、層状の硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料が分散している形態とすることができる。
 上記の好ましい形態を含む本開示の正極材料等において、カチオン性高分子材料は、下記のカチオン性官能基を少なくとも1種類、有する形態とすることができる。
Figure JPOXMLDOC01-appb-I000003
但し、R1,R2,R3,R4,R5及びR6は、それぞれ、独立に、水素、ハロゲン、アルキル基、アミノ基、ニトロ基、シアノ基、ヒドロシル基、サルフェート基、スルホネート基及びカルボニル基から成る群から選択される。
 あるいは又、上記の好ましい形態を含む本開示の正極材料等において、カチオン性高分子材料は、ポリジアリルジメチルアンモニウムクロライド(oly(diallyldimethylammonium chloride),PDADMAC)から成る形態とすることができる。
 更には、上記の好ましい形態を含む本開示の正極材料等において、アニオン性高分子材料は、下記のアニオン性官能基を有する形態とすることができる。
Figure JPOXMLDOC01-appb-I000004
但し、Rは、パーフルオロアルキル基、アルキル基、フェニル基及びエーテルから成る群から選択される。
 あるいは又は、上記の好ましい形態を含む本開示の正極材料等において、アニオン性高分子材料は、パーフルオロカーボン材料から成る形態とすることができる。この場合、アニオン性高分子材料は、テトラフルオロエチレンと、パーフルオロ(2-フルオロスルフォニルエトキシ)プロピルビニルエステルとの共重合体から成る形態とすることができる。
尚、この材料は、ナフィオン(Nafion、登録商標)として市販されている。
 あるいは又、本開示の正極材料等において、アニオン性高分子材料は、マグネシウムイオン(Mg+2)を選択的に通過させることができるアニオン性高分子材料とすることが好ましい。云い換えれば、アニオン性高分子材料は、マグネシウムイオン(Mg+2)伝導性を有するアニオン性高分子材料とすることが好ましい。また、アニオン性高分子材料は、解離度の高い(即ち、マグネシウムを解離し易い)官能基を有する材料が好ましい。アニオン性高分子材料で複合材料を被覆する際、スルホン酸等をドープしてもよい。カチオン性高分子材料は、ポリスルフィドイオン(Sn -)を電気的に吸着することができるカチオン性高分子材料とすることが好ましい。また、カチオン性高分子材料は、カチオン密度が高く、酸素等のマイナスに分極した原子が少ない材料であることが望ましい。
 更には、上記説明した好ましい形態または構成を含む本開示の正極材料等において、被覆材料層の表面には炭素粒子が付着している形態とすることができる。
 上記説明した好ましい形態または構成を含む本開示の正極材料等において、多孔質炭素材料および/または炭素粒子は、如何なる多孔質炭素材料から構成されていてもよい。そのような多孔質炭素材料および炭素粒子としては、例えば、ヤシガラや石油ピッチを原料とした活性炭、籾殻等の植物由来の原料から得られる多孔質炭素材料(特開2008-273816号公報参照)、黒鉛、カーボンブラックあるいはケッチェンブラック等の炭素材料、難黒鉛化炭素材料(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)、および/または黒鉛化炭素材料を挙げることができる。多孔質炭素材料は複合材料に導電性を付与するし、被覆材料層表面に付着した炭素粒子は正極材料に導電性を付与する。
 また、多孔質炭素材料を被覆する硫黄として、S8硫黄、不溶性硫黄、コロイダル硫黄又は多硫化物を挙げることができるし、硫黄化合物として有機硫黄化合物(ジスルフィド化合物やトリスルフィド化合物等)を挙げることができる。硫黄又は硫黄化合物は、多孔質炭素材料の表面と接するだけでなく、多孔質炭素材料の有する細孔内にも侵入している。即ち、硫黄あるいは硫黄化合物の粒子の内部に多孔質炭素材料の粒子が分散しており、硫黄あるいは硫黄化合物は多孔質炭素材料の有する細孔の内部にも侵入している。あるいは又、硫黄あるいは硫黄化合物は層状となっており、この層状の硫黄あるいは硫黄化合物の内部に多孔質炭素材料の粒子が分散しており、硫黄あるいは硫黄化合物は多孔質炭素材料の有する細孔の内部にも侵入している。正極活物質層は、硫黄あるいは硫黄化合物の粒子の集合体から構成され、あるいは又、層状の硫黄あるいは硫黄化合物から構成されている。
 正極部材は、正極活物質層から構成されていてもよいし、あるいは又、正極集電体、及び、正極集電体上(正極集電体の片面上あるいは両面上)に形成された正極活物質層から構成されていてもよい。
 電解液は、溶媒、及び、溶媒に溶解したマグネシウム塩から成る形態とすることができる。電解液を構成する溶媒としてスルホンを挙げることができる。その他、電解液を構成する溶媒としては、エーテル、広くは、非プロトン溶媒を挙げることもできる。
 即ち、本開示のマグネシウム二次電池における電解液は、例えば、スルホン、及び、スルホンに溶解したマグネシウム塩を含んでいる形態とすることができる。尚、このような形態を、便宜上、『本開示の第1の形態に係る電解液』と呼ぶ。
 マグネシウム塩は、MgXn(但し、nは1又は2であり、Xは、1価又は2価のアニオン)から成る形態とすることができる。この場合、Xは、ハロゲンを含む分子、-SO4、-NO3、又は、ヘキサアルキルジシアジド基から成る形態とすることができる。具体的には、ハロゲンを含む分子(ハロゲン化物)は、MgX2(X=F,Cl,Br,I)から成る形態とすることができる。より具体的には、フッ化マグネシウム(MgF2)、塩化マグネシウム(MgCl2)、臭化マグネシウム(MgBr2)、および/またはヨウ化マグネシウム(MgI2)を挙げることができる。あるいは又、マグネシウム塩は、MgCl2及びMg(TFSI)2[マグネシウムビストリフルオロメタンスルホニルイミド]の混合系、過塩素酸マグネシウム(Mg(ClO42)、硝酸マグネシム(Mg(NO32)、硫酸マグネシム(MgSO4)、酢酸マグネシウム(Mg(CH3COO)2)、トリフルオロ酢酸マグネシウム(Mg(CF3COO)2)、テトラフルオロホウ酸マグネシウム(Mg(BF42)、テトラフェニルホウ酸マグネシウム(Mg(B(C6542)、ヘキサフルオロリン酸マグネシウム(Mg(PF62)、ヘキサフルオロヒ酸マグネシウム(Mg(AsF62)、パーフルオロアルキルスルホン酸マグネシウム((Mg(Rf1SO32)、但し、Rf1はパーフルオロアルキル基)、パーフルオロアルキルスルホニルイミド酸マグネシウム(Mg((Rf2SO22N)2、但し、Rf2はパーフルオロアルキル基)、及び、ヘキサアルキルジシアジドマグネシウム((Mg(HRDS)2)、但し、Rはアルキル基)から成る群より選択された少なくとも1種類のマグネシウム塩である形態とすることができる。尚、上記のフッ化マグネシウムから(Mg(HRDS)2)までに挙げたマグネシウム塩を、便宜上、『マグネシウム塩-A』と呼ぶ。マグネシウム塩-Aにおいて、マグネシウム塩に対するスルホンのモル比は、例えば、4以上、35以下とすることが好ましく、6以上、16以下とすることがより好ましく、7以上、9以下とすることが一層好ましいが、これらに限定されるものではない。
 あるいは又、本開示の第1の形態に係る電解液におけるマグネシウム塩として、水素化ホウ素マグネシウム(Mg(BH42)を挙げることができる。このように、使用するマグネシウム塩が、水素化ホウ素マグネシウム(Mg(BH42)から成り、ハロゲン原子を含まないと、マグネシウム二次電池を構成する各種部材を耐食性の高い材料から作製する必要が無くなる。尚、このような電解液は、水素化ホウ素マグネシウムをスルホンに溶解させることによって製造することができる。水素化ホウ素マグネシウム(Mg(BH42)から成るマグネシウム塩を、便宜上、『マグネシウム塩-B』と呼ぶ。このような本開示における電解液は、スルホンから成る溶媒にマグネシウム塩-Bが溶解したマグネシウムイオン含有非水系電解液である。電解液中のマグネシウム塩-Bに対するスルホンのモル比は、例えば、50以上、150以下であり、典型的には、60以上、120以下であり、好ましくは、65以上、75以下であるが、これに限定するものではない。
 本開示の第1の形態に係る電解液におけるスルホンは、典型的には、R12SO2(式中、R1およびR2は、それぞれ独立してアルキル基を表す)で表されるアルキルスルホン又はアルキルスルホン誘導体である。ここで、R1およびR2の種類(炭素数及び組み合わせ)は特に限定されず、必要に応じて選ばれる。R1およびR2の各々の炭素数は好適には4以下である。また、R1の炭素数とR2の炭素数との和は、好適には4以上、7以下であるが、これに限定されるものではない。R1およびR2は、それぞれ独立して、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、および/または、t-ブチル基等である。アルキルスルホンとして、具体的には、ジメチルスルホン(DMS)、メチルエチルスルホン(MES)、メチル-n-プロピルスルホン(MnPS)、メチル-i-プロピルスルホン(MiPS)、メチル-n-ブチルスルホン(MnBS)、メチル-i-ブチルスルホン(MiBS)、メチル-s-ブチルスルホン(MsBS)、メチル-t-ブチルスルホン(MtBS)、エチルメチルスルホン(EMS)、ジエチルスルホン(DES)、エチル-n-プロピルスルホン(EnPS)、エチル-i-プロピルスルホン(EiPS)、エチル-n-ブチルスルホン(EnBS)、エチル-i-ブチルスルホン(EiBS)、エチル-s-ブチルスルホン(EsBS)、エチル-t-ブチルスルホン(EtBS)、ジ-n-プロピルスルホン(DnPS)、ジ-i-プロピルスルホン(DiPS)、n-プロピル-n-ブチルスルホン(nPnBS)、n-ブチルエチルスルホン(nBES)、i-ブチルエチルスルホン(iBES)、s-ブチルエチルスルホン(sBES)及びジ-n-ブチルスルホン(DnBS)から成る群より選ばれた少なくとも1種類のアルキルスルホンを挙げることができる。また、アルキルスルホン誘導体として、エチルフェニルスルホン(EPhS)を挙げることができる。そして、これらのスルホンの内でも、EnPS、EiPS、EsBS及びDnPSから成る群より選ばれた少なくとも1種類が好ましい。
 あるいは又、本開示における電解液は、エーテル(広くは、非プロトン溶媒)、及び、エーテル(非プロトン溶媒)に溶解したマグネシウム塩を含んでいる形態とすることができる。尚、このような形態を、便宜上、『本開示の第2の形態に係る電解液』と呼ぶ。
 エーテルは、環状エーテルおよび/または直鎖エーテルから成る形態とすることができる。具体的には、環状エーテルとして、テトラヒドロフラン(THF)、ジオキソラン、ジオキサン、エポキシド類及びフラン類から成る群より選択された少なくとも1種類の環状エーテルを挙げることができる。直鎖エーテルとして、ジアルキルグリコールエーテルを挙げることができる。更には、ジアルキルグリコールエーテルとしては、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ペンタエチレングリコールジメチルエーテル、ヘキサエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテル及びトリエチレングリコールブチルメチルエーテルから成る群より選択された少なくとも1種類のジアルキルグリコールエーテルを挙げることができるが、これらに限定するものではない。
 そして、この場合、マグネシウム塩は、Mg(AlCl312、又は、Mg(AlCl223 )2(但し、R1,R2およびR3は、それぞれ独立してアルキル基である)から成る形態とすることができる。R1、R2およびR3の種類(炭素数及び組み合わせ)は特に限定されず、必要に応じて選ばれる。R1、R2およびR3の各々の炭素数は、好ましくは4以下であるが、これに限定するものではない。また、R2の炭素数とR3の炭素数との和は、好ましくは、4以上、7以下であるが、これに限定するものではない。R1、R2およびR3の各々として、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基および/またはt-ブチル基を挙げることができる。
 あるいは又、本開示における電解液は、スルホン及び非極性溶媒から成る溶媒、並びに、溶媒に溶解したマグネシウム塩-Aを有する。
 非極性溶媒は、必要に応じて選ばれるが、好適には、比誘電率及びドナー数がいずれも20以下である非水系溶媒である。非極性溶媒として、より具体的には、例えば、芳香族炭化水素、エーテル、ケトン、エステル及び鎖状炭酸エステルから成る群より選ばれた少なくとも1種類の非極性溶媒を挙げることができる。芳香族炭化水素として、例えば、トルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレンおよび/または1-メチルナフタレン等を挙げることができる。エーテルとして、例えば、ジエチルエーテルおよび/またはテトラヒドロフラン等を挙げることができる。ケトンとして、例えば、4-メチル-2-ペンタノン等を挙げることができる。エステルとして、例えば、酢酸メチルおよび/または酢酸エチル等を挙げることができる。鎖状炭酸エステルとして、例えば、炭酸ジメチル、炭酸ジエチルおよび/または炭酸エチルメチル等を挙げることができる。
 スルホン及びマグネシウム塩-Aについては、上述したとおりである。また、必要に応じて、電解液に上述した添加剤を加えてもよい。そして、マグネシウム塩-Aに対するスルホンのモル比は、例えば、4以上、20以下とすることがより好ましく、6以上、16以下とすることがより好ましく、7以上、9以下とすることが一層好ましいが、これらに限定されるものではない。
 あるいは又、溶媒として、その他、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、アセトニトリル、ジメトキシエタン、ジエトキシエタン、ビニレンカーボネート、γ-ブチロラクトンおよび/またはテトラヒドロフランを挙げることができ、これらの内、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
 あるいは又、溶媒は、直鎖エーテルから構成されていることが好ましい。直鎖エーテルの具体例として、エチレングリコールジメチルエーテル(ジメトキシエタン)、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ペンタエチレングリコールジメチルエーテル、ヘキサエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテルおよび/またはトリエチレングリコールブチルメチルエーテルを挙げることができるが、中でも、エチレングリコールジメチルエーテル(ジメトキシエタン,DME)を用いることが好ましい。
 電解質層を、本開示における電解液、及び、電解液を保持する保持体から成る高分子化合物から構成することもできる。高分子化合物は、電解液によって膨潤されるものであってもよい。この場合、電解液により膨潤された高分子化合物はゲル状であってもよい。高分子化合物として、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよび/またはポリカーボネートを挙げることができる。特に、電気化学的な安定性の観点から、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンおよび/またはポリエチレンオキサイドが好ましい。電解質層を、固体電解質層とすることもできる。
 上記説明した好ましい形態を含む本開示のマグネシウム二次電池にあっては、中でも、マグネシウム塩は塩化マグネシウムから成り、電解液はエチル-n-プロピルスルホン(EnPS)を含むことが、より好ましい。
 本開示のマグネシウム二次電池において、正極集電体は、例えば、ニッケル、ステンレス鋼、銅および/もしくはモリブデン等の金属箔あるいは合金箔、金属板、合金板、金属メッシュ、合金製メッシュまたは炭素繊維やカーボンシート等の炭素材料等から成る。但し、前述したとおり、正極部材は、正極集電体を備えず、正極活物質層(層状の正極活物質)のみから成る構造とすることもできる。正極活物質層には、必要に応じて導電助剤及び結着剤の内の少なくとも1種類が含まれていてもよい。
 負極部材は、マグネシウム又はマグネシウム化合物を含む。具体的には、負極部材は、マグネシウム(マグネシウム金属単体)、マグネシウム合金あるいはマグネシウム化合物から成る。あるいは又、負極部材を構成する負極集電体の表面に負極活物質層が形成された構造とすることもでき、この場合、負極活物質層は、マグネシウムイオン伝導性を有する層から構成され、具体的には、負極活物質層を構成する材料として、マグネシウム(Mg)系材料を挙げることができ、更には、炭素(C)、酸素(O)、硫黄(S)及びハロゲンを少なくとも含んでいてもよい。このような負極活物質層は、40eV以上、60eV以下の範囲にマグネシウム由来の単一のピークを有することが好ましい。ハロゲンとして、例えば、フッ素(F)、塩素(Cl)、臭素(Br)及びヨウ素(I)から成る群より選ばれた少なくとも1種類を挙げることができる。そして、この場合、負極活物質層の表面から2×10-7mまでの深さに亙り、40eV以上、60eV以下の範囲にマグネシウム由来の単一のピークを有することがより好ましい。負極活物質層が、その表面から内部に亙り、良好な電気化学的活性を示すからである。また、同様の理由から、マグネシウムの酸化状態が、負極活物質層の表面から深さ方向に2×10-7mに亙りほぼ一定であることが好ましい。ここで、負極活物質層の裏面とは、負極活物質層の両面の内、負極集電体と負極活物質層の界面を構成する側の面を意味し、負極活物質層の表面とは、負極活物質層の裏面とは反対側の面を意味する。負極活物質層が上記の元素を含んでいるか否かはXPS(X-ray Photoelectron Spectroscopy)法に基づき確認することができる。また、負極活物質層が上記ピークを有すること、及び、マグネシウムの酸化状態も、XPS法に基づき、同様に確認することができる。負極活物質層には、必要に応じて導電助剤及び結着剤の内の少なくとも1種類が含まれていてもよい。負極部材は、例えば、板状材料あるいは箔状材料から作製されるが、これに限定するものではなく、粉末を用いて形成(賦形)することも可能である。上述したとおり、負極部材は負極集電体を備えていてもよい。
負極集電体を構成する材料としては、銅、ニッケル、ステンレス鋼、モリブデン、マグネシウムおよび/またはマグネシウム化合物等の金属箔あるいは合金箔、金属板、および合金板を挙げることができる。
 正極活物質層あるいは負極活物質層に含まれる導電助剤として、例えば、黒鉛、炭素繊維、カーボンブラック、カーボンナノチューブ等の炭素材料を挙げることができ、これらの1種類又が2種類以上を混合して用いることができる。炭素繊維として、例えば、気相成長炭素繊維(Vapor Growth Carbon Fiber:VGCF)等を用いることができる。カーボンブラックとして、例えば、アセチレンブラックおよび/またはケッチェンブラック等を用いることができる。カーボンナノチューブとして、例えば、シングルウォールカーボンナノチューブ(SWCNT)および/またはダブルウォールカーボンナノチューブ(DWCNT)等のマルチウォールカーボンナノチューブ(MWCNT)等を用いることができる。導電性が良好な材料であれば、炭素材料以外の材料を用いることもでき、例えば、Ni粉末のような金属材料、導電性高分子材料等を用いることもできる。正極活物質層あるいは負極活物質層に含まれ結着剤として、例えば、ポリフッ化ビニリデン(PVdF)および/またはポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリビニルアルコール(PVA)系樹脂、ならびに/またはスチレン-ブタジエン共重合ゴム(SBR)系樹脂等の高分子樹脂を用いることができる。また、結着剤として導電性高分子を用いてもよい。導電性高分子として、例えば、置換又は無置換のポリアニリン、ポリピロール、ポリチオフェン、および/または、これらから選ばれた1種類又は2種類から成る(共)重合体等を用いることができる。
 正極部材と負極部材とは、両極の接触による短絡を防止しつつ、マグネシウムイオンを通過させる無機セパレータあるいは有機セパレータによって分離されている。無機セパレータとして、例えば、ガラスフィルターおよび/またはグラスファイバーを挙げることができる。有機セパレータとして、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよび/またはポリエチレン等から成る合成樹脂製の多孔質膜を挙げることができ、これらの2種類以上の多孔質膜を積層した構造とすることもできる。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、且つ、シャットダウン効果による電池の安全性向上を図ることができるので好ましい。
 以上に説明した構成を有するマグネシウム二次電池においては、電気化学デバイス(電池)の概念図を図17に示すように、充電時、マグネシウムイオン(Mg+2)が正極部材16から電解液18を通って負極部材17に移動することにより電気エネルギーを化学エネルギーに変換して蓄電する。放電時には、負極部材17から電解液18を通って正極部材16にマグネシウムイオンが戻ることにより電気エネルギーを発生させる。
 本開示のマグネシウム二次電池は、例えば、ノート型パーソナルコンピュータ、PDA(携帯情報端末)、携帯電話、スマートフォン、コードレス電話の親機や子機、ビデオムービー、デジタルスチルカメラ、電子書籍、電子辞書、携帯音楽プレイヤー、ラジオ、ヘッドホン、ゲーム機、ナビゲーションシステム、メモリーカード、心臓ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコンディショナー、テレビジョン受像機、ステレオ、温水器、電子レンジ、食器洗浄器、洗濯機、乾燥機、照明機器、玩具、医療機器、IoT機器やIoT端末、ロボット、ロードコンディショナー、信号機、鉄道車両、ゴルフカート、電動カート、電気自動車(ハイブリッド自動車を含む)等の駆動用電源又は補助用電源として使用することができる。また、住宅をはじめとする建築物又は発電設備用の電力貯蔵用電源等に搭載し、あるいは、これらに電力を供給するために使用することができる。電気自動車において、電力を供給することにより電力を駆動力に変換する変換装置は、一般的にはモータである。車両制御に関する情報処理を行う制御装置(制御部)としては、マグネシウム二次電池の残量に関する情報に基づき、電池残量表示を行う制御装置等が含まれる。また、マグネシウム二次電池を、所謂スマートグリッドにおける蓄電装置において用いることもできる。このような蓄電装置は、電力を供給するだけでなく、他の電力源から電力の供給を受けることにより蓄電することができる。他の電力源としては、例えば、火力発電、原子力発電、水力発電、太陽電池、風力発電、地熱発電、燃料電池(バイオ燃料電池を含む)等を用いることができる。
 二次電池、二次電池に関する制御を行う制御手段(制御部)、及び、二次電池を内包する外装を有する電池パックにおける二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。この電池パックにおいて、制御手段は、例えば、二次電池に関する充放電、過放電又は過充電の制御を行う。
 二次電池から電力の供給を受ける電子機器における二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。
 二次電池から電力の供給を受けて車両の駆動力に変換する変換装置、及び、二次電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置(制御部)を有する電動車両における二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。この電動車両において、変換装置は、典型的には、マグネシウム二次電池から電力の供給を受けてモータを駆動させ、駆動力を発生させる。モータの駆動には、回生エネルギーを利用することもできる。また、制御装置(制御部)は、例えば、マグネシウム二次電池の電池残量に基づいて車両制御に関する情報処理を行う。この電動車両には、例えば、電気自動車、電動バイク、電動自転車、鉄道車両等の他、所謂ハイブリッド車が含まれる。
 二次電池から電力の供給を受け、及び/又は、電力源から二次電池に電力を供給するように構成された電力システムにおける二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。この電力システムは、およそ電力を使用するものである限り、どのような電力システムであってもよく、単なる電力装置も含む。この電力システムは、例えば、スマートグリッド、家庭用エネルギー管理システム(HEMS)、車両等を含み、蓄電も可能である。
 二次電池を有し、電力が供給される電子機器が接続されるように構成された電力貯蔵用電源における二次電池に、上記の各種の好ましい形態、構成を含む本開示のマグネシウム二次電池を適用することができる。この電力貯蔵用電源の用途は問わず、基本的にはどのような電力システム又は電力装置にも用いることができるが、例えば、スマートグリッドに用いることができる。
 本開示のマグネシウム二次電池用の正極材料は、マグネシウム二次電池に適用することができるだけでなく、各種センサ等の電気化学デバイスに適用することもできる。キャパシタは、正極、負極、及び、正極と負極に挟まれ、電解液が含浸されたセパレータを備えている。
 実施例1は、本開示のマグネシウム二次電池及びマグネシウム二次電池用の正極材料(以下、単に、『正極材料』と呼ぶ)に関する。図1に模式的(概念的)な断面図を示す実施例1の正極材料10は、
 多孔質炭素材料13、及び、硫黄又は硫黄化合物(具体的には、例えば、硫黄S812)によって構成された複合材料(複合部材)11、並びに、
 アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層14、
を有する。また、被覆材料層14の表面に炭素粒子15が付着している。
 複合材料11においては、硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料13が分散しており、更には、複合材料11においては、硫黄又は硫黄化合物の粒子が、多孔質炭素材料11の有する細孔の内部に侵入している。あるいは又、複合材料においては、層状の硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料13が分散している。あるいは又、これらの状態が混在している。
 より具体的には、硫黄12の粒子の内部に多孔質炭素材料13の粒子が分散しており、硫黄12は多孔質炭素材料13の有する細孔の内部にも侵入している。あるいは、硫黄は層状となっており、この層状の硫黄の内部に多孔質炭素材料の粒子が分散しており、硫黄は多孔質炭素材料の有する細孔の内部にも侵入している(図示せず)。図1においては、硫黄12の粒子の内部に多孔質炭素材料13の粒子が均一に分散されているように図示しているが、実際には、ランダムに分散していてもよい。また、硫黄12の粒子の形状を球状に図示しているが、実際には、種々の形状を取り得る。更には、被覆材料層14が硫黄12の粒子を均一に被覆しているように図示しているが、実際には、被覆材料層14は硫黄12の粒子を不均一に被覆していてもよい。また、被覆材料層14の表面に炭素粒子15が均一に付着しているように図示しているが、実際には、ランダムに付着していてもよい。
 ここで、多孔質炭素材料13及び炭素粒子15はケッチェンブラックから成る。また、アニオン性高分子材料は、パーフルオロカーボン材料、具体的には、テトラフルオロエチレンと、パーフルオロ(2-フルオロスルフォニルエトキシ)プロピルビニルエステルとの共重合体(ナフィオン)から成る。更には、カチオン性高分子材料は、ポリジアリルジメチルアンモニウムクロライド(PDADMAC)から成る。
 あるいは又、カチオン性高分子材料は、下記のカチオン性官能基を少なくとも1種類、有する構成とすることができるし、アニオン性高分子材料は、下記のアニオン性官能基を有する構成とすることができる。あるいは又、アニオン性高分子材料は、マグネシウムイオン(Mg+2)を選択的に通過させることができるアニオン性高分子材料、云い換えれば、マグネシウムイオン(Mg+2)伝導性を有するアニオン性高分子材料とすることが好ましいし、カチオン性高分子材料は、ポリスルフィドイオン(Sn -)を電気的に吸着することができるカチオン性高分子材料とすることが好ましい。
Figure JPOXMLDOC01-appb-I000005
但し、R1,R2,R3,R4,R5及びR6は、それぞれ、独立に、水素、ハロゲン、アルキル基、アミノ基、ニトロ基、シアノ基、ヒドロシル基、サルフェート基、スルホネート基及びカルボニル基から成る群から選択される。
Figure JPOXMLDOC01-appb-I000006
但し、Rは、パーフルオロアルキル基、アルキル基、フェニル基及びエーテルから成る群から選択される。
 また、図8に実施例1のマグネシウム二次電池の模式的な分解図を示すように、実施例1のマグネシウム二次電池20は、
 少なくとも正極活物質層23Bを備えた正極部材23(実施例1にあっては、具体的には、正極集電体23A及び正極活物質層23Bを備えた正極部材23)、
 正極部材23(より具体的には、正極活物質層23B)に対向して配設されたセパレータ24、
 セパレータ24に対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材25、ならびに、
 マグネシウム塩を含む電解液、
を備えたマグネシウム二次電池である。そして、正極活物質層23Aは、上述した実施例1の正極材料10(具体的には、正極材料10の集合体、あるいは又、層状の硫黄)から成る。
 電解液は、溶媒、及び、溶媒に溶解したマグネシウム塩から成る。電解液を構成する溶媒としてスルホンを挙げることができるし、その他、エーテル、広くは、非プロトン溶媒を挙げることもできる。実施例1において、具体的には、電解液は、スルホン、及び、スルホンに溶解したマグネシウム塩を含んでいる。ここで、マグネシウム塩は塩化マグネシウム(MgCl2)から成り、電解液を構成するスルホンはエチル-n-プロピルスルホン(EnPS)を含む。
 以下に説明する方法に基づき正極材料を製造した。
〈官能基化された多孔質炭素材料の調製〉(正極材料の製造スキームを示す図18参照) 292ミリリットルの60%硝酸と208ミリリットルの蒸留水とを混合した混合液に、1.25グラムのケッチェンブラック(ライオン株式会社製ECP600JD)を投入した。次いで、この混合液を、1リットルのナス型フラスコ内で、70゜Cにて3日間、加熱、撹拌した後、遠心分離(12000rpm、1分間)を行い、上澄みを取り除いた。次いで、500ミリリットルの蒸留水を用いて、5回、洗浄処理することによって、官能基化された多孔質炭素材料を得た。
〈複合材料の調製〉(正極材料の製造スキームを示す図19参照)
 25グラムのチオ硫酸ナトリウムを750ミリリットルの蒸留水に溶かした溶液に、17.5ミリリットルのポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸[PEDOT/PSS]を加えて、スターラを用いて撹拌し、混合液(『混合液-A』と呼ぶ)を得た。尚、PEDOT/PSSは、複合材料に導電性を付与するために添加する。次いで、2リットルのビーカーを用いて、78.5グラムの蓚酸を1.22リットルの蒸留水に加えて溶かし、上記の官能基化された多孔質炭素材料溶液(3ミリグラム/蒸留水1リットル)の30ミリリットルを分散させた後、混合液-Aを素早く添加し、室温にて、3時間、スターラを用いて激しく撹拌した後、5分間、超音波処理を行い、次いで、遠心分離(3000rpm、5分間)を行い、上澄みを取り除いた。次いで、2リットルの蒸留水を用いて、5回、洗浄処理することで、多孔質炭素材料が硫黄S8で被覆された複合材料を得ることができた。収量は5.07グラムであった。
〈複合材料のカチオン性高分子材料による第1回目の被覆〉(正極材料の製造スキームを示す図20参照)
 硝酸リチウム3.45グラムを500ミリリットルの蒸留水に溶かした溶液(『水溶液-A』と呼ぶ)中に3ミリリットルのPDADMACを加えて、5分間、スターラを用いて撹拌した。次いで、5.07グラムの複合材料を添加して、1時間、スターラを用いて撹拌した。その後、遠心分離(3000rpm、5分間)を行い、上澄みを取り除いた。
次いで、500ミリリットルの水溶液-Aを用いて再分散させた後、遠心分離を行い、上澄みを取り除き、洗浄処理を2回行った。得られた物質を、『PDADMAC-1』と呼ぶ。
〈複合材料のアニオン性高分子材料による第2回目の被覆〉(正極材料の製造スキームを示す図20参照)
 蒸留水とエタノール(体積比1:1)の混合液500ミリリットルに3.45グラムの硝酸リチウムを溶かした溶液(『水溶液-B』と呼ぶ)中に3ミリリットルのナフィオン溶液を添加した。次いで、この混合液に、上述したPDADMAC-1を分散させ、1時間、スターラを用いて撹拌した後、遠心分離(3000rpm、5分間)を行い、上澄みを取り除いた。次いで、水溶液-Bを加えて良く振り、再分散させた後、遠心分離を行い、上澄みを取り除いた。次いで、更に、水溶液-Bの500ミリリットルを用いて再分散させた後、遠心分離を行い、上澄み取り除き、洗浄処理を2回行った。得られた物質を、『Nafion-1』と呼ぶ。
〈複合材料のカチオン性高分子材料による第3回目の被覆〉
 複合材料の代わりにNafion-1を用いて、複合材料のカチオン性高分子材料による第1回目の被覆工程と同様の工程を実行し、PDADMAC-2を得た。
〈複合材料のアニオン性高分子材料による第4回目の被覆〉
 PDADMAC-2を用いて、複合材料のアニオン性高分子材料による第1回目の被覆工程と同様の工程を実行し、Nafion-2を得た。
〈実施例1の正極材料の調製〉
 得られたNafion-2の半量を、500ミリリットルの0.05モル-MgCl2水溶液に添加して良く振り、分散させた後、遠心分離を行い、上澄みを取り除いた。次いで、更に、0.05モル-MgCl2水溶液の500ミリに再分散させた後、遠心分離を行い、上澄みを取り除き、洗浄処理を2回行った。こうして、実施例1の正極材料を得た。この処理の過程において、被覆材料層中のリチウム(Li)がマグネシウム(Mg)に置換された。
〈実施例1の正極材料への炭素粒子の付着〉(正極材料の製造スキームを示す図21参照)
 150ミリリットルの蒸留水に実施例1の正極材料を分散させた溶液に、上記の官能基化された多孔質炭素材料溶液(3ミリグラム/蒸留水1リットル)100ミリリットルを添加した。次いで、この混合液を、4時間、スターラを用いて撹拌した後、遠心分離(3000rpm、5分間)を行い、上澄みを取り除いた。次いで、250ミリリットルの蒸留水を用いて、洗浄処理を2回行い、80゜Cで、12時間、乾燥することで、最終的な実施例1の正極材料を得た。
〈比較例1の正極材料の調製〉
 得られたNafion-2の半量を、500ミリリットルの水溶液-Aに加えて良く振り、分散させた後、遠心分離を行い、上澄みを取り除いた。次いで、更に、500ミリリットルの水溶液-Aに再分散させた後、遠心分離を行い、上澄みを取り除き、洗浄処理を2回行った。こうして、比較例1の正極材料を得た。
〈比較例1の正極材料への炭素粒子の付着〉(正極材料の製造スキームを示す図21参照)
 150ミリリットルの蒸留水に比較例1の正極材料を分散させた溶液に、上記の官能基化された多孔質炭素材料溶液(3ミリグラム/蒸留水1リットル)100ミリリットルを添加した。次いで、この混合液を、4時間、スターラを用いて撹拌した後、遠心分離(3000rpm、5分間)を行い、上澄みを取り除いた。次いで、250ミリリットルの蒸留水を用いて、洗浄処理を2回行い、80゜Cで、12時間、乾燥することで、最終的な比較例1の正極材料を得た。
 尚、こうして得られた比較例1の正極材料は、実質的に、前述した非特許文献1に開示された材料である。
 正極材料の製造過程における粒子の被覆状態及び積層構造を確認するため、製造過程の粒子についてゼータ電位測定を行った。ゼータ電位測定条件は、以下のとおりである。
測定装置 :MALVERN社製 Zetasizer Nano ZS
測定条件 :分散溶媒として蒸留水を使用。
     (使用パラメータ:溶媒屈折率1.330、粘度0.8872)
      測定温度:25゜C
      測定セル:Disposable sizing cell
      測定手順: 測定は、連続して3回実施し、平均値を算出。
試料前処理:分散液を、1分間、超音波分散処理後、測定。
 実施例1及び比較例1の正極材料の製造工程におけるゼータ電位の測定結果を図2に示す。実施例1及び比較例1の正極材料のゼータ電位は、
複合材料のカチオン性高分子材料による第1回目の被覆工程(図2の「B」で示す)
複合材料のカチオン性高分子材料による第3回目の被覆工程(図2の「D」で示す)
実施例1及び比較例1の正極材料の調製工程(図2の「F」及び「G」で示す)
においては正の値を示す一方、
複合材料の調製工程(図2の「A」で示す)
複合材料のアニオン性高分子材料による第2回目の被覆工程(図2の「C」で示す)
複合材料のアニオン性高分子材料による第4回目の被覆工程(図2の「E」で示す)
最終的に得られた実施例1及び比較例1の正極材料(図2の「H」及び「J」で示す)
においては負の値を示した。即ち、各処理工程における材料の表面の電位状態は、所望の状態となっていることが確認できた。被覆材料層の厚さについては、特に制限は無いが、被覆によってゼータ電位が変わる程度の厚さであることが望ましい。
 実施例1の正極材料に対してSEM-EDS測定を行い、炭素(C)、マグネシウム(Mg)及び硫黄(S)の存在を確認した。SEM-EDS測定結果を図3、図4、図5および図6に示す。尚、図3はSEM写真であり、図4はEDS測定における炭素(C)原子の測定結果であり、図5はEDS測定におけるマグネシウム(Mg)原子の測定結果であり、図6はEDS測定における硫黄(S)原子の測定結果である。図4、図5及び図6から、炭素(C)原子、マグネシウム(Mg)原子及び硫黄(S)原子の存在が明確に認められた。尚、SEM-EDS測定条件は、以下のとおりである。観察前処理として、試料をシリコン半導体基板又はカーボンテープに載置し、白金薄膜を蒸着した後、観察、測定および分析を行った。
SEM:株式会社日立ハイテクノロジーズ製 走査電子顕微鏡 SU3500
EDX:株式会社製堀場製作所製 エネルギー分散型X線分析装置
    EMAXEvolution EX-370 X-MAX20
SEM観察条件
 ・真空度   :低真空モード(30Pa)
 ・WD    :5mm乃至6mm
 ・加速電圧  :15kV
 ・スポット強度:50
 ・観察モード :BSE-3D
EDX測定条件
 ・真空度   :低真空モード(30Pa)
 ・WD    :10mm
 ・加速電圧  :15kV
 ・スポット強度:60
 また、図7に示すように、IR測定に基づき、実施例1の正極材料にナフィオン及びPDADMACが存在することを確認することができた。
 一方、以下のようにして、電解液(MgCl2-EnPS)を調製した。
 試薬の計量及び混合はグローブボックス内(アルゴンガス雰囲気/露点-80゜C乃至-90゜C)で行った。脱水メタノール100ミリリットルをスターラを用いて撹拌しながら、無水塩化マグネシウム(II)(MgCl2)3.81グラムを加えた。シグマアルドリッチ製のMgCl2(無水物)を使用した。MgCl2をメタノールに溶解させる際に若干の発熱があることを、接触型温度計による反応容器外部の温度測定により確認した。この発熱は、メタノールがMgに配位する際の反応熱によるものであり、メタノール中のMgにメタノールが配位した構造を有していると考えられる。また、MgCl2溶解後も若干の白濁があった。これは、メタノール中に残存している水とMgとが反応し、Mg(OH)2が生成したことによるものと考えられる。白濁は極僅かであるため、濾過せずに操作を継続した。
 MgCl2溶解後、スターラを用いて撹拌しながら、富山薬品工業株式会社製、電池用脱水仕様のエチルノルマルプロピルスルホン(EnPS)43.6グラムを加えた。次いで、大気が混入しない状態にこの溶液を保ちながらグローブボックス外に出し、ロータリーポンプを用いて減圧しながら、120゜C、2時間、加熱、攪拌することで、メタノールを除去した。メタノールが減少すると白色沈殿が生成したが、減圧加熱を継続すると、生成した沈殿物は溶解した。この溶解度の変化は、Mgの配位子がメタノールからEnPSに交換したことによるものであると考えられる。メタノールの除去を、1H NMR測定によって確認した。
 メタノール除去後の試料にはMgCl2をメタノールに溶解した際の白濁が残っていたため、グローブボックス内にて濾過(ポア径0.45μm:Whatman 製)した。得られた電解液は、Mg:Cl:EnPS=1:2:8(モル比)、Mg濃度0.99モル/リットルであった。
 実施例1のマグネシウム二次電池(コイン電池20、CR2016タイプ)を分解した状態を図8の模式図に示すが、コイン電池缶21にガスケット22を載せ、正極部材23(ニッケル製の金網(メッシュ)から成る正極集電体23A及び実施例1の正極材料から成る正極活物質層23B)、セパレータ24、直径15mmおよび厚さ0.20mmのMg板(リカザイ株式会社製、純度99.9%)から成る負極部材25、ならびに厚さ0.5mmのステンレス鋼板から成るスペーサ26、コイン電池蓋27の順に積層した後、コイン電池缶21をかしめて封止した。スペーサ26はコイン電池蓋27に予めスポット溶接しておいた。セパレータ(アドバンテック株式会社製、グラスフィルターGC50)24には、上記の電解液が含まれている。
 次いで、電圧範囲を0.7ボルト乃至2.5ボルト、電流密度を0.1ミリアンペアの定電流とし、充電時、2.5ボルトに達した時点で充電を停止し、放電時、0.7ボルトに至ったとき放電を停止した。こうして得られた充放電曲線を図9に示すが、図9中、「A」は充電曲線であり、「B」は放電曲線である。
 以上のとおり、実施例1のマグネシウム二次電池用の正極材料、あるいは又、実施例1のマグネシウム二次電池の正極部材を構成する正極材料は、多孔質炭素材料が硫黄又は硫黄化合物によって被覆された複合材料が、アニオン性高分子材料及びカチオン性高分子材料から成る被覆材料層によって被覆されている構造を有し、被覆材料層は、マグネシウムイオン(Mg+2)を容易に通過させることができるにも拘わらず、ポリスルフィドアニオンとして硫黄の溶出を防止または抑制することができる。
 具体的には、アニオン性高分子材料(具体的には、ナフィオン)は、マグネシウムイオン(Mg+2)を選択的に透過させる機能を有し、薄膜化にすることでイオン電導度を高くすることができる。また、カチオン性高分子材料(具体的には、PDADMAC)は、ポリスルフィドアニオン(Sn -)を電気的に吸着する機能を有する。しかも、複合材料を被覆材料層で被覆することで、正極材料の体積変化による複合材料の粒子の露出を軽減することができる。また、多孔質炭素材料が存在することで、正極材料に電気伝導度を付与することができるし、ポリスルフィドアニオンを物理的に吸着することができる。
 以上の結果として、高いエネルギー密度、サイクル特性に優れたマグネシウム二次電池の実現が可能となった。
 実施例2は、実施例1の変形である。実施例2の電気化学デバイスは、模式的な断面図を図10に示すように、キャパシタから成り、セパレータ33を介して、正極31及び負極32が対向して配置されている。尚、参照番号35,36は集電体を示し、参照番号37はガスケットを示す。また、正極31は、実施例1の正極部材から成る。負極32は、マグネシウム又はマグネシウム化合物を含む。
 あるいは又、実施例2の電気化学デバイスは、概念図を図11に示すように、空気電池から成る。この空気電池は、例えば、水蒸気を透過し難く酸素を選択的に透過させる酸素選択性透過膜47、導電性の多孔質材料から成る空気極側集電体44、この空気極側集電体44と多孔質正極41の間に配置され導電性材料から成る多孔質の拡散層46、導電性材料と触媒材料を含む多孔質正極41、水蒸気を通過し難いセパレータ及び電解液(又は、電解液を含む固体電解質)43、マグネシウムイオンを放出する負極部材42、負極側集電体45、及び、これらの各層が収納される外装体48から構成されている。多孔質正極41は、実施例1の正極部材から成る。
 酸素選択性透過膜47によって空気(大気)51中の酸素52が選択的に透過され、多孔質材料から成る空気極側集電体44を通過し、拡散層46によって拡散され、多孔質正極41に供給される。酸素選択性透過膜47を透過した酸素の進行は空気極側集電体44によって部分的に遮蔽されるが、空気極側集電体44を通過した酸素は拡散層46によって拡散され、広がるので、多孔質正極41全体に効率的に行き渡るようになり、多孔質正極41の面全体への酸素の供給が空気極側集電体44によって阻害されることがない。また、酸素選択性透過膜47によって水蒸気の透過が抑制されるので、空気中の水分の影響による劣化が少なく、酸素が多孔質正極41全体に効率的に供給されるので、電池出力を高くすることが可能となり、安定して長期間使用可能となる。
 あるいは又、実施例2の電気化学デバイスは、概念図を図12に示すように、燃料電池から成る。この燃料電池は、例えば、正極部材61、正極用電解液62、正極用電解液輸送ポンプ63、燃料流路64、正極用電解液貯蔵容器65、負極部材71、負極用電解液72、負極用電解液輸送ポンプ73、燃料流路74、負極用電解液貯蔵容器75、イオン交換膜66から構成されている。燃料流路64には、正極用電解液貯蔵容器65、正極用電解液輸送ポンプ63を介して、正極用電解液62が連続的又は断続的に流れており(循環しており)、燃料流路74には、負極用電解液貯蔵容器75、負極用電解液輸送ポンプ73を介して、負極用電解液72が連続的又は断続的に流れており(循環しており)、正極部材61と負極部材71との間で発電が行われる。正極用電解液62として、実施例1の電解液に正極活物質を添加したものを用いることができ、負極用電解液72として、実施例1の電解液に負極活物質を添加したものを用いることができる。正極部材61は、実施例1の正極部材から成る。
 実施例3においては、本開示の電気化学デバイス(具体的には、マグネシウム二次電池)、及び、その適用例について説明する。
 実施例1において説明した本開示のマグネシウム二次電池は、二次電池を駆動用・作動用の電源又は電力蓄積用の電力貯蔵源として利用可能な機械、機器、器具、装置、システム(複数の機器等の集合体)に対して、特に限定されることなく、適用することができる。電源として使用されるマグネシウム二次電池(具体的には、マグネシウム-硫黄二次電池)は、主電源(優先的に使用される電源)であってもよいし、補助電源(主電源に代えて、又は、主電源から切り換えて使用される電源)であってもよい。マグネシウム二次電池を補助電源として使用する場合、主電源はマグネシウム二次電池に限られない。
 本開示のマグネシウム二次電池(具体的には、マグネシウム-硫黄二次電池)の用途として、具体的には、ビデオカメラやカムコーダ、デジタルスチルカメラ、携帯電話機、パーソナルコンピュータ、テレビジョン受像機、各種表示装置、コードレス電話機、ヘッドホンステレオ、音楽プレーヤ、携帯用ラジオ、電子ブックや電子新聞等の電子ペーパー、PDAを含む携帯情報端末といった各種電子機器、電気機器(携帯用電子機器を含む);玩具;電気シェーバ等の携帯用生活器具;室内灯等の照明器具;ペースメーカや補聴器等の医療用電子機器;メモリカード等の記憶用装置;着脱可能な電源としてパーソナルコンピュータ等に用いられる電池パック;電動ドリルや電動鋸等の電動工具;非常時等に備えて電力を蓄積しておく家庭用バッテリシステム等の電力貯蔵システムやホームエネルギーサーバ(家庭用蓄電装置)、電力供給システム;蓄電ユニットやバックアップ電源;電動自動車、電動バイク、電動自転車、セグウェイ(登録商標)等の電動車両;航空機や船舶の電力駆動力変換装置(具体的には、例えば、動力用モータ)の駆動を例示することができるが、これらの用途に限定するものではない。
 中でも、本開示のマグネシウム二次電池は、電池パック、電動車両、電力貯蔵システム、電力供給システム、電動工具、電子機器、電気機器等に適用されることが有効である。
電池パックは、本開示のマグネシウム二次電池を用いた電源であり、所謂組電池等である。電動車両は、本開示のマグネシウム二次電池を駆動用電源として作動(走行)する車両であり、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車等)であってもよい。電力貯蔵システム(電力供給システム)は、本開示のマグネシウム二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システム(電力供給システム)では、電力貯蔵源である本開示のマグネシウム二次電池に電力が蓄積されているため、電力を利用して家庭用の電気製品等が使用可能となる。電動工具は、本開示のマグネシウム二次電池を駆動用の電源として可動部(例えばドリル等)が可動する工具である。電子機器や電気機器は、本開示のマグネシウム二次電池を作動用の電源(電力供給源)として各種機能を発揮する機器である。
 以下、円筒型のマグネシウム二次電池及び平板型のラミネートフィルム型のマグネシウム二次電池を説明する。
 円筒型のマグネシウム二次電池100の模式的な断面図を図13に示す。マグネシウム二次電池100にあっては、ほぼ中空円柱状の電極構造体収納部材111の内部に、電極構造体121及び一対の絶縁板112,113が収納されている。電極構造体121は、例えば、セパレータ126を介して正極部材122と負極部材124とを積層して電極構造体を得た後、電極構造体を捲回することで作製することができる。正極部材122は、実施例1の正極部材から成る。電極構造体収納部材(電池缶)111は、一端部が閉鎖され、他端部が開放された中空構造を有しており、鉄(Fe)やアルミニウム(Al)等から作製されている。電極構造体収納部材111の表面にはニッケル(Ni)等がメッキされていてもよい。一対の絶縁板112,113は、電極構造体121を挟むと共に、電極構造体121の捲回周面に対して垂直に延在するように配置されている。電極構造体収納部材111の開放端部には、電池蓋114、安全弁機構115及び熱感抵抗素子(PTC素子、Positive Temperature Coefficient 素子)116がガスケット117を介してかしめられており、これによって、電極構造体収納部材111は密閉されている。電池蓋114は、例えば、電極構造体収納部材111と同様の材料から作製されている。安全弁機構115及び熱感抵抗素子116は、電池蓋114の内側に設けられており、安全弁機構115は、熱感抵抗素子116を介して電池蓋114と電気的に接続されている。安全弁機構115にあっては、内部短絡や、外部からの加熱等に起因して内圧が一定以上になると、ディスク板115Aが反転する。そして、これによって、電池蓋114と電極構造体121との電気的接続が切断される。大電流に起因する異常発熱を防止するために、熱感抵抗素子116の抵抗は温度の上昇に応じて増加する。ガスケット117は、例えば、絶縁性材料から作製されている。ガスケット117の表面にはアスファルト等が塗布されていてもよい。
 電極構造体121の捲回中心には、センターピン118が挿入されている。但し、センターピン118は、捲回中心に挿入されていなくともよい。正極部材122には、アルミニウム等の導電性材料から作製された正極リード部123が接続されている。具体的には、正極リード部123は正極集電体に取り付けられている。負極部材124には、銅等の導電性材料から作製された負極リード部125が接続されている。具体的には、負極リード部125は負極集電体に取り付けられている。負極リード部125は、電極構造体収納部材111に溶接されており、電極構造体収納部材111と電気的に接続されている。正極リード部123は、安全弁機構115に溶接されていると共に、電池蓋114と電気的に接続されている。尚、図13に示した例では、負極リード部125は1箇所(捲回された電極構造体の最外周部)であるが、2箇所(捲回された電極構造体の最外周部及び最内周部)に設けられている場合もある。
 電極構造体121は、正極集電体上に(具体的には、正極集電体の両面に)正極活物質層が形成された正極部材122と、負極集電体上に(具体的には、負極集電体の両面に)負極活物質層が形成された負極部材124とが、セパレータ126を介して積層されて成る。正極リード部123を取り付ける正極集電体の領域には、正極活物質層は形成されていないし、負極リード部125を取り付ける負極集電体の領域には、負極活物質層は形成されていない。
 マグネシウム二次電池100の仕様を以下の表1に例示するが、これらに限定されるものではない。
〈表1〉
正極集電体    厚さ20μmのニッケル箔
正極活物質層   片面当たり厚さ50μm
正極リード部   厚さ100μmのニッケル箔
負極集電体    厚さ20μmの銅箔
負極活物質層   片面当たり厚さ50μm
負極リード部   厚さ100μmのニッケル(Ni)箔
 マグネシウム二次電池100は、例えば、以下の手順に基づき製造することができる。
 即ち、先ず、正極集電体の両面に正極活物質層を形成し、負極集電体の両面に負極活物質層を形成する。
 その後、溶接法等を用いて、正極集電体に正極リード部123を取り付ける。また、溶接法等を用いて、負極集電体に負極リード部125を取り付ける。次に、厚さ20μmの微多孔性ポリエチレンフィルムから成るセパレータ126を介して正極部材122と負極部材124とを積層し、捲回して、(より具体的には、正極部材122/セパレータ126/負極部材124/セパレータ126の電極構造体(積層構造体)を捲回して)、電極構造体121を作製した後、最外周部に保護テープ(図示せず)を貼り付ける。その後、電極構造体121の中心にセンターピン118を挿入する。次いで、一対の絶縁板112,113で電極構造体121を挟みながら、電極構造体121を電極構造体収納部材(電池缶)111の内部に収納する。この場合、溶接法等を用いて、正極リード部123の先端部を安全弁機構115に取り付けると共に、負極リード部125の先端部を電極構造体収納部材111に取り付ける。その後、減圧方式に基づき実施例1の電解液を注入して、電解液をセパレータ126に含浸させる。次いで、ガスケット117を介して電極構造体収納部材111の開口端部に電池蓋114、安全弁機構115及び熱感抵抗素子116をかしめる。
 次に、平板型のラミネートフィルム型のマグネシウム二次電池を説明する。マグネシウム二次電池の模式的な分解斜視図を図14に示す。このマグネシウム二次電池にあっては、ラミネートフィルムから成る外装部材200の内部に、基本的に前述したと同様の電極構造体221が収納されている。電極構造体221は、セパレータ及び電解質層を介して正極部材と負極部材とを積層した後、この積層構造体を捲回することで作製することができる。正極部材には正極リード部223が取り付けられており、負極部材には負極リード部225が取り付けられている。電極構造体221の最外周部は、保護テープによって保護されている。正極リード部223及び負極リード部225は、外装部材200の内部から外部に向かって同一方向に突出している。正極リード部223は、アルミニウム等の導電性材料から形成されている。負極リード部225は、銅、ニッケル、ステンレス鋼等の導電性材料から形成されている。
 外装部材200は、図14に示す矢印Rの方向に折り畳み可能な1枚のフィルムであり、外装部材200の一部には、電極構造体221を収納するための窪み(エンボス)が設けられている。外装部材200は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。マグネシウム二次電池の製造工程では、融着層同士が電極構造体221を介して対向するように外装部材200を折り畳んだ後、融着層の外周縁部同士を融着する。但し、外装部材200は、2枚のラミネートフィルムが接着剤等を介して貼り合わされたものでもよい。融着層は、例えば、ポリエチレン、ポリプロピレン等のフィルムから成る。金属層は、例えば、アルミニウム箔等から成る。表面保護層は、例えば、ナイロン、ポリエチレンテレフタレート等から成る。中でも、外装部材200は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。但し、外装部材200は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレン等の高分子フィルムでもよいし、金属フィルムでもよい。具体的には、ナイロンフィルム(厚さ30μm)と、アルミニウム箔(厚さ40μm)と、無延伸ポリプロピレンフィルム(厚さ30μm)とが外側からこの順に積層された耐湿性のアルミラミネートフィルム(総厚100μm)から成る。
 外気の侵入を防止するために、外装部材200と正極リード部223との間、及び、外装部材200と負極リード部225との間には、密着フィルム201が挿入されている。
密着フィルム201は、正極リード部223及び負極リード部225に対して密着性を有する材料、例えば、ポリオレフィン樹脂等、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレン、変性ポリプロピレン等のポリオレフィン樹脂から成る。
 次に、本開示のマグネシウム二次電池の幾つかの適用例について具体的に説明する。尚、以下で説明する各適用例の構成は、あくまで一例であり、構成は適宜変更可能である。
 電池パックは、1つの本開示のマグネシウム二次電池を用いた簡易型の電池パック(所謂ソフトパック)であり、例えば、スマートフォンに代表される電子機器等に搭載される。あるいは又、2並列3直列となるように接続された6つの本開示のマグネシウム二次電池から構成された組電池を備えている。尚、マグネシウム二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。
 本開示のマグネシウム二次電池を電池パックに適用した場合の回路構成例を示すブロック図を図15に示す。電池パックは、セル(組電池)1001、外装部材、スイッチ部1021、電流検出抵抗器1014、温度検出素子1016及び制御部1010を備えている。スイッチ部1021は、充電制御スイッチ1022及び放電制御スイッチ1024を備えている。また、電池パックは、正極端子1031及び負極端子1032を備えており、充電時には正極端子1031及び負極端子1032は、それぞれ、充電器の正極端子、負極端子に接続され、充電が行われる。また、電子機器使用時には、正極端子1031及び負極端子1032は、それぞれ、電子機器の正極端子、負極端子に接続され、放電が行われる。
 セル1001は、複数の本開示のマグネシウム二次電池1002が直列及び/又は並列に接続されることで、構成される。尚、図15では、6つのマグネシウム二次電池1002が、2並列3直列(2P3S)に接続された場合を示しているが、その他、p並列q直列(但し、p,qは整数)のように、どのような接続方法であってもよい。
 スイッチ部1021は、充電制御スイッチ1022及びダイオード1023、並びに、放電制御スイッチ1024及びダイオード1025を備えており、制御部1010によって制御される。ダイオード1023は、正極端子1031からセル1001の方向に流れる充電電流に対して逆方向、負極端子1032からセル1001の方向に流れる放電電流に対して順方向の極性を有する。ダイオード1025は、充電電流に対して順方向、放電電流に対して逆方向の極性を有する。尚、例ではプラス(+)側にスイッチ部を設けているが、マイナス(-)側に設けてもよい。充電制御スイッチ1022は、電池電圧が過充電検出電圧となった場合に閉状態とされて、セル1001の電流経路に充電電流が流れないように制御部1010によって制御される。充電制御スイッチ1022が閉状態となった後には、ダイオード1023を介することによって放電のみが可能となる。また、充電時に大電流が流れた場合に閉状態とされて、セル1001の電流経路に流れる充電電流を遮断するように、制御部1010によって制御される。放電制御スイッチ1024は、電池電圧が過放電検出電圧となった場合に閉状態とされて、セル1001の電流経路に放電電流が流れないように制御部1010によって制御される。放電制御スイッチ1024が閉状態となった後には、ダイオード1025を介することによって充電のみが可能となる。また、放電時に大電流が流れた場合に閉状態とされて、セル1001の電流経路に流れる放電電流を遮断するように、制御部1010によって制御される。
 温度検出素子1016は例えばサーミスタから成り、セル1001の近傍に設けられ、温度測定部1015は、温度検出素子1016を用いてセル1001の温度を測定し、測定結果を制御部1010に送出する。電圧測定部1012は、セル1001の電圧、及びセル1001を構成する各マグネシウム二次電池1002の電圧を測定し、測定結果をA/D変換して、制御部1010に送出する。電流測定部1013は、電流検出抵抗器1014を用いて電流を測定し、測定結果を制御部1010に送出する。
 スイッチ制御部1020は、電圧測定部1012及び電流測定部1013から送られてきた電圧及び電流を基に、スイッチ部1021の充電制御スイッチ1022及び放電制御スイッチ1024を制御する。スイッチ制御部1020は、マグネシウム二次電池1002のいずれかの電圧が過充電検出電圧若しくは過放電検出電圧以下になったとき、あるいは又、大電流が急激に流れたときに、スイッチ部1021に制御信号を送ることにより、過充電及び過放電、過電流充放電を防止する。充電制御スイッチ1022及び放電制御スイッチ1024は、例えばMOSFET等の半導体スイッチから構成することができる。
この場合、MOSFETの寄生ダイオードによってダイオード1023,1025が構成される。MOSFETとして、pチャネル型FETを用いる場合、スイッチ制御部1020は、充電制御スイッチ1022及び放電制御スイッチ1024のそれぞれのゲート部に、制御信号DO及び制御信号COを供給する。充電制御スイッチ1022及び放電制御スイッチ1024は、ソース電位より所定値以上低いゲート電位によって導通する。即ち、通常の充電及び放電動作では、制御信号CO及び制御信号DOをローレベルとし、充電制御スイッチ1022及び放電制御スイッチ1024を導通状態とする。そして、例えば過充電若しくは過放電の際には、制御信号CO及び制御信号DOをハイレベルとし、充電制御スイッチ1022及び放電制御スイッチ1024を閉状態とする。
 メモリ1011は、例えば、不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)等から成る。メモリ1011には、制御部1010で演算された数値や、製造工程の段階で測定された各マグネシウム二次電池1002の初期状態におけるマグネシウム二次電池の内部抵抗値等が予め記憶されており、また、適宜、書き換えが可能である。また、マグネシウム二次電池1002の満充電容量を記憶させておくことで、制御部1010と共に例えば残容量を算出することができる。
 温度測定部1015では、温度検出素子1016を用いて温度を測定し、異常発熱時に充放電制御を行い、また、残容量の算出における補正を行う。
 次に、電動車両の一例であるハイブリッド自動車といった電動車両の構成を表すブロック図を図16Aに示す。電動車両は、例えば、金属製の筐体2000の内部に、制御部2001、各種センサ2002、電源2003、エンジン2010、発電機2011、インバータ2012,2013、駆動用のモータ2014、差動装置2015、トランスミッション2016及びクラッチ2017を備えている。その他、電動車両は、例えば、差動装置2015やトランスミッション2016に接続された前輪駆動軸2021、前輪2022、後輪駆動軸2023、後輪2024を備えている。
 電動車両は、例えば、エンジン2010又はモータ2014のいずれか一方を駆動源として走行可能である。エンジン2010は、主要な動力源であり、例えば、ガソリンエンジン等である。エンジン2010を動力源とする場合、エンジン2010の駆動力(回転力)は、例えば、駆動部である差動装置2015、トランスミッション2016及びクラッチ2017を介して前輪2022又は後輪2024に伝達される。エンジン2010の回転力は発電機2011にも伝達され、回転力を利用して発電機2011が交流電力を発生させ、交流電力はインバータ2013を介して直流電力に変換され、電源2003に蓄積される。一方、変換部であるモータ2014を動力源とする場合、電源2003から供給された電力(直流電力)がインバータ2012を介して交流電力に変換され、交流電力を利用してモータ2014を駆動する。モータ2014によって電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置2015、トランスミッション2016及びクラッチ2017を介して前輪2022又は後輪2024に伝達される。
 図示しない制動機構を介して電動車両が減速すると、減速時の抵抗力がモータ2014に回転力として伝達され、その回転力を利用してモータ2014が交流電力を発生させるようにしてもよい。交流電力はインバータ2012を介して直流電力に変換され、直流回生電力は電源2003に蓄積される。
 制御部2001は、電動車両全体の動作を制御するものであり、例えば、CPU等を備えている。電源2003は、実施例1において説明した1又は2以上のマグネシウム二次電池(図示せず)を備えている。電源2003は、外部電源と接続され、外部電源から電力供給を受けることで電力を蓄積する構成とすることもできる。各種センサ2002は、例えば、エンジン2010の回転数を制御すると共に、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。各種センサ2002は、例えば、速度センサ、加速度センサ、エンジン回転数センサ等を備えている。
 尚、電動車両がハイブリッド自動車である場合について説明したが、電動車両は、エンジン2010を用いずに電源2003及びモータ2014だけを用いて作動する車両(電気自動車)でもよい。
 次に、電力貯蔵システム(電力供給システム)の構成を表すブロック図を図16Bに示す。電力貯蔵システムは、例えば、一般住宅及び商業用ビル等の家屋3000の内部に、制御部3001、電源3002、スマートメータ3003、及び、パワーハブ3004を備えている。
 電源3002は、例えば、家屋3000の内部に設置された電気機器(電子機器)3010に接続されていると共に、家屋3000の外部に停車している電動車両3011に接続可能である。また、電源3002は、例えば、家屋3000に設置された自家発電機3021にパワーハブ3004を介して接続されていると共に、スマートメータ3003及びパワーハブ3004を介して外部の集中型電力系統3022に接続可能である。電気機器(電子機器)3010は、例えば、1又は2以上の家電製品を含んでいる。家電製品として、例えば、冷蔵庫、エアコンディショナー、テレビジョン受像機、給湯器等を挙げることができる。自家発電機3021は、例えば、太陽光発電機や風力発電機等から構成されている。電動車両3011として、例えば、電動自動車、ハイブリッド自動車、電動オートバイ、電動自転車、セグウェイ(登録商標)等を挙げることができる。集中型電力系統3022として、商用電源、発電装置、送電網、スマートグリッド(次世代送電網)を挙げることができるし、また、例えば、火力発電所、原子力発電所、水力発電所、風力発電所等を挙げることもできるし、集中型電力系統3022に備えられた発電装置として、種々の太陽電池、燃料電池、風力発電装置、マイクロ水力発電装置、地熱発電装置等を例示することができるが、これらに限定するものではない。
 制御部3001は、電力貯蔵システム全体の動作(電源3002の使用状態を含む)を制御するものであり、例えば、CPU等を備えている。電源3002は、実施例1において説明した1又は2以上のマグネシウム二次電池(図示せず)を備えている。スマートメータ3003は、例えば、電力需要側の家屋3000に設置されるネットワーク対応型の電力計であり、電力供給側と通信可能である。そして、スマートメータ3003は、例えば、外部と通信しながら、家屋3000における需要・供給のバランスを制御することで、効率的で安定したエネルギー供給が可能となる。
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統3022からスマートメータ3003及びパワーハブ3004を介して電源3002に電力が蓄積されると共に、独立電源である自家発電機3021からパワーハブ3004を介して電源3002に電力が蓄積される。電源3002に蓄積された電力は、制御部3001の指示に応じて電気機器(電子機器)3010及び電動車両3011に供給されるため、電気機器(電子機器)3010の作動が可能になると共に、電動車両3011が充電可能になる。即ち、電力貯蔵システムは、電源3002を用いて、家屋3000内における電力の蓄積及び供給を可能にするシステムである。
 電源3002に蓄積された電力は、任意に利用可能である。そのため、例えば、電気料金が安価な深夜に集中型電力系統3022から電源3002に電力を蓄積しておき、電源3002に蓄積しておいた電力を電気料金が高い日中に用いることができる。
 以上に説明した電力貯蔵システムは、1戸(1世帯)毎に設置されていてもよいし、複数戸(複数世帯)毎に設置されていてもよい。
 次に、電動工具の構成を表すブロック図を図16Cに示す。電動工具は、例えば、電動ドリルであり、プラスチック材料等から作製された工具本体4000の内部に、制御部4001及び電源4002を備えている。工具本体4000には、例えば、可動部であるドリル部4003が回動可能に取り付けられている。制御部4001は、電動工具全体の動作(電源4002の使用状態を含む)を制御するものであり、例えば、CPU等を備えている。電源4002は、実施例1において説明した1又は2以上のマグネシウム二次電池(図示せず)を備えている。制御部4001は、図示しない動作スイッチの操作に応じて、電源4002からドリル部4003に電力を供給する。
 以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定されるものではない。実施例において説明したマグネシウム二次電池を構成する各種部材の原材料、製造方法、製造条件、電子デバイスや電気化学デバイス、マグネシウム二次電池の構成、構造は例示であり、これらに限定するものではなく、また、適宜、変更することができる。
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《マグネシウム二次電池用の正極材料》
 多孔質炭素材料、及び、硫黄又は硫黄化合物によって構成された複合材料、並びに、
 アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層、
を有するマグネシウム二次電池用の正極材料。
[A02]複合材料においては、硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料が分散している[A01]に記載のマグネシウム二次電池用の正極材料。
[A03]複合材料においては、硫黄又は硫黄化合物の粒子が、多孔質炭素材料の有する細孔の内部に侵入している[A02]に記載のマグネシウム二次電池用の正極材料。
[A04]複合材料においては、層状の硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料が分散している[A01]に記載のマグネシウム二次電池用の正極材料。
[A05]カチオン性高分子材料は、下記のカチオン性官能基を少なくとも1種類、有する[A01]乃至[A04]のいずれか1項に記載のマグネシウム二次電池用の正極材料。
Figure JPOXMLDOC01-appb-I000007
但し、R1,R2,R3,R4,R5及びR6は、それぞれ、独立に、水素、ハロゲン、アルキル基、アミノ基、ニトロ基、シアノ基、ヒドロシル基、サルフェート基、スルホネート基及びカルボニル基から成る群から選択される。
[A06]カチオン性高分子材料は、ポリジアリルジメチルアンモニウムクロライド(PDADMAC)から成る[A01]乃至[A04]のいずれか1項に記載のマグネシウム二次電池用の正極材料。
[A07]カチオン性高分子材料は、ポリスルフィドイオン(Sn -)を電気的に吸着することができるカチオン性高分子材料から成る[A01]乃至[A04]のいずれか1項に記載のマグネシウム二次電池用の正極材料。
[A08]アニオン性高分子材料は、下記のアニオン性官能基を有する[A01]乃至[A07]のいずれか1項に記載のマグネシウム二次電池用の正極材料。
Figure JPOXMLDOC01-appb-I000008
但し、Rは、パーフルオロアルキル基、アルキル基、フェニル基及びエーテルから成る群から選択される。
[A09]アニオン性高分子材料は、パーフルオロカーボン材料から成る[A01]乃至[A07]のいずれか1項に記載のマグネシウム二次電池用の正極材料。
[A10]アニオン性高分子材料は、テトラフルオロエチレンと、パーフルオロ(2-フルオロスルフォニルエトキシ)プロピルビニルエステルとの共重合体から成る[A01]乃至[A07]いずれか1項に記載のマグネシウム二次電池用の正極材料。
[A11]アニオン性高分子材料は、マグネシウムイオンを選択的に通過させることができるアニオン性高分子材料から成る[A01]乃至「A07]のいずれか1項に記載のマグネシウム二次電池用の正極材料。
[A12]アニオン性高分子材料は、マグネシウムイオン伝導性を有するアニオン性高分子材料から成る[A01]乃至「A07]のいずれか1項に記載のマグネシウム二次電池用の正極材料。
[A13]被覆材料層表面に炭素粒子が付着している[A01]乃至[A12]いずれか1項に記載のマグネシウム二次電池用の正極材料。
[B01]《マグネシウム二次電池》
 少なくとも正極活物質層を備えた正極部材、
 正極部材に対向して配設されたセパレータ、
 セパレータに対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材、及び、
 マグネシウム塩を含む電解液、
を備えており、
 正極活物質層は、
 多孔質炭素材料、及び、硫黄又は硫黄化合物によって構成された複合材料、並びに、
 アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層、
から構成された正極材料から成るマグネシウム二次電池。
[B02]複合材料においては、硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料が分散している[B01]に記載のマグネシウム二次電池。
[B03]複合材料においては、硫黄又は硫黄化合物の粒子が、多孔質炭素材料の有する細孔の内部に侵入している[B02]に記載のマグネシウム二次電池用の正極材料。
[B04]複合材料においては、層状の硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料が分散している[B01]に記載のマグネシウム二次電池。
[B05]カチオン性高分子材料は、下記のカチオン性官能基を少なくとも1種類、有する[B01]乃至[B04]のいずれか1項に記載のマグネシウム二次電池。
Figure JPOXMLDOC01-appb-I000009
但し、R1,R2,R3,R4,R5及びR6は、それぞれ、独立に、水素、ハロゲン、アルキル基、アミノ基、ニトロ基、シアノ基、ヒドロシル基、サルフェート基、スルホネート基及びカルボニル基から成る群から選択される。
[B06]カチオン性高分子材料は、ポリジアリルジメチルアンモニウムクロライド(PDADMAC)から成る[B01]乃至[B04]のいずれか1項に記載のマグネシウム二次電池。
[B07]カチオン性高分子材料は、ポリスルフィドイオン(Sn -)を電気的に吸着することができるカチオン性高分子材料から成る[B01]乃至[B04]のいずれか1項に記載のマグネシウム二次電池。
[B08]アニオン性高分子材料は、下記のアニオン性官能基を有する[B01]乃至[B07]のいずれか1項に記載のマグネシウム二次電池。
Figure JPOXMLDOC01-appb-I000010
但し、Rは、パーフルオロアルキル基、アルキル基、フェニル基及びエーテルから成る群から選択される。
[B09]アニオン性高分子材料は、パーフルオロカーボン材料から成る[B01]乃至[B07]のいずれか1項に記載のマグネシウム二次電池。
[B10]アニオン性高分子材料は、テトラフルオロエチレンと、パーフルオロ(2-フルオロスルフォニルエトキシ)プロピルビニルエステルとの共重合体から成る[B01]乃至[B07]いずれか1項に記載のマグネシウム二次電池。
[B11]アニオン性高分子材料は、マグネシウムイオンを選択的に通過させることができるアニオン性高分子材料から成る[B01]乃至「A07]のいずれか1項に記載のマグネシウム二次電池。
[B12]アニオン性高分子材料は、マグネシウムイオン伝導性を有するアニオン性高分子材料から成る[B01]乃至「A07]のいずれか1項に記載のマグネシウム二次電池。
[B13]被覆材料層表面に炭素粒子が付着している[B01]乃至[B12]いずれか1項に記載のマグネシウム二次電池。
[B14]正極活物質層は、硫黄あるいは硫黄化合物の粒子の集合体から構成されている[B01]に記載のマグネシウム二次電池。
[B15]正極活物質層は、層状の硫黄あるいは硫黄化合物から構成されている[B01]に記載のマグネシウム二次電池。
10・・・正極材料、11・・・複合材料(複合部材)、12・・・硫黄又は硫黄化合物、13・・・多孔質炭素材料、14・・・被覆材料層、15・・・炭素粒子、16・・・正極材料、17・・・負極部材、18・・・電解液、20・・・マグネシウム二次電池(コイン電池)、21・・・コイン電池缶、22・・・ガスケット、23・・・正極部材、23A・・・正極集電体、23B・・・正極活物質層、24・・・セパレータ、25・・・負極部材、26・・・スペーサ、27・・・コイン電池蓋、31・・・正極、32・・・負極、33・・・セパレータ、35,36・・・集電体、37・・・ガスケット、41・・・多孔質正極、42・・・負極部材、43・・・セパレータ及び電解液、44・・・空気極側集電体、45・・・負極側集電体、46・・・拡散層、47・・・酸素選択性透過膜、48・・・外装体、51・・・空気(大気)、52・・・酸素、61・・・正極部材、62・・・正極用電解液、63・・・正極用電解液輸送ポンプ、64・・・燃料流路、65・・・正極用電解液貯蔵容器、71・・・負極部材、72・・・負極用電解液、73・・・負極用電解液輸送ポンプ、74・・・燃料流路、75・・・負極用電解液貯蔵容器、66・・・イオン交換膜、100・・・マグネシウム二次電池、111・・・電極構造体収納部材(電池缶)、112,113・・・絶縁板、114・・・電池蓋、115・・・安全弁機構、115A・・・ディスク板、116・・・熱感抵抗素子(PTC素子)、117・・・ガスケット、118・・・センターピン、121・・・電極構造体、122・・・正極部材、123・・・正極リード部、124・・・負極部材、125・・・負極リード部、126・・・セパレータ、200・・・外装部材、201・・・密着フィルム、221・・・電極構造体、223・・・正極リード部、225・・・負極リード部、1001・・・セル(組電池)、1002・・・マグネシウム二次電池、1010・・・制御部、1011・・・メモリ、1012・・・電圧測定部、1013・・・電流測定部、1014・・・電流検出抵抗器、1015・・・温度測定部、1016・・・温度検出素子、1020・・・スイッチ制御部、1021・・・スイッチ部、1022・・・充電制御スイッチ、1024・・・放電制御スイッチ、1023,1025・・・ダイオード、1031・・・正極端子、1032・・・負極端子、CO,DO・・・制御信号、2000・・・筐体、2001・・・制御部、2002・・・各種センサ、2003・・・電源、2010・・・エンジン、2011・・・発電機、2012,2013・・・インバータ、2014・・・駆動用のモータ、2015・・・差動装置、2016・・・トランスミッション、2017・・・クラッチ、2021・・・前輪駆動軸、2022・・・前輪、2023・・・後輪駆動軸、2024・・・後輪、3000・・・家屋、3001・・・制御部、3002・・・電源、3003・・・スマートメータ、3004・・・パワーハブ、3010・・・電気機器(電子機器)、3011・・・電動車両、3021・・・自家発電機、3022・・・集中型電力系統、4000・・・工具本体、4001・・・制御部、4002・・・電源、4003・・・ドリル部

Claims (11)

  1.  多孔質炭素材料、及び、硫黄又は硫黄化合物によって構成された複合材料、並びに、
     アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層、
    を有するマグネシウム二次電池用の正極材料。
  2.  複合材料においては、硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料が分散している請求項1に記載のマグネシウム二次電池用の正極材料。
  3.  複合材料においては、硫黄又は硫黄化合物の粒子が、多孔質炭素材料の有する細孔の内部に侵入している請求項2に記載のマグネシウム二次電池用の正極材料。
  4.  複合材料においては、層状の硫黄又は硫黄化合物の粒子の内部に多孔質炭素材料が分散している請求項1に記載のマグネシウム二次電池用の正極材料。
  5.  カチオン性高分子材料は、下記のカチオン性官能基を少なくとも1種類、有する請求項1乃至請求項4のいずれか1項に記載のマグネシウム二次電池用の正極材料。
    Figure JPOXMLDOC01-appb-I000001
    但し、R1,R2,R3,R4,R5及びR6は、それぞれ、独立に、水素、ハロゲン、アルキル基、アミノ基、ニトロ基、シアノ基、ヒドロシル基、サルフェート基、スルホネート基及びカルボニル基から成る群から選択される。
  6.  カチオン性高分子材料は、ポリジアリルジメチルアンモニウムクロライド(PDADMAC)から成る請求項1乃至請求項4のいずれか1項に記載のマグネシウム二次電池用の正極材料。
  7.  アニオン性高分子材料は、下記のアニオン性官能基を有する請求項1乃至請求項6のいずれか1項に記載のマグネシウム二次電池用の正極材料。
    Figure JPOXMLDOC01-appb-I000002
    但し、Rは、パーフルオロアルキル基、アルキル基、フェニル基及びエーテルから成る群から選択される。
  8.  アニオン性高分子材料は、パーフルオロカーボン材料から成る請求項1乃至請求項6のいずれか1項に記載のマグネシウム二次電池用の正極材料。
  9.  アニオン性高分子材料は、テトラフルオロエチレンと、パーフルオロ(2-フルオロスルフォニルエトキシ)プロピルビニルエステルとの共重合体から成る請求項1乃至請求項6いずれか1項に記載のマグネシウム二次電池用の正極材料。
  10.  被覆材料層の表面に炭素粒子が付着している請求項1乃至請求項9いずれか1項に記載のマグネシウム二次電池用の正極材料。
  11.  少なくとも正極活物質層を備えた正極部材、
     正極部材に対向して配設されたセパレータ、
     セパレータに対向して配設されたマグネシウム又はマグネシウム化合物を含む負極部材、及び、
     マグネシウム塩を含む電解液、
    を備えており、
     正極活物質層は、
     多孔質炭素材料、及び、硫黄又は硫黄化合物によって構成された複合材料、並びに、
     アニオン性高分子材料及びカチオン性高分子材料を含む被覆材料層、
    から構成された正極材料から成るマグネシウム二次電池。
PCT/JP2018/024222 2017-06-30 2018-06-26 マグネシウム二次電池及びマグネシウム二次電池用の正極材料 WO2019004220A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019526941A JP7052794B2 (ja) 2017-06-30 2018-06-26 マグネシウム二次電池及びマグネシウム二次電池用の正極材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128322 2017-06-30
JP2017128322 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004220A1 true WO2019004220A1 (ja) 2019-01-03

Family

ID=64742383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024222 WO2019004220A1 (ja) 2017-06-30 2018-06-26 マグネシウム二次電池及びマグネシウム二次電池用の正極材料

Country Status (2)

Country Link
JP (1) JP7052794B2 (ja)
WO (1) WO2019004220A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023500942A (ja) * 2020-08-10 2023-01-11 エルジー エナジー ソリューション リミテッド リチウム二次電池用正極コーティング材、この製造方法、前記コーティング材を含む正極及びリチウム二次電池
WO2023238162A1 (en) * 2022-06-10 2023-12-14 Kaushik Palicha MAGNESIUM-AIR FUEL CELL WITH HYDROXYL-ION-DOPED CATHODE, Mg-RICH ELECTROLYTE AND Mg ANODE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115682795B (zh) * 2022-10-08 2023-08-29 中建三局第一建设工程有限责任公司 用于太阳能光伏光热系统的复合式热管系统及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503439A (ja) * 2009-08-28 2013-01-31 シオン・パワー・コーポレーション 硫黄含有多孔質構造体を有する電気化学電池
US20140234707A1 (en) * 2013-02-21 2014-08-21 Toyota Motor Eng. & Mtfg. North America Carbon-sulfur composites encapsulated with polyelectrolyte multilayer membranes
US20160308208A1 (en) * 2015-04-17 2016-10-20 Hui He Magnesium-sulfur secondary battery containing a metal polysulfide-preloaded active cathode layer
WO2017168976A1 (ja) * 2016-03-30 2017-10-05 ソニー株式会社 多価イオン二次電池用正極活物質、多価イオン二次電池用正極、多価イオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503439A (ja) * 2009-08-28 2013-01-31 シオン・パワー・コーポレーション 硫黄含有多孔質構造体を有する電気化学電池
US20140234707A1 (en) * 2013-02-21 2014-08-21 Toyota Motor Eng. & Mtfg. North America Carbon-sulfur composites encapsulated with polyelectrolyte multilayer membranes
US20160308208A1 (en) * 2015-04-17 2016-10-20 Hui He Magnesium-sulfur secondary battery containing a metal polysulfide-preloaded active cathode layer
WO2017168976A1 (ja) * 2016-03-30 2017-10-05 ソニー株式会社 多価イオン二次電池用正極活物質、多価イオン二次電池用正極、多価イオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUCUR, C. ET AL.: "A layer-by-layer supramolecular structure for a sulfur cathode", ENERGY & ENVIRONMENTAL SCIENCE, vol. 9, no. 3, 26 November 2015 (2015-11-26), pages 992 - 998, XP055673032, DOI: 10.1039/C5EE02367J *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023500942A (ja) * 2020-08-10 2023-01-11 エルジー エナジー ソリューション リミテッド リチウム二次電池用正極コーティング材、この製造方法、前記コーティング材を含む正極及びリチウム二次電池
JP7410291B2 (ja) 2020-08-10 2024-01-09 エルジー エナジー ソリューション リミテッド リチウム二次電池用正極コーティング材、この製造方法、前記コーティング材を含む正極及びリチウム二次電池
WO2023238162A1 (en) * 2022-06-10 2023-12-14 Kaushik Palicha MAGNESIUM-AIR FUEL CELL WITH HYDROXYL-ION-DOPED CATHODE, Mg-RICH ELECTROLYTE AND Mg ANODE

Also Published As

Publication number Publication date
JPWO2019004220A1 (ja) 2020-06-11
JP7052794B2 (ja) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2017006629A1 (ja) 電解液及び電気化学デバイス
US11901509B2 (en) Electrolyte solution and electrochemical device
CN109496375B (zh) 电解液和电化学设备
JP7052794B2 (ja) マグネシウム二次電池及びマグネシウム二次電池用の正極材料
US11121401B2 (en) Negative electrode for magnesium secondary batteries and method for producing same, and magnesium secondary battery
JP7014228B2 (ja) マグネシウム二次電池及び電解液、並びに、電解液の製造方法
JP6856120B2 (ja) 硫化マグネシウム材料、硫化マグネシウム複合材料、二次電池用の正極部材、ワイドバンドギャップ半導体材料及びマグネシウム二次電池、並びに、閃亜鉛鉱型硫化マグネシウムの製造方法
US20220037641A1 (en) Magnesium-containing electrode, method for fabricating the same, and electrochemical device
US20210159542A1 (en) Electrolytic solution and electrochemical device
JP7107372B2 (ja) 電気化学デバイス
WO2022054813A1 (ja) 電気化学デバイス
WO2022209595A1 (ja) 正極および電気化学デバイス
WO2020027339A1 (ja) 電気化学デバイス
WO2018190376A1 (ja) マグネシウム-硫黄二次電池用正極及びその製造方法、並びに、マグネシウム-硫黄二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825407

Country of ref document: EP

Kind code of ref document: A1